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Abstract
We consider iterated function systems on the unit interval generated by two contractive simi-
larity transformations with the same similarity ratio. When the ratio is greater than or equal to
1/2, the limit set is the interval itself and the code map is not one-to-one. We study the set of
points of the limit set having unique addresses. We obtain a formula for the Hausdorff dimen-
sion of the set when the similarity ratio belongs to certain intervals by applying the concept of
graph directed Markov system.

1. Introduction

The Hausdorff dimension of the limit set of iterated function system is studied well when
the iterated function system satisfies the open set condition. However when it does not
satisfy the open set condition, it is difficult to evaluate the Hausdorff dimension of the limit
set in general. To understand the structure of the limit set of overlapping iterated function
system, we focus our attention on the region of multiplicity one of the limit set in this paper.

Let us consider iterated function systems on the unit interval / = [0, 1] generated by two
contractive similarity transformations

(D Jfox) =ax,  filx) =ax+(1-a)

with similarity ratio O < a < 1. If a is grater than or equal to 1/2, the limit set of the iterated
function system S (a) = {fo, f1} is the interval itself and we say that such an iterated function
system is overlapping. We consider overlapping iterated function systems, and study the
subset of points of the limit set having unique addresses which we denote by J1(S (a)). Fig.1
shows J1(S (a)) for values of a between 1/2 and the golden ratio g = (\/5 —1)/2. Note that
J1(S (a)) = {0, 1} for a > g (Proposition 2.2).

In this paper, we explicitly determine the Hausdorft dimension of J;(S (a)) for values of

a described below. For k = 1,2, ..., let b; denote the unique value of 1/2 < a < 1 satistying
2) foft fo(D) = £1(0).

Likewise, let ¢, denote the unique value of 1/2 < a < 1 satisfying

(3) ff10) = f1(0).
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Table 1. by,cp,Ax,log A, and 10g(2’“r2 —-06)/(k+3)

k by Cr Ak log Ay log(2F? — 6)/(k + 3)
1 | 0.5698402822 | 0.6180339754 1.0 0.0

2 | 0.5356873572 | 0.5436890423 | 1.6180339887 | 0.4812118251 0.4605170186
3 | 0.5172810853 | 0.5187900364 | 1.8392867552 | 0.6093778634 0.5430160897
4 1 0.5083449185 | 0.5086604059 | 1.9275619755 | 0.6562559792 0.5800632872
5 |1 0.5040674508 | 0.5041382611 | 1.9659482366 | 0.6759746921 0.6005026306
6 | 0.5020004213 | 0.5020170510 | 1.9835828434 | 0.6849047264 0.6134956575
7 | 0.5009901822 | 0.5009941757 | 1.9919641966 | 0.6891211854 0.6226536669
8 | 0.5004921257 | 0.5004931390 | 1.9960311797 | 0.6911607989 0.6295995634
9 | 0.5002452433 | 0.5002454817 | 1.9980294703 | 0.6921614300 0.6351404166
10 | 0.500122398 | 0.5001224577 | 1.9990186327 | 0.6926563765 0.6397154038

We will prove in Lemma 3.1 that
1
§<---<bk<ck<---<b2<cz<b| <cy,

and that the sequences {b;} and {c;} converge to 1/2 as k increases. The main theorem of

this paper is the following.
Theorem 1.1. For any a with by, < a < ¢; (k > 2), the Hausdor{f dimension of J,(S (a))
is given by
log 4
dimy J,(S (@) = ——2%
loga

where Ay is the largest eigenvalue of the matrix Ay given in Section 3.

We also have a simple formula which gives a lower bound of the Hausdorft dimension of
J1(S ().

Theorem 1.2. For any a with by, < a < ¢; (k > 2), the Hausdor{f dimension of J,(S (a))
satisfies
log(2K+2 — 6)
(k+3)loga’

Table 1 shows the values of by, i, Ak, log 4 and log(2’“r2 —6)/(k + 3) for k up to 10. To
prove the theorem, we define a graph directed Markov system. The matrix Ay is its incidence

dimgy J1(S (a)) > —

matrix.

