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Abstract
Virtual knot theory is a generalization of knot theory which is based on Gauss chord diagrams

and link diagrams on closed orientable surfaces. Twisted knots are a generalization of virtual
knots, which correspond to link diagrams in possibly non-orientable surfaces. In this paper,
we construct a table of twisted knots with crossing numbers 3. We use the multivariable poly-
nomial invariants, JKSS invariants of double covering of twisted knots, and the twisted knot
quandles for classification of twisted knots. We determine invertibility, chirality and checker-
board colorability for some twisted knots in our table.

1. Introduction

1. Introduction
Twisted knot theory was introduced by M. Bourgoin [1] as an extension of virtual knot

theory. Twisted links correspond to stable equivalence classes of links in oriented 3-
manifolds which are line bundles over closed surfaces [1], and virtual links correspond to
those in oriented 3-manifolds which are line bundles over oriented closed surfaces [2].

A virtual link diagram is a generalization of a link diagram in R2 possibly with some
crossing called virtual crossings which have no over/under information. A virtual crossing
is depicted with an encircled double point. A twisted link diagram is a generalization of
a virtual link diagram, possibly with bars which are small line segment intersecting the
diagram transversely avoiding crossings. An example of a twisted link diagram is depicted
on the left of Figure 1.

Fig.1. An example of a twisted knot diagram and its Gauss chord diagram

Let D and D′ be virtual (resp. twisted) link diagrams. We say that D is equivalent to
D′ as a virtual (resp. twisted) link if D is transformed to D′, up to isotopies of R2, by a
finite sequence of Reidemeister moves and virtual Reidemeister moves (resp. Reidemeister
moves, virtual Reidemeister moves and twisted Reidemeister moves) depicted in Figures 2.
A virtual link (resp. twisted link) is an equivalence class of a virtual (resp. twisted) link
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diagram.
A twisted link (diagram) of one component is called a twisted knot (diagram).

Fig.2. Extended Reidemeister moves

For a twisted link diagram D, the reverse of D, denoted by −D, means a diagram obtained
from D by reversing the orientation of D. The mirror image of D, denoted by D∗, means
a diagram obtained from D by switching the over/under information, or equivalently the
positive/negative information at every classical crossing of D. The reflection image of D,
denoted by D�, is a diagram obtained from D by reflecting D along a line in R2.

Two twisted link diagrams D and D′ are weakly equivalent if D′ is equivalent to D, −D,
D∗ or −D∗ as a twisted link. (We note that for any twisted link diagram D, D∗ is equivalent
to D� as a twisted link. In fact, it is shown in [12] that for any twisted link diagram D, D∗�

is equivalent to D.) We also say that two twisted links L = [D] and L′ = [D′] are weakly
equivalent if their representatives D and D′ are weakly equivalent.

For a twisted link diagram D, we denote by c(D) the number of classical crossings. The
crossing number of a twisted link L, denoted by c(L), is the minimum among c(D) for all
diagrams D representing L.

The first author classified twisted knots with crossing numbers up to 2 in [7]. A twisted
knot L is said to be pseudo prime if there exists no diagram D representing L which is a
connected sum of two diagrams D1 and D2 such that c(D1) > 0, c(D2) > 0 and c(D1) +
c(D2) = c(L). The purpose of this paper is to provide a table of weak equivalence classes of
pseudo prime twisted knots with crossing numbers 3.

Theorem 1. There exist 82 or 81 weak equivalence classes of pseudo prime twisted knots
with crossing number 3. They are represented by the diagrams in Table 3.
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It is unknown to the authors if the twisted knot diagram 382 in Table 3 is equivalent to
a twisted knot diagram without crossings. If the diagram 382 is (or is not) equivalent to
one without crossings, then there exist 81 (or 82) weak equivalence classes of pseudo prime
twisted knots with crossing number 3, which are represented by the diagrams 31 through 381

(or 382).
The symbol 3k (k = 1, . . . , 82) will be used to denote the diagrams in Table 3 or the

twisted knots represented by the diagrams.
We also investigate, for these twisted knots, invertibility, chirality, checkerboard col-

orability, and the twist numbers.
A twisted knot L = [D] is invertible if D is equivalent to −D. Otherwise, it is noninvert-

ible.

Theorem 2. (1) The following twisted knots are invertible:
31, 34, 35, 37, 38, 39, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 331, 340, 342,
344, 346, 347, 350, 358, 360, 362, 365, 366, 367, 368, 369, 370, 372, 374, 378, 379.

(2) The following twisted knots are noninvertible:
324, 325, 326, 328, 329, 330, 333, 334, 335, 336, 337, 338, 343, 345, 348, 349, 351, 352, 353,
354, 356, 357, 359, 361, 363, 364, 373, 375, 376, 377.

A twisted knot L = [D] is (+)-amphichiral if D is equivalent to D∗. Otherwise, it is (+)-
chiral. A twisted knot L = [D] is (−)-amphichiral if D is equivalent to −D∗. Otherwise, it is
(−)-chiral.

Theorem 3. All twisted knots in Table 3 are (+)-chiral and (−)-chiral.

For a twisted knot, the notion of checkerboard colorability was defined in [7]. The defi-
nition is given in Section 5.

Theorem 4. The twisted knots 344, 358, 367, 370, 380, 381 are checkerboard colorable and
the remaining twisted knots in Table 3 are not.

The twisted number of a twisted knot diagram D, denoted by t(D), is the number of bars
of D. The twisted number of a twisted knot L, denoted by t(L), is the minimum among t(D)
for all diagrams representing L.

Theorem 5. (1) The twisted number of the following twisted knots are 1:
31, 32, 33, 34, 35, 36, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337,
338, 339, 340, 341, 342.

(2) The twisted number of the following twisted knots are 2:
37, 38, 39, 310, 311, 312, 313, 314, 315, 316, 321, 323, 343, 345, 346, 347, 348, 349, 350,
351, 352, 353, 354, 355, 356, 357, 359, 360, 361, 362, 363, 364, 365, 366, 368, 369, 371, 372.

(3) The twisted number of the following twisted knots are 3:
317, 318, 319, 320, 322.

(4) The twisted number of the following twisted knots are 1 or 3:
373, 374, 375, 376, 377, 378, 379, 382.

This paper is organized as follows: We recall Gauss chord diagrams in Section 2 and
double covering diagrams in Section 3. In Section 4 we give the definitions and properties
of some invariants of twisted knots which we use to obtain the results above. We introduce
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the notion of checkerboard colorability for twisted knots in Section 5. Section 6 is devoted
to proofs of Theorems 2–5, and Section 7 to a proof of Theorem 1.

2. Gauss chord diagrams

2. Gauss chord diagrams
In this section we recall Gauss chord diagrams for twisted knot diagrams.
Let C be the unit circle in R2, and let P1, . . . , P2n be points on C appearing evenly in

this order in the counterclockwise direction of C. A Gauss chord diagram with n chords
(without bars) is the unit circle C equipped with n chords such that each chord is oriented
and has a sign, positive/negative, +/−. We consider two Gauss chord diagrams G and G′ are
equivalent if G′ is obtained by rotating G by sπ

n radian for some s ∈ {0, . . . , 2n − 1}.
A Gauss chord diagram with n chords with m bars is a Gauss chord diagram with n chords

equipped with m short line segments, called bars, intersecting C transversely avoiding the
points P1, . . . , P2n such that for each k ∈ {1, . . . , 2n} the bars on the arc of C between Pk−1

and Pk appear evenly on the arc.
Let D be a twisted knot diagram with n classical crossings and m bars. Consider an

immersion η : C → R2 which is an underlying immersion of the diagram D such that
η(Pk), k = 1, . . . , 2n, is the double point of the immersion corresponding to a classical
crossing. We obtain a Gauss chord diagram with n chords such that each chord corresponds
to a classical crossing such that the orientation of the chord is from the over crossing to the
under crossing and the sign of the chord is the sign of the crossing. We put bars on the Gauss
chord diagram corresponding to the bars of D. (If necessary, we change the immersion η so
that the bars on the Gauss chord diagram appear evenly on each arc between Pk−1 and Pk for
each k ∈ {1, . . . , 2n}.) We call this the Gauss chord diagram associated with (or of) D. It is
uniquely determined up to equivalence. We denote it by G(D).

