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Abstract. Here we consider a family of axially symmetric surfaces modeling the
shape of thin mechanical shells that are deformable without bending under uniform
loading. With the exception of very few surfaces, like the well known right circular
cylinder and the sphere, the surfaces of this family have no closed form description
in elementary functions. Our main goal is to present their explicit parameterizations
including both classes of open and closed families. We distinguish four classes of
non-bending surfaces differing by their canonical representations using the normal
elliptic integrals and the Jacobian elliptic functions.
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1. Introduction

We are interested in the so called non-bending surfaces of revolution. Such sur-
faces are most often referred to the middle surfaces of axially symmetric shells
(e.g., pressure vessels, tanks, air-supported envelopes), deforming under evenly
distributed loads without bending, which means that in the process of deformation
the normal at any point of the shell’s surface preserves its direction. One should
notice that this geometrical definition is quite different from the analytical one ex-
plored in the classical differential geometry (see [9] and the Comments section at
the end of the present paper).
Using the membrane shells theory [5, 16], i.e., disregarding all bending and twist-
ing moments, Gurevich and Kalinin [7] have derived the non-bending condition in
the form

(3− Rπ
Rµ

)
dRπ
dθ
−Rπ

d

dθ
(
Rπ
Rµ

) = 0

in whichRπ andRµ are the curvatures radii and θ is the angle between the normal
to the middle surface and the axis of revolution (Fig. 1).

Figure 1. A sketch of a typical
surface of revolution.

N
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Figure 2. A typical closed profile
curve in XOZ-plane.

Rewriting the above equation in terms of the principle curvatures κµ and κπ we
have respectively

3κπ − κµ
κ2π

· dκπ
dθ

+
d

dθ

(
κµ
κπ

)
= 0. (1)

Elaborating a little bit further we have also
3

κπ
· dκπ

dθ
+ κµ

d

dθ

(
1

κπ

)
+

d

dθ

(
κµ
κπ

)
= 0
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which after a multiplication by 1/κπ can be rewritten finally as

d

dθ

(
κµ
κ2π
− 3

κπ

)
= 0.

The last identity actually means that the relation

κµ = 2aκ2π + 3κπ (2)

in which a is a real constant is a first integral of the equation (1). Speaking geo-
metrically we should say that we have to deal with Weingarten surfaces [6, 8, 11,
12, 18, 21] which obey in the present case to a quadratic relationship between κµ
and κπ.

Let the surface S under consideration is generated by the rotation of a plane curve
γ (profile curve) about theOZ-axis of some orthogonal (OX,OY,OZ) coordinate
system in R3. We assume that S intersects the XOY -plane at right angle θ = π/2
and the profile curve γ lies in the XOZ-plane. Let this curve γ is specified by
the function z = z(x) of the radial coordinate x ≥ 0, which is chosen in such
a way that z(r) = 0, for some positive number r (see Fig. 2). The curve on the
surface traced by this point (the point (r, 0) of the profile curve) is called the basic
parallel circle or the equator of S for which we assume that it has a predetermined
(fixed) radius r. In these settings the principal curvatures κπ and κµ are given by
the formulas [17]

κπ =
ż(x)

x
√

1 + ż2(x)
, κµ =

d(xκπ)

dx
, x ≥ 0 (3)

where ż(x) ≡ dz(x)/dx.
In expanded form the second equation can be written equivalently as [13, p. 154]

dκπ
dx

=
κµ − κπ

x
· (4)

The substitution of κµ from (2) into the above equation produces(
1

κπ
− a

aκπ + 1

)
dκπ = 2

dx

x

which can be immediately integrated giving us the explicit expression for the par-
allel curvature in the form in which c is a new integration constant

κπ =
x2

c− ax2
· (5)
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Relying on (4) one can find as well the meridional curvature

κµ =
(3c− ax2)x2

(c− ax2)2
· (6)

Due to the axial symmetry, the principal curvatures (respectively the principal radii
of the curvatures Rπ and Rµ) at the points of a given parallel circle (for a given
angle θ) are the same. Based on this observation and the assumptions made earlier,
we can introduce the parameter ν defined as the ratio between the two principal
radii of curvatureRπ(π/2) andRµ(π/2) on the basic parallel circle (for θ = π/2)

ν =
Rπ(π/2)

Rµ(π/2)
=

r

Rµ(π/2)
·

Recall, that the curvature and the radius of curvature are reciprocal quantities, and
that Rπ(π/2) = r. Then, by a straightforward substitution in (2) and (5), one can
deduce the relations

a =
(ν − 3)r

2
, c =

(ν − 1)r3

2
, ν ∈ R. (7)

On substituting for a with the expression just obtained the quadratic Weingarten
relation (2) takes the form

κµ = (ν − 3)rκ2π + 3κπ. (8)

Three of the surfaces obeying the above condition can be immediately recognized.
These are the right circular cylinder for ν = 0, the sphere for ν = 1 (both having
the same constant parallel curvatures, κπ(θ) ≡ 1/r, θ ∈ [−π/2, π/2]), and the
rotational surface for ν = 3, best known as the LW(2) balloon. With the excep-
tion of three of the surfaces – the sphere, the right circular cylinder and the surface
obtained for ν = 9 (see below), that are parameterizable through elementary func-
tions, the condition (8) defines surfaces which can not be described by means only
of the elementary functions. One such surface is the above mentioned LW(2) bal-
loon. The LW(2) balloon satisfies the relation κµ = 3κπ, and therefore belongs to
the special class of linear Weingarten LW(n) surfaces (for relevant definitions and
details see [19]).

