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Abstract
We determine the center of a meta-nilpotent quotient of a mapping-torus group. As a corollary,

we introduce two invariants, which are quadratic forms, of knots and of mapping classes.

1. Introduction

1. Introduction
For a free group F, let F1 be F, and let Fk be the commutator subgroup [F, Fk−1] induc-

tively. We suppose an automorphism τ : F → F, which admits the semi-direct product
F � Z. By meta-nilpotent quotient, we mean the quotient F/Fk � Z. This paper mainly
discusses the case k = 3.

In some cases, the group F � Z is topologically constructed as follows. Let g,r be the
mapping class group of the oriented compact surface Σg,r with r-boundaries, which fix the
boundary pointwise. Given a mapping class f ∈g,r, the mapping-torus T f is the quotient
space of Σg,r × [0, 1] subject to (x, 0) ∼ ( f (x), 1) for any x ∈ Σg,r; then, the fundamental
group π1(T f ) is the semi-direct product π1(Σg,r) � f Z. Since the Dehn-Nielsen theorem (see,
e.g., [5]) claims a natural injection  : g,1 ↪→ Aut(π1(Σg,1)), the study of the difference
between the image Im and Aut(π1(Σg,1)) is interesting and has been investigated in some
ways (e.g., in terms of F � Z); see, e.g., [5, 8, 7, 11] and references therein. .

In this paper, we give an observation of the difference in terms of centers. However, some
groups appearing in the study of g,r have trivial centers in many cases. For example, g,0

has no center if g ≥ 3 (see [5, §3.4]), and π1(Σg,r) � Z and its metabelianization are mostly
centerless. It is often that, if a mapping class group g,r with r > 1 has non-trivial center,
the central elements can be described in an easy way. For these reasons, few invariants of
mapping classes and mapping-tori are studied so far by using centers.

In contrast, this paper focuses on the meta-nilpotent quotient F/F3 � Z and determines
the center (Theorem 2.1). Moreover, if F � Z is a mapping-torus group π1(Σg,1) � f Z, we
show (Corollary 2.3) that the center of F/F3 � Z always contains Zg; further, we explicitly
express the central elements of the summand Zg in some cases (Proposition 2.5). Here, the
point is to express explicitly the action of Z on F/F3 (Proposition 5.2).

In application, we construct two invariants which are quadratic forms and are valued in
the centers of the groups F/F3 � Z. First, we define a quadratic form from a mapping
class [ f ] ∈ g,1; see Definition 4.2. Roughly speaking, this quadratic form is defined
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by a correspondence from the homology H1(F/F3 � Z;Z[t±1]) to a boundary element of
π1(Σg,1)� f Z. On the other hand, as an analogy, we give a knot invariant of a quadratic form
overQ in terms of evaluating longitudes from F/F3�Z (Definition 3.3). We also contrast our
invariant with the Blanchfield pairing [1], which is a classical invariant of hermite bilinear
form (see Proposition 3.9).

This paper is organized as follows. Section 2 states the theorems, and Sections 3 and
4 describe the two invariants of quadratic forms. Sections 5 and 6 give the proofs of the
statements in Sections 3–4.

2. The main theorems

2. The main theorems
The purpose of this section is to state Theorems 2.1 and 2.5.

2.1. Center of the meta-nilpotent quotient of the free group.
2.1. Center of the meta-nilpotent quotient of the free group. Consider the situation

that the free group, F, of rank m is acted on by Z = {τ±n}n∈Z. Then, we have the semi-direct
product F/Fk � Z for any k. In this paper, we will focus on the case k = 3 and analyze the
center of F/F3 � Z (see Theorem 2.1).

In order to state Theorem 2.1, we regard the quotient action τ : F/F2 → F/F2 as an
(m × m) matrix over Z, since F/F2 � Zm. The characteristic polynomial of τ is called
the Alexander polynomial (of τ) and is denoted by Δτ(t) ∈ Q[t±1]. Fixing an inclusion
Q ↪→ C, let α1, . . . , αk ∈ C be the distinct roots of Δτ(t). We further consider the com-
plexification F/F2 ⊗ C and regard it as a C[t±1]-module; elementary divisor theory gives a
C[t±1]-isomorphism

(1) F/F2 ⊗ C �
k⊕

i=1

⎛⎜⎜⎜⎜⎜⎜⎝ C[t±1]

(t − αi)n(i)
1

⊕ C[t±1]

(t − αi)n(i)
2

⊕ · · · ⊕ C[t±1]

(t − αi)
n(i)
�i

⎞⎟⎟⎟⎟⎟⎟⎠
for some natural numbers �1, . . . , �k and n(i)

1 , . . . , n
(i)
�i

with 0 < n(i)
1 ≤ n(i)

2 ≤ · · · ≤ n(i)
�i

.
We determine the center of F/F3 � Z as follows:

Theorem 2.1. Let F be the free group of rank m < ∞. Suppose Δτ(±1) � 0. Then, the
center of F/F3 � Z is a free Z-module, and the rank is equal to the following sum:

(2)
∑

(i, j)∈{(i, j)∈N2 | αiα j=1, i< j}

�i∑
u=1

� j∑
v=1

min(n(i)
u , n

( j)
v ).

The proof appears in §5. Here, as examples, we give corollaries in special situations,
which will be used in Corollary 2.7 and §§3–4.