Fig.1. J1(S(a)) for a between 1/2 and the golden ratio g
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2. Preliminary

2.1. Multiplicity function. Let X be a finite set of symbols. We denote by X" the set of
codes of length n of symbols in X. The set of all finite codes is denoted by X* = [ J>, X"
The length of w € £* is denoted by |w|. Given an infinite code

w=wwy - €XT,
we denote the finite code consisting of the first n symbols of w by
wl, = wiws - Wy

We deal with iterated function systems (IFS). Let X be a non-empty compact subset of
the Euclidean space R?. A similarity iterated function system is a family of contracting
similarity transformations

fiX>X (e

LetS ={f; : I — [|ie X} be asimilarity iterated function system of the unit interval.
Given a code w = ww; - - - w, € X", we define f,, : [ — I by

Jo=fo, 0 fw, 0 0 fu,.
The code map
72 -1

is defined by
(@) =) fu (D (eI
n=1

Its image 7(X) is called the limit set of the iterated function system, which we denote by
J(S).
If an iterated function system S satisfies

[ilJ(S) N f(J($) =0

for any i, j with i # j, we say that § is totally disconnected. If not, we say that S is
overlapping. If S is totally disconnected, the code map 7 is one-to-one and every point x €
J(S) has a unique address 7~!(x). But in case of overlapping iterated function system, r is
not one-to-one and some limit points x € J(S) have more than one address. The multiplicity
function

m: I — NU {oo}
is given by
m(x) = Hlw € Z¥ | n(w) = x} (x €.
Fork =0,1,..., we define J;(S) by
Ji(§) =f{x el m(x) = k}.
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Then the limit set decomposes into a disjoint union as
JS)=J1(S)U LHL(S)U -+ U Ju(S).

For totally disconnected iterated function systems, we have Ji(S) = J(S). Here we are
interested in J;(S) for overlapping iterated function systems.

Now let us consider the iterated function system given by (1). If a < 1/2, the sys-
tem is totally disconnected. The limit set J(S(a)) = J1(S(a)) is the Cantor set, and its
Hausdorft dimension is given by the Hutchinson’s theorem ([3]). For a = 1/2, J(S) =
I = J1(S(1/2)) U J»(S(1/2)) where J>(S(1/2)) is countable. The Hausdorff dimension of
J1(S(1/2)) is therefore 1. When a > 1/2, the Hausdorff dimension of J;(S (a)) is gener-
ally difficult to determine. But in the cases described in Theorem 1.1 we can determine the
Hausdorft dimension.

Assume that a > 1/2. We define

F=fohn fid) =[1-a,al,

and

Fr= ) fup.

1e(0.1}*

Proposition 2.1. Consider an iterated function system S(a) = {fo, f1} given by (1). If
a > 1/2, then we have

U Tn(S(a)) = F*.

m>2

Proof. For any x € |52 /(S (a)), since m(x) > 2, there exist distinct codes w,w’ €
{0, 1} such that m(w) = m(w”) = x. Denote the maximal leading subcode common to w and
' by u. Then we may assume that

w = /JO(I) ((I) S {0, 1}00)7
W =l @ e{0,1)).

It follows that
x = fu(n(0®)) = fu(r(1&)).
Therefore,
x € fu(fo(D) N fu(fi(D) = fu(F).
Conversely, if x € F*, there exists u € {0, 1}* such that
x € fu(F) = fuo) O fru (D).
Therefore, there exist infinite codes w = u0--- and w’ = ul - - - such that 7(w) = 7(w’) = x.
O
Proposition 2.2. If a is greater than or equal to the golden ratio g, then J1(S (a)) = {0, 1}.

Proof. Since the left end point of F is 1 — a and the right end point of fy(F)is a®, g < a
implies
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fo(F)NF +0,
and hence
SR N fy(F) # 0

foralli=0,1,.... Therefore we have

| A = ©.a,

i=0
for the left end point fé(l —a) =d (1 -a)of fé(F ) converges to O as i increases. Similarly,
we have

AF)=11-a,l).
i=0

1

Thus, the interval (0, 1) contains only points of multiplicity 2 or more. On the other hand, 0
has a unique address, for if w = 0"1®, 7(w) € f f1(1) which does not contain 0. Likewise 1
also has a unique address. O

2.2. Graph directed Markov systems. In the proof of the main theorem we use the
concept of graph directed Markov system. A graph directed Markov system is based on a
directed multigraph and an associated incidence matrix, (V, E, A, i, f). The set of vertices V
and the set of directed edges E are assumed to be finite. The function A : E X E — {0, 1}
is called an incidence matrix. It determines which edges may follow a given edge. For each
edge e, i(e) is the initial vertex of e and #(e) is the terminal vertex of e. So, it holds that
A,, = 1 if and only if #(u) = i(v). We will consider finite and infinite code spaces of edges
consistent with the incidence matrix. We define the infinite code space by

EY ={n€ ET | Ay, =1foralli>1}.
We also define
E\ ={ne€E"|A,,., =1foralli>1}.

The space of codes of finite length is denoted by £} = (J;2, E'}.

We say that A is irreducible if for all a, b € E, there exists n € E)} such that anb € E.