Relying on numerical calculations Gurevich and Kalinin [7] (see also [10, p. 150])
have shown that the considered class of non-bending surfaces can be divided into
two subclasses of closed and open “at the top” surfaces. Closed surfaces are ob-
tained for ν ≥ 1 and the open ones for ν < 1 (in our notation).
In what follows our principle aim will be to derive explicit parameterizations of
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all non-bending surfaces whose principal curvatures satisfy the quadratic relation-
ship (8) (compare with [20] where only the closed surfaces have been described
explicitly).
Looking at the problem from the abstract point of view one can refer to the fun-
damental existence and uniqueness theorem in the theory of plane curves which
states that a curve is uniquely determined up to rigid motion by its curvature and
try to follow the recepies described elsewhere, see [13] and [2,3]. Instead, we will
take advantage of the fact that the principal curvatures κπ is also at our disposition
and relying on some simple geometrical arguments one ends with the formula

z(x) = ±
∫

xκπ(x)dx√
1− x2κ2π(x)

· (9)

Further, by making use of the expression for κπ(x) given in the equation (5) and
taking into account the definition of the parameter ν, i.e., κµ(r)/κπ(r) ≡ ν the
above integral beccomes

z(χ) = ± r
1∫
χ

tdt√
(1− t) (4t2 − (ν − 1)(ν − 5)t+ (ν − 1)2)

, χ =
x2

r2
(10)

in which the plus sign refers for the surfaces lying inside the cylinder ν = 0

x ∈ [0, r], χ ∈ [0, 1], t ∈ (0, 1) (11)

and the minus sign for the surfaces that are positioned outside of the cylinder

x ∈ [r,+∞), χ ∈ [1,+∞), t ∈ (1,+∞). (12)

For ν = 1 and ν = 9 the quadratic polynomial

P (t) = 4t2 − (ν − 1)(ν − 5)t+ (ν − 1)2 (13)

has multiple roots so that the integral (10) can be evaluated in terms of elemen-
tary functions, and in this situation two non-bending surfaces are immediately ob-
tained: the sphere for ν = 1, and the surface for ν = 9 which generating curve
γ(x) = (x, 0, z(x)), (the upper part, z(x) ≥ 0, for x ∈ [−r, r]) is given by the
formula
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γ(u) =

(
r sinu, 0,

r

2

( 8√
3

arctan
cosu√

3
− 2 cosu

))
, u ∈ [−π/2, π/2] .

When the roots of the polynomial under the radical are simple ones (not multiple),
which is fulfilled when ν is not equal to one or nine, the above integral belongs
to the class of non-elementary elliptic integrals. Our present goal is to build up
the canonical forms of the elliptic integral (10) for all the values of the parameter
ν ∈ [−∞,+∞].

2. Reduction to the Canonical Forms

As it was first shown by Legendre (1811-1819), the elliptic integrals are always
reducible to their canonical form, which means that they are expressible as a linear
combination of elementary functions and the three fundamental elliptic integrals –
the so called normal elliptic integrals of the first

F (ϕ, k) ≡
ζ∫

0

dt√
(1− t2)(1− k2t2)

=

ϕ∫
0

dθ√
1− k2 sin2 θ

(14)

respectively the second

E(ϕ, k) ≡
ζ∫

0

√
1− k2t2
1− t2

dt =

ϕ∫
0

√
1− k2 sin2 θ dθ (15)

and the third kind

Π(ϕ, n, k)≡
ζ∫

0

dt

(1−nt2)
√

(1−t2)(1−k2t2)
=

ϕ∫
0

dθ

(1−n sin2θ)
√

1−k2 sin2θ
· (16)

These three standard elliptic integrals depend on the variable upper limit ζ or ϕ,
which is considered as their argument

ζ = sinϕ, ζ ∈ (0, 1], ϕ ∈ (0,
π

2
]
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and the so called elliptic modulus k ∈ (0, 1), while the third one depends on one
additional parameter for which it is assumed that n 6= 1 and n 6= k2 (for more
details about the elliptic integrals, see e.g. [1]).

In order to reduce the elliptic integral (10) to its canonical form we will make
substitutions involving Jacobian elliptic functions. The method dates back to Abel
(1827-1828) and Jacobi (1828) who almost simultaneously suggested to consider
the inversion of the integrals

u = F (ϕ, k) ≡
ζ∫

0

dt√
(1− t2)(1− k2t2)

=

ϕ∫
0

dθ√
1− k2 sin2 θ

as new functions which are called respectively am (amplitude) and sn (sine ampli-
tude)

ϕ = am(u, k), ζ = sinϕ = sn(u, k). (17)

Two related functions cn (cosine amplitude) and dn (delta amplitude) were intro-
duced via the formulas

∆ϕ=

√
1−k2 sin2 ϕ, cn(u, k)=

√
1−ζ2=cosϕ, dn(u, k)=

√
1−k2ζ2. (18)

The functions sn(u, k), cn(u, k) and dn(u, k) are called Jacobian elliptic func-

Figure 3. Commutative diagram for the inversion of the normal elliptic inte-

gral of the first kind.

tions. Their modern notation is due to Gudermann (1838). Assuming the modulus
k to be fixed we will simply write ϕ = amu, etc. We find it useful to visualize the
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composite functions by commutative “barred arrow diagrams” as the one displayed
in Fig. 3.
As a consequence of the above formulas the following fundamental relations be-
tween the Jacobian elliptic functions are obtained

sn2u+ cn2u = 1, dn2u+ k2sn2u = 1, dn2u− k2cn2u = 1− k2 (19)

and the representations of the normal elliptic integrals via the amplitude function
or the Jacobian elliptic functions are easily revealed

F (ϕ, k) = F (amu, k) ≡ u =

u∫
0

dũ (20)

E(ϕ, k) = E(amu, k) =

u∫
0

dn2ũdũ (21)

Π(ϕ, n, k) = Π(amu, n, k) =

u∫
0

dũ

1− nsn2ũ
· (22)

The derivatives of the Jacobian elliptic functions with respect to their argument are
obtained directly from the definitions of the respective functions

d

du
(snu) = cnu dnu,

d

du
(cnu) = −snu dnu,

d

du
(dnu) = −k2snu cnu.