Conversely, for any Gauss chord diagram G with n chords with m (≥ 0) bars, there is a
twisted knot diagram D such that G is the Gauss chord diagram of D. Such a diagram D is
not determined uniquely. However, if D and D′ are diagrams whose Gauss chord diagrams
are the same, or equivalent, then D and D′ are strictly equivalent as a twisted link, that is,
D is transformed to D′, up to isotopies of R2, by a finite sequence of virtual Reidemeister
moves and twisted Reidemeister moves I depicted in Figures 2. Refer to [13] for virtual
knots and [7] for twisted knots.

Therefore there is a natural bijection between the equivalence classes of Gauss chord
diagrams with n chords and m bars and the strict equivalence classes of twisted link diagrams
with n classical crossings and m bars. We assume that the orientation of a circle of a Gauss
chord diagram is counterclockwise.

Figures 3, 4 and 1 are examples of (classical, virtual and twisted) knot diagrams and their
Gauss chord diagrams.

Fig.3. An example of a knot diagram and its Gauss chord diagram
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Fig.4. An example of a virtual knot diagram and its Gauss chord diagram

When we apply Reidemeister moves I, II, III and twisted Reidemeister moves II and III
to twisted knot diagrams, then the Gauss chord diagrams change as in Figure 5.

Fig.5. Deformation of a Gauss chord diagram

The following lemma is directly seen from the definition.

Lemma 6. Let D be a twisted link diagram and let G(D) be the Gauss chord diagram
associated with D.

(1) The Gauss chord diagram G(−D) of the reverse −D is obtained from G(D) by re-
flecting G(D) along a line in R2 and reversing the orientation of the circle.

(2) The Gauss chord diagram G(D∗) of the mirror image D∗ of D is obtained from
G(D) by reversing the orientation and switching the sign of every chord.

(3) The Gauss chord diagram G(D�) of the reflection image D� of D is obtained from
G(D) by switching the sign of every chord.

3. Double covering diagrams

3. Double covering diagrams
A method of constructing a virtual link diagram, called a double covering diagram, from

a twisted link diagram was introduced in [11]. We recall this construction. Let D be a twisted
link diagram with bars b1, . . . , bm. Assume that D is on the left of the y-axis and all bars are
parallel to the x-axis with disjoint y-coordinates. Let s(D) be a twisted link diagram which
is obtained from D by reflection along the y-axis and switching over/under information of
every classical crossing of D. Thus s(D) = D�∗. See Figure 6. We denote a bar of s(D)
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corresponding bi by s(bi).

Fig.6. A twisted link diagram D and its counterpart s(D)

For horizontal lines h1, . . . , hm such that hi contains bi and s(bi), we replace each part of
D � s(D) in a neighborhood of hi, N(hi) as in Figure 7 to obtain a virtual link diagram. We
call this diagram the double covering diagram of D and denote it by D̃.

Fig.7. Replacement in N(hi)

Figure 8 shows the double covering diagram of the twisted link diagram D in Figure 6.

Fig.8. The double covering diagram of D

Theorem 7 ([11]). Let D and D′ be twisted link diagrams, and D̃ and D̃′ their double
covering diagrams, respectively. If D and D′ are equivalent as twisted links, then D̃ and D̃′

are equivalent as virtual links.

This theorem implies that for any invariant f of virtual links, if D and D′ are equivalent
as twisted links then f (D̃) = f (D̃′). Thus, for any invariant f of virtual links, we obtain an
invariant f̃ of twisted links by defining f̃ (D) to be f (D̃).
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4. Invariants of twisted knots

4. Invariants of twisted knots
In this section we introduce some invariants of twisted links: the X-polynomial defined

in [6], the twisted JKSS invariant Z̃ defined in [8], the twisted quandle Q̃ and the twisted
n-coloring number c̃oln defined in [7].

First we introduce the X-polynomial defined in [6].
A local replacement at a classical crossing of a twisted link diagram as in Figure 9 indi-

cated A or B is called an A-splice or a B-splice, respectively. When we apply an A-splice or a
B-splice at a classical crossing, put a pole at the place of edge whose orientation is different
as in Figure 9. A state of a twisted link diagram D is a diagram with possibly some poles
which is obtained from D by applying an A-splice or a B-splice at each classical crossing of
D. Note that a state has no classical crossings anymore.

Fig.9. Splice

For a loop � of a state of D, the number of poles on � is even, since the orientations of
the arcs of � divided by the poles change alternately at each pole. An index of �, ι(�) ∈ Z, is
defined as follows, where we ignore orientations of arcs of the state.

(i) ι( ) = r, where 2r poles appear on both sides alternately, and the dotted

line may have some virtual crossings and some bars.

(ii) ι( ) = ι( ),

(iii) ι( ) = ι( ) and
(iv) ι( ) = ι( ),

where in (ii) a pole passes through a virtual crossing, in (iii) a pair of poles on the same side
is cancelled, and in (iv) a pole passes through a bar.

Note that ι(�) = 0 if the number of bars on � is odd by (ii), (iii) and (iv).
For a twisted link diagram D, let S be a state of D and ω(D) be the writhe of D, which

is the number of the positive crossings minus that of negative ones. We denote by �S the
number of A-splices minus that of B-splices applied on D to obtain the state S. The number
of loops of S is denoted by �S. The number of loops of S which have odd numbers of bars on
them is denoted by �oS. The number of loops of S whose indices are i, is denoted by τi(S).

Definition 8. For a state S, we define 〈〈D|S〉〉 by

〈〈D|S〉〉 = A�S(−A2 − A−2)�SM�oSdτ1(S)
1 dτ2(S)

2 · · · ∈ Z[A, A−1,M, d1, d2, . . . ],
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and we define 〈〈D〉〉 by 〈〈D〉〉 =
∑

S

〈〈D|S〉〉, where S runs over all states of D. Let X(D) =

(−A3)−ω(D)〈〈D〉〉. We call this X-polynomial of D.

Theorem 9 ([6]). The polynomial X(D) is an invariant of a twisted link.

Lemma 10. Let D be a twisted link diagram.

(1) X(−D) = X(D).
(2) X(D∗) = X(D), where X(D) is a polynomial obtained from X(D) by replacing A

with A−1.

Proof. (1) Each state S of D is also regarded as a state, say S′, of −D. Since S = S′ and
each classical crossing of S has the same sign as the corresponding crossing of S′, we have
〈〈D|S〉〉 = 〈〈−D|S′〉〉. Since w(D) = w(−D), we have X(D) = X(−D).

(2) There is a bijection between states S of D and states S′ of D∗ such that S = S′ but
A-splices and B-splices to obtain S from D are switched from those to obtain S′ from D∗.
Thus �oS′ = �oS, τk(S′) = τk(S) for k = 1, . . . and �S′ = −�S. Therefore 〈〈D∗|S′〉〉 = 〈〈D|S〉〉.
Since w(D∗) = −w(D), we have X(D∗) = X(D). �

Remark 11. Dye and Kauffman [3] and Miyazawa [16] introduced independently a mul-
tivariable polynomial invariant of virtual links, which we denote by R and call it the Dye-
Kauffman-Miyazawa multivariable polynomial invariant or the R-polynomial. For a virtual
link diagram D, the invariant R(D) is defined by

(−A3)−ω(D)
∑

S

A�S(−A2 − A−2)�S
′
dτ1(S)

1 dτ2(S)
2 · · · ∈ Z[A, A−1, d1, d2, . . . ],

where �S′ = �S − 1 −
∞∑

n=1

τn(S) and if τn(S) = 0, dτn(S)
n = 1.

Our invariant X for twisted links is, in a sense, an extension of the invariant R for virtual
links. Namely for any virtual link diagram D, R(D) and X(D) are the same up to multiplica-
tion of powers of −A2 − A−2.

We introduce the twisted JKSS invariant Z̃ of twisted links defined in [8]. This invariant
can be defined using double covering in Section 3 from the JKSS invariant Z for virtual links
defined in [17], namely, for a twisted link diagram D, Z̃(D) is Z(D̃) where D̃ is the double
covering diagram of D. Here we explain how to define or compute Z̃(D) directly from D
without taking double covering introduced in [8].