A graph directed Markov system (GDMS) consists of the following
e adirected multigraph, (V, E, i, 1),
e an incidence matrix A,
e a set of nonempty compact spaces {X, C R? | v € V},
e for every e € E, a similarity transformation f, : Xj. — Xy with a Lipschitz

constant K (0 < K < 1).

Briefly the set
S ={fe : Xiey = Xie) | € € E}

is called a GDMS. When the vertex set V is a singleton, S is an iterated function system.
We can generalize the code map to GDMS.
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DermvimioN 2.3. The code map 7 : E’ — ey X, is defined by

n(n) = ﬂ S Xiay) (1 € EY).
=1

The limit set of the graph directed Markov system S is defined to be the image of the code
map,

J§) =) nm.

neEy

With respect to the product topology, the code space E is compact and the code map
m is continuous. Hence, the limit set J(S) is compact. Since fy,(X;,)) shrinks to a point
uniformly as / — oo, we can also express the limit set as

J@=ﬁUﬁmm

I=1 neE),
2.3. The Hausdorff dimension. We need a couple of conditions to evaluate the Haus-
dorft dimension of the limit set. The first one is the open set condition.

DeriNiTION 2.4. We say that a GDMS S = {f, : Xy.) — Xi() | € € E} satisfies the open set
condition if there exists a nonempty open set U C | J,ey X, such that forall e, e’ € E (e # ¢’),

FUOX) N foUNXe) =0 and | £U N X)) C U.

ecE

The second condition we need is the bounded distortion property. We denote the deriva-
tive of f at x by f7, and define |f’(x)| = max{|f;(y)|}, where the maximum is taken over all
unit vectors y in the tangent space.

DermntTioN 2.5. A GDMS S = {f. : Xi(¢) — Xic) | ¢ € E} satisfies the bounded distortion

property if there exists K > 1 such that % < Kforalln € E} (n = 1,2,...) and

x’ y € Xt(nn)'

If a GDMS satisfies these conditions and the incidence matrix is irreducible, we can
evaluate the Hausdorff dimension of the limit set as follows ([2]).

Theorem 2.6 (Mauldin and Urbafiski). Suppose thata GDMS S = {f. : Xye) = Xie) | € €
E} satisfies the open set condition and the bounded distortion property, and that the inci-
dence matrix A is irreducible. Define P(t) by

.1 ,
P@ = lim ~log > lIf7I
neEy
Then the Hausdorff dimension of the limit set is given by
dimyJ(S) = supf{t > 0| P(r) > 0} = inf{sr > O | P(¢) < O}.

When all the transformations are similarity transformations, we note that it is also pos-
sible to evaluate the Hausdorff dimension by a method similar to the proof of Hutchinson’s
theorem ([3]).
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3. The structure of the GDMS
We first prove the following.

Lemma 3.1. Let by denote the unique value of 1/2 < a < 1 satisfying (2). Likewise, let
¢y denote the unique value of 1/2 < a < 1 satisfying (3). Then,

1
E<---<bk<ck<---<bz<Cz<l71<C1-

Furthermore, the sequences by and cy converge to 1/2 as k increases.
Proof. Define Py(a) and Qx(a) by
Pu(a) = d? = d*' £ 20— 1,
Oi(a) = —d** +2a - 1,

and (2) is equivalent to Py(a) = 0 and (3) is equivalent to Qx(a) = 0.
First, we show that b; < ¢;. For all k > 2, we have

P(a) = (k +2)a**" = (k + 1)d* + 2,
Pl(a) = (k +2)(k + 1)a* — k(k + 1)a*".
It follows that

P <0 ifl1/2<a<k/(k+2)
KDV S0 ifk/(k+2) <a< 1.

Hence, for all @ with 1/2 < a < 1, we have

P (a) > P, (L)

k+2
k k+1 k k
_(k+2)(k+—2) —(k+1)(m) +2
k
_o_ [k
(k+2)
> 0.

Therefore Pi(a) is monotonically increasing for 1/2 < a < 1. On the other hand, since
—cf*? + 2¢, — 1 = 0, we have

Pilcy) = i =™ + 20— 1
— 2C£+2 _ C£+l
= Qe - 1)
> 0,
for % < ¢ < 1. Since Pi(by) = 0, we have by < cy.
Next, we show that ¢;,.; < by. Let us first see that b, < 0.536. For all 0 < k < [, since
bf” - b;” +2b;— 1 =0, we have

