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Abstract
In mathematical physics, Minkowski space (or Minkowski space-time) is a combination of

three-dimensional Euclidean space and time into a four-dimensional manifold.
The hyperbolic surface and de Sitter surface of a curve are defined in the spacelike hyper-

surface M in Minkowski 4-space and located, respectively, in hyperbolic 3-space and de Sitter
3-space. In this study, techniques from singularity theory were applied to obtain the generic
shape of such surfaces and their singular value sets and the geometrical meanings of these
singularities were investigated.

1. Introduction

1. Introduction
Submanifolds in Lorentz-Minkowski space are investigated from various mathematical

viewpoints and are of interest also in relativity theory. In recent years, the use of singularity
theory has led to significant progress and many investigations have focused on the classifi-
cation and characterisation of the singularity of submanifolds in both Euclidean spaces and
semi-Euclidean spaces (see [1]-[8] and [10]).The results of the present study have comple-
mented a whole study of the extrinsic geometry of curves in different ambient spaces, as
mentioned above.

We considered a spacelike embedding X : U → R4
1 from an open subset U ⊂ R3 and

identified M and U through embedding X, where R4
1 is the Minkowski 4-space. For a curve

γ : I → M with nowhere vanishing curvature, we defined a hyperbolic surface in hyperbolic
space H3(−1) and a de Sitter surface in de Sitter space S3

1 associated with curve γ. Singularity
theory techniques, and in particular, the classical deformation theory, were applied for the
study of the generic differential geometry of those surfaces and their singular sets.

This paper is organised as follows: Section 2 reviews some basic definitions of Minkowski
4-space, as well as the definition of Ak-singularities and discriminant sets, and reports the
construction of a moving frame along γ together with Frenet-Serret type formulae; Sections
3 and 5 address the definition of two families of height functions on γ, namely timelike
tangential height functions and spacelike tangential height functions, which measure the
contact of curve t with special hyperplanes and whose differentiation yields invariants re-
lated to each surface. The hyperbolic surface of γ is described as the discriminant set of the
family of timelike tangential height functions (Corollary 3.2) and de Sitter surface of γ is the
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discriminant set of the family of spacelike tangential height functions (Corollary 5.2). The
theory of deformations provides a classification and a characterisation of the diffeomorphims
type of such surfaces (Theorems 3.5 and 5.5). The sections also report on an investigation
on the geometrical meaning of the invariants, and the results enable curve γ to be part of a
slice surface (Propositions 3.6 and 5.6). When γ is not part of a slice surface, the contact of
γ with a slice surface is characterised by the singularity types of both its hyperbolic surface
(Proposition 3.7) and de Sitter surface (Proposition 5.7). Sections 4 and 6 provide examples
of curves on spacelike hypersurface in R4

1 and the surfaces studied in [3].

2. Preliminaries

2. Preliminaries
Minkowski space R4

1 is the vector space R4 endowed with the pseudo-scalar product
〈x, y〉 = −x0y0 + x1y1 + x2y2 + x3y3, for any x = (x0, x1, x2, x3) and y = (y0, y1, y2, y3)
in R4

1 (see, e.g., [9]). A non-zero vector x ∈ R4
1 is said to be spacelike if 〈x, x〉 > 0, lightlike

if 〈x, x〉 = 0 and timelike if 〈x, x〉 < 0, respectively. γ : I → R4
1, with I ⊂ R open interval, is

spacelike (resp. timelike) if tangent vector γ′(t) is a spacelike (resp. timelike) vector for any
t ∈ I.

The norm of a vector x ∈ R4
1 is defined by ‖x‖ = √|〈x, x〉|. For a non-zero vector v ∈ R4

1
and a real number c, hyperplane with pseudo-normal v is defined by

HP(v, c) =
{
x ∈ R4

1

∣∣∣ 〈x, v〉 = c
}
.

We call HP(v, c) a spacelike hyperplane, a timelike hyperplane or a lightlike hyperplane if
v is timelike, spacelike or lightlike, respectively. Let us now consider the pseudo-spheres in
R

4
1: The hyperbolic 3-space is defined by

H3(−1) =
{
x ∈ R4

1

∣∣∣ 〈x, x〉 = −1
}
,

and the de Sitter 3-space is denoted by

S3
1 =

{
x ∈ R4

1

∣∣∣ 〈x, x〉 = 1
}
.

For any x = (x0, x1, x2, x3), y = (y0, y1, y2, y3), z = (z0, z1, z2, z3) ∈ R4
1, the pseudo vector

product of x, y and z is defined as follows:

x ∧ y ∧ z =

∣∣∣∣∣∣∣∣∣∣∣∣
−e0 e1 e2 e3

x0 x1 x2 x3

y0 y1 y2 y3

z0 z1 z2 z3

∣∣∣∣∣∣∣∣∣∣∣∣
,

where {e0, e1, e2, e3} is the canonical basis of R4.
Considering a spacelike embedding X : U → R4

1 from an open subset U ⊂ R3, we
write M = X(U) and identify M and U through embedding X. X is said to be a spacelike
embedding if the tangent space T pM consists of spacelike vectors at any p = X(u). Let
γ̄ : I → U be a regular curve. Therefore, a curve γ : I → M ⊂ R4

1 is defined by γ(s) =
X(γ̄(s)), and is a curve in the spacelike hypersurface M. Since γ is a spacelike curve, it can
be reparametrized by the arc length s, which gives a unit tangent vector t(s) = γ′(s). In
this case, we call γ a unit speed spacelike curve. Since X is a spacelike embedding, a unit
timelike normal vector field n along M = X(U) is defined by
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n(p) =
Xu1 (u) ∧ Xu2 (u) ∧ Xu3 (u)
‖Xu1 (u) ∧ Xu2 (u) ∧ Xu3 (u)‖

for p = X(u), where Xui = ∂X/∂ui, i = 1, 2, 3. n is future directed if 〈n, e0〉 < 0. We chose
the orientation of M, such that n is future directed and we defined nγ(s) = n◦γ(s), to obtain a
unit timelike normal vector field nγ along γ. Under the assumption that ‖ 〈nγ(s), t′(s)〉nγ(s)+
t′(s) ‖� 0, we defined

n1(s) =
〈nγ(s), t′(s)〉nγ(s) + t′(s)
‖〈nγ(s), t′(s)〉nγ(s) + t′(s)‖ .

It follows that 〈t, n1〉 = 0 and 〈nγ, n1〉 = 0. Therefore, a spacelike unit vector is defined by
n2(s) = nγ ∧ t(s) ∧ n1(s), and a pseudo-orthonormal frame {nγ, t(s), n1(s), n2(s)} is called a
Lorentzian Darboux frame along γ. By standard arguments, the Frenet-Serret type formulae
for the above frame are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

n′γ(s) = kn(s) t(s) + τ1(s) n1(s) + τ2(s) n2(s),

t′(s) = kn(s) nγ(s) + kg(s) n1(s),

n′1(s) = τ1(s) nγ(s) − kg(s) t(s) + τg(s) n2(s),

n′2(s) = τ2(s) nγ(s) − τg(s) n1(s),

where kn(s) = −〈nγ(s), t′(s)〉, τ1(s) = 〈n1(s), n′γ(s)〉, τ2(s) = 〈n2(s), n′γ(s)〉, kg(s) =
‖〈nγ(s), t′(s)〉nγ(s) + t′(s)‖ = ‖−kn(s)nγ(s) + t′(s)‖ and τg(s) = 〈−n′2(s), n1(s)〉. The invariant
kn is called a normal curvature, τ1 is a first normal torsion, τ2 is a second normal torsion, kg
is a geodesic curvature, and τg is a geodesic torsion.

