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Abstract
In this paper, we consider the Cauchy problem of a class of higher order Schrödinger type

equations with constant coefficients. By employing the energy inequality, we show the L2

well-posedness, the parabolic smoothing and a breakdown of the persistence of regularity. We
classify this class of equations into three types on the basis of their smoothing property.

1. Introduction

1. Introduction
In this paper, we consider the Cauchy problem of the following:

Dtu(t, x) = D2m
x u(t, x) +

2m∑
j=1

(
a jD

2m− j
x u(t, x) + b jD

2m− j
x ū(t, x)

)
,(1.1)

u(0, x) = ϕ(x),(1.2)

where 1 ≤ m ∈ N,  = R (orT), (t, x) ∈ (−∞,∞) ×, Dt = −i∂t, Dx = −i∂x and i is the
imaginary unit. The constants {a j}, {b j} ⊂ C and the initial data ϕ(x) :  → C are given
and u(t, x) : (−∞,∞) × → C is unknown. We are interested in the Cauchy problem of
the following higher order nonlinear Schrödinger type equations:

i∂tu(t, x) − ∂2m
x u(t, x) = F(∂2m−1

x u, ∂2m−1
x u, ∂2m−2

x u, ∂2m−2
x u, . . . u, u),(1.3)

with (1.2), where F is a polynomial. As important examples, this class of equations in-
cludes the nonlinear Schrödinger hierarchy and the derivative nonlinear Schrödinger hier-
archy, which are integrable systems appearing in the soliton theory. It is known that the
Cauchy problem of (1.3) with (1.2) is locally well-posed on R in weighted Sobolev spaces
(of which functions are also sufficiently smooth). Its proof is based on the Kato type smooth-
ing estimate and the gauge transform [5, 6]. See Section 3 in [11] for this argument. On the
one hand, the well-posedness for (1.3) with (1.2) on R without any weight or on T remains
open. We also refer to [4, 10, 11, 16] for well-posedness results to higher order dispersive
equations including the KdV hierarchy. In [2], Chihara studied the well-posedness and the
ill-posedness of (1.3) for m = 1 with (1.2) on T. Recently, in [20], the second author has
studied a similar problem and shown a non-existence result of solutions of (1.3) for some
nonlinearity and m = 1 with (1.2) on T by employing a smoothing for elliptic equations.
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In other words, even when we restrict (1.3) to m = 1, the well-posedness for (1.3) with
(1.2) on T is remarkably different from that on R. Therefore, the nonlinearity F must have
special structures (expected to include the case where (1.3) is a integrable system) when the
Cauchy problem of (1.3) with (1.2) is (locally) well-posed on T. In proofs of [2, 20], the so
called “energy inequality” of (1.1) with variable coefficients {a j(t, x)} and {b j(t, x)} plays an
important role. Our plan is to extend this result to m ≥ 2. However, the energy inequality
for higher m is much complicated. Therefore, we assume {a j} and {b j} are constants to make
the problem simple in the present paper and will study the variable coefficients case in the
forthcoming paper. λ defined below is used to classify (1.1) into three types.

Definition 1. We write
∑0

k=1 ck = 0 for any sequence {ck}. γ = {γ j}m−1
j=1 and λ = {λ j}2m−1

j=1
are defined as

γ j = b2 j −
j−1∑
k=1

ā2( j−k)γk, 1 ≤ j ≤ m − 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
λ2 j = 2 Im a2 j − 2

j−1∑
k=1

Im b̄2( j−k)γk, 1 ≤ j ≤ m − 1,

λ2 j−1 = 2 Im a2 j−1 + 2
j−1∑
k=1

Im b̄2( j−k)−1γk, 1 ≤ j ≤ m.

Our main result is the following. We write P+ f (x) := 
−1(χ(ξ ≥ 1) f )(x) and P− f (x) :=


−1(χ(ξ ≤ −1) f )(x), where  is the Fourier transform and χ is the definition function.

Theorem 1.1.
(Dispersive type, L2 well-posedness) Assume that λ j = 0 for 1 ≤ j ≤ 2m − 1. Then,
for any ϕ ∈ L2(), there exists a unique solution u(t, x) of (1.1)–(1.2) such that u(t, x) ∈
C((−∞,∞); L2()).
(Parabolic type) Assume that there exists j∗ ∈ N such that λ j = 0 for 1 ≤ j < 2 j∗ and
λ2 j∗ > 0 (resp. λ2 j∗ < 0). (i) For any ϕ ∈ L2(), there exist a unique solution u(t, x) of (1.1)–
(1.2) on [0,∞) (resp. (−∞, 0]) such that u(t, x) ∈ C([0,∞); L2())∩C∞((0,∞)×) (resp.
C((−∞, 0]; L2()) ∩ C∞((−∞, 0) ×)). (ii) For any ϕ ∈ L2() \ C∞() and δ > 0, no
solution u of (1.1)–(1.2) exists on (−δ, 0] (resp. [0, δ)) such that u(t, x) ∈ C((−δ, 0]; L2())
(resp. C([0, δ); L2())).
(Elliptic type) Assume that there exists j∗ ∈ N such that λ j = 0 for 1 ≤ j < 2 j∗ − 1 and
λ2 j∗−1 > 0 (resp. λ2 j∗−1 < 0). (i) Let ϕ ∈ L2() satisfy P+ϕ � H1/2(). Then, for
any δ > 0, there exist no solution u(t, x) of (1.1)–(1.2) on [−δ, 0] (resp. [0, δ]) satisfying
u ∈ C([−δ, 0]; L2()) (resp. u ∈ C([0, δ]; L2())). Moreover, the same result as above
holds even if we replace P+, [−δ, 0] and [0, δ] with P−, [0, δ] and [−δ, 0], respectively. (ii)
Let ϕ ∈ L2() \ C∞(). Then, for any δ > 0, there exist no solution u(t, x) of (1.1)–(1.2)
on [−δ, δ] satisfying u ∈ C([−δ, δ]; L2())

Remark 1.1. Put v(t) = 〈∂x〉−su(t). Then v satisfies (1.1) if u is the solution of (1.1) and
u(t) ∈ L2() ⇔ v(t) ∈ Hs(). Therefore, Theorem 1.1 holds even if we replace L2()
with Hs() and H1/2() with Hs+1/2() for any s ∈ R.
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Remark 1.2. In “Dispersive type,” the persistence of regularity holds on both (−∞, 0]
and [0,∞). In “Parabolic type,” the equations have the parabolic smoothing effect on either
(−∞, 0] or [0,∞), which means the persistence of regularity breaks down on either [0,∞) or
(−∞, 0]. Non-existence results in “Parabolic type” and “Elliptic type” is by the breakdown
of the persistence of regularity.

