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Abstract
Let Sλ be a weighted shift on a rooted directed tree with one branching vertex ũ, η branches

(2 ≤ η < ∞) and positive weight sequence λ. We define a collection of (classical) weighted
shifts, the so-called “the i-th branching weighted shifts” W (i) for 0 ≤ i ≤ η, whose weights
are derived from those of Sλ. In this note we discuss the relationships between n-contractivity,
n-hypercontractivity and hyponormality of Sλ and these properties for the W (i) (0 ≤ i ≤ η).

1. Introduction and preliminaries

1. Introduction and preliminaries
Let  be an infinite dimensional complex Hilbert space and let () be the algebra

of bounded linear operators on . The class of weighted shifts on directed trees (these
and other definitions reviewed below) has been an important generalization of the classical
unilateral weighted shifts and has provided a much broader class of operators to study (see
[11]). One feature of that study is consideration of what properties of such a shift (for
example, subnormality or its lack) may be deduced from certain classical shifts naturally
associated with it (see, for example, [8]). In this paper we consider this basic motivating
question for what has been a particularly useful family of these shifts on directed trees and
for some “weak subnormalities” in two senses: for n-contractivity (and the associated n-
hypercontractivity), and for hyponormality.

The organization of this paper is as follows. In the remainder of this section we give
definitions and set notation, recall some fundamental known facts concerning subnormality
of a weighted shift Sλ on the particular sort of directed tree we consider, and recall as well
the definitions of certain classical weighted shifts associated with Sλ. In Section 2 we take
up the motivating question in the case of n-contractivity and n-hypercontractivity, and in
Section 3 consider the analogous question in the case of hyponormality.

An operator T in () is subnormal if it is (unitarily equivalent to) the restriction of a
normal operator to an invariant subspace, and hyponormal if T ∗T ≥ TT ∗. For an operator T
and n ∈ N set

(1.1) An(T ) :=
n∑

k=0

(−1)k
(
n
k

)
T ∗kT k,

where N is the set of positive integers and
(

n
k

)
is the usual binomial coefficient. Recall from
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[2] that T is contractive subnormal if and only if An(T ) ≥ 0 for all n ∈ N. For a fixed
n ∈ N, an operator T ∈ () is n-contractive [resp., n-hypercontractive] if An(T ) ≥ 0
[resp., Ak(T ) ≥ 0 for all k = 1, ..., n]. Observe that “1-contractive” is simply “contractive.”
Obviously, certain implications hold: contractive subnormal ⇒ · · · ⇒ 2-hypercontractive
⇒ 1-hypercontractive. However, such implications in the case of n-contractivity rather than
n-hypercontractivity do not hold in general; for example, see [1], [5], [6], [7]. Also it is
well known that the reverse implications, either for the contractivity or hypercontractivity
conditions, do not hold (see [1], [4], [5], [6], [7]). The reader is referred to [1], [5], [7], [9],
[10] for more information on n-contractive operators.

It is also known that if an operator T is subnormal then it is hyponormal, and also (from
[7]) that if T is hyponormal then it is 2-contractive. In addition, we recall more information
about relationships concerning n-contractivity.

• For odd n ∈ N, if T is n-contractive, then T is (n−1)-contractive ([9, Corollary 3.1]).
• Let Wα be a weighted shift with only finitely many weights in the weight sequence
α larger than 1 and let n ≥ 2 be arbitrary. If Wα is n-contractive, then it is (n − 1)-
contractive (and hence contractive) ([6, Proposition 0.3]).

We introduce some notation which will be used in this paper. We set R+ [C, Z+, resp.]
to the set of nonnegative real numbers [complex numbers, nonnegative integers, resp.]. For
k ∈ N, we let Jk = {1, ..., k} and Nk = {k, k + 1, ...}. For a subset  of , ∨ is the span of
.

In 2012, Jabłoński-Jung-Stochel [11] developed the theory of a weighted shift on a di-
rected tree which generalizes the classical weighted shift. We give some terminology to
describe the trees considered in this paper. Let  = (V, E) be a directed tree, where V and E
are the set of vertices and the set of edges, respectively. Set Chi(u) = {v ∈ V : (u, v) ∈ E} for
the children of u ∈ V .