By assumption, kg(s) = ‖〈nγ(s), t′(s)〉nγ(s) + t′(s)‖ � 0, so that kg(s) > 0.

Definition 2.1. Let F : R4
1 → R be a submersion and γ : I → M a regular curve. γ and

F−1(0) have contact of order k at s0 if function g(s) = F ◦ γ(s) satisfies g(s0) = g′(s0) =
· · · = g(k)(s0) = 0 and g(k+1)(s0) � 0, i.e., g has an Ak-singularity at s0.

Let G : R × Rr, (s0, x0)→ R be a family of germs of functions. We call G an r-parameter
deformation of f if f (s) = Gx0 (s). Supposing f has an Ak-singularity (k ≥ 1) at s0, we write

j(k−1)
(
∂G
∂xi

(s, x0)
)

(s0) =
k−1∑
j=0

α ji(s − s0) j,

for i = 1, . . . , r. Then, G is a versal deformation if the k × r matrix of coefficients (α ji) has
rank k (k ≤ r) (see [1]).

The discriminant set of G is

G =

{
x ∈ (Rr, x0)

∣∣∣∣∣∣ G =
∂G
∂s
= 0 at (s, x) f or some s ∈ (R, s0)

}
and the bifurcation set of G is

G =

{
x ∈ (Rr, x0)

∣∣∣∣∣∣ ∂G∂s = ∂
2G
∂s2 = 0 at (s, x) f or some s ∈ (R, s0)

}
.

The next result is from reference [1].
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Theorem 2.2. Let G : R × Rr, (s0, x0) → R be an r-parameter deformation of f , such
that f has an Ak-singularity at s0. Supposing G is a versal deformation, G is locally
diffeomorphic to

(1) C × Rr−2 if k = 2,
(2) SW × Rr−3 if k = 3,

where C = {(x1, x2) | x2
1 = x3

2} is the ordinary cusp and SW = {(x1, x2, x3) | x1 = 3u4 +

u2v, x2 = 4u3 + 2uv, x3 = v} is the swallowtail surface.

In Sections 3 and 5, special families of functions on curves in M were used for the study
of the hyperbolic surface and de Sitter surface. In fact, such surfaces are the discriminant
sets of those families.

3. Timelike tangential height functions

3. Timelike tangential height functions
This section introduces the family of timelike tangential height functions on a curve in a

spacelike hypersurface M, and addresses the definition and study of the hyperbolic surface
given by the discriminant set of this family.

A family of functions on a curve γ : I → M ⊂ R4
1 is defined as

HT
t : I × H3(−1)→ R; (s, v) �→ 〈t(s), v〉.

We call HT
t a family of timelike tangential height functions of γ, and (hT

t )v(s) = HT
t (s, v) is

denoted for any fixed v ∈ H3(−1). The family HT
t measures the contact of the curve t with

spacelike hyperplanes in R4
1, which is, generically, of order k, k = 1, 2, 3.

The conditions that characterise the Ak-singularity, k = 1, 2, 3 can be obtained in Propo-
sition 3.1.

The proof of (2) in the following proposition leads to k2
g(s) > k2

n(s), therefore, we can
assume that there exists an interval I, such that k2

g(s) > k2
n(s) for s ∈ I. Towards avoiding

complicated situations, we have assumed (knτ2 + kgτg)(s) � 0 for any s ∈ I.

Proposition 3.1. Let γ : I → M be a unit speed curve with kg(s) � 0 and (knτ2+kgτg)(s) �
0. Therefore,

(1) (hT
t )v(s) = 0 if and only if there exist μ, λ, η ∈ R, such that −μ2 + λ2 + η2 = −1 and
v = μnγ(s) + λn1(s) + ηn2(s).

(2) (hT
t )v(s) = (hT

t )′v(s) = 0 if and only if there exists θ ∈ R, such that

v =
cosh θ√

k2
g(s) − k2

n(s)

(
kg(s)nγ(s) + kn(s)n1(s)

)
+ sinh θn2(s).

(3) (hT
t )v(s) = (hT

t )′v(s) = (hT
t )′′v (s) = 0 if and only if

v =
cosh θ√

k2
g(s) − k2

n(s)

(
kg(s)nγ(s) + kn(s)n1(s)

)
+ sinh θn2(s),

tanh θ =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g

(knτ2 + kgτg)
√

k2
g − k2

n

(s).

(4) (hT
t )v(s) = (hT

t )′v(s) = (hT
t )′′v (s) = (hT

t )
′′′
v (s) = 0 if and only if
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v =
cosh θ√

k2
g(s) − k2

n(s)

(
kg(s)nγ(s) + kn(s)n1(s)

)
+ sinh θn2(s),

tanh θ =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g

(knτ2 + kgτg)
√

k2
g − k2

n

(s) and ρ(s) = 0, where

ρ(s) =
(
(−kgk′′n − kgknτ

2
2 − 2kgk′gτ1 − k2

gτ
′
1 − k2

gτgτ2 + 2knk′nτ1 + k2
nτ
′
1 − k2

nkgτ2 +

k′′g kn − kgknτ
2
g)(knτ2 + kgτg) + (kgk′n + k2

gτ1 − k2
nτ1 − knk′g)(2k′nτ2 + knτ1τg + knτ

′
2 +

2k′gτg + kgτ1τ2 + kgτ′g)
)
(s).

(5) (hT
t )v(s) = (hT

t )′v(s) = (hT
t )′′v (s) = (hT

t )
′′′
v (s) = (hT

t )(4)
v (s) = 0 if and only if

v =
cosh θ√

k2
g(s) − k2

n(s)

(
kg(s)nγ(s) + kn(s)n1(s)

)
+ sinh θn2(s),

tanh θ =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g

(knτ2 + kgτg)
√

k2
g − k2

n

(s) and ρ(s) = ρ′(s) = 0.

Proof. By definition, (hT
t )v(s) = 0 if and only if 〈t(s), v〉 = 0. This is equivalent to

v = μnγ(s) + λn1(s) + ηn2(s), where μ, λ, η ∈ R and −μ2 + λ2 + η2 = −1 so that (1)
follows. For (2), (hT

t )v(s) = (hT
t )′v(s) = 0 if and only if v = μnγ(s) + λn1(s) + ηn2(s) with

−μ2 + λ2 + η2 = −1 and 〈t′(s), v〉 = −μkn + λkg = 0. This is equivalent to

v =
cosh θ√

k2
g(s) − k2

n(s)

(
kg(s)nγ(s) + kn(s)n1(s)

)
+ sinh θn2(s).

For (3), (hT
t )v(s) = (hT

t )′v(s) = (hT
t )′′v (s) = 0 if and only if

v =
cosh θ√

k2
g(s) − k2

n(s)

(
kg(s)nγ(s) + kn(s)n1(s)

)
+ sinh θn2(s) and 〈t′′(s), v〉 = 0.

Since t′′(s) = (k2
n(s) − k2

g(s))t(s) + (k′n(s) + kg(s)τ1(s))nγ(s) + (kn(s)τ1(s) + k′g(s))n1(s) +
(kn(s)τ2(s) + kg(s)τg(s))n2(s), the previous assertion is equivalent to

v =
cosh θ√

k2
g(s) − k2

n(s)

(
kg(s)nγ(s) + kn(s)n1(s)

)
+ sinh θn2(s)

and tanh θ =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g

(knτ2 + kgτg)
√

k2
g − k2

n

(s).