Remark 1.3. We give some examples of {a j} and {b j}.
• When m = 1, “Parabolic type” does not occur. In fact, the equation Dtu = D2

xu +
a1Dxu+ a2u+ b1Dxū+ b2ū is “Dispersive type” if Im a1 = 0 and it is “Elliptic type”
otherwise.
• Let H(u) be a quadratic form defined by

H(u) :=
1
2

∫
|∂m

x u|2 +
2m∑
j=1

(c ju∂
2m− j
x u + d ju∂

2m− j
x ū + e jū∂

2m− j
x ū)dx

for given {c j}, {d j}, {e j} ⊂ C. Then, it is easy to check that H(u) is the Hamiltonian of
the equation (1.1) if and only if Im a j = b2n−1 = Re d2n−1 = Im d2n = 0 and c2n = ē2n

for 1 ≤ j ≤ 2m − 1 and 1 ≤ n ≤ m. In particular, we can write c2 j = (−1)m− jb̄2 j/2,
d2 j−1 = i(−1)m− ja2 j−1 and d2 j = (−1)m− ja2 j for 1 ≤ j ≤ m (without loss of generality
we can assume c2 j−1 = e2 j−1 = 0 since c2 j−1- and e2 j−1-terms always vanish by the
integration by parts). In this case, we see from Definition 1 and Remark 2.2 that
λ j = 0 for 1 ≤ j ≤ 2m−1, which implies that Hamiltonian equations are “Dispersive
type.”
• By using the equation (1.1), we have

d
dt
‖u(t)‖2 = 2 Re i〈Dtu, u〉

= −2
2m∑
j=1

(Im a j)〈D2m− j
x u, u〉 − 2

m∑
n=1

Im b2n〈D2(m−n)
x ū, u〉.

Therefore, when Im a j = b2n = 0 for 1 ≤ j ≤ 2m − 1 and 1 ≤ n ≤ m, the solution of
the equation (1.1) conserves the mass, i.e., ‖u(t)‖. We see from the scaling argument
that this condition is also necessary. In this case, the equation (1.1) is “Dispersive
type.” Indeed, it is easy to see γ j = 0 for 1 ≤ j ≤ m − 1 by Definition 1. It then
follows that λk = 2 Im ak = 0 for 1 ≤ k ≤ 2m − 1.
• When m = 2, we have

λ1 = 2 Im a1, λ2 = 2 Im a2, λ3 = 2 Im a3 + 2 Im b̄1b2.

So, equations Dtu = D4
xu + iDxu and Dtu = D4

xu + D3
xū − iD2

xū are “Elliptic type.”
On the other hand, Dtu = D4

xu + iDxu + D3
xū − iD2

xū is “Dispersive type” although
this equation does not have the Hamiltonian.

We recall several results for equations related to (1.1). There is a large literature on the
well-posedness for the Cauchy problem of Schrödinger type equations, especially m = 1. In
[13], Mizohata showed that if the Cauchy problem
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∂tu =
n∑

j=1

(i∂2
j + c j(x)∂ j)u + f (t, x), (t, x) ∈ R × Rn,

u(0, x) = ϕ(x)

is L2 well-posed, then the condition

sup
(t,ω,x)∈R×Sn−1×Rn

∣∣∣∣∣∣ Im
∫ t

0

n∑
j=1

c j(x + sω)ω jds

∣∣∣∣∣∣ < ∞
holds. In particular, this condition is also sufficient for the L2 well-posedness when n = 1.
See [1, 2, 3, 8, 9, 14, 17, 18] (and references therein) for related results. For m = 2, in [15],
Mizuhara studied L2 well-posedness for the Cauchy problem:

(Dt − D4
x − c1(x)D3

x − c2(x)D2
x − c3(x)Dx − c4(x))u = f (t, x)(1.4)

u(0, x) = ϕ(x),(1.5)

where (t, x) ∈ R×. To be precise, he also studied another equation of the KdV type. When
 = T, he deduced the necessary and sufficient conditions for the L2 well-posedness for
(1.4)–(1.5). On the other hand, when  = R, he showed some conditions for the L2 well-
posedness. Indeed, his sufficient condition for the L2 well-posedness is also necessary under
the additional assumption. In [19], Tarama removed Mizuhara’s additional assumption, so
he obtained the necessary and sufficient conditions for the L2 well-posedness for (1.4)–(1.5)
on R.

Since the coefficients are constants, by the Fourier transform, (1.1) can be rewritten into
the following:

Dt̂u(t, ξ) = ξ2mû(t, ξ) +
2m∑
j=1

(
a jξ

2m− ĵu(t, ξ) + b jξ
2m− ĵu(t,−ξ)).(1.6)

Here, we fix ξ ∈ R (or Z) and put

Uξ(t) =
⎛⎜⎜⎜⎜⎝ û(t, ξ)

û(t,−ξ)
⎞⎟⎟⎟⎟⎠ , X0 =

(
1 0
0 −1

)
, Xj =

(
a j b j

(−1) j+1b j (−1) j+1a j

)
,

for 1 ≤ j ≤ 2m. Then, by (1.6) with (1.2), it follows that

DtUξ(t) =
2m∑
j=0

ξ2m− jX jUξ(t), Uξ(0) = t(ϕ̂(ξ), ϕ̂(−ξ)),(1.7)

which is a system of linear ordinary differential equations. We can easily obtain the unique
solution