Let D be a twisted link diagram with n classical crossings c1, . . . , cn. We define a 4n× 4n
matrix M̃, by M̃ = diag(M̃1, . . . , M̃n), where M̃i = M̃+ (or M̃−) if the crossing ci is positive
(or negative). Here M̃+ and M̃− are 4 × 4 matrices as follows,

M̃+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 − x −y 0 0
−xy−1 0 0 0

0 0 1 − x −y
0 0 −xy−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and M̃− =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 −x−1y 0 0
−y−1 1 − x−1 0 0

0 0 0 −x−1y

0 0 −y−1 1 − x−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

For a twisted link diagram D, the graph |D| is obtained from D by replacing all classical
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crossings of D with vertices. We denote by the same symbols c1, . . . , cn the vertices of |D|.
The graph |D| is immersed in R2 and the multiple points of |D| are virtual crossings of D.
For each vertex ci of |D|, consider an open regular neighborhood N(ci, |D|) of ci in |D|. Then
N(ci, |D|) − {ci} is the union of four open arcs, which we call the short edges around ci.
According to the position, we denote by i−0 , i

−
1 , i
+
0 , i
+
1 the short edges as in Figure 10.

Fig.10. Labels of four edges

Each edge of |D| may have bars on it. For each vertex ci of |D|, we denote by i−0 , i
−
1 , i
+
0 ,

and i+1 the short edges around ci as before. We denote iε
e← jλ (or iε

o← jλ) for ε, λ ∈ {0, 1}, if
two short edges i−ε and j+λ are on the same edge of |D| and there are an even (or odd) number
of bars on the edge.

We define a 4n × 4n matrix, P̃ = ( p̃kl) as follows. For each i, j ∈ {1, . . . , n},

p̃(4i−3+a)(4 j−3+b) =

⎧⎪⎪⎨⎪⎪⎩ 1
(
ia

e← jb, i3−a
e← j3−b, ia

o← j3−b or i3−a
o← jb

)
0 (otherwise)

,

where a, b ∈ {0, 1, 2, 3}. Note that i−k and j−k are not defined for k ∈ {2, 3}. We assume that

ik
e← jl and ik

o← jl are false when k ∈ {2, 3} or l ∈ {2, 3}.
Theorem 12 ([8]). For a twisted link diagram D, Z̃(D) := det(M̃ − P̃) is an invariant of

the twisted link up to multiplication by powers of x±1, i.e., for any twisted link diagram D′

representing the same twisted link with D, we have Z̃(D′) = xmZ̃(D) for some m ∈ Z.

Let L be a twisted link. For a twisted link diagram D of L, we call Z̃(D) the twisted JKSS
invariant of D (or L), which is also denoted by Z̃(L).

Remark 13. To avoid the ambiguity of multiplication by powers of x±1, we will take a
normalization as follows: For a twisted link diagram D, let N be the minimal degree of x in
Z̃(D), then we normalize Z̃(D) by x−NZ̃(D). After this normalization, Z̃(D) is well-defined
as a twisted link invariant and it belongs to Z[x, y, y−1].

A quandle is a set Y with a binary operator ∗ satisfying the following conditions.
(i) For any x ∈ Y , x ∗ x = x.

(ii) For any y ∈ Y , the map Sy : Y −→ Y defined by x �→ x ∗ y is a bijection.
(iii) For any x, y, z ∈ Y , (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

The knot quandle of a classical link was defined in [4, 15]. Kauffman [13] defined the
knot quandle Q(D) of a virtual link diagram D as a virtual link invariant. The twisted knot
quandle of a twisted link diagram D, denoted by Q̃(D), was defined in [6] by a similar
way with the twisted knot group defined in [1]. We explain the definition of Q̃(D) below.
However, it can be also defined by using double cover in Section 3 such that Q̃(D) = Q(D̃).
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Let D be a twisted link diagram. Let e1, . . . , ep be the edges of D. The generating set is
{x1, y1, x2, y2, . . . , xp, yp} where xi and yi (i = 1, . . . , p) are symbols associated to each edge
ei. For a positive crossing, a negative crossing, a virtual crossing, and a bar, we associate four
or two relations given in Table 1 (i), (ii), (iii) and (iv), respectively, where xi, yi, xi+1, yi+1,
x j, y j and x j+1, y j+1 are symbols as in Figure 11 (i), (ii), (iii) and (iv), respectively.

Fig.11. Generators of edges

Table 1. Relation of generators around crossings

(i) (ii) (iii) (iv)
xi+1 = xi

x j+1 = x j ∗ xi

yi+1 = yi ∗ y j

y j+1 = y j

xi+1 = xi

x j = x j+1 ∗ xi

yi = yi+1 ∗ y j

y j+1 = y j

xi+1 = xi

x j+1 = x j

yi+1 = yi

y j+1 = y j

xi+1 = yi

yi+1 = xi

Theorem 14 ([7]). The twisted knot quandle of a twited link is an invariant of an twisted
link.

For n ∈ N, let n be a dihedral quandle, which is Z/nZ with x ∗ y = 2y − x. For a twisted
link diagram D, let e1, . . . , ep be the edges of D and {x1, y1, x2, y2, . . . , xp, yp} the generating
set of the quandle Q̃(D) as before. A coloring of D by n is a homomorphism from Q̃(D) to
n, which is a map sending the generators to elements of n (denoted by the same symbols)
such that they satisfy the equations in Table 1 (i), (ii), (iii) and (iv). The number of colorings
of D is denoted by c̃oln(D), which we call the twisted n-coloring number of D.

Proposition 15 ([7]). c̃oln(D) is an invariant of a twisted link D.

Proposition 16 ([7], cf. [10]). Let D be a twisted link diagram. If c̃oln(D) < n2, then D
is not equivalent to a virtual link diagram.

5. Checkerboard colorability

5. Checkerboard colorability
In this section, we discuss checkerboard colorability.
An abstract link diagram is a pair (Σ,DΣ) of a compact, orientable or non-orientable

surface Σ and a link diagram DΣ in Σ such that |DΣ| is a deformation retract of Σ, where |DΣ|
is the graph of Σ obtained from DΣ by replacing each crossing with a 4-valent vertex. An
example of an abstract link is depicted on the right of Figures 12. For details of abstract link
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Fig.12. A twisted link diagram and an abstract link diagram

diagrams, refer to [1, 9, 11].
The map from the set of virtual link diagrams to that of abstract link diagrams is defined

in the figure depicted as in Figure 13. We call the abstract link diagram obtained from a
twisted link diagram this way the abstract link diagram associated with D. The abstract link
diagram on the right of Figure 12 is the one associated with the twisted link diagram on the
left of Figure 12.

Fig.13. Twisted link diagram and abstract link diagram

Let D be a twisted link diagram and (Σ,DΣ) the abstract link diagram associated with
D. The diagram D is said to be checkerboard colorable if the abstract link diagram (Σ,DΣ)
admits checkerboard coloring, namely each region of Σ−|DΣ| can be painted black and white
such that colors of two adjacent regions are different. In Figure 14, we show an example of
a checkerboard colorable twisted link diagram and an abstract link diagram associated with
it.

Fig.14. An example of a checkerboard colorable twisted link diagram and
the abstract link diagram associated with it

A twisted link is said to be checkerboard colorable if there exists a checkerboard col-
orable diagram representing the twisted link.

Theorem 17 ([7]). Let D be a checkerboard colorable twisted link diagram.

(1) For any state S of D,

�oS = 0 and
∞∑

n=1

nτn(S) ∈ 2Z.
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(2) Each term of the invariant X(D) is written in a form

f (A)dk1
1 dk2

2 · · ·

for some f (A) ∈ Z[A, A−1] and non-negative integers k1, k2, . . . with
∞∑

n=1

nkn ∈ 2Z.

6. Proofs of Theorems 2, 3, and 4

6. Proofs of Theorems 2, 3, and 4
We discuss our results.

Proof of Theorem 2. (1) Let D be a diagram in the list of (1) in Theorem 2 and let −D
be the inverse of D. Let G(D) be the Gauss chord diagram of D and G(−D) is the Gauss
chord diagram of −D. Recall that G(−D) is obtained from G(D) by reflecting along a line in
R

2 and reversing an orientation of a circle of G(D).
If D is 39 or 316, then the Gauss chord diagram G(D) is the equivalent to G(−D). If D is

one of 37, 311, 313, 315, 317, 318, 319, 320, 346, 347, 350, 360, 362, 365, 374, 378 and 379, then
G(−D) is obtained, up to equivalence, from G(D) by a twisted Reidemeister move III. If D is
one of 38, 314, 344, 366, 367, 368, 369, 370, and 372 then G(−D) is obtained, up to equivalence,
from G(D) by applying two twisted Reidemeister moves III.