Pi(by) = b — B 4 2b) - 1
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= (B -b*HA - b7,
Thus if 0 < k < [, we have Py(b;) < 0. Then we have b; < b; < b, < 0.536.(See Table 1.)
Now we have
0i(a) = —(k +2)a**"' +2,
and
0} (a) = —(k +2)(k + 1)d* <0,

for 3 < a < 1. Since Q}(3) = —(k + 2)($)**! + 2 > 0 and Q}(1) = —k < 0, and the function
Q,(a) is continuous and monotonically decreasing, there exists a unique value a satisfying
Q,(a) = 0, which we denote by C(k). Note that C(k) is greater than 2/3 since Q,’((%) > (O for
all k > 2. When a < C(k), the function Qy(a) is increasing and Q(C(k)) = % -1>0.
Thus, we see % < ¢ < C(k). Since bi” - b’,z“ + 2b;, — 1 = 0, we have

Qrs1(by) = =b" +2b — 1

— _b]]§+3 _ b£+2 + b/;+1
12 5
A\ T3) T3
>0

for by < 0.536. Since by, is smaller than C(k + 1), we have ¢;.; < by.
Finally, to see that by and ¢ converge to 1/2, let us assume that ¢; converged to 1/2 +
€ (e > 0). We have

1
§+e<ck<C(k)

for all k. Since Qy(a) is increasing for a < C(k), and since Qi (c) = 0, we have
Oc(1/2 +€) = —(1/2 + €)% + 2¢
<0

for all k. This is a contradiction. This completes the proof. O

In the above proof, we have also shown:
Remark 3.2. If [ < k, then by < ¢ < b; < ¢; and Qj(a) < 0 for all a with by < a < ¢y.

Remark 3.3. If by < a, we have Pi(a) > 0, which is equivalent to f; flk Jo(1) = f1(0). Also
if a < ¢y, we have Qy(a) < 0, which is equivalent to f, /f*'(0) < f1(0). Hence if by < a < ¢,
we have the right end point of f; flk(F ) contained in F, but not the whole interval. We also
have the left end point of f; fé‘ (F) contained in F, but not the whole interval.

Now we consider the iterated function system S (a) = {fy, f1} defined by (1). We denote
its limit set by J(S (a)).
If a = 1/2, for any k, we have
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“) JS@)=1= [ fu,
wel0,1}F

where the intervals f,,(/) line up from O to 1 according to the order of binary integers
wiwy - wy (2). (See Fig. 2(top).)

Jooo) Joor () Soro) Jou @) Sro0) Sro1) Sio) Sin @)
Jooo) Joor () Joro) Jou () Sro0() Sro1) S0 Sin @)
Jooo ) Joor () Joro) Jo11 () fro0U) fro1() S0 Sin @

Fig.2. The intervals f,(I) for w € {0,1}® when a = 0.5 (top), a = 0.52
(middle), and a = 0.58 (bottom).

If a is slightly larger than 1/2, (4) still holds with slightly overlapping intervals as shown
in Fig. 2 (middle).

In the following, for any intervals I and I, we define / < I’ if and only if x < y for any
xelandy el

Lemma 3.4. Suppose that 1/2 < a < by_;. Then, we have f, 1(I) < f,.1(I) for all
we {0, 1)\ {0---0,1---1}.

Proof. It suffices to show that
) Jo-1(1) < fu+1(0)

for all w € {0, 1}**1\ {0---0, 1---1}. Denote by i the maximal leading subcode common to
w-—1land w+ 1. Since (w+ 1) — (w— 1) = 2, we have either

w—-1=p01---11, w+1=ul0---01,
or
w-1=pu01---10, w+1=pul0---00.
The function f,, is monotonically increasing. Hence the condition (5) is equivalent to either
A = i~ 1) < fifyfi(0)
or
AR HM) < fify™(0) = f1(0)
forall 1 < n < k + 1 accordingly. Both inequalities hold if @ < b, forall 1 < n < k by
Lemma 3.1. o

We define X, to be the interval between f,,_1(I) and f,.1(/). (See Fig. 3.)

}k+l

DeriniTION 3.5. Suppose that 1/2 < a < by_;. For any w € {0, 1}*"", we define the interval

X, by

Xo = fo(D) — int(fy1 (D) — int(fs1(1)) (@ #0---0,1---1),
Xo.-0 = fo.oll) — int( fo..01(1)),
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fw—l([) Xo f(u+1(1)
—
G
Fig.3. X,

Xi-1 = fi1(D) — int(fi...10(0)).
In terms of end points, for w #0---0,1---1 we have

Xo = [w-1(1), fur1(0)]
= [f(tl .. 'fak+1(1)’ fﬁl .. 'fﬁk+1(0)]

wherew—1=a;...apy1 andw+ 1 =) ...Brs1, and

Xo..0 = [0, fo... fof1(0)],
X1 =[fi-.. fifo(D), 1]

We note that X, is non-empty if b; < a < ¢, by Lemma 3.4. We consider the lexicographical
order of the code space {0, 1}". For any w, T € {0, 1}" with w # 7, take an integer i such that

i=min{l < j<n|w;#1}.
Then we denote w < 7 if w; < 7;.