Corollary 2.2. With the notation in Theorem 2.1, we now assume �1 = · · · = �k = 1 and
n(1)

1 = · · · = n(k)
1 = 1. Then, the rank of the center of F/F3 � Z is equal to the cardinality

#{(i, j) ∈ N2| αiα j = 1}.
Corollary 2.3. With the notation in Theorem 2.1, assume the existence of g ∈ N with

k = 2g and the reciprocity, i.e., αi = α
−1
2g−i+1 and �i = �2g−i and n(i)

u = n(2g−i+1)
u for all i and

u ∈ N. Then, the rank of the center of F/F3 � Z is larger than or equal to m/2.
Furthermore, if every �i is equal to 1, then the center of F/F3 �Z is isomorphic to Zm/2 =

Zg.
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Proof. By reciprocity, the sum (2) is smaller than the sum
∑g

i=1 �i which is equal to m/2.
Regarding the latter part, the sum (2) is

∑g
i=1 n(i)

1 , which is equal to m/2 by (1). �

2.2. Central elements in rationalization of the Z-action.
2.2. Central elements in rationalization of the Z-action. Now let us study a rational-

ization of the group F/F3 � Z and explicitly describe some central elements of F/F3 � Z

(Theorem 2.5).
First, we describe the group structure of F/F3. Since F/F2 � Zm and F2/F3 � Zm(m−1)/2,

we choose a basis {ei}mi=1 of F/F2 and a basis {ei j}1≤i< j≤m of F2/F3. As an analogy to the
exterior product, we define a bilinear map


 : F/F2 × F/F2 → F2/F3

by setting

ei 
 e j = ei j and e j 
 ei = ei 
 ei = 0 fori < j.

Accordingly, we have a group operation on F/F2 × F2/F3 given by

(3) (a, α) · (b, β) := (a + b, a 
 b + α + β),

for a, b ∈ F/F2, α, β ∈ F2/F3. It can be seen that this group is isomorphic to F/F3.
Next, let us examine the rationalization. Consider the Q-extension of 
, i.e., 
 : F/F2 ⊗

Q × F/F2 ⊗ Q → F2/F3 ⊗ Q. Then, the operation (3) makes F/F2 ⊗ Q × F2/F3 ⊗ Q into
a group. We denote the group by F/F3 ⊗ Q, and we later address the group structure of
F/F3 ⊗ Q in details (see Proposition 5.2).

We will analyze the center of (F/F3⊗Q)�Z in Theorem 2.5. For this, the following easy
lemma implies that we may focus on the elements in Z(e, 1) ∩ (F2/F3 ⊗ Q × {0}).

Lemma 2.4. Let Z act on a group G with unit e, and consider the semi-direct product
G � Z. Let Z(G) ⊂ G be the center of G and Z(e, 1) be the centralizer subgroup of (e, 1) ∈
G � Z. Then, the center of G � Z is equal to the intersection Z(e, 1) ∩ (Z(G) × {0}).

Proof. Any central element C ∈ G � Z commutes with (e, 1) and (x, 0) for any x ∈ Z(G).
Therefore, C ∈ Z(e, 1) ∩ (Z(G) × {0}). Conversely, by the definition of G � Z, any C ∈
Z(e, 1) ∩ (Z(G) × {0}) is obviously central. �

Now, we will give an expression of central elements, when m = 2g for some g ∈ N. Here,
we further assume that k = 1, i.e., F/F2 ⊗ Q � Q[t]/ f1(t), and f1(t−1) = t−deg f1 f1(t). Then,
if we expand f1 as

∑2g
i=0 aiti with a0 = a2g = 1, we have a j = a2g− j for any 0 < j ≤ g. For

any i < j ≤ 2g and � ≤ g, let us introduce d(�)
i, j ∈ Z as follows. Let d(�)

1, j ∈ Z be the Kronecker

delta δ j−1,� for j ≤ g, and d(�)
1, j be δ2g− j+1,� for j > g. By double induction on i and j, we

define d(�)
i, j ∈ Z by using the formulas

(4) d(�)
i, j :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(�)
i−1, j−1 − a j−1δi−1,� + a j−2δ j−1,�, if i ≤ g, j ≤ g,

d(�)
i−1, j−1 − a j−1δi−1,2g−� + a j−2δ j−1,�, if i > g, j ≤ g,

d(�)
i−1, j−1 − a j−1δi−1,� + a j−2δ j−1,2g−�, if i ≤ g, j > g,

d(�)
i−1, j−1 − a j−1δi−1,2g−� + a j−2δ j−1,2g−�, if i > g, j > g.



354 T. Nosaka

Theorem 2.5. Let m = 2g for some g ∈ N. Suppose all �i = 1 in (1) and the reciprocity
f1(t−1) = t−deg f1 f1(t) (possibly f1(±1) = 0) as above. Then, the element C� defined to be
(
∑

i< j d(�)
i, j ei, j, 0) ∈ (F2/F3 ⊗Q)�Z satisfies τ(C�) = C�. In particular, C� lies in the center of

(F2/F3 ⊗ Q) � Z.
Moreover, the center is a Q-vector space of dimension g, and spanned by the elements

C1, . . . ,Cg.

The proof will appear in §5.

Example 2.6. If g = 1, then C1 := (e12, 0).
Next, if g = 2, the central elements C1 and C2 are given by

C1 = (e12 + e14 + (1 − a2)e23 + e34, 0), C2 = (e13 + a1e23 + e24, 0).

If g = 3, the central elements C1,C2, and C3 are given by

C1 = (e12 + e16 + (1 − a2)e23 − a3e24 − a4e25 + (1 − a2)e34 − a3e35 + (1 − a4)e45 + e56, 0),

C2 = (e13 + e15 + a1e23 + e24 + a1e25 + e26 + (a1 − a3)e34 + e35 + a1e45 + e46, 0),

C3 = (e14 + a1e24 + e25 + a2e34 + a1e35 + e36, 0).

Theorem 2.5 also integrally holds in some cases. Precisely, we have

Corollary 2.7. Regarding F/F2 as a Z[t±1]-module, we assume that F/F2 is isomorphic
to Z[t±1]/(1 + a1t + · · · + a2g−1t2g−1 + t2g) with a2g− j = a j, as in the reciprocity in Theorem
2.5. Then, the center of F/F3 � Z is spanned by the central elements C1, . . . ,Cg in Theorem
2.5.