Uξ(t) = Uξ(0) exp it
2m∑
j=0

ξ2m− jX j(1.8)

on t ∈ (−∞,∞) for each ξ ∈ R (or Z). Therefore, our interest in Theorem 1.1 is essentially
on the regularity of the solution. Here, note that XjXk = XkXj holds for any 0 ≤ j, k ≤ 2m
if and only if b j = 0 holds for any 1 ≤ j ≤ 2m. If we assume this assumption, (1.7) is not a
system but a single ordinary differential equation and
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û(t, ξ) = ϕ̂(ξ) exp it
(
ξ2m +

2m∑
j=1

ξ2m− ja j

)
(1.9)

for each ξ ∈ R (or Z). Since γ j = 0 and λ j = 2Im a j, it follows that

|̂u(t, ξ)| = |̂ϕ(ξ)|
2m∏
j=1

exp
−tξ2m− jλ j

2
,

by which we obtain Theorem 1.1 easily. On the other hand, it seems difficult to obtain Theo-
rem 1.1 by (1.8) for general {b j} since XjXk � XkXj for some j, k. To avoid this difficulty, we
employ the energy estimate. In particular, we modify the energy, adding correction terms
so as to cancel out derivative losses. See e.g. [7, 12] for this argument. However, some of
derivative losses cannot be eliminated by correction terms, and they may essentially affect
the well-posedness of the Cauchy problem of (1.1)–(1.2) as stated in Theorem 1.1. Propo-
sitions 2.1 and 2.2 are main estimates in this paper. The first term of the left-hand side of
(2.1) is the main part of the energy. The second term is the correction term. For “Dispersive
type,” the third and the fourth terms vanish. Thus, we easily obtain the L2 a priori estimate.
For “Parabolic type,” the third term includes λ2 j∗‖|∂x|m− j∗u‖2. The parabolic smoothing is
caused by the term. For “Elliptic type,” the fourth term includes λ2 j∗−1〈D2(m− j∗)+1

x u, u〉. We
want to show the parabolic smoothing by making use of the term. However, the sign of the
term is not definite. That is unfavorable in our argument. Therefore, we compute the energy
inequalities of P+u and P−u instead of u and obtain Lemma 2.3. Note that the sign of all
terms except the correction terms in (2.4) and (2.5) are definite. Though (2.4) is the energy
inequality for ‖P+u‖, it includes λ−j ‖|∂x|m− j/2P−u‖2. This is because (1.1) is essentially cou-
pled system of P+u and P−u as (1.6). The term λ−j ‖|∂x|m− j/2P−u‖2 cannot be estimated by
‖u‖. This is the main difficulty in the proof of “Elliptic type” in Theorem 1.1. The key idea
is to eliminate these terms in two steps where 1 ≤ j ≤ 2 j∗ + 1 and 2( j∗ + 1) ≤ j ≤ 2m − 1.
First we analyse a property of {λ−j } so that λ2k = 0 for 1 ≤ k ≤ j∗ − 1 implies that the
first 2 j∗ + 1 of {λ−j } vanish (see Lemma 2.5). In order to cancel out the rest of unfavorable
terms λ−j ‖|∂x|m− j/2P−u‖2 for 2( j∗ + 1) ≤ j ≤ 2m − 1, we use an additional correction term
F−k and obtain (2.2) (see also (2.3)). Here, F−k originates from the energy inequality for
‖|∂x|−(k+2)/2P−u‖, and F−k does not yield a bad effect thanks to the first step.

The rest of this paper is organized as follows. In Section 2, we state main estimates which
are energy estimates for u and P±u, and give proofs of them. In Section 3, we show Theorem
1.1. In particular, we show a smoothing for “Elliptic type” (Proposition 3.2) from the energy
estimate for P±u.

Here, we set some notation. Let 〈·, ·〉 := 〈·, ·〉L2 and ‖ · ‖ := ‖ · ‖L2 . We also use the same
symbol for 〈·〉 := (1+ | · |2)1/2. P0 and P�0 are defined by P0 f (x) := 

−1(χ(|ξ| < 1) f )(x) and
P�0 f (x) := 

−1(χ(|ξ| ≥ 1) f )(x). We define the Riesz and Bessel potentials by |∂x|s f :=

−1(|ξ|s f )(x) and 〈∂x〉s f := 

−1(〈ξ〉s f )(x).

2. the energy estimates

2. the energy estimates
Our purpose in this section is to show Propositions 2.1 and 2.2. Proposition 2.1 below is

used to show “Dispersive type” and “Parabolic type” in Theorem 1.1.
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Proposition 2.1. Let u satisfy (1.1). Then, there exists C = C({a j}, {b j}) > 0 such that∣∣∣∣∣∣ d
dt

(
‖u‖2 +

m−1∑
j=1

Re γ j〈D−2 j
x P�0ū, P�0u〉

)
(2.1)

+

m−1∑
j=1

λ2 j‖|∂x|m− ju‖2 +
m∑

j=1

λ2 j−1〈D2(m− j)+1
x u, u〉

∣∣∣∣∣∣ ≤ C‖u‖2.

Definition 2. α = {α j}2m−1
j=1 , λ

+ = {λ+j }2m−1
j=1 , λ

− = {λ−j }2m−1
j=1 are defined as

α j = b j − 1
2

j−1∑
k=1

(1 + (−1) j−k)ā j−kαk, 1 ≤ j ≤ 2m − 1,

λ+j = 2 Im a j +

j−1∑
k=1

(−1) j−k+1 Im b̄ j−kαk, 1 ≤ j ≤ 2m − 1,

λ−j = −
j−1∑
k=1

Im b̄ j−kαk, 1 ≤ j ≤ 2m − 1.