We consider here the particular directed tree with one branching vertex which is the main
model of this paper. Given η ∈ N2, κ ∈ Z+, define the directed tree η,κ = (Vη,κ, Eη,κ) by (see
Figure 1)

Vη,κ = {−k : k ∈ Jκ} 	 {0} 	 {(i, j) : i ∈ Jη, j ∈ N}1,
Eη,κ = Eκ 	 {(0, (i, 1)) : i ∈ Jη} 	 {((i, j), (i, j + 1)) : i ∈ Jη, j ∈ N},
Eκ = {(−k,−k + 1) : k ∈ Jκ}.

Fig.1. The directed tree η,κ for η ∈ N2, κ ∈ Z+.

1The symbol “	” denotes the disjoint union.
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Let �2(Vη,κ) be the Hilbert space of all square summable complex functions on Vη,κ
equipped with the standard inner product. The system {eu}u∈Vη,κ defined by

eu(v) =

⎧⎪⎪⎨⎪⎪⎩1 if v = u,

0 otherwise,
v ∈ Vη,κ,

is an orthonormal basis of �2(Vη,κ). Set V◦η,κ = Vη,κ \ {−κ}. For a system λ = {λv}v∈V◦η,κ ⊆ C
of weights, in [11] there is a general definition of the weighted shift Sλ on a directed tree
suitable even for unbounded shifts; in this paper, we consider only shifts Sλ ∈ (�2(Vη,κ)),
in which case we may take Sλ as defined by

Sλeu =
∑
v∈Chi(u)

λvev.

As well, for our questions of interest we may and do take the weights λv to be positive (see
[11, Theorem 3.2.1] and surrounding discussion). Since Sλ is bounded, we often assume
that it is a contraction.

The weighted shifts Sλ on the directed trees η,κ in Figure 1 have provided several in-
teresting results and exotic examples related to subnormality since 2012 (see e.g., [3], [8],
[11], [12], [13]). It is thus worth considering whether properties of such Sλ (such as n-
contractivity or n-hypercontractivity) can be detected directly from the properties of certain
associated classical weighted shifts.

The following characterization of subnormality of weighted shifts on η,κ will be used
subsequently.

Lemma 1.1. ([11, Corollary 6.2.2]) Suppose η ∈ N2 and κ ∈ Z+ are given. Let Sλ ∈
(�2(Vη,κ)) be a weighted shift with positive weights λ = {λv}v∈V◦η,κ . Then the following
assertions hold.
(i) If κ = 0, then Sλ is subnormal if and only if there exist Borel probability measures {μi}ηi=1
on R+ such that

(1.2)
∫ ∞

0
sndμi(s) =

n+1∏
j=2

λ2
i, j, n ∈ N, i ∈ Jη,

η∑
i=1

λ2
i,1

∫ ∞
0

1
s

dμi(s) ≤ 1.

(ii) If κ ∈ N, then Sλ is subnormal if and only if one of the following two equivalent conditions
holds:

(ii-a) there exist Borel probability measures {μi}ηi=1 on R+ which satisfy (1.2) and the
following requirements:

η∑
i=1

λ2
i,1

∫ ∞
0

1
s

dμi(s) = 1,

η∑
i=1

λ2
i,1

∫ ∞
0

1
sk+1 dμi(s) =

1∏k−1
j=0 λ

2
− j

, k ∈ Jκ−1,
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η∑
i=1

λ2
i,1

∫ ∞
0

1
sκ+1 dμi(s) ≤ 1∏κ−1

j=0 λ
2
− j

,

(ii-b) there exist Borel probability measures {μi}ηi=1 and ν on R+ which satisfy (1.2) and
the equations below∫ ∞

0
sndν(s) =

⎧⎪⎪⎨⎪⎪⎩
∏κ−1

j=κ−n λ
2
− j if n ∈ Jκ,

(
∏κ−1

j=0 λ
2
− j)(
∑η

i=1
∏n−κ

j=1 λ
2
i, j) if n ∈ N \ Jκ.