Items (4) and (5) were calculated by Frenet-Serret type formulae of γ. Since such calcu-
lations are laborious and long, details have been omitted. �

Following Proposition 3.1, we defined the invariant

ρ(s) =
(
(−kgk′′n − kgknτ

2
2 − 2kgk′gτ1 − k2

gτ
′
1 − k2

gτgτ2 + 2knk′nτ1 + k2
nτ
′
1 − k2

nkgτ2 + k′′g kn −
kgknτ

2
g)(knτ2+kgτg)+(kgk′n+k2

gτ1−k2
nτ1−knk′g)(2k′nτ2+knτ1τg+knτ

′
2+2k′gτg+kgτ1τ2+kgτ′g)

)
(s)
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of the curve γ. The geometrical meaning of this invariant will be studied.
Motivated by the calculations of this proposition, we defined a surface and its singular

locus. Let γ : I → M be a unit speed curve with kg(s) � 0 and (knτ2 + kgτg)(s) � 0. A
surface Sγ : I × R→ H3(−1) is defined by

Sγ(s, θ) =
cosh θ√

k2
g(s) − k2

n(s)

(
kg(s)nγ(s) + kn(s)n1(s)

)
+ sinh θn2(s).

We call Sγ a hyperbolic surface of γ. Since we have assumed k2
g(s) > k2

n(s) for any
s ∈ I, the hyperbolic surface exists. We now define CHγ = Sγ(s, θ(s)), where tanh θ(s) =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g

(knτ2 + kgτg)
√

k2
g − k2

n

(s), which is generically a curve. We call CHγ a hyperbolic curve

of γ. By Theorem 3.5 (1), this curve is the locus of the singular points of the hyperbolic
surface of γ.

Corollary 3.2. The hyperbolic surface of γ is the discriminant set HT
t

of the family of
timelike tangential height functions HT

t .

Proof. The proof follows from the definition of the discriminant set given in Section 2
and Proposition 3.1 (2). �

In the following proposition, we show the family of timelike tangential height functions
on a curve in M is a versal deformation of an Ak-singularity, k = 2, 3, of its members.
Furthermore, we will study the geometric meaning of the invariant ρ. We write λ0(s) =(
kgk′n + k2

gτ1 − k2
nτ1 − knk′g

)
(s).

Proposition 3.3. Let γ : I → M be a unit speed curve with kg(s) � 0 and (knτ2+kgτg)(s) �
0.

(a) If (hT
t )v0 has an A2-singularity at s0, then HT

t is a versal deformation of (hT
t )v0 .

(b) If (hT
t )v0 has an A3-singularity at s0 and λ0(s0) � 0 (which is a generic condition),

then HT
t is a versal deformation of (hT

t )v0 .

Proof. The family of timelike tangential height functions is given by

HT
t (s, v) = −v0x′0(s) + v1x′1(s) + v2x′2(s) + v3x′3(s),

where v = (v0, v1, v2, v3), t(s) = (x′0(s), x′1(s), x′2(s), x′3(s)) and v0 =
√

1 + v21 + v
2
2 + v

2
3.

Thus

∂HT
t

∂vi
(s, v) = x′i(s) − vi

v0
x′0(s),

for i = 1, 2, 3. Therefore, the 1-jet of
∂HT

t

∂vi
(s, v) at s0 is given by

x′i(s0) − vi
v0

x′0(s0) +
(
x′′i (s0) − vi

v0
x′′0 (s0)

)
(s − s0)

and the 2-jet of
∂HT

t

∂vi
(s, v) at s0 is given by
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x′i(s0) − vi
v0

x′0(s0) +
(
x′′i (s0) − vi

v0
x′′0 (s0)

)
(s − s0) +

1
2

(
x′′′i (s0) − vi

v0
x′′′0 (s0)

)
(s − s0)2.

First, we assumed that (hT
t )v has an A2-singularity at s = s0, and show that the rank of the

matrix

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x′1(s0) − v1

v0
x′0(s0) x′2(s0) − v2

v0
x′0(s0) x′3(s0) − v3

v0
x′0(s0)

x′′1 (s0) − v1
v0

x′′0 (s0) x′′2 (s0) − v2
v0

x′′0 (s0) x′′3 (s0) − v3
v0

x′′0 (s0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is two.

We calculated the Gram-Schmidt matrix of B̃ = v0B, and denoted the lines of B̃ by

F = (x′1(s0)v0 − x′0(s0)v1, x′2(s0)v0 − x′0(s0)v2, x′3(s0)v0 − x′0(s0)v3),

G = (x′′1 (s0)v0 − x′′0 (s0)v1, x′′2 (s0)v0 − x′′0 (s0)v2, x′′3 (s0)v0 − x′′0 (s0)v3).

Since 〈v, v〉 = −1, 〈t(s), t(s)〉 = 1, 〈t(s), v〉 = 0, 〈t′(s), v〉 = 0 and 〈t′(s), t′(s)〉 = k2
g(s) −

k2
n(s), we have the following Euclidean inner product

F.F = v20 − (x′0)2, F.G = −x′0x′′0 and G.G = v20(k2
g(s) − k2

n(s)) − (x′′0 )2.

Therefore, the Gram-Schmidt matrix of B̃ is

GB̃ =

(
v20 − (x′0)2 −x′0x′′0
−x′0x′′0 v20(k2

g(s) − k2
n(s)) − (x′′0 )2

)
.

Through a Lorentzian motion of the curve, we can assume nγ(s0) = (1, 0, 0, 0). In this case,

x′0(s0) = 0, x′′0 (s0) = kn(s0) and v0 =
kg(s0) cosh θ0√

k2
g(s) − k2

n(s)
. Therefore, the determinant of GB̃ is

v20
(
k2
g(s0) − k2

n(s0)
) (
v20 − (x′0)2

)
− v02(x′′0 )2

=
k2
g(s0) cosh2 θ0

k2
g(s0) − k2

n(s0)

(
k2
g(s0) cosh2 θ0 − k2

n(s0)
)
,

which is different from zero, since k2
g(s0) > k2

n(s0). Consequently, the rank of the matrix B
is two, and assertion (a) follows.

We now assume (hT
t )v has an A3-singularity at s = s0. In this case, the determinant of the

3 × 3 matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x′1(s0) − v1

v0
x′0(s0) x′2(s0) − v2

v0
x′0(s0) x′3(s0) − v3

v0
x′0(s0)

x′′1 (s0) − v1
v0

x′′0 (s0) x′′2 (s0) − v2
v0

x′′0 (s0) x′′3 (s0) − v3
v0

x′′0 (s0)

x′′′1 (s0) − v1
v0

x′′′0 (s0) x′′′2 (s0) − v2
v0

x′′′0 (s0) x′′′3 (s0) − v3
v0

x′′′0 (s0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is nonzero. Denoting

a =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x′0(s0)
x′′0 (s0)
x′′′0 (s0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , bi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x′i(s0)
x′′i (s0)
x′′′i (s0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
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for i = 1, 2, 3, then

det A =
v0
v0

det(b1 b2 b3) − v1
v0

det(a b2 b3) − v2
v0

det(b1 a b3) − v3
v0

det(b1 b2 a).

On the other hand,

(γ′ ∧ γ′′ ∧ γ′′′)(s0) = (− det(b1 b2 b3),− det(a b2 b3),− det(b1 a b3),− det(b1 b2 a)).