Let 1 ≤ j∗ ≤ m − 2. Assume that λ+2 j∗−1 � 0. β+ = {β+k }2(m− j∗−1)
k=1 and β− = {β−k }2(m− j∗−1)

k=1 are
inductively defined as

λ−2 j∗+k+1 =

k∑
j=1

(−1)k− jλ+2 j∗+k− j−1β
+
j , 1 ≤ k ≤ 2(m − j∗ − 1),

λ−2 j∗+k+1 =

k∑
j=1

(−1)kλ+2 j∗+k− j−1β
−
j , 1 ≤ k ≤ 2(m − j∗ − 1).

Note that λ+2 j∗+k− j−1 = λ
+
2 j∗−1 � 0 when j = k. So, β+k and β−k are well-defined.

Remark 2.1. It is easy to see that γ j = α2 j for 1 ≤ j ≤ m − 1. Thus, we have

λ2 j = λ
+
2 j + λ

−
2 j, λ2k−1 = λ

+
2k−1 − λ−2k−1

for 1 ≤ j ≤ m − 1 and 1 ≤ k ≤ m.

Proposition 2.2 below is used to show “Elliptic type” in Theorem 1.1.

Proposition 2.2. Let u satisfy (1.1). Assume that there exists j∗ ∈ N such that λ j = 0 for
1 ≤ j ≤ 2( j∗ − 1) and λ2 j∗−1 � 0. Put

F−k (u) = ‖|∂x|−(k+2)/2P−u‖2 +
2m−1∑

j=1

Reα j〈D− j
x |∂x|−k−2P+u, P−u〉,

F+k (u) = ‖|∂x|−(k+2)/2P+u‖2 +
2m−1∑

j=1

Reα j〈D− j
x |∂x|−k−2P−u, P+u〉.

Then, there exists C = C({a j}, {b j}) > 0 such that
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∣∣∣∣∣∣ d
dt

(
‖P+u‖2 +

2m−1∑
j=1

Reα j〈D− j
x P−u, P+u〉 +

2(m− j∗−1)∑
k=1

β+k F−k (u)
)

(2.2)

+ λ+2 j∗−1‖|∂x|m− j∗+1/2P+u‖2
∣∣∣∣∣∣ ≤ C‖u‖2 +C‖|∂x|m− j∗P+u‖2,

and ∣∣∣∣∣∣ d
dt

(
‖P−u‖2 +

2m−1∑
j=1

Reα j〈D− j
x P+u, P−u〉 +

2(m− j∗−1)∑
k=1

β−k F+k (u)
)

(2.3)

− λ+2 j∗−1‖|∂x|m− j∗+1/2P−u‖2
∣∣∣∣∣∣ ≤ C‖u‖2 +C‖|∂x|m− j∗P−u‖2.

To prove Propositions 2.1 and 2.2, we use the following lemma.

Lemma 2.3. Let u satisfy (1.1). Then, there exists C = C({a j}, {b j}) > 0 such that∣∣∣∣∣∣ d
dt

(
‖P+u‖2 +

2m−1∑
j=1

Reα j〈D− j
x P−u, P+u〉

)
(2.4)

+

2m−1∑
j=1

(λ+j ‖|∂x|m− j/2P+u‖2 + λ−j ‖|∂x|m− j/2P−u‖2)

∣∣∣∣∣∣ ≤ C‖u‖2

and ∣∣∣∣∣∣ d
dt

(
‖P−u‖2 +

2m−1∑
j=1

Reα j〈D− j
x P+u, P−u〉

)
(2.5)

+

2m−1∑
j=1

(−1) j(λ+j ‖|∂x|m− j/2P−u‖2 + λ−j ‖|∂x|m− j/2P+u‖2)

∣∣∣∣∣∣ ≤ C‖u‖2.

Proof of Lemma 2.3. First, we show (2.4). For simplicity, we set v+ := P+u and
v− := P−u. Note that P+ū = P−u = v− and P−ū = P+u = v+. Then, v+ and v− satisfy

Dtv
+ = D2m

x v
+ +

2m∑
k=1

(akD2m−k
x v+ + bkD2m−k

x v−)(2.6)

and

Dtv− = −D2m
x v
− −

2m∑
k=1

(−1)k(ākD2m−k
x v− + b̄kD2m−k

x v+).(2.7)

By (2.6), we have

d
dt
‖v+‖2 = 2 Re 〈∂tv

+, v+〉 = −2 Im 〈Dtv
+, v+〉

= −2
2m∑
j=1

(Im a j〈D2m− j
x v+, v+〉 + Im b j〈D2m− j

x v−, v+〉)

= −2
2m∑
j=1

(Im a j‖|∂x|m− j/2P+u‖2 + Im b j〈D2m− j
x v−, v+〉).
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Here, we consider the time derivative of correction terms to cancel out the second term. Fix
1 ≤ j ≤ 2m − 1. We see from (2.6) and (2.7) that

d
dt

Reα j〈D− j
x P−u, v+〉 = − Imα j〈D− j

x Dtv−, v+〉 + Imα j〈D− j
x v−,Dtv

+〉
= Imα j〈D− j

x (D2m
x v
−), v+〉 + Imα j〈D− j

x v−,D2m
x v
+〉

+

2m∑
k=1

((−1)k Imα jāk〈D2m−k− j
x v−, v+〉 + (−1)k Imα jb̄k〈D2m−k− j

x v+, v+〉

+ Imα jāk〈D2m−k− j
x v−, v+〉 + Imα jb̄k〈D2m−k− j

x v−, v−〉)

=: Aj
1 + Bj

1 +

2m∑
k=1

(Aj
2,k + Aj

3,k + Bj
2,k + Bj

3,k).

Observe that

Aj
1 + Bj

1 = 2 Imα j〈D2m− j
x v−, v+〉,

Aj
2,k + Bj

2,k = (1 + (−1)k) Imα jāk〈D2m−k− j
x v−, v+〉,

Aj
3,k = (−1)k Imα jb̄k‖|∂x|m−(k+ j)/2P+u‖2,

Bj
3,k = Imα jb̄k‖|∂x|m−(k+ j)/2P−u‖2.