Lemma 3.6. Suppose that by < a < c;, and | < k + 2. For any w,t € {0, 1}, ifw < T we
have f,(x) < fy(x) forall x € I.

Proof. We prove the lemma by induction. It is clear that fy(x) < fi(x) for all x € I.
Assume that the statement holds for / and hence

fwl o ’fwl(x) < le o 'fT/(x)
for all x € I when w < 7. Then we have

JoJor =+ fo(X) < fofe, - S () < fofi - fi(x),
Jifo- fo(X) < fifo, - fu(X) < fife, - fr (2.

Since by < a < ¢, we have

fio.0(®) = for.1(x) =d™ =2a+1=-Q;_1(a) > 0

by Remark 3.2. Therefore the statement holds for / + 1. This completes the proof. O

Lemma 3.7. Suppose that 1/2 < a < by_y. Then for all w € {0, 1}%, we have
JoD) N forr(D) = fu(F),
where u is the maximal leading subcode common to w and w + 1.
Proof. We have

w=pu0l---1, w+1=ul0---0.
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It follows that for0 < n < k-1,
JoD) N fonr(D) = fu(fof7' (D O fifg (D),
where
Soff ) =la—a"",al,
Al =11-ad"" +1-a)l
Since a™*!' + (1 —a) — a = —Q,_1(a) > 0 by Remark 3.2, we conclude that
SN ASD) =F =[1-a,al
This completes the proof. |
Now we define the GDMS S(a) for by < a < ¢, (k = 1,2,...). The multigraph with
associated incidence matrix (Vy, Ey, Ay, i, 1) is defined as follows. The vertex set is
Vi = {0, 1},

Elements of Vj are codes of length k+1; we also regard them as (k+ 1)-digit binary numbers.
The edge set Ej is then defined by

Er ={(w,po(w) € Vix Vi lw# 1--- 1} U {(w, d1(w)) € Vi X Vi |w #0---0},
where the maps ¢g, ¢; : Vi — V are defined by
w w
=|= =|=|+2*
ww =|5].  a@=5]
Here, [%J is the maximum integer not greater than w/2. The incidence matrix

AkZEkXEk—>{O,1}

is given by
I = o
AN W n( = { )
We define S (a) by
Si(a) = {fe : Xue) = Xice) | € € Ex},
where

f — { fO|X,(e) ife= ((U, ¢0(w))
‘ filx, if e = (w, $1(w)).

That the image of f, is contained in Xj,) is seen from the following lemma.

Lemma 3.8. The GDMS S i(a) satisfies the open set condition. In fact, the open set

U= U int(X,,),

weVy

satisfies
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(6) Je(U N Xye)) N for(U N Xyery)) = 0
fore,e’ € E (e +¢), and
(7 | £UnXe cu.

ecEy

Proof. We first show that (7) holds. From
Xo-0 = [0, fy... /of1(O)] = [0,a"(1 — )],
X1 = [fi- fifo(D, 11 = [1=d"(1 - @), 1].
we have
foint(Xo..0)) = [0,a* (1 — a))  [0,d"(1 — @) = int(Xo...),
fi(int(X;..1)) = (1 = d**'(1 = a), 1] ¢ (1 = d*(1 = a), 1] = int(X;..1).
Assume thatw #0---0,1---1. For j =0, 1, let us show that
(8) fi(int(X,,)) € int(X,,)

holds for some p € V. Write w — 1 = a1...ap4; and w + 1 = By ...B+1. Since their
difference is 2, there are two cases. First assume that @y,; = Si+1 = 0. We have

Jint(Xo)) = (fifar - - Ja (s fidp, - fpii (0))
= (fifa: --- Ju @), fifp, - f5.(0).

Then we have

Bi...Bi—ai...ap= [ﬁl--z-ﬁk+1J_lCY] ..2.a/k+1J

_BreBrel —ar . Qe
B 2

=1.
We put
71...yk=a/1...0/k—1.

Since y; ...yl < ay...q0, we see from Lemma 3.6 that,

fyl K 'fykfl(l) < fal .. -faka(l)a

Sy H (D) < fo, - fo (@),
Thus it follows that
fify - D) < fifa - fa (@),
and
fiGnt(X,)) € (fify, --- (D), fifs, - 15.(0)).