Therefore,

det A =
〈(
v0
v0
,
v1
v0
,
v2
v0
,
v3
v0

)
, (γ′ ∧ γ′′ ∧ γ′′′)(s0)

〉
=

cosh θ0
(
kgk′n + k2

gτ1 − k2
nτ1 − knk′g

)2

v0

√
k2
g − k2

n(knτ2 + kgτg)
(s0).

If (hT
t )v0 has an A3-singularity at s0 and λ0(s0) � 0, then det A � 0 and HT

t is a versal
deformation of (hT

t )v0 , which completes the proof. �

According to Proposition 3.3, if (hT
t )v0 has an A3-singularity at s0 and λ0(s0) � 0, then HT

t

is a versal deformation of (hT
t )v0 . Let us now investigate what occurs if λ0(s0) = 0.

First, we must define a new deformation of (hT
t )v0 and prove it is a versal deformation.

Then, the Recognition Lemma is applied for cuspidal beaks, or cuspidal lips given in [6].
Using Proposition 3.1 with λ0(s0) = 0, (hT

t )v0 has an A3-singularity at s0 if and only if

θ = 0, v(s0) =
1√

k2
g(s0) − k2

n(s0)

(
kgnγ + knn1

)
(s0), ρ(s0) = 0 and ρ′(s0) � 0, where

ρ′(s0) =
−1√

k2
g(s0) − k2

n(s0)
(−3λ′0(s0)λ1(s0) + λ2(s0)) � 0,

λ1(s) = (k′nτ2 + knτ
′
2 + k′gτg + kgτ′g)(s),

λ2(s) = (kgk′′′n + 3k′′g kgτ1 + 3k′gτ
′
1kg + k2

gτ
′′
1 + k2

gτgτ
′
2 − k2

gτ
2
gτ1 − knτ1τ2k2

g + knτ1τ2kgτg

− 3knk′′n τ1 − 3knk′nτ
′
1 − k2

nτ
′′
1 + knk′′′g + k2

nτ1τ
2
g + k2

gτ1τ
2
2 − k2

nτ1τ
2
2 + k2

nτ2τ
′
g − k2

nτ
′
2τg

− k2
gτ
′
gτ2 + 2τ2

1k′nkg − 2τ2
1k′gkn)(s).

We now define a deformation H̃ : I×H3(−1)×R→ R by H̃(s, v, u) = HT
t (s, v)+u(s−s0)2 =

〈t(s), v〉 + u(s − s0)2. The germ at (s0, v0, 0) represented by H̃ is considered.

Proposition 3.4. If (hT
t )v0 has an A3-singularity at s0 and λ0(s0) = 0, then H̃ is a versal

deformation of (hT
t )v0 .

Proof.

H̃(s, v, u) = HT
t (s, v) + u(s − s0)2 = −v0x′0(s) + v1x′1(s) + v2x′2(s) + v3x′3(s) + u(s − s0)2,

where v = (v0, v1, v2, v3), t(s) = (x′0(s), x′1(s), x′2(s), x′3(s)) and v0 =
√

1 + v21 + v
2
2 + v

2
3.

Therefore,

∂H̃
∂vi

(s, v, 0) = x′i(s) − vi
v0

x′0(s),
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for i = 1, 2, 3. Therefore, the 2-jet of
∂H̃
∂vi

(s, v, 0) at s0 is

x′i(s0) − vi
v0

x′0(s0) +
(
x′′i (s0) − vi

v0
x′′0 (s0)

)
(s − s0) +

1
2

(
x′′′i (s0) − vi

v0
x′′′0 (s0)

)
(s − s0)2,

and the 2-jet of
∂H̃
∂u

(s, v, 0) at s0 is (s − s0)2.

We assume (hT
t )v has an A3-singularity at s = s0, and it is enough to show

rank

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x′1(s0) − v1

v0
x′0(s0) x′2(s0) − v2

v0
x′0(s0) x′3(s0) − v3

v0
x′0(s0) 0

x′′1 (s0) − v1
v0

x′′0 (s0) x′′2 (s0) − v2
v0

x′′0 (s0) x′′3 (s0) − v3
v0

x′′0 (s0) 0

x′′′1 (s0) − v1
v0

x′′′0 (s0) x′′′2 (s0) − v2
v0

x′′′0 (s0) x′′′3 (s0) − v3
v0

x′′′0 (s0) 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= rank

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1

x′1(s0) − v1
v0

x′0(s0) x′′1 (s0) − v1
v0

x′′0 (s0) 0

x′2(s0) − v2
v0

x′0(s0) x′′2 (s0) − v2
v0

x′′0 (s0) 0

x′3(s0) − v3
v0

x′0(s0) x′′3 (s0) − v3
v0

x′′0 (s0) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 3.

The rank of the last matrix has the same value of the rank of⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1

x′1(s0) − v1
v0

x′0(s0) x′′1 (s0) − v1
v0

x′′0 (s0) 0

x′2(s0) − v2
v0

x′0(s0) x′′2 (s0) − v2
v0

x′′0 (s0) 0

x′3(s0) − v3
v0

x′0(s0) x′′3 (s0) − v3
v0

x′′0 (s0) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let us consider

a(s0) =
(
1, x′1(s0) − v1

v0
x′0(s0), x′2(s0) − v2

v0
x′0(s0), x′3(s0) − v3

v0
x′0(s0)

)
,

b(s0) =
(
0, x′′1 (s0) − v1

v0
x′′0 (s0), x′′2 (s0) − v2

v0
x′′0 (s0), x′′3 (s0) − v3

v0
x′′0 (s0)

)
and c(s0) = (1, 0, 0, 0). a(s0), b(s0), c(s0) are linearly independent. Indeed, if a(s0), b(s0),
c(s0) are linearly dependent, then x′1(s0) =

v1
v0

x′0(s0), x′2(s0) =
v2
v0

x′0(s0) and x′3(s0) =
v3
v0

x′0(s0), that is, t(s0) and v are parallel, which leads to a contradiction, since t is space-

like and v is timelike. �

The cuspidal beaks are defined to be a germ of surface diffeomorphic to CBK =

{(x1, x2, x3)|x1 = v, x2 = −2u3 + v2u, x3 = 3u4 − v2u2} (see picture in [6]). Using Theo-
rem 2.2, Propositions 3.3 and 3.4, we can obtain the diffeomorphism type of the hyperbolic
surface in the following theorem.
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Theorem 3.5. Let γ : I → M be a unit speed curve with kg(s) � 0, (knτ2 + kgτg)(s) � 0
and k2

g(s) > k2
n(s). Let Sγ be the hyperbolic surface of γ. Then

(1) Sγ is singular at (s0, θ0) if and only if

tanh θ0 =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g√

k2
g − k2

n(knτ2 + kgτg)
(s0).

The singular points of the hyperbolic surface are given by Sγ(s) = Sγ(s, θ(s)), where
tanh θ(s) satisfies the above equation.

(2) The germ of Sγ at (s0, θ0) is diffeomorphic to a cuspidal edge if

tanh θ0 =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g

(knτ2 + kgτg)
√

k2
g − k2

n

(s0) and ρ(s0) � 0.

(3) The germ of Sγ at (s0, θ0) is diffeomorphic to a swallowtail if

tanh θ0 =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g

(knτ2 + kgτg)
√

k2
g − k2

n

(s0), λ0(s0) � 0, ρ(s0) = 0 and ρ′(s0) � 0.