The idea of the following definition, which produces classical weighted shifts associated
to some Sλ, comes from the study of the subnormal completion problem for weighted shifts
on directed trees in [8].

Definition 1.2. Suppose Sλ is a weighted shift on η,κ = (Vη,κ, Eη,κ) with positive weights
λ = {λv}v∈V◦η,κ . In what follows we assume κ ∈ Z+ and η ∈ N2. We associate to Sλ some
classical weighted shifts as follows: let W (i) be the classical weighted shift with the weight
sequence

α(i) : λi,2, λi,3, λi,4, λi,5, ..., i ∈ Jη,

under the order of branches as in Figure 2. We will say W (i) is the i-th branching shift
with weight sequence α(i). As well, let W (0) be the classical weighted shift with the weight
sequence λ̂ = {̂λi}∞i=−κ+1 given by

λ̂i = λi, −κ + 1 ≤ i ≤ 0,

λ̂1 :=

√√
η∑

i=1

λ2
i,1, λ̂ j+1 :=

√√√∑η
i=1
∏ j+1

k=1 λ
2
i,k∑η

i=1
∏ j

k=1 λ
2
i,k

, j ∈ N.(1.3)

We say that W (0) is the basic branching shift with weight sequence λ̂. For convenience of
language, we say that “W (i) is the i-th branching shift of Sλ for i ∈ Jη ∪ {0}.”

Fig.2. The weights on η,κ for η ∈ N2, κ ∈ Z+.
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2. n-contractivity and n-hypercontractivity

2. n-contractivity and n-hypercontractivity
We consider the following question concerning n-contractivity and n-hypercontractivity

in this section.

Q1. Is it true that Sλ is n-contractive [resp., n-hypercontractive] if and only if every i-th
branching shift of Sλ is n-contractive [resp., n-hypercontractive] for i ∈ Jη ∪ {0}?
This question is motivated by considering Lemma 1.1 (ii-b): we may confirm that

Sλ is subnormal if and only if every i-th branching shift is subnormal for all i ∈
Jη ∪ {0}.

This result can be improved to the following theorem, which answers Q1 affirmatively.

Theorem 2.1. Let Sλ be a weighted shift on η,κ with weights λ = {λv}v∈V◦η,κ . Suppose
η ∈ N2 and κ ∈ Z+, and suppose n ∈ N. Then Sλ is n-contractive [resp., n-hypercontractive]
if and only if every i-th branching shift W (i) of Sλ is n-contractive [resp., n-hypercontractive]
for i ∈ Jη ∪ {0}.

We begin with a computational lemma whose proof is elementary.

Lemma 2.2. Suppose η ∈ N2 and κ ∈ Z+. Let Sλ be a weighted shift on η,κ with positive
weights λ = {λv}v∈V◦η,κ and consider the ordered basis

e−κ, e−κ+1, ..., e0, e1,1, e2,1, ..., eη,1, e1,2, e2,2, ..., eη,2, ...,

for �2(Vη,κ). Then the following assertions hold.
(i) For −κ ≤ p ≤ −1,

(2.1) 〈(S∗λ)k(Sk
λ)ep, ep〉 =

⎧⎪⎪⎨⎪⎪⎩λ2
p+1 · · · λ2

p+k if k ≤ |p|,
λ2

p+1 · · · λ2
0
∑η

i=1

(∏k−|p|
j=1 λ

2
i, j

)
if k > |p|.

(ii) For p = 0,

〈(S∗λ)kSk
λe0, e0〉 =

η∑
i=1

k∏
j=1

λ2
i, j.

(iii) For i ∈ Jη and j ∈ N,

〈(S∗λ)k(Sk
λ)ei, j, ei, j〉 = λ2

i,( j+1)λ
2
i,( j+2) · · · λ2

i,( j+k).

We now prove Theorem 2.1.

