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Abstract. Geometry of orbit is a subject of many investigations because it has
important role in many branches of mathematics such as dynamical systems,control
theory. In this paper it is studied geometry of orbits of conformal vector fields. It is
shown that orbits of conformal vector fields are integral submanifolds of completely
integrable distributions. Also for Euclidean space it is proven that if all orbits have
the same dimension they are closed subsets.
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1. Introduction

The integral curves of vector fields and the orbits of an arbitrary set of vector fields
on the smooth manifold have been studied in many investigations because of their
importance in Control Theory, Dynamical systems, Foliation Theory and Physics
[1, 4, 10, 14–16]. To the study of systems of vector fields from the point of view of
Control Theory (the properties of accessibility and complete controllability) have
been devoted numerous investigations [15, 16]. One of important class of vector
fields is class of conformal vector fields which has wide applications. Geometry of
conformal vector fields is subject of many papers [2–4, 12]. In this paper we study
some properties of orbits of conformal vector fields.

In the paper, smoothness is understood as smoothness of the class C∞.

2. Orbits of Vector Fields and Distributions

Let (M, g) be a smooth Riemannian manifold of dimension n with metric tensor
g, V (M)− a set of all smooth vector fields on a manifold M. The set V (M) is a
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linear space over the field of real numbers and a Lie algebra with respect to the Lie
bracket of vector fields.

LetD be a family of smooth vector fields defined onM . The familyD can contain
finitely or infinitely many smooth vector fields. For a vector fieldX ∈ D, byXt(x)
we denote the integral curve of X passing through a point x ∈ M for t = 0. The
mapping t −→ Xt(x) is defined in some domain I(x), which in general depends
not only on the field X but also on the initial point x. Throughout the following,
we assume that t ∈ I(x). If the domain I(x) of the curve t −→ Xt(x) coincides
with the real line for each x ∈M , then the vector field X is said to be complete.

Definition 1. The orbit L(x) of a family D of vector fields through a point x is
the set of points y in M such that there exist real numbers t1, t2, . . . , tk and vector
fields X1, X2, . . . , Xk in D (where k is an arbitrary positive integer) such that

y = Xtk
k (X

tk−1

k−1 (...(X
t1
1 )...)).

Obviously, if the family D consists of a single vector field, then the orbit is a
smooth curve (a one-dimensional manifold).

The fundamental result in study of orbits is Sussmann theorem [14], which asserts
that every orbit of smooth vector fields with Sussmann topology has differential
structure with respect to which it is a immersed submanifold of M.

Recall that a mapping P that takes each point x ∈ M to some subspace P (x) ⊂
TxM is called a distribution. If dim P (x) = k for all x ∈ M , then P is called a
k-dimensional distribution. A distribution P is said to be smooth if, for each point
x ∈ M , there exists a neighborhood U(x) of that point and smooth vector fields
X1, X2, . . . , Xm defined on U(x) such that the vectors

X1(y), X2(y), . . . , Xm(y)

form a basis of the subspace P (y) for each y ∈ U(x). A familyD of smooth vector
fields naturally generates the smooth distribution that takes each point x ∈ M to
the subspace P (x) of the tangent space TxM spanned by the set

D(x) = {X(x) ; X ∈ D}.

Obviously, the dimension of the subspace P (x) can vary from point to point.

A distribution P is said to be completely integrable if, through every point x ∈M ,
there passes a connected submanifold Nx of the manifold M such that TyNx =
P (y) for all y ∈ Nx. Note we shall use TpM to denote the tangent space to the
manifold M at the point p. If N is a submanifold of M, and if p ∈ N, than TpN
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can be identified in a natural way with a subspace of TpM. The submanifold Nx is
called an integral submanifold of the distribution P .

For a vector field X , we write X ∈ P if X(x) ∈ P (x) for all x ∈M .

A distribution P is said to be involutive if the inclusion X,Y ∈ P implies that
[X,Y ] ∈ P , where [X,Y ] is the Lie bracket of the fields X and Y .

The Frobenius theorem [8, p 10] provides a necessary and sufficient condition for
the completely integrability of a distribution of constant dimension.

Theorem 2. A distribution P on a manifoldM is completely integrable if and only
if it is involutive.