Let us also notice that in the case of ζ = 1, respectively ϕ = π/2, the integrals
(14) – (16) are said to be the complete elliptic integrals of the respective kind which
are denoted as

K(k) = F (π/2, k), E(k) = E(π/2, k), Π(n, k) = Π(π/2, n, k). (23)

In order to proceed with the canonization of the integral (10), we need to know
the roots of the quadratic polynomial (13), and in what order the roots, when they
are real, are related to each other and the number one, which is the third root of
the polynomial under the radical

√
(1− t)P (t). Depending on the sign of the

discriminant
D = (ν − 1)3(ν − 9)

the roots of P (t)

σ=
ν−1

8

(
ν−5+

√
(ν−1)(ν−9)

)
, τ=

ν−1

8

(
ν−5−

√
(ν−1)(ν−9)

)
(24)
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may be either real, for ν ∈ (−∞, 1]∪ [9,+∞) or complex, for ν ∈ (1, 9). The real
roots are positive numbers, σ > 0, τ > 0, and when σ 6= τ (simple roots), either
σ < τ , for ν ∈ (−∞, 1), or τ < σ, for ν ∈ (9,+∞). A more precise reasoning

-1

1

2

3

4

1 2

3

4 5 6 7 8 9-½

⅝

Figure 4. Graphic of the arithmetic mean of the roots of the polynomial P (t)

versus ν.

reveals that in the case of simple roots there are exactly three possibilities for the
number one: to be the smallest 1 < τ < σ, the largest σ < τ < 1, or between the
other two, i.e., σ < 1 < τ .

All of the above statements can be proven by inspection relying on the arithmetic
mean of the roots σ and τ versus ν

1

2
(σ + τ) =

1

8
(ν − 1)(ν − 5)

and the observation that the sign of P (1) = 4 ν alternates while the sign of
P (0) = (ν − 1)2 is always positive (cf. the graphic in Fig. 4). Consequently,
there are four specific ranges of the values of the parameter ν, related to the four
possible ranges of the roots of the polynomial under the radical

√
(1− t)P (t)

S I(ν) ν ∈ (−∞, 0), 0 < σ1 < 1 < τ1

S II(ν) ν ∈ (0, 1), 0 < σ2 < τ2 < 1
(25)

S III(ν) ν ∈ (1, 9), σ3 ∈ C, τ3 ∈ C
S IV(ν) ν ∈ (9,+∞), 1 < τ4 < σ4.

As a result the whole set of non-bending surfaces are split up into four classes of
surfaces SI(ν) - SIV(ν) that differ by the range of the values of the parameter
ν (cf. Fig. 5). Our next goal is to present the canonical parameterizations of the
surfaces in each one of these classes by using the normal forms of the elliptical
integrals and the Jacobian elliptic functions.
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Figure 5. Ranges of the variable ν related to the different classes of non-

bending surfaces.

We start with some observations regarding the general properties of the considered
non-bending surfaces. For the integral (10) to be defined the polynomial P (t) must
obey some constraints. In the range of integration (11), i.e., for the surfaces lying
inside the cylinder, the values of the polynomial have to be positive

P (t) > 0, t ∈ (0, 1)

and in the range of integration (12), i.e., for the surfaces that are outside the cylin-
der, the values of the polynomial have to be negative

P (t) < 0, t ∈ (1,+∞).

Under such constraints, as it is easily seen from the suggestive graphics in Fig. 6,
it follows that the first two classes of non-bending surfaces consist of open “at the
top” surfaces, lying either outside the cylinder, if they are surfaces in SI(ν) class

SI(ν) : x ∈ [r, r
√
τ1], χ ∈ [1, τ1], t ∈ (1, τ1) (26)

or inside the cylinder, if they are surfaces from SII(ν)

SII(ν) : x ∈ [r
√
τ2, r], χ ∈ [τ2, 1], t ∈ (τ2, 1). (27)

P (t) < 0, t ∈ (1,+∞).

All of the non-bending surfaces belonging to the classes SIII(ν) and SIV(ν) are
closed and they are lying inside the cylinder, i.e.,

SIII(ν) and SIV(ν) : x ∈ [0, r], χ ∈ [0, 1], t ∈ (0, 1). (28)
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][

Figure 6. Graphics of the polynomial P (t) related to the different classes of

non-bending surfaces.

Thus the whole set of the non-bending surfaces are divided into two subsets of
open and closed surfaces, obtained respectively, for ν < 1 and ν ≥ 1 (Fig. 7,
right). As mentioned already in the Introduction, Gurevich and Kalinin [7] have
arrived at the same conclusion relying on numerical and graphical representations.
In a difficult to access thesis from 1983, Cherdantzev [4] had succeeded in finding
analytical expressions for some of the classes introduced here in terms of the ellip-
tic integrals but makes the wrong assertion that this is not possible for all of them.

Figure 7. Ranges of the variable ν related to the non-bending surfaces with

negative and positive Gaussian curvature (left), and open and closed surfaces

(right).
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Bellow we will derive not one but three different parameterizations for each class
having in mind their future applications. Unfortunately, the comparison with the
results in [4] is not so easy because there the author had made use of a different
parameter, i.e., ν−1 which makes the task quite difficult. It is a challenging problem
however to do these checks via the present day Computer Algebra Systems like
Maple and Mathematica.

3. Non-Bending Surfaces of the First Class SI(ν)

As shown above, the non-bending surfaces of the first class (for ν ∈ [−∞, 0),
cf. Fig. 5) are open “at the top” surfaces (with the exception of the “degenerate
surface” ν = −∞) lying outside the cylinder ν = 0, whose profile curves (upper
right parts), according to the equation (10) are given by the formula

z1(χ) =
r

2

χ∫
1

tdt√
(1− t)(t− σ1)(t− τ1)

, χ =
x2

r2
, x ∈ [r, r

√
τ1] (29)

where the roots σ1 and τ1, calculated by the equations (24) for ν ∈ (−∞, 0), are
such that the following inequalities hold (compare with the first item in (25) and
(26))

0 < σ1 < 1 < t < τ1, 0 < σ1 < 1 ≤ χ ≤ τ1. (30)

To this class of open surfaces we add also the limiting case ν = −∞, which
actually is a “degenerate open surface” being part of the coordinate plane z = 0
complimentary to the right circular disk with radius r centered at the origin of this
plane.