(4) The germ of Sγ at (s0, θ0) is diffeomorphic to cuspidal beaks if

λ0(s0) = 0, λ1(s0) � 0, ρ(s0) = 0 and ρ′(s0) � 0.

(5) Cuspidal lips do not appear.

Proof. Let us consider the hyperbolic surface

Sγ(s, θ) =
cosh θ√

k2
g(s) − k2

n(s)

(
kg(s)nγ(s) + kn(s)n1(s)

)
+ sinh θn2(s).

Therefore, we have

∂Sγ
∂s

(s, θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
cosh θ(−k′gk2

n + kgknk′n + knτ1k2
g − k3

nτ1) + sinh θτ2(k2
g − k2

n)
√

k2
g − k2

n

(k2
g − k2

n)
√

k2
g − k2

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (s)nγ(s)

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
cosh θ(k3

gτ1 − kgτ1k2
n + k′nk2

g − knkgk′g) − sinh θτg(k2
g − k2

n)
√

k2
g − k2

n

(k2
g − k2

n)
√

k2
g − k2

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (s)n1(s)

+

(
cosh θ(kgτ2 + knτg)√

k2
g − k2

n

)
(s)n2(s) and

∂Sγ
∂θ

(s, θ) =
sinh θkg(s)√
k2
g(s) − k2

n(s)
nγ(s) +

sinh θkn(s)√
k2
g(s) − k2

n(s)
n1(s) + cosh θn2(s).

Therefore, the vectors
{
∂Sγ
∂s

(s0, θ0),
∂Sγ
∂θ

(s0, θ0)
}

are linearly dependent if and only if
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tanh θ0 =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g

(knτ2 + kgτg)
√

k2
g − k2

n

(s0) and assertion (1) holds.

By Corollary 3.2, the discriminant set HT
t

of the family of timelike tangential height
functions HT

t of γ is the hyperbolic surface Sγ. It also follows from assertions (4) and (5) of
Proposition 3.1 that (hT

t )v0 has an A2-singularity (respectively, an A3-singularity) at s = s0 if
and only if

tanh θ0 =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g

(knτ2 + kgτg)
√

k2
g − k2

n

(s0) and ρ(s0) � 0

(respectively, tanh θ0 =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g

(knτ2 + kgτg)
√

k2
g − k2

n

(s0), ρ(s0) = 0 and ρ′(s0) � 0). Therefore,

by Proposition 3.3, we have assertions (2) and (3).
By Proposition 7.5 in [6] and previous Proposition 3.4, HT

t is a Morse family of hyper-
surfaces.

Calculating ϕ = (∂2HT
t /∂s

2)|HT
t
, we have

∂2HT
t

∂s2 (s, θ) =
〈
t′′(s),

cosh θ√
k2
g(s) − k2

n(s)

(
kg(s)nγ(s) + kn(s)n1(s)

)
+ sinh θn2(s)

〉

=
− cosh θ√

k2
g(s) − k2

n(s)
(kgk′n + k2

gτ1 − k2
nτ1 − knk′g)(s) + sinh θ(knτ2 + kgτg)(s).

The Hessian matrix of ϕ(s, θ) =
− cosh θ√

k2
g(s) − k2

n(s)
(kgk′n+k2

gτ1−k2
nτ1−knk′g)(s)+sinh θ(knτ2+

kgτg)(s) is

Hess(ϕ)(s0, 0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∂2ϕ

∂s2 (s0, 0) λ1(s0)

λ1(s0) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
Since λ1(s0) � 0, det Hess(ϕ)(s0, 0) � 0. By Lemma 7.7 in [6], HT

t is P--equivalent
to t4 ± v21t2 + v2t + v3 (the notion of generating families, Legendrian equivalence and P-
-equivalent are given in [6] page 30). The singular set of HT

t
is given by ϕ(s, θ) = 0.

Therefore it consists of two curves that transversally intersect at (s0, 0). Therefore, the
normal form is t4 − v21t2 + v2t + v3, the surface is diffeomorphic to cuspidal beaks, and we
have assertions (4) and (5). �

We have three types of models of surfaces in M, which are given by intersections of M
with hyperplanes in R4

1. We call a surface M ∩ HP(v, c) a timelike slice if v is spacelike, a
spacelike slice if v is timelike, or a lightlike slice if v is lightlike.

In the following proposition, the curve γ of the hyperbolic surface is related to the invari-
ant ρ and a slice surface. In this case, the singular locus of the hyperbolic surface of γ is a
point.
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Proposition 3.6. Let γ : I → M be a unit speed curve, such that kg(s) � 0, (knτ2 +

kgτg)(s) � 0 and k2
g(s) > k2

n(s) for any s ∈ I. Let Sγ(s, θ(s)) be the singular points of the
hyperbolic surface of γ. Then, the following conditions are equivalent:

(1) Sγ(s, θ(s)) is a constant timelike vector;
(2) ρ(s) ≡ 0;
(3) there exist a timelike vector v and a real number c, such that Im(γ) ⊂ M ∩ HP(v, c).

Proof. By definition

Sγ(s, θ(s)) =
cosh θ(s)√
(k2
g − k2

n)(s)

⎛⎜⎜⎜⎜⎜⎝(kgnγ)(s) + (knn1)(s) +
(kgk′n + k2

gτ1 − k2
nτ1 − knk′g)(s)

(knτ2 + kgτg)(s)
n2(s)

⎞⎟⎟⎟⎟⎟⎠ .
Thus,

dSγ(s, θ(s))
ds

=⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ cosh θ(s)√
k2
g(s) − k2

n(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
′ ⎛⎜⎜⎜⎜⎜⎝kg(s)nγ(s) + kn(s)n1(s) +

(kgk′n + k2
gτ1 − k2

nτ1 − knk′g)
(knτ2 + kgτg)

(s)n2(s)

⎞⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ cosh θ(s)√
k2
g(s) − k2

n(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝kg(s)nγ(s) + kn(s)n1(s) +

(kgk′n + k2
gτ1 − k2

nτ1 − knk′g)
(knτ2 + kgτg)

(s)n2(s)

⎞⎟⎟⎟⎟⎟⎠
′
.

Furthermore,

θ′(s) =
X(s)√

(k2
g − k2

n)(s)((k2
g − k2

n)(knτ2 + kgτg)2 − (kgk′n + k2
gτ1 − k2

nτ1 − knk′g)2)(s)
,

where X(s) = (kgk′′n + 2kgk′gτ1+ k2
gτ
′
1 − 2knk′nτ1 − k2

nτ
′
1 − knk′′g )(k2

g − k2
n)(knτ2 + kgτg)− (kgk′n +

k2
gτ1 − k2

nτ1 − knk′g)((kgk′g − knk′n)(knτ2 + kgτg) + (k2
g − k2

n)(k′nτ2 + knτ
′
2 + k′gτg + kgτ′g))(s).

Using the Frenet-Serret type formulae, replacing θ′(s) in the previous expression of the
derivative and performing some calculations, we have

dSγ(s, θ(s))
ds

=

− cosh θ(anγ + bn1 + cn2)ρ√
k2
g − k2

n(knτ2 + kgτg)((k2
g − k2

n)(knτ2 + kgτg)2 − (kgk′n + k2
gτ1 − k2

nτ1 − knk′g)2)
(s),

where a(s) = kg(k′nkg + k2
gτ1 − k2

nτ1 − k′gkn)(s), b(s) = kn(k′nkg + k2
gτ1 − k2

nτ1 − k′gkn)(s),
c(s) = (k2

g − k2
n)(knτ2 + kgτg)(s) and ρ(s) is the invariant.