Let A(D) be the smallest Lie algebra containing the set D. By setting Ax(D) =
{X(x) ; X ∈ A(D)}, we obtain an involutive distribution PD : x → Ax(D).
If the dimension dimAx(D) is independent of x, then the distribution PD : x →
Ax(D) is completely integrable by the Frobenius theorem.

If the dimension dimAx(D) depends on x, then, as following example from [9]
shows, the distribution PD : x→ Ax(D) is not necessarily completely integrable.

Let M = R2 with Cartesian coordinate system (x, y) and the set D consists from

vector field
∂

∂x
and vector fields f(x)

∂

∂y
, where f(x) is any smooth function such

that all derivatives fk(x), k = 0, 1, 2, . . . vanishes at the point x = 0. If a point p
lies on y− axis, then we have dimAp(D) = 1 and Ap(D)) is parallel to the x−
axis, while we have dimAp(D) = 2 otherwise. Therefore there does not exists an
integral manifold through a point p.

The Frobenius theorem generalized by Hermann to distributions of variable dimen-
sion provides a necessary and sufficient condition for the complete integrability of
distributions which is finitely generated [5].

Definition 3. A system of vector fieldsD = {X1, X2, ..., Xk} on M is in involution
if there exist smooth real-valued functions f lij(x), x ∈ M, i, j, l = 1, ..., k such
that for each (i, j) it takes

[Xi, Xj ] =

k∑
l=1

f lij(x)Xl.

Theorem 4 (Herman) . The system D = {X1, X2, ..., Xk} of smooth vector fields
on M generates completely integrable distribution if and only if it is in involution.
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3. Geometry of Orbits of Conformal Vector Fields

In this section we study geometry of orbits of conformal vector fields and in par-
ticularly we show that if the set D consists of conformal vector fields, then the
distribution PD : x→ Ax(D) is completely integrable.

Definition 5. A vector field X is conformal if LXg = σg , where σ is a function
on (M, g), LXg denotes Lie derivative of the metric g with respect to X .

It is known that a vector fieldX on (M, g) is conformal if and only if the local one-
parameter group of local transformations generated by vector field X consists of
conformal transformations. A local one-parameter group of local transformations
generated by a conformal vector field consists of homotheties if σ is a constant,
and consists of isometries if σ = 0.

We recall that a diffeomorphism φ :M →M is called a conformal transformation
if dφ(g) = λg, where dφ(g)(u, v) =g(dϕ(u),dϕ(v)), λ is a positive function on
(M, g), u, v -tangent vectors. If λ constant, then φ is a transformation of homo-
thety. If λ is identically equal to 1, then φ is isometry. Examples of conformal
vector fields are Killing vector fields. Recall that a vector field on (M, g) is called
a Killing field if its flow consists of isometries of a Riemannian manifold (M, g),
that is LXg = 0. Geometry of orbits of Killing vector fields is studied in [10].

Numerous studies have been devoted to the study of geometry of conformal vector
fields [2–4, 7, 10, 12, 13], in particular in [3] it was proved that if the manifold is
compact, then the set of fixed points of the conformal vector field is a submanifold
of even codimension.

It was shown in [13] that if a Riemannian manifold (M, g) is different from a
Euclidean space or a sphere, then on a manifold (M, g) there exists a Riemannian
metric g̃ conformally equivalent to the Riemannian metric g such that the group of
conformal transformations of a manifold (M, g) is a group of isometries of (M, g̃)
(see also [4]). This fact shows that all conformal vector fields on manifolds are
Killing vector fields with respect to the Riemannian metric g̃. It follows that on
manifolds that are different from the Euclidean space and from the sphere, the
study of the geometry of conformal vector fields reduces to studying Killing vector
fields [10].

Note that the Lie bracket of two conformal fields and a linear combination of con-
formal fields over the field of real numbers are conformal fields as well. Therefore,
the set Conf(M) of all conformal vector fields on the manifold M is a Lie algebra
over the field of real numbers. In addition, it is well known that the dimension of
the Lie algebra Conf(M) of conformal vector fields on a connected Riemannian
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manifoldM does not exceed (n+1)(n+2)/2, where n = dimM, n ≥ 3 [8, p.310,
Theorem 1].