Proof of Theorem 2.1. For any i ∈ Jη, the space ∨∞j=1

{
ei, j

}
is invariant for Sλ. Therefore,

if Sλ is n-contractive, then so is Sλ|∨∞j=1{ei, j}, yielding that W (i) is appropriately n-contractive.
(One must cope with the differing weight conventions for shifts on directed trees and for
classical weighted shifts.) As well, set W := W (0) to ease the notation, so W is the basic
branching shift with weight sequence as in (1.3). Suppose Sλ is n-contractive. We now claim
that W is n-contractive. We need first an observation for the operators An(Sλ) occurring in
the n-contractive tests (1.1): in Lemma 2.2, we have that the operator (S∗λ)

k(Sk
λ) in (2.1) is

diagonal with respect to the ordered basis

e−κ, e−κ+1, ..., e0, e1,1, e2,1, ..., eη,1, e1,2, e2,2, ..., eη,2, ....
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Now we view W as a weighted shift acting on some orthonormal basis

e−κ, e−κ+1, ..., e−1, e0, f1, f2, f3, ...,

with weights λ−κ, λ−κ+1, ..., λ0, λ̂1, λ̂2, ..., as in (1.3). Then we can easily see that

(2.2)
〈
An(Sλ)ep, ep

〉
=
〈
An(W)ep, ep

〉
, −κ ≤ p ≤ 0, n ∈ N.

By the definition of W, we have for each j, k ∈ N,

〈
W∗kWk f j, f j

〉
= λ̂2

j+1 · · · λ̂2
j+k

〈
f j+k, f j+k

〉
=

η∑
i=1
λ2

i,1λ
2
i,2 · · · λ2

i,( j+k)

η∑
i=1
λ2

i,1λ
2
i,2 · · · λ2

i, j

.

For i ∈ Jη and j ∈ N, we have

〈
An(Sλ)ei, j, ei, j

〉
= 1 +

n∑
k=1

(−1)k
(
n
k

) k∏
�=1

λ2
i,( j+�)

= 1 −
(
n
1

)
λ2

i,( j+1) +

(
n
2

)
λ2

i,( j+1)λ
2
i,( j+2) + · · · + (−1)n

(
n
n

)
× λ2

i,( j+1) · · · λ2
i,( j+n) =: Δ(n)

i, j ,

and also

〈
An(W) f j, f j

〉
= 1 +

n∑
k=1

(−1)k
(
n
k

) η∑
i=1

∏ j+k
�=1 λ

2
i,�

η∑
i=1

∏ j
�=1 λ

2
i,�

=
1

η∑
i=1
λ2

i,1 · · · λ2
i, j

η∑
i=1

λ2
i,1 · · · λ2

i, jΔ
(n)
i, j .

Then the following assertion holds〈
An(Sλ)ei, j, ei, j

〉
≥ 0⇒

〈
An(W) f j, f j

〉
≥ 0, j ∈ N, i ∈ Jη.

Therefore Sλ n-contractive implies that the branching shifts are.
For the reverse, the equality in (2.2) guarantees positivity for 〈An(Sλ)ep, ep〉 (−κ ≤ p ≤ 0)

and the positivity of any 〈An(Sλ)ei, j, ei, j〉 (i ∈ Jη) follows from that of the corresponding
expression in W (i), as required. Finally, the case of n-hypercontractivity is obvious. Hence
the proof is complete. �

Corollary 2.3. Suppose η ∈ N and κ ∈ Z+. Let Sλ be a weighted shift on η,κ with positive
weights λ = {λv}v∈V◦η,κ . Suppose that λi, j = λ1, j (i ∈ Jη, j ∈ N) (that is, the branches have the
same weights). Let n ∈ N. Then Sλ is n-contractive [resp., n-hypercontractive] if and only if
the basic branching shift W (0) is n-contractive [resp., n-hypercontractive].

Proof. It follows from the assumption λi, j = λ1, j for i ∈ Jη and j ∈ N that

〈
An(Sλ)ei, j, ei, j

〉
= 1 +

n∑
k=1

(−1)k
(
n
k

) k∏
�=1

λ2
1,( j+�) =

〈
An(W) f j, f j

〉
, n ∈ N.

The rest is as in the previous proof. �
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The hypotheses of Theorem 2.1 cannot be weakened trivially: the n-contractivity of the
basic branching shift W (0) alone is not enough to guarantee n-contractivity of Sλ; indeed,
subnormality of W (0) is not enough alone to guarantee subnormality of Sλ. The “reason” is
that W (0) combines or “averages” weights of Sλ; see the next example.