On substituting with

t = 1 + ξ2, χ = 1 + χ̃2, ξ > 0, χ̃ ≥ 0

the polynomial under the radical in (29) is transformed to a product of a sum and a
difference of squares

z1(χ̃) = r

χ̃∫
0

(1 + ξ2)dξ√
(σ̃21 + ξ2)(τ̃21 − ξ2)

, χ̃ =

√
x2

r2
− 1, x ∈ [r, r

√
τ1] (31)

where
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σ̃1 =
√

1− σ1, τ̃1 =
√
τ1 − 1, 0 < ξ < τ̃1, 0 ≤ χ̃ ≤ τ̃1.

This latter integral can be split into two integrals

χ̃∫
0

(1 + ξ2)dξ√
(σ̃21 + ξ2)(τ̃21 − ξ2)

=

τ̃1∫
0

(1 + ξ2)dξ√
(σ̃21 + ξ2)(τ̃21 − ξ2)

−
τ̃1∫
χ̃

(1 + ξ2)dξ√
(σ̃21 + ξ2)(τ̃21 − ξ2)

each of which is obtained as a special case of the elliptic integral

τ̃1∫
ζ

(1 + ξ2)dξ√
(σ̃21 + ξ2)(τ̃21 − ξ2)

, 0 ≤ ζ < τ̃1 (32)

with ζ = 0 and ζ = χ̃, respectively. The integral (32) can be reduced to its
canonical form with the help of the Jacobian cosine elliptic function, replacing ξ
and ζ by the new variables ũ and u

ξ = τ̃1cn(ũ, k1), ζ = τ̃1cn(u, k1), u = F (ϕ(ζ), k1), u ∈ (0,K(k1)] (33)

thereby employing the “inversion procedure” illustrated by the commutative dia-
gram in Fig. 8. where

Figure 8. Commutative diagram illustrating the “inversion procedure” for

the canonization of the elliptic integral (32).

ϕ(ζ) = arccos
(
ζ

τ̃1

)
, k1 =

τ̃1√
σ̃21 + τ̃21

· (34)
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Hence, the reduction of the elliptic integral (32) follows in succession

τ̃1∫
ζ

(1 + ξ2)dξ√
(σ̃21 + ξ2)(τ̃21 − ξ2)

=

u∫
0

(1 + τ̃21 cn2ũ)dn ũdũ√
σ̃21 + τ̃21 − τ̃21 sn2ũ

=
1√

σ̃21 + τ̃21

u∫
0

(1 + τ̃21 cn2ũ)dn ũdũ√
1− k21 sn2ũ

=
1√

σ̃21 + τ̃21

( u∫
0

dũ+ τ̃21

u∫
0

cn2ũdũ
)

=
1√

σ̃21 + τ̃21

( u∫
0

dũ+
τ̃21
k21

( u∫
0

dn2ũdũ− (1− k21)

u∫
0

dũ
))

(35)

=
1

k21
√
σ̃21 + τ̃21

((
k21 − (1− k21)τ̃21

)
F (ϕ(ζ), k1) + τ̃21E(ϕ(ζ), k1)

)
.

In the above chain of equalities we have made use of the fundamental relations
between the Jacobian elliptic functions (19), the normal elliptic integrals (20) –
(22) and the formula for the differentiation of the Jacobian cosine function (see
above in Section 2). On returning back to the profile curve (31), we make two
substitutions in the last line of (35), ζ = 0 and ζ = χ̃, and then, by subtracting the
obtained expressions, we are led to the canonical form (cf. [1, Formula (213.13)])

z1(χ̃) =
r

k21
√
σ̃21 + τ̃21

(
(k21 − (1− k21)τ̃21 )

(
K(k1)− F (ϕ(χ̃), k1)

)
+ τ̃21

(
E(k1)− E(ϕ(χ̃), k1)

))
, χ̃ =

√
x2

r2
− 1, x ∈ [r, r

√
τ1]

where the complete elliptic integrals K(k1) and E(k1) are obtained from the in-
complete ones with argument ϕ(0) = π/2 (cf. equations (23) and (34)).

Written with the help of the variable x the above expression provides the explicit
parameterization of the profile curves of the surfaces from the first class in Monge
representation

z1(x) =
r√

τ1 − σ1

(
σ1

(
K(k1)−F (ϕ(x), k1)

)
+(τ1−σ1)

(
E(k1)−E(ϕ(x), k1)

))
(36)

ϕ(x) = arccos

√
(x/r)2 − 1

τ1 − 1
, k1 =

√
τ1 − 1

τ1 − σ1
, x ∈ [r, r

√
τ1]
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where σ1 and τ1 are calculated by (24) for each one of the surfaces with a parameter
ν ∈ (−∞, 0). Note that the above formula describes only the upper right part of the
profile curve. The whole curve is obtained by two consecutively applied reflections
with respect to the coordinate axes OX and OZ (cf. Fig. 2).