We collect coefficients of derivative losses with rearranging the summation order. Note that
for any sequence {c j,k}, it holds that

p∑
j=1

p− j∑
k=1

c j,k =

p−1∑
j=1

p−1− j∑
k=0

c j,k+1 =

p−1∑
j=1

j∑
k=1

ck, j−k+1.(2.8)

It is easy to see that ∣∣∣∣∣∣
2m∑
j=1

2m∑
k=2m− j

(Aj
2,k + Aj

3,k + Bj
2,k + Bj

3,k)

∣∣∣∣∣∣ � ‖u‖2.
Then, by (2.8), we have

2m−1∑
j=1

2m−1− j∑
k=1

(Aj
2,k + Bj

2,k) =
2(m−1)∑

j=1

j∑
k=1

(Ak
2, j−k+1 + Bk

2, j−k+1)

=

2(m−1)∑
j=1

j∑
k=1

(1 + (−1) j−k+1) Imαkā j−k+1〈D2m−1− j
x v−, v+〉.

Similarly, we obtain

2m−1∑
j=1

2m−1− j∑
k=1

Aj
3,k =

2(m−1)∑
j=1

j∑
k=1

(−1) j−k+1 Imαkb̄ j−k+1‖|∂x|m−( j+1)/2P+u‖2,

2m−1∑
j=1

2m−1− j∑
k=1

Bj
3,k =

2(m−1)∑
j=1

j∑
k=1

Imαkb̄ j−k+1‖|∂x|m−( j+1)/2P−u‖2.

This concludes the proof of (2.4). For the proof of (2.5), we set v+ := P−u and v− := P+u.
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Then, they satisfy (2.6) and (2.7). Therefore, the exactly same proof works. �

Now we are ready to prove Proposition 2.1. Though we can prove it directly without
using Lemma 2.3, we give the proof of it by the lemma.

Proof of Proposition 2.1. Note that 〈P+ f , P−g〉 = 〈P− f , P+g〉 = 0 for any functions f , g.
This implies that 〈P�0 f̄ , P�0g〉 = 〈P− f , P+g〉 + 〈P+ f , P−g〉. So, collecting (2.4) and (2.5),
we obtain ∣∣∣∣∣∣ d

dt

(
‖P�0u‖2 +

m−1∑
j=1

Reα2 j〈D−2 j
x P�0ū, P�0u〉

)

+

m−1∑
j=1

λ2 j‖|∂x|m− jP�0u‖2 +
m∑

j=1

λ2 j−1〈D2(m− j)+1
x P�0u, P�0u〉

∣∣∣∣∣∣ ≤ C‖u‖2.

We also note that γk = α2k. Finally, it is easy to see that∣∣∣∣∣∣ d
dt
‖P0u‖2 +

m−1∑
j=1

λ2 j‖|∂x|m− jP0u‖2 +
m∑

j=1

λ2 j−1〈D2(m− j)+1
x P0u, P0u〉

∣∣∣∣∣∣ ≤ C‖u‖2.

Therefore, we have (2.1). �

The terms λ−j ‖|∂x|m− j/2P−u‖2 (resp. λ−j ‖|∂x|m− j/2P+u‖2) in (2.4) (resp. (2.5)) with 1 ≤ j ≤
2 j∗ − 1 in Lemma 2.3 are unfavorable in our argument to prove Proposition 2.2. Indeed,
Proposition 2.2 is used to show “Elliptic type” in Theorem 1.1 when λ2 j∗−1 � 0 under the
assumption λ j = 0 for 1 ≤ j ≤ 2( j∗ −1). So, we analyse the coefficients λ− below in order to
ensure the condition λ j = 0 for 1 ≤ j ≤ 2( j∗ − 1) implies λ+j = λ

−
n = 0 for 1 ≤ j ≤ 2( j∗ − 1)

and 1 ≤ n ≤ 2 j∗ − 1.

Lemma 2.4. It holds that

λ−j+1 = −
1
2

j−1∑
l=1

(1 + (−1)l)(Re al)λ−j+1−l +
1
2

j−1∑
l=1

j−l∑
k=1

(1 + (−1)l)(Im al) Re b̄ j−l−k+1αk

for 1 ≤ j ≤ 2(m − 1).

Proof. By the definitions of λ−j and αk, we have

λ−j+1 = −
j∑

l=1

Im blb̄ j−l+1 +
1
2

j∑
l=1

l−1∑
k=1

(1 + (−1)l−k) Im b̄ j−l+1āl−kαk =: A + B.

It is easy to see that A = 0. Observe that

p∑
l=1

l−1∑
k=1

cl−kdlek =

p−1∑
l=1

p−l∑
k=1

cldl+kek(2.9)

for any sequences {c j}, {d j} and {e j}. This implies that

B =
1
2

j−1∑
l=1

j−l∑
k=1

(1 + (−1)l) Im b̄ j−l−k+1ālαk
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=
1
2

j−1∑
l=1

j−l∑
k=1

(1 + (−1)l)((Re al) Im b̄ j−l−k+1αk − (Im al) Re b̄ j−l−k+1αk).

Here we used the fact that Im cd = (Re c) Im d+ (Im c) Re d for any c, d ∈ C. This completes
the proof. �

Lemma 2.5. Assume that there exists j∗ ∈ N such that λ2 j = 0 for 1 ≤ j ≤ j∗. Then, it
holds that Im a2 j = λ

+
2 j = 0 for 1 ≤ j ≤ j∗ and λ−j = 0 for 1 ≤ j ≤ 2 j∗ + 3.