Example 2.4. Consider a directed tree 2,0 = (V2,0, E2,0) with weights λ = {λv}v∈V◦2,0 as in
Figure 3. Then W (0) has weights√

1
2
+

1
3
=

√
5
6
,

√
1
2 · 1

3 +
1
3 · 2√

1
2 +

1
3

=

√
5
6√
5
6

= 1,

√
1
2 · 1

3 · 1 + 1
3 · 2 · 1√

1
2 · 1

3 +
1
3 · 2

= 1, ...,

and this is fine for even subnormality of W (0) but the second branch of Sλ under the order
in Figure 2 clearly fails contractivity: Sλ|∨∞j=1{e2, j} is not contractive, nor subnormal or even
hyponormal.

Fig.3. Weights of Sλ in Example 2.4.

3. Hyponormality of Sλ and its classical shifts

3. Hyponormality of Sλ and its classical shifts
Let Sλ be a contractive weighted shift on η,κ. Then it follows from Theorem 2.1 that

Sλ is 2-contractive if and only if every i-th branching shift is 2-contractive. Recall from [7,
Theorem 1.2] that if Sλ is hyponormal then Sλ is 2-contractive. So the following question is
quite natural and we solve it in this section.

Q2. Is it true that Sλ is hyponormal if and only if every i-th branching shift of Sλ is hyponor-
mal for i ∈ Jη ∪ {0}?

Recall from [11, Theorem 5.1.2] that Sλ is hyponormal with nonzero weights on η,κ if
and only if

(3.1)
∑
v∈Chi(u)

|λv|2
‖Sλev‖2 ≤ 1, u ∈ Vη,κ.

(Note as well that according to Theorem 2.1 and the observation above we know that if Sλ is
hyponormal, then W (i) is 2-contractive for i ∈ Jη ∪ {0}, and so a contractivity result follows
from hyponormality.)

Some information is available, as shown by the following.

Theorem 3.1. Suppose η ∈ N2 and κ ∈ Z+. Let Sλ be a weighted shift on η,κ with positive
weights λ = {λv}v∈V◦η,κ . If Sλ is hyponormal, then every i-th branching shift W (i) is hyponormal
for i ∈ Jη ∪ {0}.
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Proof. By a direct computation with (3.1), we obtain

λ−κ+1 ≤ λ−κ+2 ≤ · · · ≤ λ−1 ≤ λ0,(3.2)

λ2
0

λ2
1,1 + λ

2
2,1 + · · · + λ2

η,1

≤ 1,(3.3)

λ2
1,1

λ2
1,2

+
λ2

2,1

λ2
2,2

+ · · · +
λ2
η,1

λ2
η,2

≤ 1,(3.4)

λi,2 ≤ λi,3 ≤ λi,4 ≤ · · · (i ∈ Jη),(3.5)

where the computations for (3.2) and (3.5) yield the inequalities in successive pairs.
Observe that (3.5) is just increasing weights for W (1),...,W (η), which is hyponormality for

them. It remains to consider W (0) with the weight sequence λ̂ = {̂λi}∞i=−κ+1 in (1.3) and for
hyponormality we need these increasing. In light of (3.2) and (3.3), we have that λ0 ≤ λ̂1.
Now we will prove the condition λ̂1 ≤ λ̂2, or equivalently,

(3.6)

⎛⎜⎜⎜⎜⎜⎝ η∑
i=1

λ2
i,1

⎞⎟⎟⎟⎟⎟⎠2 ≤ η∑
i=1

λ2
i,1λ

2
i,2.

We will show this follows from (3.4), but it takes a little work. We will simplify the notation.
Set

ai = λ
2
i,2, xi =

λ2
i,1

λ2
i,2

, i ∈ Jη.

In this notation (3.4) becomes

(3.7) x1 + · · · + xη ≤ 1,

and our goal (3.6) becomes

(3.8)

⎛⎜⎜⎜⎜⎜⎝ η∑
i=1

aixi

⎞⎟⎟⎟⎟⎟⎠2 ≤ η∑
i=1

a2
i xi.