Now by A(D) we denote the smallest Lie subalgebra of Lie algebra Conf(M)
containing the set D. Since the algebra Conf(M) is finite-dimensional, it follows
that there exists finite number vector fields X1, X2, . . . , Xm in A(D) such that the
vectors X1(x), X2(x), . . . , Xm(x) form a basis of the subspace Ax(D) for each
x ∈M.

Therefore, Theorem 5 implies the following assertion for the case in which the
family D consists of conformal vector fields.

Theorem 6. Let n ≥ 3, D− be family of conformal vector fields. Then every orbit
ofD is a integral manifold of completely integrable distribution PD : x→ Ax(D).

Proof: In this case, the distribution PD : x −→ Ax(D) finitely generated and by
the Hermann theorem, it is completely integrable.

Let Nx be an integral submanifold of the distribution PD : x → Ax(D) passing
through the point x, L(x)− the orbit passing through the point x. Then, by the
definition of an orbit L(x) ⊂ Nx, and in addition it is known that dimAx(D) ≤
dimL(x) [14]. Since dimAy(D) = dimNx for every y ∈ Nx if that dimAx(D) =
k, integral submanifold Nx and the orbit L(x) are k dimensional manifold. It
follows from here orbit L(x) is open subset of Nx. Since different orbits do not
intersect, by virtue of the connectedness of Nx we get that L(x) = Nx. �

In the case n ≥ 3 this theorem permits one to study the geometry and topology of
the orbit L(x0) of the conformal vector fields with the use of the mapping

ϕ : (t1, t2, . . . , tm)→ Xtm
m (X

tm−1

m−1 (...(X
t1
1 (x0)...))) (1)

where (t1, t2, . . . , tm) ∈ U ⊂ Rm and U is a neighborhood of the origin in Rm.
The following theorem shows that each point in the orbit L(x0) can be reached
from x0 by finitely many “switches” using of the vector fields X1, X2, . . . , Xm in
a certain order.

Theorem 7. The set of points of the form

y = Xtm
m (X

tm−1

m−1 (...(X
t1
1 (x0)...))) (2)

where (t1, t2, . . . , tm) ∈ U coincides with the orbit L(x0).

Proof: Let rank{X1, X2, . . . , Xm} = k at the point x0, and let x ∈ L(x0). Then
there exist vector fields Y1, Y2, . . . , Yp in D such that
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x = Y
tp
p (y

tp−1

p−1 (...(y
t1
1 (x0)...))).

The mapping
ψ : x0 → x = Y

tp
p (y

tp−1

p−1 (...(y
t1
1 (x0)...)))

is a conformal transformation of the Riemannian manifold M . Consider the vector
fields Zi = dψ(Xi), where dψ is the differential of the mapping ψ. The one-
parameter local transformation group of the vector field Zi has the form ψXt

iψ
−1,

where Xt
i is the flow of the vector field Xi [8, Proposition 1.7, p.14]. Since ψ is a

conformal transformation, it follows that the vector field Zi is a conformal vector
field as well. Therefore, the vector fieldsZi can be linearly expressed via the vector
fields X1, X2, . . . , Xm. Since rank{Z1, Z2, . . . , Zm} = k at the point x ∈ L(x0),
we find that rank{X1, X2, . . . , Xm} is also equal to k at the point x ∈ L(x0); i.e.,
dimAx(D) = k for all x ∈ L(x0). This, together with the Frobenius theorem,
implies that dimL(x0) = k.

Consider the mapping (1) of U into the orbit L(x0). Since the rank of the mapping
(1) is equal to the rank of the family {X1, X2, . . . , Xm} and m ≥ k, it follows that
it is a mapping of maximum rank. Therefore, the set of points of the form

y = Xtm
m (X

tm−1

m−1 (...(X
t1
1 (x0)...)))

is an open subset of L(x0).

Indeed, if y0 = X
t0m
m (X

t0m−1

m−1 (...(X
t01
1 (x0)...))), then, by virtue of the rank theorem

[8, Proposition 1.1, p 8], there exists a neighborhood V of the point (t01, t
0
2, . . . , t

0
m)

and a neighborhood U of the point y0 in L(x0) such that

{Xtm
m (X

tm−1

m−1 (...(X
t1
1 (x0)...))); (t1, t2, . . . , tm) ∈ V } = U.