Proof. We can verify that C� lies in F2/F3 by definition, and satisfies τ(C�) = C� by
Theorem 2.5. Hence, C� lies in the center of F/F3 � Z. By Corollary 2.3, the rank of
the center is g. Since the e1, j-th component of C� is d1, j = δ j−1,� for j ≥ g, the elements
C1, . . . ,Cg are linearly independent. Thus, the center is spanned by C�’s. �

3. Knot invariants of quadratic forms

3. Knot invariants of quadratic forms
As an application of §2, we will introduce a knot invariant of a quadratic form (The proof

of every proposition in this section will be shown in §6). Let K ⊂ S 3 be a tame knot. We
suppose basic knowledge about knot theory as seen in [3, 4, 6]. We denote the fundamental
group π1(S 3 \ K) by πK hereafter. Furthermore, we fix a meridian m ∈ πK .

Here, let us briefly review the (rational) Alexander modules and polynomials of knots.
Since H1(S 3 \K) � Z, we have the universal abelian covering ẼK → S 3 \K. This fundamen-
tal group π1(ẼK) is the commutator subgroup [πK , πK], which is acted on by the covering
transformation t. The rational homology H1([πK , πK];Q) as a Q[t±1]-module is called the
(rational) Alexander module of K. We then have Q[t±1]-module isomorphisms,

(5) H1(ẼK ;Q) � H1([πK , πK];Q) � Q[t]/ f1(t) ⊕ · · · ⊕ Q[t]/ fn(t),

for some non-zero polynomials f1(t), . . . , fn(t) such that fi+1(t) is divisible by fi(t). It is well
known as the reciprocity (see, e.g., [3, Section IX]) that

fi(t−1) = t−deg fi fi(t) and fi(±1) � 0.
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The product f1(t) · · · fn(t) is equal to the usual Alexander polynomial ΔK of the knot K.
Next, we will consider the set (6) below. Let F be the free group of rank deg( fn(t)),

which is even by reciprocity. Then, we get uniquely the isomorphism t : F/F2 ⊗ Q →
F/F2 ⊗ Q which admits the Q[t±1]-isomorphism F/F2 ⊗ Q � Q[t]/ fn(t). In addition, since
Z = 〈m〉 has a conjugacy action on πK , let us consider the following set consisting of group
homomorphisms:

(6) K := { homomorphism f : π1(S 3 \ K)→ (F/F2 ⊗ Q) � Z s.t. f (m) = (0, 1) }.
This set is a Q[t±1]-module and is identified with the set of Z-equivariant homomorphisms
from [πK , πK] to F/F2 ⊗ Q. Hence, by (5), the Q[t±1]-module K is isomorphic to the
Q[t±1]-module H1([πK , πK];Q); in particular, the isomorphism class of K is independent
of the choice of m.

Now we are in a position to state Proposition 3.1. Let F/Fk ⊗ Q be the rationalization of
the nilpotent group F/Fk, i.e., a Malcev completion of F/Fk, and suppose an automorphism
τ : F/Fk⊗Q→ F/Fk⊗Q, as a lift of t. Then, we have the semi-direct product (F/Fk⊗Q)�Z.
We will discuss lifts of K to (F/Fk ⊗ Q) � Z:

Proposition 3.1. Let k ∈ N. Every homomorphism f : π1(S 3 \ K) → (F/F2 ⊗ Q) � Z in
K uniquely admits a lift f̃ : π1(S 3 \ K)→ (F/Fk ⊗ Q) � Z of f such that f̃ (m) = (0, 1).

Next, we will focus on the case k = 3 and discuss the preferred longitude evaluated by
such a lift:

Proposition 3.2. Let l ∈ πK be the preferred longitude.
(I) Given a lift f̃ : π1(S 3 \ K)→ (F/F3 ⊗Q)�Z, the target f̃ (l) is contained in the center

of (F/F3 ⊗ Q) � Z.
(II) This f̃ (l) does not depend on the choice of the lift τ : F/F3 ⊗ Q→ F/F3 ⊗ Q of t.

To summarize, we can introduce a new knot invariant:

Definition 3.3. We define a knot invariant, K , to be the map from K � H1(ẼK ;Q) to
the center Z(F/F3 ⊗ Q � Z) which sends f to f̃ (l).

If n = 1 in (5), the computation of this invariant is not so hard; in fact, since we later
describe concretely the group structure of (F/F3 ⊗Q) � Z (see Propositions 5.2), it is not so
hard to find f̃ and f̃ (l) by using a presentation of l; see Examples 3.6 and 3.7.

Furthermore, we later show that this invariant is of a quadratic form and isometric:

Proposition 3.4. This map, K, is a quadratic form on K. Moreover, K is isometric
in the sense of K(τ∗( f )) = K( f ) for any f ∈ K.

Such a quadratic form is completely classified in [9]. Thus, after the computation of K ,
we can obtain quantitative information from the invariant K .

3.1. Some examples of the invariant K .
3.1. Some examples of the invariant K . We will explain a procedure of computing

K . In many cases, given a diagram of a knot K with the Alexander polynomial ΔK , it is not
hard to compute K , as shown in what follows.
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Example 3.5. Let us compute the invariant K of the trefoil knot. Notice that the
Wirtinger presentation gives a presentation of the fundamental group:

πK � 〈 a, b, c | c = b−1ab, a = c−1bc, b = a−1ca 〉 � 〈 a, b | aba = bab 〉.
As is well-known, the Alexander polynomial is ΔK = t2− t+1 and H1(ẼK ;Z) � Z[t]/(t2− t+
1). Choose an automorphism τ : F/F3⊗Q→ F/F3⊗Q such that F/F2⊗Q � Q[t]/(t2−t+1).

Then, for x, y, x′, y′ ∈ Z, the correspondence,

a �−→ (0, 1), b �−→ (x + ty, 1), c �−→ (x′ + ty′, 1),

gives rise to a homomorphism f : πK → F/F2�Z, if and only if x′+y′t = x+y− tx ∈ F/F2.