If D is one of the remaining diagrams in the list of (1) in Theorem 2, then G(−D) is
obtained, up to equivalence, from G(D) by applying three twisted Reidemeister moves III.
For example, the cases of 31 and 34 are shown in Figure 15.

Fig.15. Transform a diagram to its inverse

(2) Let D be a diagram listed in (2) of Theorem 2 and let −D be the inverse of D. The
twisted JKSS invariants of D and −D are distinct, and hence D is not equivalent to −D. �

In Table 4 we show the multivariable polynomial invariants of the twisted knots in Table 3.

Proof of Theorem 3. Let D be a diagram in Table 3. The multivariable polynomial invari-
ant of D∗ (or −D∗) is obtained from the invariant of D by replacing A with A−1 (Lemma 10).
Since the invariants are distinct, we see that D is not equivalent to D∗ (or −D∗). �

Proof of Theorem 4. The twisted knot diagrams 344, 358, 367, 370, 380, 381 in Table 3
are checkerboard colorable twisted knot diagrams. In Figure 16. checkerboard colorings of
twisted link diagrams of 344, 358, 370, 380, and 381 in Table 3 are depicted. A checkerboard
colorable twisted link diagram of 367 is shown in Figure 14.

The multivariable polynomial invariants of the remaining diagrams in Table 3 have a term
of M. Thus they are not checkerboaed colorable from Theorem 17. �
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Fig.16. Checkerboard colorable twisted link diagrams of 344, 358, 370, 380,
and 381

Proposition 18. Let D and D′ be equivalent twisted link diagrams. If the number of bars
of D is even (or odd), then that of D′ is even (or odd)．

Proof. The number of bars are increased or decreased by even number under the Reide-
meister moves, the virtual Reidemeister moves, and the twisted Reidemeister moves. Thus
we have the result. �

Proposition 19. Let L be a twisted link. Then the minimum number of bars of L is equal
or greater than the degree of M of X(L). For a twisted link L, the degree of M of any term
with M of X(L) is even (or odd), if and only if the number of bars of a diagram of L is even
(or odd).

Proof. Let D be a twisted link diagram of a twisted link L. The degree of M of X(L) is a
number of loops of a state of L with odd number of bars. Then the number of bars of D is
equal or greater than the degree of M of X(L). Suppose that the number of bars in D is even
(or odd). Then the number of bars in a state S of D is even (or odd) from the definition of
the multivariable polynomial invariant. Thus the degree of M is even (or odd) in 〈〈D|S〉〉 since
the number of loops with odd number of bars of S is even (or odd). Noting that X(D) � 0,
we have the result. If the number of loops with odd number of bars in a state S of D is even
(or odd), then the number of bars in S is even (or odd). Thus the number of bars in D is even
(or odd) from the definition of the multivariable polynomial invariant. �

Proof of Theorem 5.
(1) The diagrams in the statement have a bar. From Proposition 19 we have the con-

clusion.
(2) (or (3)) The diagrams in the statement have two bars (or three bars).The degree

of M of their X-polynomial invariant is 2 (or 3). Thus we conclude the minimum
numbers of bars of them are 2 (or 3) from Proposition 19.

(4) The degrees of M of the X-polynomial invariants of the diagrams in the statement
are 1. Thus we conclude the minimum number of bars of them are equal or grater
than 1 from Proposition 19. �
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7. Proof of Theorem 1

7. Proof of Theorem 1
First we consider possible underlying Gauss chord diagrams with 3 chords. Underlying

Gauss chord diagrams mean Gauss chord diagrams without orientations, signs of chords
and all bars. There are 5 underlying Gauss chord diagrams with 3 chords as depicted in
Figure 17. Recall that we consider (underlying) Gauss chord diagrams up to equivalence,
i.e., up to rotation.

We call the underlying Gauss chord diagram of (1) in the figure to be of wheel type and
the one of (2) to be of turtle type.

If a twisted knot L is represented by a diagram D whose underlying Gauss chord diagram
is (3), (4) or (5) in the figure, then L is not pseudo prime. Thus we consider twisted knots
which can be represented by diagrams whose underlying Gauss chord diagrams are of wheel
type or of turtle type.

We list all Gauss chord diagrams G, without bars, by considering all possible orientations
and signs on the chords for the underlying Gauss chord diagram of wheel type and that of
turtle type, and then remove duplications by applying rotations and also taking −G, G∗ and
G�, where −G is a Gauss chord diagram obtained from G by reflecting G along a line in R2

and reversing an orientation of a circle of G. Now we consider all possible cases of bars for
each Gauss chord diagram. By twisted Reidemeister move II, we may assume that each arc
of C between Pk−1 and Pk has at most one bar. We remove Gauss chord diagrams which are
duplications or whose underlying Gauss chord diagrams are (3), (4) or (5) in Figure 17 after
applying rotations, taking −G, G∗, G� and applying moves in Figure 5 if possible. Then we
obtain 23 Gauss chord diagrams of wheel type and 59 Gauss chord diagrams of turtle type.
Table 3 shows twisted knot diagrams whose Gauss chord diagrams are these 82. The task is
now to show that these 82 twisted knot diagrams are not weakly equivalent.

Fig.17. Underlying Gauss chord diagrams

We denote by 3k, for k = 1, . . . , 82, the diagrams in Table 3 or the twisted knots repre-
sented by the diagrams. At this moment, as twisted knots, there might be some duplications.

Lemma 20. Twisted knots 31, 32, 33, 34, 35, 36, 37, 38, 39, 310, 311, 312, 313, 314, 315, 316,
317, 318, 319, 320, 321, 322, 323, 325, 327, 329, 331, 343, 344, 345, 346, 349, 351, 352, 353, 355,
356, 357, 358, 359, 361, 364, 365, 368, 371are not weakly equivalent each other and they are not
weakly equivalent to the rest of twisted knots in Table 3．

Proof. We compute the X-polynomials for all diagrams in Table 3 and the result is given
in Table 4. Let L be a twisted knot represented by a diagram D listed in the lemma. By
Lemma 10, the X-polynomial X(L) = X(−L) = X(D) is found in the table and the X-
polynomial X(L∗) = X(−L∗) = X(D) is obtained from X(D) by replacing A with A−1. Com-
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paring the two polynomials X(D) and X(D) with the all polynomials in Table 4, we see that
L is not weakly equivalent to other twisted knots in Table 3. �

Lemma 21. The twisted knots in Table 3 which are not listed in Lemma 20 are divided
into the following 14 groups such that two twisted knots belonging to distinct groups are not
weakly equivalent:
{ 324, 326, 373 } , { 328, 330, 377 } , { 332, 374 } , { 333, 335, 336, 338, 375, 376 } ,
{ 334, 337 } , { 339, 341, 378, 379 } , { 340, 342 } , { 347, 348 } , { 350, 366 } ,
{ 354, 369 } , { 360, 372 } , { 362, 363 } , { 367, 370 } , { 380, 381 } .

Proof. Let D and D′ be twisted knot diagrams belonging to distinct groups in the lemma.
Comparing X(D) and X(D) with X(D′) using Table 3, we see that D is not weakly equivalent
to D′. �

In Table 5 we show the twisted JKSS invariant of the twisted knots in Table 3.

Lemma 22. (i) The following twisted knots are not weakly equivalent each other:
333, 334, 335, 336, 337, 338, 340, 341, 342, 347, 348, 350, 354, 360, 362, 363, 366, 367, 369,
370, 372, 373, 375, 376, 377 and 379．

(ii) The twisted knot diagram 324 (or 326) is not weakly equivalent to 373.
(iii) The twisted knot diagram 328 (or 330) is not weakly equivalent to 377.
(iv) The twisted knot diagram 339 (or 378) is not weakly equivalent to 341.
(v) The twisted knot diagram 339 (or 378) is not weakly equivalent to 379.