Proof. First note that λ−1 = λ
−
2 = λ

−
3 = 0 even without the hypothesis. Indeed, it is clear

that λ−1 = 0. We also have λ−2 = − Im b̄1α1 = 0 and λ−3 = − Im b̄2α1 − Im b̄1α2 = 0 since
α1 = b1 and α2 = b2. Assume that there exists j∗ ∈ N such that λ2 j = 0 for 1 ≤ j ≤ j∗. The
rest of proof proceeds by the induction on j. We prove the following claim: it holds that

Im a2 j = λ
+
2 j = λ

−
2 j+2 = λ

−
2 j+3 =

j−1∑
k=1

Im b̄2( j−k)α2k = 0

for 1 ≤ j ≤ j∗. It is easy to see that the claim above with j = 1 follows. Indeed, by the
definition of α j, we obtain α3 = b3 − ā2b1 and α4 = b4 − ā2b2, which implies that

λ−4 = − Im b̄3b1 − Im |b2|2 − Im b̄1b3 + Im |b1|2ā2 = 0,

λ−5 = − Im b̄4b1 − Im b̄3b2 − Im b̄2(b3 − ā2b1) − Im b̄1(b4 − ā2b2) = 0

since λ2 = 2 Im a2 = 0. We also have λ+2 = Im b̄2α2 = 0 easily. Next, we assume that the
claim above holds for j(≤ j∗ − 1). By the hypothesis, it holds that λ−2 j+2 = λ

−
2 j+3 = 0. Thus,

by Remark 2.1, we have λ+2 j+2 = 0. We claim that M :=
∑ j

l=1 Im b̄2( j−l+1)γl = 0. Indeed, we
see from the definition of γl that

M =
j∑

l=1

Im b̄2( j−l+1)b2l −
j∑

l=1

l−1∑
k=1

Im b̄2( j−l+1)ā2(l−k)γk =: A + B.

It is easy to see that A = 0. We have

B = −
j−1∑
l=1

j−l∑
k=1

Im b̄2( j−l−k+1)ā2lγk

= −
j−1∑
l=1

(Re a2l)
j−l∑

k=1

Im b̄2( j−l−k+1)γk +

j−1∑
l=1

(Im a2l)
j−l∑

k=1

Re b̄2( j−l−k+1)γk = 0

by (2.9) and the hypothesis. This shows that Im a2 j+2 = 0 by the definiton of λ2 j+2. By
Lemma 2.4, we obtain λ−2 j+4 = λ

−
2 j+5 = 0, which completes the proof. �

Remark 2.2. From the proof of the above lemma, we also see that

λ2 j∗+2 = 2 Im a2 j∗+2, λ2 j∗+4 = 2 Im a2 j∗+4

when λ2 j = 0 for 1 ≤ j ≤ j∗.

Now, we prove Proposition 2.2.
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Proof of Proposition 2.2. We give only the proof of (2.2) since we can show (2.3) in
the same manner. When j∗ = 1, we see from the definition that λ−n = 0 for n = 1, 2, 3.
When j∗ ≥ 2, Lemma 2.5 implies that λ+j = λ

−
j = 0 for 1 ≤ j ≤ 2( j∗ − 1) and λ−2 j∗−1 =

λ−2 j∗ = λ
−
2 j∗+1 = 0. This together with Remark 2.1 implies λ+2 j∗−1 � 0. By (2.4), interpolation

inequalities and the Young inequality, we have∣∣∣∣∣∣ d
dt

(
‖P+u‖2 +

2m−1∑
j=1

Reα j〈D− j
x P−u, P+u〉

)
+

2m−1∑
j=2 j∗+2

λ−j ‖|∂x|m− j/2P−u‖2

+ λ+2 j∗−1‖|∂x|m− j∗+1/2P+u‖2
∣∣∣∣∣∣ � ‖u‖2 + ‖|∂x|m− j∗P+u‖2

Thus, we only need to show∣∣∣∣∣∣ d
dt

2(m− j∗−1)∑
k=1

β+k F−k (u) −
2m−1∑

j=2 j∗+2

λ−j ‖|∂x|m− j/2P−u‖2
∣∣∣∣∣∣

� ‖u‖2 + ‖|∂x|m− j∗P+u‖2.
(2.10)

Put v = |∂x|−(k+2)/2P�0u. Since v satisfies (1.1), by (2.5), we have∣∣∣∣∣∣ d
dt

(
‖P−v‖2 +

2m−1∑
j=1

Reα j〈D− j
x P+v, P−v〉

)
+

2m−1∑
j=2 j∗−1

(−1) jλ+j ‖|∂x|m− j/2P−v‖2
∣∣∣∣∣∣

� ‖v‖2 + ‖|∂x|m− j∗P+v‖2.
Thus, we obtain∣∣∣∣∣∣

2(m− j∗−1)∑
k=1

β+k
( d
dt

F−k (u) +
2m−k−3∑
j=2 j∗−1

(−1) jλ+j ‖|∂x|m−( j+k+2)/2P−u‖2
)∣∣∣∣∣∣

� ‖u‖2 + ‖|∂x|m− j∗P+u‖2.
By (2.8), we have

2(m− j∗−1)∑
k=1

2m−k−3∑
j=2 j∗−1

(−1) jβ+k λ
+
j ‖|∂x|m−( j+k+2)/2P−u‖2

=

2(m− j∗−1)∑
k=1

k∑
j=1

(−1)k− j+1β+j λ
+
2 j∗+k− j−1‖|∂x|m− j∗−(k+1)/2P−u‖2.

Therefore, by the definition of β+k , we conclude (2.10). �

3. Proof of main theorem

3. Proof of main theorem
In this section, we show Theorem 1.1.

Definition 3. For f ∈ L2() and N > 0, we define

E( f ; N) := ‖ f ‖2 + N‖∂−m
x P�0 f ‖2 +

m−1∑
j=1

Re γ j〈D−2 j
x P�0 f̄ , P�0 f 〉.
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We choose N sufficiently large so that Lemma 3.1 holds. If there is no confusion, we write
E( f ) := E( f ; N).

Lemma 3.1. Let N > 0 be sufficiently large. Then, for any f ∈ L2() it holds that

1
2

E( f ) ≤ ‖ f ‖2 + N‖∂−m
x P�0 f ‖2 ≤ 2E( f ).

Proof. The Gagliardo-Nirenberg inequality and the Young inequality show that

m−1∑
j=1

|Re γ j〈D−2 j
x P�0 f̄ , P�0 f 〉| ≤ 1

2
‖ f ‖2 +C‖∂−m

x P�0 f ‖2.(3.1)

So, it suffices to choose N = 2C. �

We prove the first part of Theorem 1.1.