The difference between jy; ...y, and jB;...B; is 2. Take the number p with jy, ...y, <
p < JjPi...Pk, and it follows that f;(int(X,,)) C int(X,). The existence of p satisfying (8)
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can be shown similarly.
Finally, we show (6). For j = 0, 1, since f; is injective, it is clear that

fiant(X,,)) N fi(int(X,,)) = 0
for any w # «’. We can also see that

So(int(X,)) N fi(int(X,)) = 0

foranyw # 1---1and w’ # 0---0, because

fo(int(X,,)) C fo(D) \ F,
and
Sfiint(Xo)) € fitD) \ F.
This completes the proof. O
Lemma 3.9. Suppose that by, < a < ci. Then, for[ =0,1,..., we have
©) U a&anv | s =1.
neEQk lul<l+k

Moreover, f,(Xi,) forn € Eﬁxk and f,(F) for |ul < [ + k can meet only at a boundary point.

Proof. The proof is by induction on /. By Lemma 3.7, the interval between X, and X,
1s written as

JoD N for (D) = fu(F)
for some code p of length at most k. Therefore we have
X, Ul fuP) =1.
we{0,1}k+1 lul<k

Here, X, and f,(F) can meet only at a boundary point, which proves the statement for / = 0.
Now let us assume that the statement is true for / so that (9) holds. Note that we have

(10) U e = | whKa) v | A
neEy! neEy, neEy,
i(m)#1-1 i(n1)#0---0

Applying fj to (9), we obtain
U ahan v [ fofiGan v | 6fF) = /.

1 ) <Il+k
' neEAk . nEEAk Il
i(n)#1-1 i(n)=1--1

Forn e Eﬁxk satisfying i(n7;) = 1--- 1, we have
fofnXim) € fo(Xi..1) CF,

and therefore
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(11) U & U | P = fold).
neky, ul<l+k
i(n)#1--1

By the assumption of induction hypothesis, fo f,(X;,)) and fof,(F) in (11) can meet only at
a boundary point. Similarly we obtain

(12) U AsKan v | AR = A,
nek!, lul<l+k
i(1)#0"-0

where fi f,,(Xy)) and fi f,(F) can meet only at a boundary point. An interval of the form
JofuXiappy) (iGpr) # 1---1) and fi f,(F) do not meet, since the former does not intersect
with fi(/) by Remark 3.3. Likewise, an interval of the form f f,,(X;,,) (i(1) # 0---0) and
fofu(F) do not meet.

From (10), (11), (12), we have

U #&%an v | B =p0U A =1,

= 1+1
quAjc lul<l+1+k

which shows that the statement is true for / + 1. This completes the proof. O

Lemma 3.10. Suppose that by, < a < ci. Then we have J(S 1 (a)) = J1(S (a)).
Proof. Since J,(S (a)) = (F*)¢ by Proposition 2.1, it suffices to show that
(J(S (@) = F".

First assume that x ¢ J(S(a)). Then, there exists / such that

x ¢ U ToKian)-

r]EEf‘k
Then, by Lemma 3.9, we have

xe U fuF)C F".

lul<l+k

Conversely, assume that x € F*. There is a code v € {0, 1}* such that x € f,(F). Applying
Lemma 3.9 to [ = |v| + 1, we see that f,(X;,,) forn € Eﬁxk can meet f,(F), fvfoflk(F), or
LA fé‘(F ) only at a boundary point. Since

FAF) Cint(f(F) U f, foff(F) U fififo (F))

for by < a < ¢, by Remark 3.3, f,(X;;,) does not intersect with f,(F). Therefore, we have

x| i),

!
nEEAk

and we see that x ¢ J(Sr(a)). m|

4. The region of multiplicity one

We start the evaluation of the Hausdorff dimension of J(S (@)) in case of k = 1.
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Theorem 4.1. For any a > by, we have dimg J (S (a)) = 0.
Proof. If a > ¢; = g, J1(S(a)) = {0, 1}. So we have dimgJ,(S (a)) = 0.

0.0 1.0
F
—
]
Xoo I Xon Xio I Xu
-~ " ~——~—"— — - ~
L ] L]

FOO E] FIO Fll

—— — —— —

H B S B

Fig.4. The structure of S (a).