Proof. (i) For the twisted knot diagrams, 333, 334, 335, 336, 337, 338, 341, 347, 348, 350, 354,
367, 370, 372, 373, 375, 376, 377 and 379, we have the result from twisted JKSS invariants. For
the twisted knot diagrams, 340, 342, 360, 362, 363, 366 and 369, we have the result from twisted
JKSS invariants and X-polynomial invariants.

(ii), (iii), (iv), (v) We have the result from twisted JKSS invariant. �

In Table 2, we show the multivariable polynomial invariants of the double covering dia-
grams of the twisted link diagrams 324, 326, 328, 330, 332, 339, 374, 378, 380, and 381 in Table 3.

From the multivariable polynomial invariants of double covering diagrams and the mul-
tivariable polynomial invariants, we have the following.

Lemma 23. The twisted knot diagrams 324, 326, 374, 332, 328, 330, 378 and 339 in Table 3
are not equivalent each other.

The twisted 3-coloring number of 380 (or 3∗80, −380, −3∗80), c̃ol3(380) (or c̃ol3(3∗80),
c̃ol3(−380), c̃ol3(−3∗80)) is 3 and that of 381 (or 3∗81, −381, −3∗81), c̃ol3(381) (or c̃ol3(3∗81),
c̃ol3(−381), c̃ol3(−3∗81)) is 9. Then we have the following.

Lemma 24. The twisted knot diagrams 380 and 381 in Table 3 are not weakly equivalent.

Proof of Theorem 1. Form Lemmas 20, 22, 23 and 24 we have the conclusion. �
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Table 2. The X-polynomial invariants of double covering diagrams

324 −(A4 + 1)A−26[−2A2(A4 − 1)d3 − 2A4(A4 − 1)d2 + 2A2(A4 − 1)(A4 + 1)d1d2
+ (A4 − 1)(A4 + 1)(2A4 + 1)d2

1 + 2A6(A4 − 1)2d1 + A16 − A12 − A8 + A4 + 1]
326 −(A4 + 1)A−26[−2A4(A4 − 1)d2 + (A4 − 1)(A4 + 1)(2A4 + 1)d2

1
+2A10(A4 − 1)d1 + A16 − A12 − A8 + A4 + 1]

374 (A4 + 1)[−2(A4 − 1)d1 + (A12 − A8 + 2A4 − 1)A2]A−24

332 −(A4 + 1)[2(A4 − 1)A6d1 + A12 + A8 − 2A4 + 1]A−22

328 −(A4 + 1)A−6[2A8(A4 − 1)d2 + A8(A4 − 1)(A4 + 1)(A4 − 2)d2
1−2A2(A4 − 1)(A8 − A4 + 1)d1 + 2A12 − A8 − A4 + 1]

330 −(A4 + 1)A−6[2A6(A4 − 1)d3 + 2A8(A4 − 1)d2 − 2A6(A4 − 1)(A4 + 1)d1d2
+A8(A4 − 1)(A4 + 1)(A4 − 2)d2

1 + 2A2(A4 − 1)2d1 + 2A12 − A8 − A4 + 1]
378 −(A4 + 1)[−2A6(A4 − 1)(2A4 − 1)d1 + A20 − 2A16 + A12 + 3A8 − 3A4 + 1]A−6

339 −(A4 + 1)[−2A2(A4 − 1)(A8 − A4 + 1)d1 + A20 − 2A16 + 3A12 − A8 − A4 + 1]A−6

380 (A4 + 1)(A24 − A20 + 3A16 − 2A12 + 2A8 − 2A4 + 1)
381 (A4 + 1)(A24 − A20 + 3A16 − 2A12 + 2A8 − 2A4 + 1)

Question Is the twisted knot diagram 382 equivalent to the trivial non-orientable curve (a
trivial loop with a bar) ?

For twisted knot diagram 382, its X-polynomial invariant, twisted JKSS invariant, twisted
3-coloring number, twisted biquandle coloring, and X-polynomial of a double covering dia-
gram of 382 are equal to those of the trivial non-orientable curve.

Table 3. Table of pseudo prime twisted knots
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Table 4. The X-polynomials of twisted knots in Table 3

The X-polynomial

31 (A4 + 1)
[
(A4 + 1)2d2

1 − 2A4(A4 + 1)d1 − A4(A8 − A4 + 1)
]

A−18M

32 −(A4 + 1)
[
(A8 − 1)d1 + A12 − A8 + A4

]
A−18M

33 (A4 + 1)
[(

A4 + 1
)2

d2
1 −
(
A4 + 1

)2
d1 − A8

]
A−10M

34 −(A4 + 1)
(
A12 + A4 − 1

)
A−18M

35

(
A4 + 1

) [(
A4 + 1

)2
d2

1 − 2A4
(
A4 + 1

)
d1 − 1

]
A−10M

36 −
(
A4 + 1

) [(
A8 − 1

)
d1 + 1

]
A−10M

37 (A4 + 1)
[
(A4 + 1)2M2d1 + A4(2A4 − 1)d1 − A4(A8 + 3A4 + 2)M2

]
A−18

38 −(A4 + 1)
[
A4(A4 + 1)d2

1 − (A4 + 1)2M2d1 + 2(A8 + A4)M2 + A12 − 2A8
]

A−18

39 −(A4 + 1)
[
(A4 − 2A8)d1 + (A12 + 2A8 − 1)M2

]
A−18

310 (A4 + 1)
[
(A4 + 1)2d3

1 − 3A4d1 − A8(A4 + 1)M2
]

A−18

311 (A4 + 1)
[
(A8 − A4 + 1)d1 − A8(A4 + 1)2M2

]
A−18

312 −
(
A4 + 1

) [
(A8 − 1)M2 + A12 − A8 + A4

]
A−18

313 (A4 + 1)
[
(A4 + 1)2M2d1 + (A8 + A4 − 1)d1 − 3A4(A4 + 1)M2

]
A−10

314 (A4 + 1)
[
−(A4 + 1)d2

1 + (A4 + 1)2M2d1 − 2A4(A4 + 1)M2 + A4
]

A−10

315 −(A4 + 1)
[
−(A4 + 1)2d3

1 + (A8 + A4 + 1)d1 + A4(A4 + 1)M2
]

A−10

316 (A4 + 1)
[
(A8 + A4 − 1)d1 + (−2A8 − A4 + 1)A−10M2

]
317 −(A4 + 1)

[
2(A8 + A4)d1 − (A4 + 1)2M2 + A12 − A8 + A4

]
A−18M

318 (A4 + 1)
[
(A4 + 1)2M3 − A4(A8 + A4 + 3)MA−18

]
319 (A4 + 1)

[
(A4 + 1)2M2 − 2A8 − 2A4 − 1

]
A−10M

320 (A4 + 1)
[
−2(A8 + A4)d1 + (A4 + 1)2M2 − 1

]
A−10M

321 (A4 + 1)
[
A4d1 + (A4 + 1)2M2d1 − (2A8 + 3A4 + 1)M2

]
A−10

322 (A4 + 1)
[
−(A4 + 1)2d1 + (A4 + 1)2M2 − A8

]
A−10M

323 (A4 + 1)
[
−A4(A4 + 1)d2

1 + (A4 + 1)2M2d1 − (A4 + 1)2M2 + A4
]

A−10

324 −(A4 + 1)
[
(A4 + 1)d1 + A2(A2 − 1)(A2 + 1)2 − 1

]
A−14M

325 −(A4 + 1)
[
(A2 + 1)(A4 + 1)d1 + A8 − A4 − 2A2 − 1

]
A−14M

326 −(A4 + 1)
[
(A4 + 1)d1 + A2(A2 − 1)(A2 + 1)2 − 1

]
A−14M

327 −(A4 + 1)
[
(A4 + 1)d1 + A6 − A4 − 1

]
A−8M

328 −(A4 + 1)
[
A6(A4 + 1)d1 − 2A6 − A4 + A2 + 1

]
A−4M

329 −(A4 + 1)
[
(A6 + 1)(A4 + 1)d1 − 2A6 − 2A4 + A2

]
A−4M

330 −(A4 + 1)
[
A6(A4 + 1)d1 − 2A6 − A4 + A2 + 1

]
A−4M

331 −(A4 + 1)
[
(A4 + 1)d1 + A6 − 2

]
A−12M

332 −(A4 + 1)(A6 + A4 − 1)A−12M
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333 −(A4 + 1)
[
(A4 + 1)d1 − 1