Proof of “Dispersive type” in Theorem 1.1. We consider our problem only on [0,∞) since
the result on (−∞, 0] follows from the same argument. Let T > 0, which can be arbitrary
large. We first show the a priori estimate supt∈[0,T ] ‖u(t)‖ ≤ C‖ϕ‖. We assume that u satisfies
(1.1) and (1.2). Then, it is easy to see that d

dt ‖∂−m
x P�0u‖2 ≤ 2|〈Dt∂

−2m
x P�0u, P�0u〉| ≤ C‖u‖2.

This together with (2.1), Lemma 3.1 and λ j = 0 for 1 ≤ j ≤ 2m − 1 implies that d
dt E(u(t)) ≤

CE(u(t)) on [0, T ]. Thus, by the Gronwall inequality and Lemma 3.1, we obtain the a priori
estimate. Next, we show the existence. Let ϕn = 

−1χ(|ξ| < n)ϕ for n ∈ N. Then, we have
the solution un of (1.1) with un(0) = ϕn by (1.8). Moreover, un ∈ C([0, T ]; L2()) since
|∑2m

j=0 ξ
2m− jX j| ≤ C({a j}, {b j}, n) for |ξ| < n. Since {ϕn} is a Cauchy sequence in L2(), by

the a priori estimate, we conclude {un} is also a Cauchy sequence in C([0, T ]; L2()). Thus,
we obtain the solution u ∈ C([0, T ]; L2()) of (1.1)–(1.2) as the limit of un. Finally, the
uniqueness easily follows from the a priori estimate. �

Proof of “Parabolic type” in Theorem 1.1. We use the argument from the proof of
Theorem 1.2 in [21]. We consider only the case λ2 j∗ > 0 since the other case follows from
the same argument. Let T > 0, which can be arbitrary large. By the Gagliardo-Nirenberg
inequality and the Young inequality, we have∣∣∣∣∣

m−1∑
j= j∗+1

λ2 j‖|∂x|m− ju‖2 +
m∑

j= j∗+1

λ2 j−1〈D2(m− j)+1
x u, u〉

∣∣∣∣∣ ≤ 1
2
λ2 j∗‖|∂x|m− j∗u‖2 +C‖u‖2.

Recall that λ j = 0 for 1 ≤ j ≤ 2 j∗ − 1. Therefore, in the same manner as the proof of
“Dispersive type,” we obtain the a priori estimate:

sup
t∈[0,T ]

(
‖u(t)‖2 + λ2 j∗

2

∫ t

0
‖|∂x|m− j∗u(τ)‖2dτ

)
≤ C‖ϕ‖2.

It then follows that we have the unique existence of the solution u ∈ C([0, T ]; L2()) ∩
L2([0, T ]; Hm− j∗()), which implies that u(t) ∈ Hm− j∗() for a.e. t ∈ [0, T ]. Let 0 < ε < T .
Then there exists t0 ∈ (0, ε/2) such that u(t0) ∈ Hm− j∗(). Since 〈∂x〉m− j∗u satisfies
(1.1)–(1.2) with initial data ϕ := 〈∂x〉m− j∗u(t0) ∈ L2(), applying the same argument
as above, we conclude 〈∂x〉m− j∗u ∈ C([t0, T ]; L2()) ∩ L2([t0, T ]; Hm− j∗()). That is,
u ∈ C([t0, T ]; Hm− j∗()) ∩ L2([t0, T ]; H2(m− j∗)()). We can choose t1 so that ε/2 < t1 <
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ε/2 + ε/4 and u(t1) ∈ H2(m− j∗)(). Again, applying the same argument as above with
the initial data ϕ := 〈∂x〉2(m− j∗)u(t0) ∈ L2(), we conclude u ∈ C([t1, T ]; H2(m− j∗)()) ∩
L2([t1, T ]; H3(m− j∗)()). By repeating this process, we conclude u ∈ C([ε, T ]; Hk(m− j∗)())
for any k ∈ N, which implies u ∈ C�([ε, T ]; Hk(m− j∗)−2m�()) for any k, � ∈ N by (1.1).
By the Sobolev embedding, we obtain u ∈ C∞([ε, T ] ×). Since we can take ε > 0
arbitrary small and T > 0 arbitrary large, we conclude u ∈ C∞((0,∞) ×). Finally,
we show the nonexistence result by contradiction. Assume that there exists a solution
u ∈ C((−δ, 0]; L2()) of (1.1)–(1.2) with ϕ ∈ L2() \ C∞(). We take t0 such that
−δ < t0 < 0. Then, as we proved above, we have u ∈ C∞((t0, 0] ×), which contradicts to
the assumption ϕ = u(0) � C∞(). �

The following proposition is the main tool to show the result for “Elliptic type” in Theo-
rem 1.1.

Proposition 3.2 (A smoothing for “Elliptic type”). Let u ∈ C([t0, t1]; L2()) satisfy
(1.1). Assume that there exists j∗ ∈ N such that λ j = 0 for 1 ≤ j < 2 j∗ − 1 and λ2 j∗−1 > 0
(resp. < 0). Then, it follows that

P+u (resp. P−u) ∈ C((t0, t1]; H1/2()) (forward smoothing),(3.2)

P−u (resp. P+u) ∈ C([t0, t1); H1/2()) (backward smoothing).(3.3)

In particular, it holds that u ∈ C∞((t0, t1) ×).