Therefore,
dSγ
ds
≡ 0 if and only if ρ(s) ≡ 0. Therefore, statements (1) and (2) are equiva-

lent. We now assume statement (1) holds and has

〈γ(s), Sγ(s, θ(s))〉 =
cosh θ√
k2
g − k2

n

⎛⎜⎜⎜⎜⎜⎝kg〈γ, nγ〉 + kn〈γ, n1〉 +
(kgk′n + k2

gτ1 − k2
nτ1 − knk′g)

knτ2 + kgτg
〈γ, n2〉

⎞⎟⎟⎟⎟⎟⎠ (s).
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Let g(s) = 〈γ(s), Sγ(s, θ(s))〉. Deriving, by Frenet-Serret type formulae and making long
calculations, we show

g′(s) = g1(s)〈γ(s), nγ(s)〉 + g2(s)〈γ(s), n1(s)〉 + g3(s)〈γ(s), n2(s)〉,

where g1(s) =
A(s) cosh θ(s)

D(s)
, g2(s) =

B(s) cosh θ(s)
D(s)

and g3(s) =
C(s) cosh θ(s)

D1(s)
with

A(s) =
(
kg(kgk′n + k2

gτ1 − k2
nτ1 − knk′g)

[
(kgk′′n + 2kgk′gτ1 + k2

gτ
′
1 − 2knk′nτ1 − k2

nτ
′
1 − knk′′g )

(k2
g − k2

n)(knτ2 + kgτg) − (kgk′n + k2
gτ1 − k2

nτ1 − knk′g)
(
(kgk′g − knk′n)(knτ2 + kgτg)

+ (k2
g − k2

n)(k′nτ2 + knτ
′
2 + k′gτg + kgτ′g)

)]
− kg(kgk′g − knk′n)(knτ2 + kgτg)3(k2

g − k2
n)

+ kg(kgk′g − knk′n)(knτ2 + kgτg)(kgk′n + k2
gτ1 − k2

nτ1 − knk′g)
2 +

(
(knτ2 + kgτg)(k′g+

knτ1) + τ2kgk′n + τ2k2
gτ1 − τ2k2

nτ1 − τ2knk′g
)
(k2
g − k2

n)2(knτ2 + kgτg)2 −
(
(k′g + knτ1)

(knτ2 + kgτg) + τ2kgk′n + τ2k2
gτ1 − τ2k2

nτ1 − τ2knk′g
)
(k2
g − k2

n)(kgk′n + k2
gτ1 − k2

nτ1−

knk′g)
2
)
(s),

D(s) =
(
(knτ2 + kgτg)

√
(k2
g − k2

n)3
(
(k2
g − k2

n)(knτ2 + kgτg)2 − (kgk′n + k2
gτ1 − k2

nτ1 − knk′g)
2
))

(s),

B(s) =
(
kn(kgk′n + k2

gτ1 − k2
nτ1 − knk′g)

[
(kgk′′n + 2kgk′gτ1 + k2

gτ
′
1 − 2knk′nτ1 − k2

nτ
′
1 − knk′′g )

(k2
g − k2

n)(knτ2 + kgτg) − (kgk′n + k2
gτ1 − k2

nτ1 − knk′g)
(
(kgk′g − knk′n)(knτ2 + kgτg)

+ (k2
g − k2

n)(k′nτ2 + knτ
′
2 + k′gτg + kgτ′g)

)]
− kn(kgk′g − knk′n)(knτ2 + kgτg)3(k2

g − k2
n)

+ kn(kgk′g − knk′n)(knτ2 + kgτg)(kgk′n + k2
gτ1 − k2

nτ1 − knk′g)
2 + (kgknτ1τ2 + knk′nτ2

+ τgk2
nτ1 + τgknk′g)(k

2
g − k2

n)2(knτ2 + kgτg) − (kgknτ1τ2 + knk′nτ2 + τgk2
nτ1 + τgknk′g)

(k2
g − k2

n)(kgk′n + k2
gτ1 − k2

nτ1 − knk′g)
2
)
(s),

C(s) =
(
− (knτ2 + kgτg)(kgk′n + k2

gτ1 − k2
nτ1 − knk′g)

2(kgτ2 + knτg) − (kgk′n + k2
gτ1 − k2

nτ1

− knk′g)(knτ2 + kgτg)2(kgk′g − knk′n) + (kgk′n + k2
gτ1 − k2

nτ1 − knk′g)(k
′
nτ2 + knτ1τg+

k′gτg + kgτ1τ2)(k2
g − k2

n)(knτ2 + kgτg)
)
(s),

D1(s) =
(√

k2
g − k2

n(knτ2 + kgτg)
(
(k2

n − k2
g)(knτ2 + kgτg)2 − (kgk′n + k2

gτ1 − k2
nτ1 − knk′g)

2
))

(s).

Furthermore, reorganising the calculations in A(s), B(s) and C(s), we show A(s) = B(s) =
C(s) = 0 for all s ∈ I, therefore, gi(s) = 0, i = 1, 2, 3 for all s ∈ I, ( i.e., g′(s) = 0 for all
s ∈ I), so that g is constant and the statement (3) follows. For the converse, we assume
〈γ(s), v〉 = c for a constant vector v and a real number c, therefore, 〈γ′(s), v〉 = 0, that is,
(hT

t )v(s) = 0 for all s, and (hT
t )v(s) = (hT

t )′v(s) = (hT
t )′′v (s) = (hT

t )
′′′
v (s) = 0 for all s. By
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Proposition 3.1, v = Sγ(s, θ(s)) and ρ(s) = 0 for all s, and (1) follows. �

In Proposition 3.6, the invariant ρ ≡ 0 means the curve γ is part of a spacelike slice
surface. For the next result, we assume ρ � 0, i.e., γ is not part of any spacelike slice surface
M ∩ HP(v0, c).

We now consider the hyperbolic curve CHγ of γ, defined in Section 3. We have defined
C(2, 3, 4) = {(t2, t3, t4) | t ∈ R}, which is called a (2, 3, 4)-cusp, and obtained the following
result.

Proposition 3.7. Let γ : I → M be a unit speed curve, such that kg(s) � 0, (knτ2 +

kgτg)(s) � 0 and k2
g(s) > k2

n(s) for any s ∈ I. Let v0 = Sγ(s0, θ0) and c = 〈γ(s0), v0〉. Then we
have

(1) γ and the spacelike slice surface M ∩ HP(v0, c) have contact of at least order 3 at
s0 if and only if (hT

t )v0 has Ak-singularity at s0, k ≥ 2. Furthermore, if γ and the
spacelike slice surface M ∩ HP(v0, c) have contact of order exactly 3 at s0, then the
hyperbolic curve CHγ of γ is, at s0, locally diffeomorphic to a line.

(2) γ and the spacelike slice surface M ∩ HP(v0, c) have contact of order 4 at s0 if and
only if (hT

t )v0 has A3-singularity at s0. In this case, if λ0(s0) � 0 then, the hyperbolic
curve CHγ of γ is, at s0, locally diffeomorphic to the (2, 3, 4)-cusp C(2, 3, 4).