Moreover, if so, we can verify that the correspondence,

a �−→ (0, 0, 1) ∈ F2/F3 × F/F2 × Z, b �−→ (β, x + ty, 1) ∈ F2/F3 × F/F2 × Z,
yields a homomorphism f : πK → F/F3 �Z if and only if β = (x− x2 − y+ 2xy+ y2)/2+α.
Here, α is arbitrary. Then, the Wirtinger presentation gives the preferred longitude l as
a−1bc−1ab−1c. Thus, it is easy to compute f̃ (l) as

f̃ (l) = f̃ (a−1bc−1ab−1c) = (x2 − xy + y2, 0, 0) ∈ F2/F3 × F/F2 × Z.
In summary, the map K : K → Z(F/F3 ⊗ Q � Z) � Q is equal to the map (x + yt) �→
x2 − xy + y2.

Example 3.6. In a similar way, we can compute  when K is isomorphic to Q[t]/(1 +
at + t2) for some a ∈ Q. For example, when K is one of the knots 41, 52 or 61, the resulting
computations are described as:

41 : Q[t]/(t2 − 3t + 1) −→ Q; (x + ty) �−→ x2 − 3xy + y2.

52 : Q[t]/(2t2 − 3t + 2) −→ Q; (x + ty) �−→ 2x2 − 3xy + 2y2.

61 : Q[t]/(2t2 − 5t + 2) −→ Q; (x + ty) �−→ 2x2 − 5xy + 2y2.

Example 3.7. However, the computation becomes little complicated even if degΔK(t) = 4,
in which case we should use a computer program. Here, notice from Corollary 2.3 that the
center of (F/F3 ⊗ Q) � Z is isomorphic to Q2. As examples of degΔK(t) = 4, if K is one of
51, 62 or 63, we give the resulting computations of K as follows.

51 : Q[t]/(t4 − t3 + t2 − t + 1) −→ Q2;

(x + ty + t2z + t3w) �−→ (x2 + xy + y2 + wz + yz + z2 + w2,−wx + wy + xy + wz + xz + yz).

62 : Q[t]/(t4 − 3t3 + 3t2 − 3t + 1) −→ Q2;

(x + ty + t2z + t3w) �−→ (w2 + 2wx + x2 + xy + y2 + wz + yz + z2,

−2w2 + wx − 2x2 + 3wy − xy − 2y2 − wz + 3xz − yz − 2z2).

63 : Q[t]/(t4 − 3t3 + 5t2 − 3t + 1) −→ Q2;

(x + ty + t2z + t3w) �−→ (−w2 + 6wx − x2 + 2wy − xy − y2 − wz + 2xz − yz − z2,

2w2 − 9wx + 2x2 − wy + 3xy + 2y2 + 3wz − xz + 3yz + 2z2).
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In our experience, we conjecture a condition of non-degeneracy:

Conjecture 3.8. Let C1, . . . ,Cg be the central elements in Theorem 2.5. Then, for any

i ≤ g, the composite map K
K−→ Z(F/F3 ⊗ Q � Z)

proj−→ Q〈Ci〉 would be non-degenerate.
That is, every (real) eigenvalue of K is not zero.

For comparison, let us examine the Blanchfield pairing [1], which is a hermitian bilinear
form on H1(ẼK ;Z). This pairing has been studied in a number of ways, and it has had some
topological applications; see [6] and references therein. If two knots have the same Blanch-
field pairing up to equivalence, they are called S -equivalent. We will show the difference
between the pairing and our quadratic form K .

Proposition 3.9. There are two S -equivalent knots such that the K are different.

Proof. Consider the Pretzel knots P(3, 3,−3) and P(9, 3,−3) depicted in Figure 1. Ac-
cording to [2, Lemma 5.6], they are S -equivalent. With the help of a computer, we can
compute the quadratic forms as

P(3,−3,3);Q[t]/(2t2 − 5t + 2) −→ Q; (x + ty) �−→ 12x2 + 30xy + 12y2,

P(3,−3,9);Q[t]/(2t2 − 5t + 2) −→ Q; (x + ty) �−→ 6x2 + 15xy + 6y2.

Therefore, P(3,−3,3) = 2P(3,−3,9). However, 2 admits no square-root in the field Q[t]/(2t2 −
5t + 2). Hence, the two forms are not equivalent. �

Fig.1. The Pretzel knots P(3, 3,−3) and P(9, 3,−3).

4. Quadratic forms from mapping classes

4. Quadratic forms from mapping classes
The purpose of this section is to define quadratic forms, which are isometric over Z, from

mapping classes in g,1.
We begin by reviewing the Dehn-Nielsen theorem. Let F be π1(Σg,1). Choose a generating

set {x1, . . . , x2g} of F, where xi is represented by the curve as illustrated in Figure 2. Take

(7) ζ := [x1, x2][x3, x4] · · · [x2g−1, x2g] ∈ π1(Σg,1),

which is represented by the boundary curve shown in Figure 2. Since f ∈ g,1 gives an
automorphism on π1(Σg,1), we have a group homomorphism g,1 → Aut(π1(Σg,1)). The
Dehn-Nielsen-Baer theorem (see, e.g., [5, Theorem 8.8]) claims that this is injective, and
the image is { τ ∈ Aut(F) | τ(ζ) = ζ}.