Proof. We consider only the case λ+2 j∗−1 > 0 since the same proof works for the case
λ+2 j∗−1 < 0. For simplicity, set

G+(u) :=
2m−1∑

j=1

Reα j〈D− j
x P−u, P+u〉 +

2(m− j∗−1)∑
k=1

β+k F−k (u),

where F−k is defined in Proposition 2.2 and {α j} and {βk} are defined in Definiton 2. Set M :=
supt∈[t0,t1] ‖u(t)‖. Note that supt∈[t0,t1](|G+(u(t))| + |G+(|∂x|1/2u(t))|) ≤ CM and G+(|∂x|1/2u(t))
is continuous on [t0, t1] by the presence of D− j

x in the definition of G+(u) above. By the
Gagliardo-Nirenberg inequality and the Young inequality, we have

‖|∂x|m− j∗Qu‖2 ≤ δ‖|∂x|m− j∗+1/2Qu‖2 +Cδ−1‖u‖2

for δ > 0, Q = P+ or P−. Take δ > 0 sufficiently small. Then, this together with (2.2) and
(2.3) yields

λ+2 j∗−1

∫ t1

t0
‖|∂x|m− j∗+1/2Qu(τ)‖2dτ ≤ C(M)(1 + |t1 − t0|),

for Q = P+ or P−. By the interpolation, we also have∫ t1

t0
‖|∂x|su(τ)‖2dτ(3.4)

=

∫ t1

t0
(‖|∂x|sP−u(τ)‖2 + ‖|∂x|sP0u(τ)‖2 + ‖|∂x|sP+u(τ)‖2)dτ

≤ C(M, λ+2 j∗−1)(1 + |t1 − t0|)
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for 0 ≤ s ≤ m+ j∗ − 1/2. It then follows that ‖|∂x|m− j∗+1/2u(t)‖ < ∞ for a.e. t ∈ [t0, t1]. Then,
for any ε > 0 there exists t∗ ∈ (t0, t0 + ε) such that ‖|∂x|m− j∗+1/2u(t∗)‖ < ∞. Note that (2.2)
holds even if we replace u with |∂x|1/2u since |∂x|1/2u satisfies (1.1). Thus,∣∣∣∣∣ d

dt
(‖|∂x|1/2P+u‖2 +G+(|∂x|1/2u)

)
+ λ+2 j∗−1‖|∂x|m− j∗+1P+u‖2

∣∣∣∣∣(3.5)

≤ C‖|∂x|1/2u‖2 +C‖|∂x|m− j∗+1/2P+u‖2,
By the Gagliardo-Nirenberg inequality and the Young inequality, we have

‖|∂x|m− j∗+1/2P+u‖2 ≤ δ‖|∂x|m− j∗+1P+u‖2 +Cδ−1‖|∂x|1/2u‖2

for δ > 0. Taking δ > 0 sufficiently small and integrating (3.5) on [t∗, t](⊂ [t0, t1]) with (3.4),
we obtain

‖|∂x|1/2P+u(t)‖2 +
λ+2 j∗−1

2

∫ t

t∗
‖|∂x|m− j∗+1P+u(τ)‖2dτ(3.6)

≤ C(M, λ+2 j∗−1, |t1 − t0|) + ‖|∂x|1/2P+u(t∗)‖2 < ∞
since u(t∗) ∈ Hm− j∗+1/2(). Therefore, by (3.5) again, it follows that for any t∗ ≤ t′ ≤ t ≤ t1∣∣∣∣‖|∂x|1/2P+u(t)‖2 − ‖|∂x|1/2P+u(t′)‖2

∣∣∣∣
≤

∣∣∣∣[|∂x|1/2P+u(τ)‖2 +G+(|∂x|1/2u)
]τ=t

τ=t′
+ λ+2 j∗−1

∫ t

t′
‖|∂x|m− j∗+1P+u(τ)‖2dτ

∣∣∣∣
+

∣∣∣∣[G+(|∂x|1/2u)
]τ=t

τ=t′

∣∣∣∣ + λ+2 j∗−1

∫ t

t′
‖|∂x|m− j∗+1P+u(τ)‖2dτ

≤ C
∫ t

t′
‖|∂x|1/2u(τ)‖2dτ +C

∫ t

t′
‖|∂x|m− j∗+1/2P+u(τ)‖2dτ

+ λ+2 j∗−1

∫ t

t′
‖|∂x|m− j∗+1P+u(τ)‖2dτ +

∣∣∣∣[G+(|∂x|1/2u)
]τ=t

τ=t′

∣∣∣∣.
(3.4), (3.6) and the dominated convergence theorem imply that the right-hand side goes to 0
as |t − t′| → 0, which shows that ‖|∂x|1/2P+u(t)‖ is continuous on [t∗, t1]. The fact P+u ∈
C([t0, t1]; L2()) with P+u ∈ L∞([t∗, t1]; H1/2()) yields P+u ∈ Cw([t∗, t1]; H1/2()).
Combining the continuity of ‖|∂x|1/2P+u(t)‖ and the weak continuity of P+u(t) in H1/2(),
we obtain P+u ∈ C([t∗, t1]; H1/2()). Since we can take ε > 0 arbitrary small, we get
P+u ∈ C((t0, t1]; H1/2()). We also obtain P−u ∈ C([t0, t1); H1/2()) in the same manner.
Therefore, u = P−u + P0u + P+u ∈ C((t0, t1); H1/2()). By repeating this process, we also
obtain u ∈ C((t0, t1); Hk/2()) for any k ∈ N, which yields u ∈ C∞((t0, t1) ×)) since u
satisfies (1.1). �

Proof of “Elliptic type” in Theorem 1.1. We use the argument from the proof of The-
orem 1.2 in [20]. We consider only the case λ2 j∗−1 > 0 since the case λ2 j∗−1 < 0 follows
from the same argument. Let ϕ ∈ L2() satisfy P+ϕ � H1/2(). We prove Theorem
1.1 by contradiction. We assume that there exists u ∈ C([−δ, 0]; L2()) satisfying (1.1)–
(1.2) on [−δ, 0]. Then, we have P+u ∈ C((−δ, 0]; H1/2()) by Proposition 3.2. However,
it contradicts to P+ϕ � H1/2(). This proof works even if we replace P+ and [−δ, 0] with
P− and [0, δ], respectively. Similarly, we can show that for any δ > 0 there exist no so-
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lution u(t, x) of (1.1)–(1.2) with u(0, x) = ϕ(x) ∈ L2() \ C∞() on [−δ, δ] satisfying
u ∈ C([−δ, δ]; L2()). �
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