Suppose that b; < a < ¢; (See Fig. 4). By Lemma 3.10, we have J,(S(a)) = J(S 1(a)).
The GDMS §'(a) is given as follows. The multigraph and the associated incidence matrix
are given by

vy =100,01, 10, 11},

E, ={(00,00), (00,01), (01, 10),(10,01), (11, 10), (11, 11)},

1 10000
001000
A = 000100
001000
000100
00 0O0T11

Elements of E correspond to the codes

(00,00)™, (11, 11)*,{(01, 10)(10,01)}*, {(10,01)(01, 10)}*,
(00,00)"(00,01){(01, 10)(10,01)}* n=0,1,...),

(11,11D)"(11,10){(10,01)(01, 10)}* (n=0,1,...).
In particular, J(S ;(a)) is countable. So dimgyJ{(S (a)) = 0. O

Corollary 4.2. For any a > by, we have dimy | J;2, Ji(S (a)) = 1.

Theorem 4.3. Suppose that by < a < c¢;. Then, we have

log "2

dimpJ1(S () = - loga
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Proof. Suppose that b, < a < ¢, (See Fig. 5). By Lemma 3.10, if b, < a < ¢,
then we have J1(S(a)) = J(S2(a)). If a = ¢, J1(S(a)) € J(S2(a)) and their difference
J(S2(a)) \ J1(S (a)) consists of boundary points of f,(F) (v € {0,1}"), and is countable. In

either case, we have

dimg J1(S (a)) = dimg J(S2(a)).

<
o
—
=)

|}|

} o
} o

><
-t
=
=

Xooo Foo Xoor Xoto E. Xont XlooEo Xio1 Xio B
~

}
}
|%
|
}
}

Fooo Foor Fowo Fou Foo Fioi Fiio Fin
- - -~ - ~ -~ - -

Fig.5. The structure of S»(a).

The GDMS J(S,(a)) is given as follows. The multigraph with the associated incidence
matrix, (Va, Ez, Az, 1, 1), is given by

V, =1{000, 001,010,011, 100, 101,110, 111},

E, ={(000,000), (000, 001), (001, 010), (001,011), (010, 100), (010, 101), (011, 110),
(100, 001), (101,010), (101,011), (110, 100), (110, 101), (111, 110), (111, 111)},

SO OO OO, OO0 0O o —~=Oo
sl e ool ==l eiiololl el o]
SO o O, OO OO0 O ~=O OO0
S OO R OO OO O R~, OO oo
SO R OO O OO, O OO oo
SO RO OO OO, OO o oo
= el oBeol=Rel T == elehlel]
=l elelBelaelall =l ellolollei]
—_— 0 O O O OO oo oo o oo
—_— O O O O OO oo o oo oo

SO OO O OO OO O OO oo~
=NeNololololol el el el el
sl eBeoNel-E"E Neleloleolall e
SO OO OO, OO0 OO —~=O 0o
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We have
log A,

(13) dimp J(S2(a)) < - ,
loga

where A, = (1 + V/5)/2 is the largest eigenvalue of A,. This can be shown as follows. Since
{fsXea) | m € Eik} is a a'-cover of J(S»(a)), for s > 0, we have

HE(JS2@) < D 1Kl
neEgk

= alsttEi‘k

<a"cd, (cisaconst.).
Thus, if a®1, < 1, we have

H/(J(S2a)) = 0 as [ — oo,
and
H*(J(S2(a) = 0.

Since dimy J(S»(a)) < s for any s satisfying a®1, < 1, we have (13).

The GDMS satisfies the open set condition by Lemma 3.8. It also satisfies the bounded
distortion property since all of the transformations are similarity transformations. Theorem
2.6 asserts that the equality would hold in (13) if A, were irreducible.

Since A; is not irreducible, we modify our GDMS slightly. We define the modified multi-
graph with the associated incidence matrix by

V; =1{001,010,011, 100, 101, 110},

E} ={(001,010), (001, 011), (010, 100), (010, 101), (011, 110),
(100,001), (101,010),(101,011), (110, 100), (110, 101)},

001 100O0O0OO0ODO0
00 0O0OT1O0OO0OO0OO0ODO
00 0O0OOTUOOO0ODO
00 0O0OO0OOTT1TTODO
A = 00 0O0O0OO0OO0OTUODTI1
2’1 100 00O0O0OO0OO
001 100O0O0OO0ODO0
00 0O0OT1O0OO0OO0OO0ODO
00 0O0OO0OTUO0OO0OTO0ODO
00 0O0OO0OOT1TT1TTODO
Let us denote this modified GDMS by §,(a). We have
(14) dimy J(S)(a)) < dimy J(S2(a)).