The next two canonical representations of the surfaces of the first class are obtained
from (36) by introducing two real parameters. One of these parameters v coincides
with the angular coordinate φ of the meridians (Fig. 1). The other parameter u is
related to χ̃ (respectively to the coordinate x) in two different ways, either by the
equations

u = arccsc
√

1 + χ̃2 = arccsc
(x
r

)
, u ∈

[
arccsc

√
τ1,

π

2

]
(37)

or by the equations

u = cn−1
( χ̃
τ̃1

)
= cn−1

(√(x/r)2 − 1

τ1 − 1

)
, u∈ [0, 2K(k1)] . (38)

The corresponding canonical representations of the non-bending surfaces of the
first class, i.e., of the surfaces obtained for ν ∈ (−∞, 0) (excluding the degenerate
surface ν = −∞) are given either by the set of equations

z1(u) = r

(
1+λ21−µ21

µ1

(
K(k1)−F (ϕ(u), k1)

)
+µ1

(
E(k1)−E(ϕ(u), k1)

))
λ1 =

√
(1− δ)ν2 − (6− δ)ν − 3

2
√

2
, µ1 =

√
(1−ν)δν

2
, k1 =

λ1
µ1

(39)

δ =

√
(ν − 1)(ν − 9)

ν
, ϕ(u)=arccos

(cotu

λ1

)
, β=arccsc

√
1 + λ21

x(u, v) = r cscu cos v, y(u, v)=r cscu sin v, z(u, v)=z1(u), u ∈
[
β,

π

2

]
or by another set of formulas in which appears the same parameter u running how-
ever in a different interval, i.e.,

x1(u) = r
√

1 + λ21 cn2 u, u∈ [0, 2K(k1)] , v∈ [0, 2π]

z1(u) = r

(
1+λ21−µ21

µ1

(
K(k1)− u

)
+µ1

(
E(k1)− E(amu, k1)

))
(40)

x(u, v) = x1(u) cos v, y(u, v) = x1(u) sin v, z(u, v) = z1(u)
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where λ1, µ1 and k1 are defined in (39). Notice that both parameterizations rely
on the same axial variable v ∈ [0, 2π].

Using one and the same notation u for parameters with different meanings and
different ranges deserve some explanation. Such use allows different parameter-
izations to be represented in an uniformed way which generally does not lead to
confusion. But nevertheless one must be careful not to confuse the parameter u in
the representation (37) with the variable u that has been previously used for de-
noting the values of the normal elliptic integral of the first kind (cf. (20)). In the
same time the variable u in the representation (38) appears in exactly that previous
meaning, related here with the inverse of the Jacobian cosine function. The latter
becomes at once transparent if one looks at the commutative diagram in Fig. 8 with
the variable ζ replaced by χ̃.

It should be noted that for the parameterization (39), in the indicated interval of
the parameter u, only that part of the surface S which is over the XOY -plane (the
upper half part) can be obtained. For both the parameterizations (39) and (40) the
profile curve of the shell is traced from north to south. Graphics of the profile
curves of some surfaces of the first class are given in Fig. 9.

Figure 9. Plots of the profiles curves of non-bending surfaces of the first

class for ν = − 1
5 , −1, −3, −5 (from inner to the outer surfaces).
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4. Non-Bending Surfaces of the Second Class SII(ν)

As shown in Section 2, the non-bending surfaces in the second class (generated
with ν ∈ (0, 1), cf. Fig. 5) are open “at the top” and lie inside the cylinder ν = 0.
According to the equation (10) and the condition (11), their profile curves (upper
right parts) are given by

z2(χ) =
r

2

1∫
χ

tdt√
(1− t)(t− σ2)(t− τ2)

, χ =
x2

r2
, x ∈ [r

√
τ2, r] (41)

where the roots σ2 and τ2, calculated for ν ∈ (0, 1) by the equations (24), are such
that the following inequalities hold (cf. the second item in (25) and (27))

0 < σ2 < τ2 < t < 1, 0 < σ2 < τ2 ≤ χ ≤ 1. (42)

The reduction of the above elliptic integral goes through the “inversion procedure”,

Figure 10. Commutative diagram illustrating the “inversion procedure” for

the canonization of the elliptic integral (41).

as illustrated by the commutative diagram in Fig. 10, on writing

t = 1− (1− τ2)sn2(ũ, k2), χ = 1− (1− τ2)sn2(u, k2) (43)

where

u = F (ϕ(χ), k2), ϕ(χ) = arcsin
√

1− χ
1− τ2

, k2 =

√
1− τ2
1− σ2

· (44)
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By substituting and integrating in succession the profile curve in (41) is reduced to
a representation involving only normal elliptic integrals of the first and the second
kind (cf. [1, Formula (236.20)])

z2(χ) =
r

2

1∫
χ

tdt√
(1− t)(t− σ2)(t− τ2)

= r

u∫
0

(
1− (1− τ2)sn2ũ

)
dn ũdũ√

1− σ2 − (1− τ2)sn2ũ

=
r√

1− σ2

u∫
0

(1− (1− τ2)sn2ũ)dn ũdũ√
1− k22 sn2ũ

=
r√

1− σ2

u∫
0

(
1− (1− τ2)sn2ũ

)
dũ

=
r√

1− σ2

( u∫
0

dũ− 1− τ2
k22

( u∫
0

dũ−
u∫

0

dn2ũdũ
))

(45)

=
r√

1− σ2

(
σ2F (ϕ(χ), k2) + (1− σ2)E(ϕ(χ), k2)

)
.

In the above chain of equalities we have made use of the formulas (19) – (22), and
as well as, the formula for the derivative of the Jacobian sine elliptic function (refer
to Section 2).

On returning back to the variable x in the last line of (45) we arrive at our first
explicit parameterization of the profile curves of the surfaces of the second class in
Monge representation

z2(x) =
r√

1− σ2

(
σ2F (ϕ(x), k2) + (1− σ2)E(ϕ(x), k2)

)
(46)

ϕ(x) = arcsin

√
1− (x/r)2

1− τ2
, k2 =

√
1− τ2
1− σ2

, x ∈ [r
√
τ2, r]

where σ2 and τ2 are calculated by (24) for each one of the surfaces with a parameter
ν ∈ (0, 1). Note that the above formula describes only the upper right part of the
profile curve. The whole curve is obtained by two consecutively applied reflections
with respect to the coordinate axes OX and OZ (cf. Fig. 2).