By applying the Cauchy-Schwartz inequality with the two vectors
(
a1
√

x1, ..., aη
√xη
)

and(√
x1, ...,

√xη
)

in Rη, and using (3.7), we obtain (3.8).
Finally we must check that the later weights are increasing to complete the argument that

W (0) is hyponormal, i.e. λ̂p ≤ λ̂p+1 for all p ≥ 2. This reduces to inequalities of the form

(3.9)

⎛⎜⎜⎜⎜⎜⎜⎝ η∑
i=1

p−1∏
j=1

λ2
i, j

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ η∑

i=1

p+1∏
j=1

λ2
i, j

⎞⎟⎟⎟⎟⎟⎟⎠ ≥
⎛⎜⎜⎜⎜⎜⎜⎝ η∑

i=1

p∏
j=1

λ2
i, j

⎞⎟⎟⎟⎟⎟⎟⎠
2

.

To ease the notation, set

ai =

p−1∏
j=1

λ2
i, j, bi = λ

2
i,p, ci = λ

2
i,(p+1).

Then the inequality (3.9) becomes
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i=1

ai

⎞⎟⎟⎟⎟⎟⎠ ⎛⎜⎜⎜⎜⎜⎝ η∑
i=1

aibici

⎞⎟⎟⎟⎟⎟⎠ ≥ ⎛⎜⎜⎜⎜⎜⎝ η∑
i=1

aibi

⎞⎟⎟⎟⎟⎟⎠2 .
Observe that from (3.5) we have ci ≥ bi for all i ∈ Jη, so it suffices to show

(3.10)

⎛⎜⎜⎜⎜⎜⎝ η∑
i=1

ai

⎞⎟⎟⎟⎟⎟⎠ ⎛⎜⎜⎜⎜⎜⎝ η∑
i=1

aib2
i

⎞⎟⎟⎟⎟⎟⎠ ≥ ⎛⎜⎜⎜⎜⎜⎝ η∑
i=1

aibi

⎞⎟⎟⎟⎟⎟⎠2 .
As before, it follows from the Cauchy-Schwartz inequality that (3.10) holds. Hence W (0) is
hyponormal and the proof is complete. �

In general, the possible conjecture implicit in the question Q2 is not true. We first obtain a
positive result under some additional assumptions, and then give a proposition and example
that answer Q2 negatively.

Proposition 3.2. Suppose η ∈ N2 and κ ∈ Z+. Let Sλ be a weighted shift on η,κ with
positive weights λ = {λv}v∈V◦η,κ . Assume that λi, j = λ1, j (i ∈ Jη, j ∈ N2), that is the branches
of η,κ have the same weights. Then Sλ is hyponormal if and only if the basic branching shift
W (0) is hyponormal.

Proof. For Sλ to be hyponormal under the assumption, we need the conditions

λ−κ+1 ≤ λ−κ+2 ≤ · · · ≤ λ−1 ≤ λ0,(3.11)

λ2
0

λ2
1,1 + λ

2
2,1 + · · · + λ2

η,1

≤ 1,(3.12)

λ2
1,1

λ2
1,2

+
λ2

2,1

λ2
2,2

+ · · · +
λ2
η,1

λ2
η,2

=
λ2

1,1 + λ
2
2,1 + · · · + λ2

η,1

λ2
1,2

≤ 1,(3.13)

λ1,2 ≤ λ1,3 ≤ λ1,4 ≤ λ1,5 ≤ · · · .(3.14)

It follows from λi, j = λ1, j (i ∈ Jη, j ∈ N2) that the weight sequence in (1.3) satisfies
λ̂n = λ1,n (n ∈ N2).