Next, we will examine the mapping-torus T f with respect to f ∈g,1. By a van Kampen
argument, we notice the presentation,
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Fig.2. The curves xi on the surface Σg,1, and curves αi on the surface Σ2,1,

(8) π1(T f ) � 〈x1, . . . , x2g, γ | [x1, γ] f∗(x1)x−1
1 , . . . , [x2g, γ] f∗(x2g)x−1

2g 〉.
Here, γ represents a generator of π1(S 1). The boundary of T f is a torus, and π1(∂(T f )) � Z2

is generated by γ and ζ. Since the 3-manifold T f is Haken, its homeomorphism type is
determined by the triple of (π1(T f ), γ, ζ) by the Waldhausen theorem [13]. Thus, it is sensible
to consider the relation between π1(T f ) and ζ in a meta-nilpotent quotient sense as follows:

Let us establish some more terminology. Assume that f ∈ Aut(F) arises from the map-
ping class in g,1 via the Dehn-Nielsen embedding g,1 ↪→ Aut(F). Then, the homology
H1(Σg,1;Z) � F/F2 is made into a torsion Z[t±1]-module. The order of F/F2 is called the
Alexander polynomial of f and will be denoted by Δ f . As is well known (see, e.g., [12]), the
leading coefficient of Δ f is ±1 and deg(Δ f ) = 2g.

Similar to (6), let us consider the Z[t±1]-module defined by the formula

 f := {Z-equivariant homomorphism φ : F → F/F2}.
As will be seen later in Lemma 6.1, for any φ ∈  f , we have a lift Φ : F → F/F3 of φ as a
Z-equivariant homomorphism. Notice Φ(ζ) ∈ F2/F3, since ζ ∈ F2 by (7). Moreover, since
f (ζ) = ζ by the Dehn-Nielsen theorem, Φ(ζ) lies in the center Z(0, 1) ∩ F2/F3 (cf. Lemma
2.4). Next, let us prove the following proposition.

Proposition 4.1. Take f ∈g,1 as above. The map  f :  f → Z(0, 1) ∩ F2/F3 which
sends φ to Φ(ζ) is a quadratic form on  f , and is independent of the choice of Φ. Moreover,
 f is isometric, that is, for any x ∈  f ,  f ( f∗(x)) =  f (x).

Proof. For (a, α), (b, β) ∈ F/F2 × F2/F3 the commutator [(a, α), (b, β)] ∈ F2/F3 equals
a
 b− b
 a by definition (3). Thus, [Φ(x2i),Φ(x2i+1)] = φ(x2i)
 φ(x2i+1)− φ(x2i+1)
 φ(x2i)
as a quadratic form. Thus, Φ(ζ) =

∏g
i=1[Φ(x2i),Φ(x2i+1)] is also a quadratic form, and does

not depend on the choice of Φ.
Since Φ is Z-equivariant and f (ζ) = ζ, we have  f ( f (φ)) = f (Φ(ζ)) = Φ( f (ζ)) = Φ(ζ) =

 f (φ), which means the isometry, as desired. �

Definition 4.2. For f ∈ g,1, we denote the quadratic map  f → Z(0, 1) ∩ F2/F3 by
 f .

Remark 4.3. Let p : g,1 → S p(2g;Z) be the canonical surjection, and let g,1 be the
Torelli group, that is, Ker(p). If f lies in g,1, the space  f is trivial; thus,  f is trivial.
Furthermore, we should notice that, if f , f ′ ∈g,1 are conjugate,  f and  f ′ are equivalent
by definition. However, there are f1, f2 ∈g,1 such that the classes p( f1), p( f2) ∈ S p(2g;Z)
are conjugate and  f1 and  f2 are not equivalent as follows:
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Example 4.4. For a simple closed curve αi ⊂ Σ2,1 in Figure 2, let τ(αi) be the positive
Dehn twist along αi in 2,1. Consider the mapping classes,

f1 = τ(α2)τ(α3)τ(α4)−1τ(α5)−1τ(α1), f2 = τ(α2)τ(α3)τ(α3)τ(α3)τ(α4)−1τ(α5)−1τ(α1).

We can easily verify that the images p( f1) and p( f2) in the symplectic group are conjugate.
Furthermore, according to the knot info [4], the mapping-tori T f1 and T f2 are homeomorphic
to the knot complements of 820 and 12n582, respectively. Therefore, we will compute  fi
from the knot diagrams in a similar way to Examples 3.6 and 3.7.

Let us compute the  fi . As in [4], F = H1(Σ2,1;Z) is a Z[t±1]-module of the form
Z[t±1]/((1 − t + t2)2). Then, by Corollary 2.3, the center Z(F/F3 � Z) is of rank 2 and
generated by C1,C2. Let Pi : Z(F/F3 � Z) → 〈Ci〉 the projection. With the help of a
computer, the composite (P1 + P2) ◦ f1 is shown to be the map,

(x + ty + t2z + t3w) �−→ w2 − 2xw + x2 − wy + xy + y2 + wz − xz + yz + z2,

and (P1+P2)◦ f2 is equal to 3(P1+P2)◦ f1 . However, 3 has no square-root in Z[t±1]/((1−
t + t2)2). In summary,  f1 and  f2 turn out to be not equivalent.

5. Proofs of the statements in §2

5. Proofs of the statements in §2Here, we give the proofs of Theorem 2.1 and Theorem 2.5.
We will suppose an automorphism τ : F/F3 ⊗ Q ∼−→ F/F3 ⊗ Q and will concretely

express the action of τ. For any X = (
∑m

i=1 biei,
∑

i< j ci jei j) ∈ F/F3 ⊗ Q, the target τ(X) can
be described as

(9) τ((
m∑

i=1

biei), (
∑
i< j

ci jei j)) = ((
m∑

i=1

b′iei), (
∑
i< j

c′i jei j)) ∈ F/F2 ⊗ Q × F2/F3 ⊗ Q.

for some rational numbers b′i and c′i j.

Proposition 5.1. Using the notation b′i and c′i j in (9), let us regard b′i and c′i j as functions
with respect to bi, ci j.

Then, the b′i is a linear function of the bi’s, and the ci j’s are sums of a linear function of
the ci’s and a quadratic function of the bi’s.

Moreover, the restriction on F2/F3 ⊗Q is determined by the formula τ(0, x
 y− y
 x) =
(0, tx 
 ty − ty 
 tx) for any x, y ∈ F/F2.