Now we are going to give two canonical representations of the non-bending sur-
faces of the second class obtained from (46) by referring to the roots of the polyno-
mial P (t) as functions of ν and substituting for χ with a new parameter u, defined
in two different ways, either by the equations

u = arcsin
√
χ = arcsin

(x
r

)
, u ∈

[
arcsin

√
τ2,

π

2

]
(47)
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or by the equations

u = sn−1
(√ 1− χ

1− τ2

)
= sn−1

(√1− (x/r)2

1− τ2

)
, u∈ [−K(k2), K(k2)] . (48)

We have two choices for the parameter u, i.e., (47) and (48) with different ranges
and relationships with the variable χ (respectively the coordinate x). Their notation
should not create however confusion in respective parameterizations of the profile
curves. The commutative diagram in Fig. 10 may serve to elucidate the meaning
of the second choice.
As a result the corresponding canonical representations of the non-bending sur-
faces of the second class, i.e., of the surfaces obtained for ν ∈ (0, 1), are given
either by the set of equations

z2(u) = r
(1− µ22

µ2
F (ϕ(u), k2) + µ2E(ϕ(u), k2)

)
, k2 =

λ2
µ2

λ2 =

√
3 + (6− δ)ν − (1− δ)ν2

2
√

2
, µ2=

√
3 + (6 + δ)ν − (1 + δ)ν2

2
√

2
(49)

ϕ(u) = arcsin
(

cosu

λ2

)
, δ =

√
(ν − 1)(ν − 9)

ν
, β = arcsin

√
1− λ22

x(u, v) = r sinu cos v, y(u, v) = r sinu sin v, z(u, v) = z2(u), u ∈
[
β,

π

2

]
or by another set of equations in which the parameter u appears again, but this time
with a different range, i.e.,

x2(u) = r
√

1− λ22 sn2 u, z2(u) = r
(1−µ22

µ2
u+µ2E(amu, k2)

)
(50)

x(u, v) = x2(u) cos v, y(u, v) = x2(u) sin v, z(u, v) = z2(u)

where λ2, µ2 and the modulus k2 are defined in (49), u ∈ [−K(k2), K(k2)] and
v∈ [0, 2π].

Notice that the second parameter v, which is the same for both parameterizations,
coincides with the angular coordinate of the meridians.
For the parameterization (49), in the indicated interval of the parameter u, only
that part of the surface S which is over the XOY -plane (the upper half part) is
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Figure 11. Plots of the profiles curves of non-bending surfaces of the second

class drawn with ν = 0.99, 0.93, 0.90, 0.66 and 0 (from inner to the outer

surfaces).

obtained. The profile curve of the shell is traced from north to the equator in the
first quadrant, in the parameterization (49), and from south through the equator
to north in the first and fourth quadrants, in the second parameterization (50) (see
Fig. 11).

5. Non-Bending Surfaces of the Third Class SIII(ν)

The non-bending surfaces of the third class (for ν ∈ (1, 9), cf. Fig. 5) are closed
surfaces lying inside the cylinder ν = 0 in the space between the sphere ν = 1
and the surface ν = 9 , which profile curves (the upper right parts) according to
equations (10) – (11) are given by the formula

z3(χ) =
r

2

1∫
χ

tdt√
(1− t)(t− σ3)(t− τ3)

, χ =
x2

r2
, x ∈ [0, r]. (51)

The roots σ3 and τ3 of the polynomial P (t), calculated by the equations (24) for
ν ∈ (1, 9), are complex numbers (compare the third item in (25) and (28)). The
reduction of the above integral to normal form relies on the substitutions (cf. [1,
Formula (243.00)])
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t =
1−A+ (1 +A)cn(ũ, k3)

1 + cn(ũ, k3)
, χ =

1−A+ (1 +A)cn(u, k3)

1 + cn(u, k3)
(52)

where

A =
1

2

√
(σ3 + τ3 − 2)2 − (σ3 − τ3)2, k3 =

1

2

√
2− σ3 + τ3 − 2

A
· (53)

Figure 12. Commutative diagram illustrating the “inversion procedure” for

the canonization of the elliptic integral (51).

The commutative diagram in Fig. 12 indicates the fundamental role of the “inver-
sion procedure” in canonizing the integral (51) achieved by introducing the rela-
tions

u = F (ϕ(χ), k3), ϕ(χ) = arccos
(A− 1 + χ

A+ 1− χ

)
· (54)

As a result of performing the above substitutions the following canonical form of
the profile curve (51) is obtained

z3(χ) =
r

2

(1 +A√
A

F (ϕ(χ), k3)− 2
√
A

u∫
0

dũ

1 + cnũ

)
(55)

=
r

2

(
1−A√
A

F (ϕ(χ), k3) + 2
√
A
(
E(ϕ(χ), k3)−

sinϕ(χ)∆(ϕ(χ))

1 + cosϕ(χ)

))
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in which the standard notation for the delta function ∆(ϕ) :=
√

1− k23 sin2ϕ has
been used along with

u = cn−1
(A− 1 + χ

A+ 1− χ

)
= cn−1

(A− 1 + (x/r)2

A+ 1− (x/r)2

)
, u ∈ [−β, β] (56)

and

β = cn−1
(A− 1

A+ 1

)
.

For additional details of the reduction process, we refer the reader to the Handbook
by Byrd and Friedman [1, Formulas (243.07) and (341.53)].

On returning back to the variable x in (55) we obtain the first explicit representation
of the profile curves (upper right parts) of the surfaces of the third class

z3(x) =
r

2
√
A

(
(1−A)F (ϕ(x), k3) + 2A

(
E(ϕ(x), k3)−

sinϕ(x)∆(ϕ(x))

1 + cosϕ(x)

))
(57)

ϕ(x) = arccos
(A− 1 + (x/r)2

A+ 1− (x/r)2

)
, x ∈ [0, r]

where the elliptic modulus k3 and A are given by (53) and the roots σ3 and τ3 are
calculated by (24) for the values of the parameter ν in the interval (1, 9).