]
A−6M

334 (A4 + 1)
[
−(A2 + 1)(A4 + 1)d1 + A4 + A2 + 1

]
A−8M

335 −(A4 + 1)
[
(A4 + 1)d1 − 1

]
A−6M

336 −(A4 + 1)
[
(A4 + 1)d1 − 1

]
A−6M

337 (A4 + 1)
[
−(A2 + 1)(A4 + 1)d1 + A4 + A2 + 1

]
A−8M

338 −(A4 + 1)
[
(A4 + 1)d1 − 1

]
A−6M

339 −(A4 + 1)(A10 − A6 − A4 + A2 + 1)A−4M

340 −(A4 + 1)
[
(A4 + 1)d1 + A10 − A6 − 2A4 + A2

]
A−4M

341 −(A4 + 1)(A10 − A6 − A4 + A2 + 1)A−4M

342 −(A4 + 1)
[
(A4 + 1)d1 + A10 − A6 − 2A4 + A2

]
A−4M

343 −(A4 + 1)
[
−(A2 + 1)d2 − (2A4 + A2)d1 + (A4 + 1)(A4 + A2 + 1)M2

]
A−14

344 [−A12 − A10 −
(
A4 + 1

)2
d2

1 + 2A4 + A2 + 1] × A−14

345 −(A4 + 1)
[
−(2A4 + A2)d1 + (A8 + A6 + 2A4 + A2 + 1)M2 − A2 − 1

]
A−14

346 −(A4 + 1)
[
−d3 + (A4 + 1)M2 + (A2 − 1)(A3 + A)2

]
A−14

347 −(A4 + 1)
[
(A6 − A2 − 1)d1 + (A4 + 1)M2 + A8 − A4

]
A−14

348 −(A4 + 1)
[
(A6 − A2 − 1)d1 + (A4 + 1)M2 + A8 − A4

]
A−14

349 −(A4 + 1)
[
−(A2 + 1)d1 + (A2 + 1)(A4 + 1)M2 − 1

]
A−12

350 −(A4 + 1)
[
−d1 + (A4 + 1)M2 + A2(A2 − 1)(A2 + 1)2

]
A−14

351 −(A4 + 1)
[
−(A2 + 1)d2 − A2(A4 + A2 + 1)d1 + (2A2 + 1)(A4 + 1)M2

]
A−8

352 −(A4 + 1)
(
−A2(A2 + 1)d2 − (A6 + A2 + 1)d1 + (2A2 + 1)(A4 + 1)M2

]
A−8

353 −(A4 + 1)
[
−(A2 + 1)d1 + (A2 + 1)(A4 + 1)M2 − A4

]
A−8

354 (A4 + 1)
[
d1 − (A4 + 1)M2

]
A−6

355 −(A4 + 1)
(
−(A6 + A2 + 1)d1 + (2A2 + 1)(A4 + 1)M2 − A2(A2 + 1)

]
A−8

356 −(A4 + 1)
[
−A2(A2 + 1)d1 + (A2 + 1)(A4 + 1)M2 − 1

]
A−8

357 −(A4 + 1)
[
−A4(2A2 + 1)d1 + (A4 + 1)(A6 + A2 + 1)M2 − A4(A2 + 1)

]
A−4

358 −(A4 + 1)
[
A6(A4 + 1)d2

1 − 2A6 − A4 + A2 + 1
]

A−4

359 −(A4 + 1)
[
A4(A2 + 1)d2 − A4(2A2 + 1)d1 + (A4 + 1)(A6 + A2 + 1)M2

]
A−4

360 −(A4 + 1)
[
−A6d1 + A6(A4 + 1)M2 + (A2 + 1)(−A4 + 1)

]
A−4

361 −(A4 + 1)
[
A4(A6 − 2A2 − 1)d1 + (A2 + 1)(A4 + 1)M2 − A4

]
A−4

362 −(A4 + 1)
[
−(A6 + A4 − 1)d1 + A6(A4 + 1)M2 − A6 + A2

]
A−4

363 −(A4 + 1)
[
−(A6 + A4 − 1)d1 + A6(A4 + 1)M2 − A6 + A2

]
A−4

364 −(A4 + 1)
[
−A4d2 + A4(A6 − 2A2 − 1)d1 + (A2 + 1)(A4 + 1)M2

]
A−4

365 −(A4 + 1)
[
−A6d3 + A6(A4 + 1)M2 − A6 − A4 + A2 + 1

]
A−4

366 −(A4 + 1)
[
−d1 + (A4 + 1)M2 + A2(A2 − 1)(A2 + 1)2

]
A−14

367 −
(
A4 + 1

)2
[d2

1 + A4 + 1]A−6
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368 (A4 + 1)
[
d3 − (A4 + 1)M2

]
A−6

369 (A4 + 1)
[
d1 − (A4 + 1)M2

]
A−6

370 −(A4 + 1)2[d2
1 + A4 + 1]A−6

371 −(A4 + 1)
[
−A2(A4 + A2 + 1)d1 + (2A2 + 1)(A4 + 1)M2 − A2 − 1

]
A−8

372 −(A4 + 1)
[
−A6d1 + A6(A4 + 1)M2 − A6 − A4 + A2 + 1

]
A−4

373 −(A4 + 1)
[
(A4 + 1)d1 + A2(A2 − 1)(A2 + 1)2 − 1

]
A−14M

374 −(A4 + 1)(A6 + A4 − 1)A−12M

375 −(A4 + 1)
[
(A4 + 1)d1 − 1

]
A−6M

376 −(A4 + 1)
[
(A4 + 1)d1 − 1

]
A−6M

377 −(A4 + 1)
[
A6(A4 + 1)d1 − 2A6 − A4 + A2 + 1

]
A−4M

378 −(A4 + 1)(A10 − A6 − A4 + A2 + 1)A−4M

379 −(A4 + 1)(A10 − A6 − A4 + A2 + 1)A−4M

380 −(A4 + 1)(A10 − A6 − A4 + A2 + 1)A4

381 −(A4 + 1)(A10 − A6 − A4 + A2 + 1)A4

382 −(A4 + 1)A−2M

Table 5. The twisted JKSS invariants of twisted knots in Table 3

Knot Twisted JKSS invariant
31(∼−31) (x−1)(x+1)

(
x2−x+1

)
(y−1)(y+1)(x−y)(x+y)y−2

31
∗(∼−31

∗) −(x−1)(x+1)
(
x2−x+1

)
(y−1)(y+1)(x−y)(x+y)y−2

32, −32 (x−1)(x+1)
(
x2−x+1

)
(y−1)(y+1)(x−y)(x+y)y−2

32
∗, −32

∗ −(x−1)(x+1)
(
x2−x+1

)
(y−1)(y+1)(x−y)(x+y)y−2

33, −33, 33
∗, −33

∗ 0
34(∼−34), 34

∗(∼−34
∗) 0

35(∼−35) (x−1)(x+1)(y−1)(y+1)(x−y)(x+y)y−2

35
∗(∼−35

∗) −(x−1)(x+1)(y−1)(y+1)(x−y)(x+y)y−2

36, −36 (x−1)(x+1)(y−1)(y+1)(x−y)(x+y)y−2

36
∗, −36

∗ −(x−1)(x+1)(y−1)(y+1)(x−y)(x+y)y−2

37(∼−37), 37
∗(∼−37

∗)
(
x2−x+1

)2
(y−1)(y+1)(x−y)(x+y)y−2

38(∼−38), 38
∗(∼−38

∗) (y−1)(y+1)(x−y)(x+y)(x3+y2)(xy2+1)y−4

39(∼−39), 39
∗(∼−39

∗)
(
x2−x+1

)2
(y−1)(y+1)(x−y)(x+y)y−2

310(∼−310), 310
∗(∼−310

∗) (y−1)(y+1)(x−y)(x+y)
(
y2−y+1

) (
y2+y+1

) (
x2−xy+y2

)
×
(
x2+xy+y2

)
y−6

311(∼−311), 311
∗(∼−311

∗)
(
x2−x+1

)2
(y−1)(y+1)(x−y)(x+y)y−2

312(∼−312), 312
∗(∼−312

∗) 0
313(∼−313), 313

∗(∼−313
∗) (y−1)(y+1)(x−y)(x+y)y−2

314(∼−314), 314
∗(∼−314

∗) (y−1)(y+1)(x−y)(x+y)
(
x+y2
)2
y−4
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Knot Twisted JKSS invariant
315,−315, 315