Before going the proof, let us show Theorem 2.1. For this, we briefly review the Jordan
decomposition over C. For λ ∈ C \ {0} and � ∈ N, let Jλ(�) be the Jordan block of size �
and eigenvalue λ. In other words, Jλ(�) is C[t]/(t − λ)� as a C[t]-module. According to [10,
Theorem 2], the tensor product of Jλ(�) and Jμ(n) has the following decomposition:

(10) Jλ(�) ⊗C Jμ(n) �
min(�,n)⊕
w=1

J�μ(� + n − 2w − 1).

In addition, the exterior square Jλ(�)
∧
C Jλ(�) is a direct sum of Jλ2 (†)’s. Proof of Theorem

2.1.. By Lemma 2.4, the center is isomorphic to the kernel of the linear map idF2/F3−τ|F2/F3 :
F2/F3 → F2/F3. In particular, the center is free.
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Next, we will determine the rank of the kernel, which equals the rank of the center. For
this, we denote by τ⊗C the extension of the map τ|F2/F3 to F2/F3⊗ZC. By Jordan decompo-
sition of F2/F3 ⊗Z C, the desired rank of the center is equal to the number (i.e., multiplicity)
of the Jordan blocks of eigenvalue 1. As a C[t±1]-submodule of F2/F3 ⊗Z C, let Wτ be the
direct sum of such Jordan blocks of eigenvalue 1. It is enough for the proof to determine the
multiplicity of the direct sum.

We will compute the multiplicity. Consider the subspace, V , of F1/F2 ⊗Z F1/F2 ⊗Z C
generated by (x ⊗ y − y ⊗ x) ⊗ 1, and the τ-equivariant linear map ψ : V → F2/F3 ⊗ C
which takes (x ⊗ y − y ⊗ x) ⊗ 1 to x 
 y − y 
 x. By the definition of 
 and Proposition
5.1, considering (x, y) = (ei, e j) with i < j can easily verify that ψ is an isomorphism. In
summary, F2/F3 ⊗Z C is linear isomorphic to the exterior square of F1/F2 ⊗Z C. As in (1),
recall the Jordan decomposition of F1/F2 ⊗Z C as

F/F2 ⊗ C �
k⊕

i=1

(
Jαi(n

(i)
1 ) ⊕ Jαi(n

(i)
2 ) ⊕ · · · ⊕ Jαi(n

(i)
�i

)
)
.

Since the square α2
i is not 1 by the assumption Δτ(±1) � 0, the submodule Wτ does not

contain any direct summand of the form Jλ(�)
∧
C Jλ(�). Hence, this Wτ is a direct sum of

Jαi(n
(i)
u ) ⊗ Jαi(n

( j)
v ) such that αiα j = 1 with i < j. More precisely, it follows from (10) that

the subspace Wτ is isomorphic to

⊕
(i, j)∈{(i, j)∈N2 | αiα j=1, i< j}

�i⊕
u=1

� j⊕
v=1

min(n(i)
u ,n

( j)
v )⊕

w=1

J1(n(i)
u + n( j)

v − 2w − 1).

Notice that the multiplicity of Wτ is equal to (2) exactly. Since the multiplicity is equal to
the rank of the center as mentioned above, we complete the proof. �

Proof of Proposition 5.1. For x ∈ F/F2 and α ∈ F2/F3, we can define κx(α) ∈ F2/F3

such that τ(x, α) = (tx, κx(α)). Since τ is a group homomorphism, we have

(11) (tx + ty, tx 
 ty + κx(α) + κy(β)) = (tx + ty, κx+y(x 
 y + α + β))

for any x, y ∈ F/F2, α, β ∈ F2/F3. When x = 0, β = 0, we have κy(α) = κy(0) + κ0(α).
Therefore, denoting κy(0) by λ(y) and κ0(α) by η(α), it is enough for the proof to show that
λ is a quadratic form with respect to y and η is a linear map with respect to α.

We will determine η first. Applying y = −x and β = −x 
 x to (11), we have

0 = −tx 
 tx + λ(−x) + λ(x) + η(−x 
 x) ∈ F2/F3.

Then, by computing the commutator τ((x, 0)(y, 0)(−x, x 
 x)(−y, y 
 y)), we obtain

(12) η(x 
 y − y 
 x) = tx 
 ty − ty 
 tx.

Applying x = y = 0 to (11), we should notice the linearity η(α+ β) = η(α)+ η(β). Since any
α is a linear sum of x 
 y − y 
 x’s, η is determined by (12) as desired.

Furthermore, from the linearity of η, (11) is reduced to

(13) λ(x + y) = λ(x) + λ(y) + tx 
 ty − η(x 
 y) for any x, y ∈ F/F2 ⊗ Q.
Notice that the map  : (F/F2 ⊗ Q)2 → Q which sends (x, y) �→ tx 
 ty − η(x 
 y) is a
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symmetric bilinear map over Q. Let B be an (m × m)-matrix presentation of . Then, as is
a common discussion on equivalence of symmetric bilinear maps and quadratic forms, λ(x)
must be xT Bx+Ax for some (m×m)-matrix A. Namely, λ is a quadratic function as required.

�

As a corollary, in the situation of Theorem 2.5, we now explicitly describe the target τ(X):

Proposition 5.2. Suppose n = 1, i.e., F/F2 ⊗ Q � Q[t]/ f1(t), and that, if we expand f1
as
∑2g

i=0 aiti with a0 = a2g = 1, they satisfy a j = a2g− j for any 0 < j ≤ g. Let bi, c′i j be the
functions defined in (9).