Let us now introduce a new parameter

u = arcsin
√
χ = arcsin

(x
r

)
, u ∈ [−π

2
,
π

2
] (58)

which, as it is clearly seen from the commutative diagram in Fig. 12, should not be
confused with the parameter u used in equations (52) – (55) where it is defined by
the formulas (56).

Thus, we have two choices for the parameter u, given by formulas (56) and (58),
in which u has different relationships with the variable χ (respectively x). The
corresponding canonical representations of the non-bending surfaces of the third
class, i.e., of the surfaces obtained for ν ∈ (1, 9), are given either by the set of
equations
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z3(u) = 4
√
ν r
(1−

√
ν

2
√
ν
F (ϕ(u), k3) + E(ϕ(u), k3)−

sinϕ(u)∆(ϕ(u))

1 + cosϕ(u)

)
ϕ(u) = arccos

(√ν − cos2u√
ν + cos2u

)
, k3 =

(1 +
√
ν)
√

(3−
√
ν)(1 +

√
ν)

4ν1/4
(59)

x(u, v) = r sinu cos v, y(u, v) = r sinu sin v, z(u, v) = z3(u), u∈ [−π
2
,
π

2
]

or by another set of equations that also involve the parameter u, running however
in a different range of values, i.e.,

z3(u) = 4
√
ν r
(1−

√
ν

2
√
ν
u+E(amu, k3)−

snu dnu
1 + cnu

)
, u ∈ [−β, β]

x3(u) = r

√
1−
√
ν

1− cnu
1 + cnu

, β=cn−1(

√
ν−1√
ν+1

) (60)

x(u, v) = x3(u) cos v, y(u, v) = x3(u) sin v, z(u, v) = z3(u), v ∈ [0, 2π]

where k3 is defined in (59) and cn−1 is the inverse of the Jacobian cosine function.
Note also that the angular parameter v runs over the same range in both parameter-

Figure 13. Plots of the profiles curves of non-bending surfaces of the third

class for ν = 2, 3, 5, 7 and 9 (from outer to inner surfaces).

izations. For the parameterization (59), in the indicated interval of the parameter u,
only that part of the surface S which is over the XOY -plane (the upper half part)
is obtained. The profile curve of the shell in the parameterization (59) is traced
clockwise while for the parameterization (60) it is traced counterclockwise (see
Fig. 13).
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6. Non-Bending Surfaces of the Fourth Class SIV(ν)

The non-bending surfaces of the fourth class (for ν ∈ (9,+∞], cf. Fig. 5) are
closed surfaces lying inside the cylinder ν = 0 in the space enclosed by the surface
ν = 9 and the plane z = 0 including the plane circular disk with radius r obtained
for ν = +∞. According to equations (10) – (11) their profile curves (upper right
parts) are given by the formula

z4(χ) =
r

2

1∫
χ

tdt√
(1− t)(t− σ4)(t− τ4)

, χ =
x2

r2
, x ∈ [0, r] (61)

where the roots σ4 and τ4 of the polynomial P (t), calculated by the equations (24)
for ν ∈ (9,∞), are such that the following inequalities hold (compare with the
fourth item (25) and (28))

0 < t < 1 < τ4 < σ4, 0 ≤ χ ≤ 1 < τ4 < σ4. (62)

Figure 14. Commutative diagram illustrating the “inversion procedure” for

the canonization of the elliptic integral (61).

The reduction of the above elliptic integral goes through the “inversion procedure”,
as illustrated by the commutative diagram in Fig. 14, on writing

t = nc2(ũ, k4)− τ4tn2(ũ, k4), χ = nc2(u, k4)− τ4tn2(u, k4) (63)

u = F (ϕ(χ), k4), ϕ(χ) = arcsin
√

1− χ
τ4 − χ

, k4 =

√
σ4 − τ4
σ4 − 1

(64)
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where we have used the standard notation ncu = 1/cnu and tnu = snu/cnu.

As a result of performing the above substitutions we arrive at the following canon-
ical form

z4(χ) =
r√

σ4 − 1

( u∫
0

nc2ũdũ− τ4

u∫
0

tn2ũdũ
)

(65)

=
r√

σ4 − 1

(
F (ϕ(χ), k4)−

1− τ4
1− k24

(
E(ϕ(χ), k4)− tanϕ(χ)∆(ϕ(χ))

))

in which the standard notation for the delta function ∆(ϕ) :=
√

1− k24 sin2ϕ has
been used. The rest of the notation are as follows

u=sn−1
(√ 1− χ

τ4 − χ

)
=sn−1

(√ 1− (x/r)2

τ4 − (x/r)2

)
, u ∈ [−β, β] , β = sn−1(

1
√
τ4

)·

For additional details of the reduction process, we refer the reader to the Handbook
by Byrd and Friedman [1, Formulas (232.19), (313.02) and (316.02)].

On returning back to the variable x in (65) we obtain the first explicit representation
of the profile curves (upper right parts) of the surfaces of the fourth class

z4(x) =
r√

σ4 − 1

(
F (ϕ(x), k4)−

1− τ4
1− k24

(
E(ϕ(x), k4)− tanϕ(x)∆(ϕ(x))

))
(66)

ϕ(x) = arcsin

√
1− (x/r)2

τ4 − (x/r)2
, k4 =

√
σ4 − τ4
σ4 − 1

, x ∈ [0, r]

where the roots σ4 and τ4 are calculated by (24) for the values of the parameter ν
running through the interval (9,+∞).