∗,−315
∗ −(y−1)(y+1)(x−y)(x+y)(xy−x−y2)(x+y2−y)

×(x+y2+y)(xy+x+y2)y−6

316(∼−316), 316
∗(∼−316

∗) (y−1)(y+1)(x−y)(x+y)y−2

317∼−317 (x−1)(x+1)
(
x2−x+1

)
(y−1)(y+1)(x−y)(x+y)y−2

317
∗∼−317

∗ −(x−1)(x+1)
(
x2−x+1

)
(y−1)(y+1)(x−y)(x+y)y−2

318(∼−318), 318
∗(∼−318

∗) 0
319(∼−319), 319

∗(∼−319
∗) 0

320(∼−320) (x−1)(x+1)(y−1)(y+1)(x−y)(x+y)y−2

320
∗(∼−320

∗) −(x−1)(x+1)(y−1)(y+1)(x−y)(x+y)y−2

321,−321, 321
∗,−321

∗ (y−1)(y+1)(x−y)(x+y)y−2

322,−322, 322
∗,−322

∗ 0

323,−323, 323
∗,−323

∗ (y−1)(y+1)(x−y)(x+y)
(
x+y2
)2
y−4

324 (x−1)(x+1)
(
x2−x+1

)
(y+1)(x+y)(xy−x+y)y−2

−324 (x−1)(x+1)
(
x2−x+1

)
(y+1)(x−y+1)(x+y)y−1

324
∗ −(x−1)(x+1)

(
x2−x+1

)
(y+1)(x−y+1)(x+y)y−1

−324
∗ −(x−1)(x+1)

(
x2−x+1

)
(y+1)(x+y)(xy−x+y)y−2

325 (x−1)(y+1)(x+y)(xy−x+y)
(
x3+x2y−2xy+y+1

)
y−2

−325 (x−1)(y+1)(x−y+1)(x+y)
(
x3y+x3−2x2+x+y

)
y−2

325
∗ −(x−1)(y+1)(x−y+1)(x+y)

(
x3y+x3−2x2+x+y

)
y−2

−325
∗ −(x−1)(y+1)(x+y)(xy−x+y)

(
x3+x2y−2xy+y+1

)
y−2

326 (x−1)(x+1)
(
x2−x+1

)
(y+1)(x+y)(xy−x+y)y−2

−326 (x−1)(x+1)
(
x2−x+1

)
(y+1)(x−y+1)(x+y)y−1

326
∗ −(x−1)(x+1)

(
x2−x+1

)
(y+1)(x−y+1)(x+y)y−1

−326
∗ −(x−1)(x+1)

(
x2−x+1

)
(y+1)(x+y)(xy−x+y)y−2

327,−327, 327
∗,−327

∗ 0
328 (1−x)(x+1)(y+1)(x+y)
−328 −(x−1)(x+1)(y+1)(x+y)y−2

328
∗ (x−1)(x+1)(y+1)(x+y)y−2

−328
∗ (x−1)(x+1)(y+1)(x+y)

329 (1−x)(y+1)(x+y)
(
x2y+x2−2xy+x+y

)
−329 −(x−1)(y+1)(x+y)

(
x2+xy−2x+y+1

)
y−3

329
∗ (x−1)(y+1)(x+y)

(
x2+xy−2x+y+1

)
y−3

−329
∗ (x−1)(y+1)(x+y)

(
x2y+x2−2xy+x+y

)
330 (1−x)(x+1)(y+1)(x+y)
−330 −(x−1)(x+1)(y+1)(x+y)y−2

330
∗ (x−1)(x+1)(y+1)(x+y)y−2

−330
∗ (x−1)(x+1)(y+1)(x+y)

331(∼−331) (x−1)
(
x2+1
) (

x2−x+1
)

(y+1)(x+y)y−1

331
∗(∼−331

∗) −(x−1)
(
x2+1
) (

x2−x+1
)

(y+1)(x+y)y−1
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332,−332 2(x−1)

(
x2−x+1

)
(y+1)(x+y)y−1

332
∗,−332

∗ −2(x−1)
(
x2−x+1

)
(y+1)(x+y)y−1

333 −(x−1)(y+1)(x+y)
(
x3y−x3−x2y2+2x2−x−y2+y

)
y−3

−333 −(x−1)(y+1)(x+y)
(
x3y−x3−x2y2+2xy2−x−y2+y

)
y−1

333
∗ (x−1)(y+1)(x+y)

(
x3y−x3−x2y2+2xy2−x−y2+y

)
y−1

−333
∗ (x−1)(y+1)(x+y)

(
x3y−x3−x2y2+2x2−x−y2+y

)
y−3

334 (x−1)(y+1)(x+y)
(
x2−xy−2x+2y2−y+1

)
y−3

−334 (x−1)(y+1)(x+y)
(
x2y2−x2y+2x2−2xy2−xy+y2

)
y−1

334
∗ −(x−1)(y+1)(x+y)

(
x2y2−x2y+2x2−2xy2−xy+y2

)
y−1

−334
∗ −(x−1)(y+1)(x+y)

(
x2−xy−2x+2y2−y+1

)
y−3

335 (x−1)(y+1)(x+y)
(
2x2y−x2−2xy−x+2y

)
y−2

−335 (x−1)(y+1)(x+y)
(
2x2−xy−2x−y+2

)
y−1

335
∗ −(x−1)(y+1)(x+y)

(
2x2−xy−2x−y+2

)
y−1

−335
∗ −(x−1)(y+1)(x+y)

(
2x2y−x2−2xy−x+2y

)
y−2

336 −(x−1)(y+1)(x+y)
×
(
x3−2x2y2+x2y−2x2+2xy2+xy+x−2y2

)
y−3

−336 (x−1)(y+1)(x+y)
×
(
2x3−x2y2−x2y−2x2+2xy2−xy+2x−y2

)
y−1

336
∗ −(x−1)(y+1)(x+y)

×
(
2x3−x2y2−x2y−2x2+2xy2−xy+2x−y2

)
y−1

−336
∗ (x−1)(y+1)(x+y)

×
(
x3−2x2y2+x2y−2x2+2xy2+xy+x−2y2

)
y−3

337 −(x−1)(y+1)(x−2y+1)(x+y)y−2

−337 −(x−1)(y+1)(x+y)(xy−2x+y)y−1

337
∗ (x−1)(y+1)(x+y)(xy−2x+y)y−1

−337
∗ (x−1)(y+1)(x−2y+1)(x+y)y−2

338 −(x−1)(y+1)(x+y)
(
x3−x2y−y+1

)
y−2

−338 −(x−1)(y+1)(x+y)
(
x3y−x3−x+y

)
y−1

338
∗ (x−1)(y+1)(x+y)

(
x3y−x3−x+y

)
y−1

−338
∗ (x−1)(y+1)(x+y)

(
x3−x2y−y+1

)
y−2

339,−339 −2(x−1)(y+1)(x+y)y−1

339
∗,−339

∗ 2(x−1)(y+1)(x+y)y−1

340(∼−340) −2(x−1)
(
x2−x+1

)
(y+1)(x+y)y−1

340
∗(∼−340

∗) 2(x−1)
(
x2−x+1

)
(y+1)(x+y)y−1

341,−341 (x−1)
(
x2−4x+1

)
(y+1)(x+y)y−1

341
∗,−341

∗ −(x−1)
(
x2−4x+1

)
(y+1)(x+y)y−1

342(∼−342) −(x−1)
(
x2+1
)

(y+1)(x+y)y−1

342
∗(∼−342

∗) (x−1)
(
x2+1
)

(y+1)(x+y)y−1

343, −343
∗ (y+1)(x+y)

(
x3−x2y−x2+xy2+xy+x−y2−y

)
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×
(
x2y−x2+xy2−xy+x−y2+y−1

)
y−2

−343, 343
∗ (y+1)(x+y)

(
x3y+x3−x2y2−x2y−x2+xy2+xy−y2

)
×
(
x2y2−x2y+x2−xy2+xy−x+y2−y

)
y−4

344(∼−344), 344
∗(∼−344

∗) (y−1)(y+1)(x−y)(x+y)
(
x3+y2

) (
xy2+1

)
y−4

345, −345
∗ (y+1)