Then, there are uniquely qi, j,k ∈ Q with 1 ≤ j, k ≤ 2g and 2 ≤ i such that

c′i j = (b2
2g − b2g)ai−1a j−1/2 + ci−1, j−1 − ci−1,2ga j−1 + c j−1,2gai−1 − a j−1b j−1b2g(14)

+ (qi, j,1b1 + · · · + qi, j,2gb2g).

b′1 = −b2g and b′i = bi−1 − ai−1b2g

c′1 j = (b2
2g − b2g)a j/2 + c j,2g − b2gb j + (q1, j,1b1 + · · · + q1, j,2gb2g),

Proof. Together with the above proof, it is enough to show that the correspondence (14)
satisfies (11). Indeed, it is not so hard to check that τ(

∑
i< j ci jei 
 e j) is equal to

∑
i< j

ci j(Tei 
 Te j − Te j 
 Tei) =
m∑

j=2

c j,2ge1 j +

m∑
i=2

∑
j>i

(ci−1, j−1 − ci−1,2ga j−1 + c j−1,2gai−1)ei j.

Therefore, we can show that the following is a solution of the equation (13):

η(
2g∑
i=1

biei) =
2g∑
j=2

( (b2
2g − b2g)a j

2
− b2gb j

)
e1 j +

2g∑
i=2

∑
j>i

( (b2
2g − b2g)ai−1a j−1

2
− a j−1b j−1b2g

)
ei j.

Then, if we appropriately correct the first degree term of η, we can uniquely detect η such
that τ(x, α) = (tx, λ(x) + η(α)). Hence, the proof is completed. �

We will give some examples:

Example 5.3. If g = 1, then

τ(b1e1+b2e2, c1e12) =
(−b2e1+(b1−b2a1)e2, (a1(b2

2−b2)/2+c1−b1b2+q1,2,1b1+q1,2,2b2)e12
)
.

If g = 2 and f1 = 1 + a1t + a2t2 + a1t3 + 1, the list of c′i j is as follows:

τ(b1e1 + b2e2 + b3e3 + b4e4, c12e12 + c13e13 + c14e14 + c23e23 + c24e24 + c34e34)=(−b4e1 + (b1 − b4a1)e2 + (b2 − b4a2)e3 + (b3 − b4a1)e4,

(a1(b2
4 − b4)/2+ c14 − b1b4 + b1q1,2,1 + b2q1,2,2 + b3q1,2,3 + b4q1,2,4)e12

+ (a2(b2
4 − b4)/2+ c24 − b2b4 + b1q1,3,1 + b2q1,3,2 + b3q1,3,3 + b4q1,3,4)e13

+ (a1(b2
4 − b4)/2+ c34 − b3b4 + b1q1,4,1 + b2q1,4,2 + b3q1,4,3 + b4q1,4,4)e14

+ (a1a2(b2
4 − b4)/2+ c12 + c24a1 − b2b4a2 − c14a3 + b1q2,3,1 + b2q2,3,2 + b3q2,3,3 + b4q2,3,4)e23
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+ (a2
1(b2

4 − b4)/2+ c13 + c34a1 − b3b4a1 − c14a1 + b1q2,4,1 + b2q2,4,2 + b3q2,4,3 + b4q2,4,4)e24

+ (a1a2(b2
4 − b4)/2+ c23 + c34a2 − b3b4a2 − c24a1 + b1q3,4,1 + b2q3,4,2 + b3q3,4,3 + b4q3,4,4)e34

)

Proof of Theorem 2.5. First, we claim d(�)
i,2g = d(�)

1,i , that is, δ|g−i|,g−�. One observes that, if
i ≤ g, the reciprocity a2g−�+i = ai−� and (4) imply

d(�)
i,2g = d(�)

1,i +

i−1∑
j=1

(−a2g− jδi− j,� + ai− jδ2g− j,2g−�) = d(�)
1,i − a2g−�+i + ai−� = d1,i.

On the other hand, if i > g, we compute d(�)
i,2g − d(�)

1,i as

i−g∑
j=1

(ai− jδ2g− j,2g−� − a2g− jδi− j,2g−�) +
g∑

j=i−g+1

(ai− jδ2g− j,2g−� − a2g− jδi− j,�) +
i−1∑

j=g+1

(ai− jδ2g− j,� − a2g− jδi− j,�)

=

g∑
j=1

ai− jδ2g− j,2g−� −
i−g∑
j=1

a2g− jδi− j,2g−� −
i−1∑

j=i−g+1

a2g− jδi− j,� +

i−1∑
j=g+1

ai− jδ2g− j,�

= ai−� − 0 − a2g−�+i + 0 = 0,

which proves the claim. Next, let d′′i, j be the ei, j-th component of τ(C�). Then, Proposition 5.2
immediately leads to

d′′1, j = d(�)
j,2g,, and d′′i, j = d(�)

i−1, j−1 − a j−1d(�)
i−1,2g + ai−1d(�)

j−1,2g if i > 1.

An inductive discussion easily leads to d′′i, j = d(�)
i, j by the definition of ci, j and the above claim. Hence,

we have τ(C�) = C�, as desired. Since C� ∈ F2/F3, Ck lies in the center of F/F3 � Z.
Finally, we will show the latter part. By Lemma 2.4, the center is isomorphic to the kernel of the

linear map τ|F2/F3⊗Q : F2/F3 ⊗ Q → F2/F3 ⊗ Q. In particular, the center is a Q-vector space. By the
proof of Theorem 2.1, the dimension is g. Since C1, . . . ,Cg are linearly independent as in the proof
of Corollary 2.7, the vector space is spanned by them, as desired. �

6. Proofs of Propositions in §3

6. Proofs of Propositions in §3To begin with, we need the following lemma in order to prove Proposition 3.1:

Lemma 6.1. Let G and K be groups acted on by Z. Suppose that the group homology
Hgr

2 (G;Z) and Hgr
3 (G � Z;Z) are zero. Let p : K → K be a central extension of K whose

kernel Ker(p) is isomorphic to H2(K;Q).
Then, any Z-equivariant homomorphism f : G → K admits a Z-equivariant homomor-

phism f̃ : G → K as a lift of f .