It follows that y0 ∈ U ⊂ L(x0).
Now let us show that the set of points of the form (2) is a closed subset of L(x0).

Let the points yi = Xtm
m (X

tm−1

m−1 (...(X
t1
1 (x0)...))) converge to a point y0 ∈ L(x0).

Since the rank of the vectors X1, X2, . . . , Xm at the point y0 ∈ L(x0) is equal
to k, it follows from the rank theorem that there exists a neighborhood U of y0 in
L(x0) that consists of points of the form

Xt0m
m (X

t0m−1

m−1 (...(X
t01
1 (x0)...))).

Therefore, if yi ∈ U , then y0 = Xτm
m (X

τm−1

m−1 (...(X
τ1
1 (x0)...))), where τj = tj−t0j .

The proof of the Theorem 7 is complete. �
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Theorem 8. Let M = Rn, the set D consists of conformal vector fields and
dimAx(D) = k for any x ∈ M, where 0 < k ≤ n. Then each orbit of the
family D is closed subset.

Proof: In case k = n every orbit L is connected open subset of Rn (n-dimensional
manifold) and since different orbits do not intersect, by virtue of the connectedness
of Rn we get that L = Rn [14].

We will suppose 0 < k < n. By Frobenius theorem all orbits are k− dimensional
manifolds. We consider two cases: n ≥ 3 and n = 2.

I. Assuming n ≥ 3, which allows to use Theorem 7. In this case algebra A(D) is
finitely generated.

Let vector fields X1, X2, ..., Xm from A(D) form a basis of the Lie subalgebra
A(D). The condition dimAx(D) = k for any x ∈M implies that rank of the map
(1) is equal to k at t1 = 0, t2 = 0, . . . , tm = 0 for any point x ∈ M because rank
of (1) is equal the rank of the vectors X1, X2, . . . , Xm at the point x.

Let O ∈ Rn be the origin of the coordinate system.There are k vector fields
{Xi1 , Xi2 , . . . , Xik} from the set {X1, X2, . . . , Xm} which are linearly indepen-
dent at the point O. We put Yj = Xij for j = 1, 2, ..., k.

It is well known that a conformal transformation of Euclidean space is an affine
transformation. Consequently, flows of conformal of the vector fields Yj have the
form Y t

j (x) = λj(t)Aj(t)x + bjt for each x ∈ Rn, where A(t) is an orthogonal
matrix, λj(t) function with condition λj(0) = 1, bj− are vectors.

Integral lines of vector fields Yj passing through the pointO at t = 0 have the form
Y t
j (O) = bjt, for j = 1, 2, ..., k. From here follows that bj− are linear independent

vectors and orbit L0 of D, passing through the point O, contains k straight lines
parallel to vectors bj . Since the conformal transformations translate straight lines
to straight lines, we can conclude that the orbit L0 contains k dimensional plane,
and hence it is k dimensional plane.

Since bj 6= 0, it follows from the equality Y t+s
j (x) = Y t

j (Y
s
j (x)) that λj(t)Aj(t)bj

= bj for every x ∈ Rn, and therefore λj(t) = 1, Aj(t)bj = bj . It means that the
vector bj is parallel to the plane of fixed points of Aj(t) or Aj(t) = E for all t,
where E is the identity matrix. It follows Yj are complete Killing vector fields.

Now, if x ∈ Rn \ L0, since vectors bj are linearly independent, vector fields Yj
linearly independent at point x. We consider

ϕ : (t1, t2, . . . , tk) ∈ Rk → Y tk
m (Y

tk−1

k−1 (...(Y t1
1 (x)...))). (3)
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Rank of the map (3) is equal to k at any point and as follows from the Theorem 7
the set of points of the form

y = Y tm
k (Y

tk−1

k−1 (...(Y t1
1 (x)...)))

where (t1, t2, . . . , tk) ∈ Rk, coincides with the orbit L(x), containing the point x.