Proof. Let us consider v0 = Sγ(s0, θ0) and c = 〈γ(s0), v0〉 and Dv0 : M → R a function
defined by Dv0 (x) = 〈x, v0〉 − c. Then, D−1

v0
(0) = M ∩ HP(v0, c), which is a spacelike slice

surface. Furthermore, D−1
v0

(0) and γ have contact of at least order 3 at s0 if and only if the
function g(s) = Dv0 ◦ γ(s) = 〈γ(s0), v0〉 − c satisfies g(s0) = g′(s0) = g′′(s0) = g′′′(s0) = 0.
Such conditions are equivalent to g(s0) = (hT

t )v(s) = (hT
t )′v(s) = (hT

t )′′v (s) = 0. By Proposition
3.1, they are equivalent to condition

v0 =
cosh θ0√

k2
g(s0) − k2

n(s0)

(
kg(s0)nγ(s0) + kn(s0)n1(s0)

)
+ sinh θ0n2(s0),

tanh θ0 =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g

(knτ2 + kgτg)
√

k2
g − k2

n

(s0). If γ and the spacelike slice surface M ∩ HP(v0, c)

have contact of order 3 at s0, then

v0 =
cosh θ0√

k2
g(s0) − k2

n(s0)

(
kg(s0)nγ(s0) + kn(s0)n1(s0)

)
+ sinh θ0n2(s0),

tanh θ0 =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g

(knτ2 + kgτg)
√

k2
g − k2

n

(s0) and ρ(s0) � 0. Furthermore, by Theorem 3.5, the

germ of the image of the hyperbolic surface Sγ at (s0, θ0) is locally diffeomorphic to the
cuspidal edge. Since the locus of the singularities of cuspidal edge is locally diffeomorphic
to a line, assertion (1) holds.

The first part of (2) follows from assertions (4) and (5) of Proposition 3.1. For the second
part, if γ and the spacelike slice surface M ∩ HP(v0, c) have contact of order 4 at s0, then
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v0 =
cosh θ0√

k2
g(s0) − k2

n(s0)

(
kg(s0)nγ(s0) + kn(s0)n1(s0)

)
+ sinh θ0n2(s0),

tanh θ0 =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g

(knτ2 + kgτg)
√

k2
g − k2

n

(s0), ρ(s0) = 0 and ρ′(s0) � 0. Furthermore, we have the

assumption λ0(s0) � 0. By Theorem 3.5, the germ of the image of the hyperbolic surface Sγ
at (s0, θ0) is locally diffeomorphic to the swallowtail surface. Since the locus of singularities
of the swallowtail surface is locally diffeomorphic to C(2, 3, 4), assertion (2) holds. �

4. Examples

4. Examples
This section provides two examples of curves on spacelike hypersurface M in R4

1, namely
M = R3 and M = H3(−1), which is the hyperbolic space.

Example 4.1. We consider M = R3 = {x = (x0, x1, x2, x3) ∈ R4
1 | x0 = 0}. For γ : I → R3,

we have nγ = e0, t(s) = γ′(s), n1(s) = n(s) and n2(s) = b(s). Here {t, n, b} is the ordinary
Frenet frame, and kn = τ1 = τ2 = 0, kg = k and τg = τ. The Frenet-Serret type formulae are
the original Frenet-Serret formulae (see [1]):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

e′0(s) = 0,

t′(s) = k(s) n(s),

n′(s) = −k(s) t(s) + τ(s) b(s),

b′(s) = −τ(s) n(s).

The hyperbolic surface of γ in H3(−1) ⊂ R4
1 is given by

Sγ(s, θ) = cosh θe0 + sinh θb(s)

and the hyperbolic curve of γ is given by CHγ(s) = e0, which is a constant point.

Example 4.2. Let us consider M = H3(−1). For γ : I → H3(−1), we have nγ(s) = γ(s),
t(s) = γ′(s), n1(s) and n2(s). Here {γ, t, n1, n2} is the pseudo orthonormal frame, and kn(s) =
1, τ1(s) = τ2(s) = 0, kg(s) = kh(s) and τg(s) = τh(s).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ′(s) = t(s),

t′(s) = γ(s) + kh(s) n1(s),

n′1(s) = −kh(s) t(s) + τh(s) n2(s),

n′2(s) = −τh(s) n1(s).

Therefore, for k2
h(s) > 1, the hyperbolic surface of γ is given by

Sγ(s, θ) =
cosh θ√
k2

h(s) − 1
(kh(s)γ(s) + n1(s)) + sinh θn2(s).

Therefore, the hyperbolic surface is precisely the hyperbolic focal surface of γ given in [3].
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5. Spacelike tangential height functions

5. Spacelike tangential height functions
This section introduces the family of spacelike tangential height functions on a curve in

a spacelike hypersurface M and addresses the definition and a study of the de Sitter surface,
given by the discriminant set of the family. The arguments and results are analogous to those
of Section 3, therefore the detailed arguments are not presented.

We define a family of functions on a curve, γ : I → M ⊂ R4
1 as follows:

HS
t : I × S3

1 → R; (s, v) �→ 〈t(s), v〉.
We call HS

t the family of spacelike tangential height functions of γ, and denote (hS
t )v(s) =

HS
t (s, v) for any fixed v ∈ S3

1. The family HS
t measures the contact of the curve t with timelike

hyperplanes in R4
1, which, generically, can be of order k, k = 1, 2, 3.

The conditions that characterise Ak-singularities, k = 1, 2, 3, can be obtained in Proposi-
tion 5.1.

We assume k2
n(s) > k2

g(s) for s ∈ I, and towards avoiding more complicated situations,
(knτ2 + kgτg)(s) � 0 for any s ∈ I.

Proposition 5.1. Let γ : I → M be a unit speed curve, such that kg(s) � 0, (knτ2 +

kgτg)(s) � 0 and k2
n(s) > k2

g(s). Then,

(1) (hS
t )v(s) = 0 if and only if there exist μ, λ, η ∈ R, such that −μ2 + λ2 + η2 = 1 and
v = μnγ(s) + λn1(s) + ηn2(s).

(2) (hS
t )v(s) = (hS

t )′v(s) = 0 if and only if there exists θ ∈ R, such that

v =
cos θ√

k2
n(s) − k2

g(s)

(
kg(s)nγ(s) + kn(s)n1(s)

)
+ sin θn2(s).

(3) (hS
t )v(s) = (hS

t )′v(s) = (hS
t )′′v (s) = 0 if and only if

v =
cos θ√

k2
n(s) − k2

g(s)

(
kg(s)nγ(s) + kn(s)n1(s)

)
+ sin θn2(s),

tan θ =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g

(knτ2 + kgτg)
√

k2
n − k2

g

(s).

(4) (hS
t )v(s) = (hS

t )′v(s) = (hS
t )′′v (s) = (hS

t )
′′′
v (s) = 0 if and only if

v =
cos θ√

k2
n(s) − k2

g(s)

(
kg(s)nγ(s) + kn(s)n1(s)

)
+ sin θn2(s),

tan θ =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g

(knτ2 + kgτg)
√

k2
n − k2

g

(s) and ρ(s) = 0, where

ρ(s) =
(
(−kgk′′n − kgknτ

2
2 − 2kgk′gτ1 − k2

gτ
′
1 − k2

gτgτ2 + 2knk′nτ1 + k2
nτ
′
1 − k2

nkgτ2 +

k′′g kn − kgknτ
2
g)(knτ2 + kgτg) + (kgk′n + k2

gτ1 − k2
nτ1 − knk′g)(2k′nτ2 + knτ1τg + knτ

′
2 +

2k′gτg + kgτ1τ2 + kgτ′g)
)
(s).
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(5) (hS
t )v(s) = (hS

t )′v(s) = (hS
t )′′v (s) = (hS

t )
′′′
v (s) = (hS

t )(4)
v (s) = 0 if and only if

v =
cos θ√

k2
n(s) − k2

g(s)

(
kg(s)nγ(s) + kn(s)n1(s)

)
+ sin θn2(s),

tan θ =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g

(knτ2 + kgτg)
√

k2
n − k2

g

(s) and ρ(s) = ρ′(s) = 0.