Let us now introduce a new parameter

u = arcsin
√
χ = arcsin

(x
r

)
, u ∈ [−π

2
,
π

2
] (67)

which, as it can be seen from the commutative diagram in Fig. 14, should not be
confused with the parameter u in equations (63) – (65)

From the above definitions it follows that the two choices of the parameter u have
different relationships with the variable χ (respectively x). The corresponding
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canonical representations of the non-bending surfaces of the fourth class, i.e., of
the surfaces obtained for ν ∈ (9,+∞), are given either by the set of equations

z4(u) = r

(
1

λ4
F (ϕ(u), k4) + λ4E(ϕ(u), k4)− λ4tanϕ(u)∆(ϕ(u))

)
ϕ(u) = arcsin

( 2
√

2 cosu√
(ν − δν − 5)(ν − 1)− 8 sin2u

)
, k4 =

√
δν(ν − 1)

2λ4

(68)

λ4 =

√
(δ + 1)ν2 − (δ + 6)ν − 3

2
√

2
, δ =

√
(ν − 1)(ν − 9)

ν

x(u, v) = r sinu cos v, y(u, v) = r sinu sin v, z(u, v) = z4(u), u∈ [−π
2
,
π

2
]

or by another set of equations that also involve the parameter u, running however
in a different range of values, i.e.,

x4(u) = r
√

1− µ24 tn2 u, z4(u) = r
( 1

λ4
u+λ4E(amu, k4)−λ4 tnu dnu

)
µ4 =

√
(1− δ)ν2 − (6− δ)ν − 3

2
√

2
, β = sn−1(

1√
µ24 + 1

) (69)

x(u, v)=x4(u) cos v, y(u, v) = x4(u) sin v, z(u, v) = z4(u), u ∈ [−β, β]

where δ, λ4 and the modulus k4 are defined in (68) and the second parameter
v ∈ [0, 2π] is the same for both parameterizations. For the parameterization (68),
in the indicated interval of the parameter u, only that part of the surface S which is
over theXOY -plane (the upper half part) is obtained. The profile curve of the shell
in the parameterization (68) is traced clockwise while for the parameterization (69)
it is traced counterclockwise (see Fig. 15).

Figure 15. Some plots of the profiles curves of non-bending surfaces of the

fourth class for ν = 9, 20 and 50 (from outer to the inner surfaces).
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7. Comments

As already mentioned in the Introduction the non-bending condition which is the
fundamental for the present considerations is quite different in nature by that con-
sidered in the classical differential geometry [9]. One should remind here that the
infinitesimal bending S̃ of the surface S there is defined by the map x̃ : R2 → R3

such that x̃ = x + εz in which x parameterizes S , ε is an infinitesimally small
real parameter and z is a smooth vector field in R3. The infinitesimal bending is
defined locally by the condition

ds̃2 − ds2 = o(ε)

i.e., the difference of the squares of the line elements of S and S̃ is of order higher
then the first and this turns out to be equivalent to the system of partial differential
equations produced by the vector equation

dx.dz = 0.

The nature of the last condition furnishes quite different settings compared to the
present considerations. Here we have considered two parametric family of axially
symmetric surfaces that can be characterized as Weingarten surfaces which merid-
ional and parallel curvatures satisfy a specific quadratic relationship.
It was found that they form four classes which are split in two sub-classes each of
them with two elements consisting of open SI(ν) and SII(ν) or closed SIII(ν) and
SIV(ν) surfaces. In the frame of the theory of thin-shell structures, such surfaces
should have in principle a number of practical applications due to their special “me-
chanical property” allowing shells of these forms to be deformed without bending.
The two characteristic parameters r and ν introduced on the way account respec-
tively for the size and the shape of the surfaces. With a few exceptions generated
by ν = 0, 1 and ν = 9 the considered non-bending surfaces have not closed form
representations by elementary functions. As a result of a reduction procedure we
have succeeded to distinguish four classes which differ by their explicit parameter-
izations in terms of elliptic integrals and Jacobian elliptic functions. Each one of
these classes consists of either closed or “open at the top” surfaces that are lying
inside or outside of a right circular cylinder. Two of the surfaces have a degenerate
form obtained for ν = +∞ and ν = −∞ which are respectively the plane circular
disk Dr (r – radius of the disk) and the complementary part Cr = R2 \Dr of the
plane outside Dr. When the parameter ν changes in the range ν ∈ [−∞,+∞] the
surfaces transform continuously starting from Cr, passing consecutively through
the right circular cylinder ν = 0, sphere ν = 1 and ending finally at Dr.
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Another interesting fact which should be mentioned is that the north and south
poles of all closed surfaces are flat points as there both curvatures κπ and κµ ac-
cording to their explicit expressions (5) and (6) vanish. Let us remind that the pa-
rameter ν was introduced as the ratio κµ/κπ evaluated at the equator E (cf. Fig. 2).
It is clear however that this ratio is not the same on the rest of the surface – just

Figure 16. The profiles curves of the Mylar balloon and the non-bending

surface from SIII(2) class with the same radius.

notice that this is governed globally by the Weingarten relationship (2).
There are however two exceptions in which this ratio remains the same along the
entire surface S and these are the sphere (ν = 1) and the surface generated with
ν = 3. A remarkable fact is also that never mind with what value of ν we start at
the equator we end at the poles with κµ/κπ ≡ 3. This can be seen by checking
directly the Weingarten relationship (2) at these points.
It is the right place to mention also that the Mylar balloon is the unique surface (up
to a scale) for which the relation κµ = 2κπ is satisfied globally [14, 15]. Its As-
pect Ratio, i.e., the height vs the width of the surface has be found to be 0.59907.
Evaluation the same quantity (using formulas (57)) for the surfaces in SIII(2) class
produces 0.56582. In Fig. 16 we have illustrated the difference in the profiles of
the Mylar balloon and surfaces in SIII(2) class.
There are a lot of other issues concerning the non-bending surfaces which deserve
comments but we will postpone them for the moment and hope that we will have
another chance to do this elsewhere.
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