Now let xj ∈ L(x), xj → y at j → ∞, where L(x)− the orbit containing the
point x. The points xj have the form

xj = Y
tjk
k t(Y

tjk−1

k−1 ...(Y
tj1
1 (x)...))

where (tj1, t
j
2, · · · , t

j
k) ∈ Rk. Conformal mappings

ϕ(tj1, t
j
2, ..., t

j
k)(x) = Y

tjk
k t(Y

tjk−1

k−1 ...(Y
tj1
1 (x)...))

have the form

ϕ(tj1, t
j
2, ..., t

j
k)(x) = A(tj1, t

j
2, ..., t

j
k)x+ b(tj1, t

j
2, ..., t

j
k)

where the orthogonal matrix A(tj1, t
j
2, ..., t

j
k) is multiplication orthogonal matrices

Ap(t
j
p). The vector b(tj1, t

j
2, ..., t

j
k) has the form

k−1∑
l=1

{
k∏

p=l+1

Ap(t
j
p)}blt

j
l + bkt

j
k. (4)

From (4) follows that if xj → y for j → ∞, since vectors bp are non-zero, the
sequence tjp has a finite limit for every p: tjp → t0p for j → ∞, where t0p is a
finite number. From here follows that y = ϕ(t01, t

0
2, ..., t

0
k)(x), i.e., y ∈ L(x).

Consequently, L(x) is a closed set.

II. Let us consider the case n = 2. In this case we can not use Theorem 7, because
algebra A(D) is not finitely dimensional. If dimAx(D) = 1 for any x ∈ R2, then
orbits generates one dimensional foliation F on R2. In this case as follows from
results of [6, 11] every orbit is homeomorphic to R1 and is a closed subset of R2

(every orbit is level set of a continuous function [6]).

The case n = 1 is proved similarly. The proof of the Theorem 8 is complete. �

Example 9. Let us consider a set D fields which contains conform vector fields

X =
∂

∂x1
and Y = −x2

∂

∂x1
+ x1

∂

∂x2
on Euclidean plane R2 with cartesian co-

ordinates x1, x2. These vector fields generate the smooth distribution: (x1, x2)→
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P (x1, x2), where the subspace P (x1, x2) is spanned by the set of vectors
{X(x1, x2) ; X ∈ D}. We have dimP (x, y) = 2 for every point (x, y) differ-
ent from the points (0, x2), where dimP (x, y) = 1. This smooth distribution is
finite generated, but the D it is not in involution. In this case the smallest Lie sub-
algebra A(D) of Lie algebra Conf(M) containing the set D is three dimensional.

Vector fields X, Y and Z =
∂

∂x2
are basic fields of algebra A(D). We can check

that dimAx(D) = 2 for every point x ∈ R2. The distribution x → Ax(D) is
completely integrable by Herman theorem, every orbit of D is R2.

Example 10. If we consider a setD which contains only vector fieldX = x1
∂

∂x1
+

x2
∂

∂x2
, than algebra A(D) is one dimensional algebra. But dimAx(D) is not

constant. We have dimA(x,y)(D)) = 1 for every (x, y) different from (0, 0), where
dimA(x,y)(D) = 0.

Example 11. Let us consider the setD, which contains only one conformal vector
field

X = −x2
∂

∂x1
+ x1

∂

∂x2
+

∂

∂x3

in M = R3. In this case flow of X has following form Xt(x) = A(t)x + bt for
each t ∈ R, where b = {0, 0, 1}T

A(t) =

 cos t − sin t 0
sin t cos t 0
0 0 1

 .

In this case dimAx(D) = 1 for any x ∈ M. The orbit L0, passing through the
origin O of the coordinate system is axis OZ. Other orbits are helices.

Remark 12. As simple examples show Theorem 8 is not true without supposition
dimAx(D) = k for any x ∈ M. Really, let M = Rn(x1, x2, ..., xn) and the set

D contains only the conformal vector field X =
∑n

i=1 xi
∂

∂xi
· In this case for any

point p(x1, x2, ..., xn), with
∑n

i=1 x
2
i > 0, orbit L(p) is not closed subset.

Remark 13. As well known irrational winding of the two dimensional torus shows,
in general Theorem 8 is not true for Riemannian manifolds different from Eu-
clidean spaces.
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