(
x3−x2+x−y

)
(x+y)

(
x2y−x2+x−1

)
y−2

−345, 345
∗ (y+1)(x+y)

(
x3−x2y+xy−y

) (
x2y−xy+y−1

)
y−2

346(∼−346), 346
∗(∼−346

∗) (y−1)(y+1)(x−y)(x+y)
(
y2−y+1

)
×
(
y2+y+1

) (
x2−xy+y2

) (
x2+xy+y2

)
y−6

347(∼−347), 347
∗(∼−347

∗) (y+1)
(
x3−y
)

(x+y)
(
x2y−1

)
y−2

348, −348
∗ (y+1)(x+y)

(
x2+xy−2y

)
(2xy−y−1)y−2

−348, 348
∗ (y+1)

(
2x2−x−y

)
(x+y)(xy+x−2)y−2

349, −349
∗ (x−1)2(y+1)(x+y)

×
(
x3y−x3+x2y+2x2+xy2+xy−x+y

)
y−2

−349, 349
∗ (x−1)2(y+1)(x+y)

×
(
x3y−x2y2+x2y+x2+2xy2+xy−y2+y

)
y−2

350(∼−350), 350
∗(∼−350

∗) (y+1)(x+y)
(
2x3y−x2y−x2−xy2−xy+2y

)
y−2

351, −351
∗ −(y+1)(x+y)

(
x2−xy2−xy+y2

) (
xy2−xy+x−y2

)
y−2

−351, 351
∗ (y+1)(x+y)

(
x−y2+y−1

) (
x2−xy−x+y2

)
y−4

352, −352
∗ −(y+1)(x+y)

(
x2−xy2−xy+y2

) (
xy2−xy+x−y2

)
y−2

−352, 352
∗ (y+1)(x+y)

(
x−y2+y−1

) (
x2−xy−x+y2

)
y−4

353, −353
∗ (x−1)2(y+1)(x+y)

−353, 353
∗ (x−1)2(y+1)(x+y)y−2

354, −354
∗ −(y+1)(x+y)

(
x2y−xy−x+y

) (
x2y−x2−xy+y

)
y−2

−354, 354
∗ −(y+1)

(
x2−x−y+1

)
(x+y)

(
x2−xy−x+1

)
y−2

355, −355, 355
∗, −355

∗ (y−1)(y+1)(x−y)(x+y)y−2

356, −356
∗ (x−1)2(y+1)(x+y)

−356, 356
∗ (x−1)2(y+1)(x+y)y−2

357, −357
∗ (y+1)(x+y)(xy+x−2y)(2xy−x−y)y−2

−357, 357
∗ (y+1)(2x−y−1)(x+y−2)(x+y)y−2

358(∼−358), 358
∗(∼−358

∗) (y−1)(y+1)(x−y)(x+y)
(
x+y2
)2
y−4

359, −359
∗ (y+1)(x+y)

(
x2+xy2−xy−y2

) (
xy2+xy−x−y2

)
y−2

−359, 359
∗ (y+1)(x+y)

(
x2+xy−x−y2

) (
x+y2−y−1

)
y−4

360(∼−360), 360
∗(∼−360

∗) (y−1)(y+1)(x−y)(x+y)y−2

361, −361
∗ (x−1)2(y+1)(x+y)

−361, 361
∗ (x−1)2(y+1)(x+y)y−2

362(∼−362), 362
∗(∼−362

∗) (y+1)
(
x2−y
)

(x+y)(xy−1)y−2

363, −363
∗ (y+1)(x+y)(xy+x−2y)(2xy−x−y)y−2

−363, 363
∗ (y+1)(2x−y−1)(x+y−2)(x+y)y−2

364, −364
∗ −y−4(y+1)(x+y)
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×[xy6−(2x2+2x−1)y5−(3x2−9x+3)xy4

+(x3−3x2−3x+1)xy3+3x3y2−(x+1)x3y+x4]
−364, 364

∗ −y−4(y+1)(x+y)
×[y6−(xy5+1)y5+3xy4+(x2−3x−3)xy3

+y3−(3x2−9x+3)xy2+(x3−2x2−2x+1)xy+x3]
365(∼−365), 365

∗(∼−365
∗) −(y+1)(x+y)

(
y2−y+1

)
×
(
x2−xy+y2

) (
x3y3+x3−2x2y3−2xy3+y6+y3

)
y−6

366(∼−366), 366
∗(∼−366

∗) (y+1)
(
x2−y
)

(x+y)(xy−1)y−2

367(∼−367), 367
∗(∼−367

∗) (y−1)(y+1)(x−y)(x+y)
(
2x2y2+x2−2xy2+y4+2y2

)
y−4

368(∼−368), 368
∗(∼−368

∗) −(y+1)
(
y2−y+1

)
(x+y)

(
x2−xy+y2

) (
x−y3
) (

x2−y3
)
y−6

369(∼−369), 369
∗(∼−369

∗) (y+1)
(
x2−y
)

(x+y)(xy−1)y−2

370(∼−370), 370
∗(∼−370

∗) (y−1)(y+1)(x−y)(x+y)
×
(
x4y2−2x3y2+x3+4x2y2+xy4−2xy2+y2

)
y−4

371, −371, 371
∗, −371

∗ (y−1)(y+1)(x−y)(x+y)y−2

372(∼−372), 372
∗(∼−372

∗) −(y+1)(x+y)
(
x3y−2x2y+x2+xy2−2xy+y

)
y−2

373 (x−1)(y+1)(x+y)y−2(x4y−x4−x3y2+2x3y+x2y3

−x2y2−xy2+2xy−x+y3−y2+y)
−373 (x−1)(y+1)(x+y)y−3(x4y2−x4y+x4−x3y3+2x3y2

−x3y−x2y+x2+2xy2−xy−y3+y2)
373
∗ −(x−1)(y+1)(x+y)y−3(x4y2−x4y+x4−x3y3+2x3y2

−x3y−x2y+x2+2xy2−xy−y3+y2)
−373

∗ −(x−1)(y+1)(x+y)y−2(x4y−x4−x3y2+2x3y+x2y3

−x2y2−xy2+2xy−x+y3−y2+y)
374(∼−374) 2(x−1)

(
x2−x+1

)
(y+1)(x+y)y−1

374
∗(∼−374

∗) −2(x−1)
(
x2−x+1

)
(y+1)(x+y)y−1

375 (x−1)(y+1)(x−2y+1)(x+y)
−375 (x−1)(y+1)(x+y)(xy−2x+y)y−3

375
∗ −(x−1)(y+1)(x+y)(xy−2x+y)y−3

−375
∗ (1−x)(y+1)(x−2y+1)(x+y)

376 (x−1)(y+1) (x+y) (x3−2x2y−xy3+4xy2−2xy+x−y3)y−3

−376 −(x−1) (y+1) (x+y) (x3−x2y3+2x2y2−4x2y+x2+2xy2−y3)y−2

376
∗ (x−1) (y+1) (x+y) (x3−x2y3+2x2y2−4x2y+x2+2xy2−y3)y−2

−376
∗ −(x−1) (y+1) (x+y) (x3−2x2y−xy3+4xy2−2xy+x−y3)y−3

377 (x−1)(y+1)(x+y)
(
xy−2x−2y2+y

)
y−1

−377 (x−1)(y+1)(x+y)
(
xy−2x−2y2+y

)
y−3

377
∗ −(x−1)(y+1)(x+y)

(
xy−2x−2y2+y

)
y−3

−377
∗ −(x−1)(y+1)(x+y)

(
xy−2x−2y2+y

)
y−1

378(∼−378) −2(x−1)(y+1)(x+y)y−1

378
∗(∼−378

∗) 2(x−1)(y+1)(x+y)y−1

379(∼−379) (x−1) (x2−4x+1) (y+1) (y2−y+1) (x+y) (x2−xy+y2)y−3

379
∗(∼−379

∗) −(x−1) (x2−4x+1) (y+1) (y2−y+1) (x+y) (x2−xy+y2)y−3
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380, −380, 380

∗, −380
∗ 0

381, −381, 381
∗, −381

∗ 0
382, −382, 382

∗, −382
∗ 0
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