Proof. Consider the pullback, G, of f and p, and take f̄ : G → K. Since Hgr
2 (G;Z) = 0

and Ker(p) is uniquely divisible, we have H2
gr(G; Ker(p)) � 0 by the universal coefficient

theorem. Thus, there is a group isomorphism G � G × Ker(p).
Here, we claim that this isomorphism is Z-equivariant. Considering the Lyndon-

Hochschild spectral sequence from G → G � Z → Z, we have H2
gr(G; Ker(p))Z �

H3
gr(G; Ker(p)), which is zero by assumption. Thus, since we can choose a Z-equivariant

section G → G × Ker(p), the action of Z on G × Ker(p) diagonally.
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Hence, the composite of the inclusion G ↪→ G and f̄ : G → K is a desired lift. �

Proof of Proposition 3.1. We will give an inductive proof on k. Since the case with k = 2
is trivial, we may assume k > 2. Let K be F/Fk+1 ⊗ Q and K be F/Fk ⊗ Q.

Fix an isomorphism πK � [πK , πK] � Z. Since S 3 \ K is an Eilenberg-MacLane space, so
is the covering space ẼK . Thus, the group homology of π1(ẼK) = [πK , πK] is the homology
of ẼK ; we notice Hgr

2 (π1(ẼK);Z) � H2(ẼK ;Z) = 0 and H3(πK;Z) � H3(S 3 \ K;Z) � 0.
Thanks to Lemma 6.1, from any Z-equivariant map [πK , πK]→ F/Fk⊗Q as the restriction

of f : πK → (F/Fk ⊗ Q) � Z, we have a lift [πK , πK] → F/Fk+1 ⊗ Q. Since this lift is Z-
equivariant by Lemma 6.1, we have a homomorphism f̃ : πK → (F/F3⊗Q)�Z, as required.

Finally, we show the uniqueness of f̃ . From the proof of Lemma 6.1, another lift f̃ ′

bijectively corresponds to the choice of the inclusion G ↪→ G. Thus, we can uniquely find f̃
with f̃ (m) = (0, 1) ∈ (F/Fk ⊗ Q) � Z, as required. �

Proof of Proposition 3.2 (I). Notice that l ∈ H1([πK , πK];Z) is zero, because l is bounded
by a Seifert surface of ẼK ; thus, f̃ (l) lies in F2/F3 ⊗Q. Since l commutes with the meridian,
f̃ (l) ∈ Z(e, 1). By Lemma 2.4, f̃ (l) lies in the center, as desired. We show (II) later. �

Proof of Proposition 3.4. Since the meridian-longitude pair (m, l) commutes, K(τ∗ f ) =
f̃ (m−1lm) = f̃ (l) = K( f ) as required.

Next, we will show that K is a quadratic form. Choose a knot diagram D. Let γ0, γ1, . . . ,

γm be the arcs of D. Here we may assume that the meridian m is represented by a loop cir-
culating around γ0. Then, given f ∈ K , the Wirtinger presentation implies the correspon-
dence γk �→ (ak, 1) ∈ F/F2 � Z for some ak ∈ F/F2, where we should notice a0 = 0.
Then, from the Wirtinger presentation, the crossing as in Figure 3 requires the relation
f (γk) = f (γ j)−1 f (γi) f (γ j), which means linear equations with respect to a�’s and that K

can be regarded as a space of the linear equations.
In addition, consider the lift f̃ of f . There are bk ∈ F2/F3 ⊗ Q such that

f̃ (γk) = (bk, ak, 1) ∈ (F2/F3 ⊗ Q) × (F/F2 ⊗ Q) × Z.
Similarly, for the crossing as in Figure 3, we have the relation f̃ (γk) = f̃ (γ j)−1 f̃ (γi) f̃ (γ j),
which equivalently means,

(15) (bk, ak, 1) = (η(bi − b j) + b j + η
2(a j 
 a j) + η(λ(−a j)) + λ(ai − a j), t(ai − a j) + a j, 1).

Here, λ and η are the functions used in the proof of Proposition 5.1. All such equations
give simultaneous linear equations with respect to bk’s. Proposition 3.1 ensures a unique
equation on bk’s in terms of ak’s. Since η is a linear function of bk’s, and λ is a quadratic
function of ak’s from the proof of Proposition 5.1, so are bk’s.

The preferred longitude l ∈ π1(S 3 \K) is some product of γk’s. Thus, the discussion in the
above paragraph tells us that the target f̃ (l) ∈ (F2/F3 ⊗ Q) � Z can be written as a quadratic
function of f (γk)’s. This means a quadratic function on K . �

Proof of Proposition 3.2 (II). For two lifts τ and τ′ of t, we have the associated lifts f̃ and
f̃ ′ of f , respectively; we will show f̃ (l) = f̃ ′(l). Let us consider the map,

Υ : (F/F3 ⊗ Q × Z)2 −→ F/F3 ⊗ Q × Z; (a, n, b,m) �−→ (b−1a,max(m, n))
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Fig.3. The three arcs around a crossing.

and the correspondence

g : γk �→ Υ( f̃ (γk), f̃ ′(γk)).

Then, from (15) we obtain g(γk) = g(γ j)−1g(γi)g(γ j), or equivalently,

(bk − b′k, 0, 1) = (η(bi − b′i + b′j − b j) + b j − b′j, 0, 1) ∈ (F2/F3 ⊗ Q × {0}) � Z
Therefore, it can be easily verified that this g gives rise to a homomorphism g : π1(S 3 \
K) → (F2/F3 ⊗ Q) � Z. Considering the metabelian quotient of g, this g factors through
H1(ẼK ;Q)�Z. As mentioned above, the class of l in H1(ẼK ;Q)�Z is zero; hence, g(l) = 0.
Since g(l) = f̃ (l) − f̃ ′(l) by definition, we have f̃ (l) = f̃ ′(l), as desired. �
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