It is easy to check that A} is irreducible, and we can now apply Theorem 2.6. The Hausdorff
dimension of the limit set J(S(a)) is the zero point of the topological pressure function
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. 1 A
P() = lim ~log ) I
a)GEA,2
1 0
= lim —log§E’, +tloga
n—oco N 2
=log A, + tloga,

where A, is the largest eigenvalue of A’,. Thus, we have

) , log A,
(15) dimy J(S5(a)) = - .
loga
We now show that A, = 1. Computing the characteristic polynomial of A, we obtain
det(A, — sE)
l-s 1 /0 O O O O O O O O o010 0
0 -s|/ 17 1 0 O 0O O O 0O O 07]O0 0
0 O|-s O 1 1 O O O O O O07]O0 0
0 0/0 -s 0O 0O 1 O O O O o07]O0 0
0 0ojo0 0 -s 0O O 1 O O O 01O 0
0 0ojo o0 0 - 0O O 1T 1 0 01O 0
— det 0 ojo o o0 0 - O O O 1 1710 0
0 ojr 1 0 O O -s O O O O07]O0 0
0 ojo o 1 1 O O - O O O07]O 0
0 ojo o o0 o 1 O 0 - 0 O07]O0 0
0 ojo o o0 o o 1 0 0 - 010 0
0 ojo o o0 o o O 1 1 0 =-=s|O0 0
0 ojo o o0 o o O o o 1 1]|-s 0
0 ojo o O o o O O O 0 0|1 1-s

= s%(1 — 5)* det(A, — sE’).

Thus the eigenvalues of A, are 0, 1 and the eigenvalues of AS. Combining (13), (14), and
(15), we obtain

log A log 4] log A
_08 98 _ Gimy J(S(@)) < dimp J(S2(a)) < ——222
loga loga loga
This completes the proof of Theorem 4.3. O

5. Proof of the theorems

We generalize Theorem 4.3 and prove Theorem 1.1. Suppose that by < a < ¢;. By
Lemma 3.10, if by < a < ¢, then we have J1(S(a)) = J(Sk(a)). If a = ¢, J1(S(a)) C
J(S1(a)) and their difference J(S(a)) \ J1(S (a)) consists of boundary points of f,(F) (v €
{0, 1}*), and is countable. In either case, we have

dimy J,(S (@) = dimg J(Sk(a)).

Recall that we define the multigraph with the associated incidence matrix (Vy, Ex, A, i, t)
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in Section 3. First, we can show that

log A
(16) dimHJ(Sk(a))s—l(; %%

in the same way as we showed (13).

The GDMS satisfies the open set condition by Lemma 3.8. It also satisfies the bounded
distortion property since all of the transformations are similarity transformations. Theorem
2.6 asserts that the equality would hold in (16) if A; were irreducible.

Since the incidence matrix Ay is not irreducible, we modify the GDMS. The multigraph
with the associated incidence matrix, (V/, E;, A}, i, 1), is defined as follows. The vertex set is
givenby V; = V;\{0---0,1---1}. The edges of E; are those of E} not involving the vertices
0---0,1---1. The incidence matrix A, is the restriction of A to E} X E.

Given w € {0, 1}**!, the map ¢ (resp. ¢;) shifts the digits of w to the right and append 0
(resp. 1) to the left:

do(w ... wrwir1) = 0wy ... wy,

1wy ... wrwes1) = lwy ... wy.

To see that the modified incidence matrix A; is irreducible, we show for any p, g € V, there
exists a path from p to g within E,, . Define ro, ry € {0, 1} by
k

o # Pi, T # Qk+1-
Then we have

¢¢11 T ¢¢Ik+|¢rl¢m(p) =dq,
and foralli=1,...,k, we have

¢‘Ii e ¢(Ik+l¢rl ¢r0(P) € Vlg'

This shows that A} is irreducible.
Similaly to (14) and (15), we have

(17) dimgy J(S (@) < dimg J(S i(a)),
and
) , log /1]2
(18) dimy J(S (@) = — ,
loga

where 4 is the largest eigenvalue of A;.
The eigenvalues of A; are 0, 1, and the eigenvalues of A}. This can be seen by
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I-s 1] 0 0 0

0 -s| 1 1 0 0

0 0 0 0

det(A; — sE) = det A= sE 9 9

0 0 0 0

0 0 0 -s 0
0 010 1 1-5

= s*(1 — 5)* det(A, — SE').
Combining (16), (17), and (18), we obtain

log A log 4; log A
_08 A - Ok _ Gimy J(SU(a)) < dimy J(S (@) < ——22k,

loga loga loga

This completes the proof of Theorem 1.1.
The proof of Theorem 1.2 is as follows. Since all elements of (A,/C)(k”) are greater than or
equal to 1, for every integer m, we have

tr(Al,c)(k+3)m > (2k+2 _ 6)m
Therefore, by the Perron-Frobenius theorem, we obtain
1
(k + 3) log /ll,c = lim — ]Og tr(A]’()(k-i-S)m
m—oco M

> log(2¥*? - 6).
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