Following Proposition 5.1, we define the invariant

ρ(s) =
(
(−kgk′′n −kgknτ

2
2−2kgk′gτ1−k2

gτ
′
1−k2

gτgτ2+2knk′nτ1+k2
nτ
′
1−k2

nkgτ2+k′′g kn−kgknτ
2
g)(knτ2+

kgτg) + (kgk′n + k2
gτ1 − k2

nτ1 − knk′g)(2k′nτ2 + knτ1τg + knτ
′
2 + 2k′gτg + kgτ1τ2 + kgτ′g)

)
(s)

of the curve γ, whose geometric meaning will be studied. Motivated by Proposition 5.1, we
define the following surface and its singular locus. Let γ : I → M be a unit speed curve with
kg(s) � 0, k2

n(s) > k2
g(s) and (knτ2 + kgτg)(s) � 0. A surface DSγ : I × J → S3

1 is defined by

DSγ(s, θ) =
cos θ√

k2
n(s) − k2

g(s)

(
kg(s)nγ(s) + kn(s)n1(s)

)
+ sin θn2(s),

where J = [0, 2π]. We call DSγ a de Sitter surface of γ. We now define DCγ = DSγ(s, θ(s)),

where tan θ(s) =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g√

k2
n − k2

g(knτ2 + kgτg)
(s). We call DCγ a de Sitter curve of γ. By

Theorem 5.5 (1), this curve is the locus of the singular points of the de Sitter surface of γ

Corollary 5.2. The de Sitter surface of γ is the discriminant set HS
t

of the family of
spacelike tangential height functions HS

t .

Proof. The proof follows from the definition of the discriminant set given in Section 2
and Proposition 5.1 (2). �

Proposition 5.3. Let γ : I → M be a unit speed curve with kg(s) � 0 and (knτ2+kgτg)(s) �
0.

(a) If (hS
t )v0 has an A2-singularity at s0, then HS

t is a versal deformation of (hS
t )v0 .

(b) If (hS
t )v0 has an A3-singularity at s0 and λ0(s0) � 0 (which is a generic condition),

then HS
t is a versal deformation of (hS

t )v0 .

Regarding the de Sitter surface, the result is analogous to that of Proposition 3.4, con-
sidering the deformation H̃ : I × S3

1 × R → R by H̃(s, v, u) = HS
t (s, v) + u(s − s0)2 =

〈t(s), v〉 + u(s − s0)2.

Proposition 5.4. If (hS
t )v0 has an A3-singularity at s0 and λ0(s0) = 0, then H̃ is a versal

deformation of (hS
t )v0 .

Propositions 5.3 and 5.4 provided the following result.

Theorem 5.5. Let γ : I → M be a unit speed curve, such that kg(s) � 0, k2
n(s) > k2

g(s)
and (knτ2 + kgτg)(s) � 0, and DSγ the de Sitter surface of γ. Therefore,
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(1) DSγ is singular at (s0, θ0) if and only if

tan θ0 =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g√

k2
n − k2

g(knτ2 + kgτg)
(s0),

i.e., the singular points of the de Sitter surface are given by DSγ(s) = DSγ(s, θ(s)),
where tan θ(s) satisfies the above equation.

(2) The germ of DSγ at (s0, θ0) is locally diffeomorphic to the cuspidal edge if

tan θ0 =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g

(knτ2 + kgτg)
√

k2
n − k2

g

(s0) and ρ(s0) � 0.

(3) The germ of DSγ at (s0, θ0) is locally diffeomorphic to the swallowtail if

tan θ0 =
kgk′n + k2

gτ1 − k2
nτ1 − knk′g

(knτ2 + kgτg)
√

k2
n − k2

g

(s0), λ0(s0) � 0, ρ(s0) = 0 and ρ′(s0) � 0.

(4) The germ of DSγ at (s0, θ0) is diffeomorphic to cuspidal beaks if

λ0(s0) = 0, λ1(s0) � 0, ρ(s0) = 0 and ρ′(s0) � 0.

(5) Cuspidal lips do not appear.

In the next proposition, the curve γ of the de Sitter surface is related to the invariant ρ
and a timelike slice surface. In this case, the singular locus of the de Sitter surface of γ is a
point.

Proposition 5.6. Let γ : I → M be a unit speed curve, such that kg(s) � 0, (knτ2 +

kgτg)(s) � 0 and k2
n(s) > k2

g(s) for any s ∈ I, and DSγ(s, θ(s)) be the singular points of the
de Sitter surface of γ. The following conditions are equivalent:

(1) DSγ(s, θ(s)) is a constant spacelike vector;
(2) ρ(s) ≡ 0;
(3) there exist a spacelike vector v and a real number c, such that Im(γ) ⊂ M∩HP(v, c).

In the previous result, the invariant ρ ≡ 0 means the curve γ is part of a timelike slice
surface. For the next results, we have assumed ρ � 0, i.e., γ is not part of any timelike slice
surface M ∩ HP(v, c).

Proposition 5.7. Let γ : I → M be a unit speed curve, such that kg(s) � 0, (knτ2 +

kgτg)(s) � 0 and k2
n(s) > k2

g(s) for any s ∈ I, and v0 = DSγ(s0, θ0) and c = 〈γ(s0), v0〉.
Therefore, we have

(1) γ and the timelike slice surface M∩HP(v0, c) have contact of at least order 3 at s0 if
and only if (hS

t )v0 has Ak-singularity at s0, k ≥ 2. Furthermore, if γ and the timelike
slice surface M ∩ HP(v0, c) have contact of order exactly 3 at s0, then the de Sitter
curve DCγ of γ is, at s0, locally diffeomorphic to a line at s0.

(2) γ and the timelike slice surface M ∩ HP(v0, c) have contact of order 4 at s0 if and
only if (hS

t )v0 has A3-singularity at s0. In this case, if λ0(s0) � 0, then the de Sitter
curve DCγ of γ is, at s0, locally diffeomorphic to (2, 3, 4)-cusp C(2, 3, 4).
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6. Examples

6. Examples
This section provides two examples of curves on spacelike hypersurface M in R4

1, namely
M = R3 and H3(−1).

Example 6.1. We consider M = R3, γ : I → R3, the Frenet frame {t, n, b} and the Frenet-
Serret formulae, as in Example 4.1.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

e′0(s) = 0,

t′(s) = k(s) n(s),

n′(s) = −k(s) t(s) + τ(s) b(s),

b′(s) = −τ(s) n(s).

In this case, the de Sitter surface of γ in S3
1 ⊂ R4

1 cannot be defined.

Example 6.2. We consider M = H3(−1), γ : I → H3(−1) and the pseudo orthonormal
frame {γ, t, n1, n2}, as in Example 4.2.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ′(s) = t(s),

t′(s) = γ(s) + kh(s) n1(s),

n′1(s) = −kh(s) t(s) + τh(s) n2(s),

n′2(s) = −τh(s) n1(s).

Therefore, for k2
h(s) < 1, the de Sitter surface of γ is given by

DSγ(s, θ) =
cos θ√

1 − k2
h(s)

(kh(s)γ(s) + n1(s)) + sin θn2(s).

It follows de Sitter surface is precisely the de Sitter focal surface of γ given in [3].
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