For hyponormality of W (0) we need the following conditions:

λ−κ+1 ≤ λ−κ+2 ≤ · · · ≤ λ−1 ≤ λ0,(3.15)

λ0 ≤
√
λ2

1,1 + λ
2
2,1 + · · · + λ2

η,1 = λ̂1,(3.16)

λ̂1 =

√
λ2

1,1 + · · · + λ2
η,1 ≤

√
λ2

1,1λ
2
1,2 + · · · + λ2

η,1λ
2
η,2√

λ2
1,1 + · · · + λ2

η,1

= λ̂2,(3.17)

λ̂2 =

√
λ2

1,1λ
2
1,2 + · · · + λ2

η,1λ
2
η,2√

λ2
1,1 + · · · + λ2

η,1

≤
√
λ2

1,1λ
2
1,2λ

2
1,3 + · · · + λ2

η,1λ
2
η,2λ

2
η,3√

λ2
1,1λ

2
1,2 + · · · + λ2

η,1λ
2
η,2

= λ̂3, ....(3.18)

It is easy to see the conditions (3.11)-(3.14) and (3.15)-(3.18) are equivalent “line by line.”
�
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In general hyponormality of the classical shifts is not sufficient to guarantee hyponormal-
ity of Sλ.

Proposition 3.3. There exists a weighted shift Sλ on η,κ with positive weights λ =
{λv}v∈V◦η,κ such that
(i) every i-th branching shift of Sλ is hyponormal for i ∈ Jη ∪ {0},
(ii) Sλ is not hyponormal.

Proof. See Example 3.4. �

We give an example for Proposition 3.3 below.

Example 3.4. Let Sλ be the weighted shift on the directed tree 2,0 as in Figure 4. By

Fig.4. Weights of Sλ in Example 3.4.

using the hyponormality conditions (3.2)-(3.5) for Sλ, the relevant region in which Sλ is
hyponormal is given by

{(x, y) : x + 2y ≤ 2, 0 < x ≤ 2, 0 < y ≤ 1} .
Clearly W (1) and W (2) are hyponormal (even subnormal). For hyponormality of W (0), we
require

√
x + y ≤

√
2x + y
x + y

≤
√

4x + y
2x + y

≤
√

8x + y
4x + y

≤ · · · .

All of these except the first are automatic: we must show that for n ≥ 1,

(2n−1x + y)(2n+1x + y) ≥ (2nx + y)2.

But this is

2n−12n+1x2 + 2n−1xy + 2n+1xy + y2 ≥ 2n2nx2 + 2 · 2nxy + y2,

which is immediate. So we have

W (0) is hyponormal ⇐⇒ (x + y)2 ≤ 2x + y (0 < x ≤ 2, 0 < y ≤ 1).

We can see easily that the set{
(x, y) ∈ R+ × R+ : W (0) is hyponormal but Sλ is not

}
has nonempty interior. We may add to the discussion concerning the subnormality of Sλ by
considering where W (0) is subnormal. Observe that the moment sequence for W (0) is

γ = {γn}∞n=0 : 1, x + y, 21x + y, 22x + y, 23x + y, ...
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Take x, y ∈ R+ \ {0} with x + 2y ≤ 2. Then the measure candidate

μ(t) =
(
1 − x

2
− y
)
δ0 + yδ1 +

x
2
δ2

works for subnormality for W (0), i.e.,

γn =

∫
R+

tndμ =

⎧⎪⎪⎨⎪⎪⎩ 1, n = 0,

2n−1x + y, n ≥ 1.

Since each of W (1) and W (2) is subnormal for 0 < x ≤ 2 and 0 < y ≤ 1, respectively, we
deduce that

Sλ is subnormal⇐⇒ x + 2y ≤ 2 (0 < x ≤ 2, 0 < y ≤ 1)

⇐⇒ W (0) is subnormal.

Hence we may make a table (Table 1) for the ranges of hyponormality and subnormality for
Sλ and its branching shifts.

Table 1. Description of regions for Sλ and W (i).

Sλ W (0) W (1) W (2)

x + 2y ≤ 2 (x + y)2 ≤ 2x + y
Hyponormal 0 < x ≤ 2 0 < x ≤ 2 0 < x ≤ 2 0 < y ≤ 1

0 < y ≤ 1 0 < y ≤ 1
x + 2y ≤ 2 x + 2y ≤ 2

Subnormal 0 < x ≤ 2 0 < x ≤ 2 0 < x ≤ 2 0 < y ≤ 1
0 < y ≤ 1 0 < y ≤ 1
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