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Abstract. The profound, beautiful and, at times, rather mysterious symbiosis
between mathematics and physics has always been a source of wonder, but, in the
past twenty years, the intensity of the mutual interaction between these two has
become nothing short of startling. Our objective here is to provide an introduction,
in terms as elementary as possible, to one small aspect of this relationship. Toward
this end we shall tell a story. Although we make no attempt to relate it chronologi-
cally, the story can be said to begin with the efforts of Yang and Mills to construct a
nonabelian generalization of classical electromagnetic theory, and to culminate in a
remarkable conjecture of Witten concerning the Donaldson invariants of a smooth
four-manifold.

1. Instantons and four-M anifolds

The central characters in our story are all “classical gauge theories” and we will
eventually introduce them in some generality (Section 3), but we would like to
begin by getting to know a few of them personally. For this we first recall the

construction of theuaternionic Hopf bundle

Sp (1) — ST 5 HP!. (1.1)

Here Sp(1) is the Lie group of unit quaternions (thoge= H satisfying|g| = 1).
As a manifold it is diffeomorphic t&2, but it is also isomorphic to the Lie group
SU(2) of 2 x 2 complex matriced/ that are unitary(U~! = U?) and satisfy
det U = 1. Indeed, every sucli can be written in the fornt/ = ( ; ? >
— (0%

wherea, 8 € C satisfy|a|? + |3|> = 1 and the map

[0

N ? — a+fBi=a' +a’i+ (8" + )]

—# & (1.2)

=o' +a%i+ 8+ Bk
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is an isomorphism. We will allow ourselves the luxury of adopting whichever
view of this Lie group is most convenient in any given situation. We will usually
think of S” as{p = (¢',¢*) € H?|¢*|*> + |¢*/* = 1}. Then we can define a
smooth right actiow : S x Sp(1) — S” of Sp(1) onS” by

o(p.g)=p-9=(a".¢* 9= (¢'9,4%9) .

This action is clearly free and the orbits- Sp(1) are submanifolds o8’ dif-
feomorphic toS®. The orbit spac&?”/Sp(1) is, by definition, thequaternionic
projective line HP!. We will denote byr : S — HP! the projection map
which carriesp = (¢*, ¢%) onto its orbitr(p) = 7(¢*, ¢*) = [¢*, ¢*]. Obviously,
m(p-g) = m(p) forallp € ST andg € Sp(1). HP! is given the quotient topology
determined byr and the differentiable structure determined by the atlas consisting
of the two chartgUy, i), k = 1,2, defined as follows:

Ur = {z=[¢",¢*] € HP';q" £ 0}, k=12
op Uy — H=R*, k=1,2

e1(z) =1 ([¢"¢%]) = ¢ (")

o2 (x) = @2 ([¢' ) = d* ().

Clearly, ¢, and @, map ontoH, ¢;'(q) = [1,q], ¢5'(¢) = [g,1] and, on
gOl(Ul N Ug) = (pQ(Ul N UQ) =H - {0},

(1.3)

-1

w10y (q) =waop] () =q . (1.9

It follows from this that we have, indeed, defined a differentiable structure. One
can further verify that, relative to this structure; S” — HP! is smooth and each
of the maps

Uy Y (Uy) — U, x Sp(1), k=1,2
(1.5)

Uy(p) = Uk (¢*, ¢%) = <7r(p),qk/lqkl)

is a diffeomorphism that is equivariant with respect to the given right action of
Sp(1) on S” and the natural right action &p(1) on U, x Sp(1) (this means
that, writing 4 (p) = (m(p),vx(p)), whereyy.(p) = ¢"/|¢*|, we have¥y(p -

g) = (m(p),vYr(p)g) = (w(p),¥r(p)) - g). To summarize, what we have just
shown is thaS” is a smooth principabp(1) (i.e., SU(2))-bundle ovefHP! with
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local trivializations given by (1.5). We note in passing that one can replace the
guaterniondl by the complex numbefrs everywhere above and thereby construct
the complex Hopf bundle

U (1) — S% — CP. (1.6)

There are, of course, also the obvious higher dimensional generalizations
Sp(1) — S¥=1 - HP" 1 andU(1) — S§**~! — CP* ! forn > 2.

Remark. Let pg and ¢y be the stereographic projection maps from the north
and south poles of S*, respectively, and let ¢; and o, beasin (1.3). If ¢; denotes
the map @1 (z) = ¢1 (), then both ' o 9 and ¢! o @1 are diffeomorphisms
of HP' minus a point to S* minus a point. On the intersection of their domains
they agree and so determine a global diffeomorphism of HP! onto S*. Composing
with 7 : S — HIP! gives a principal bundle

Sp(1) — " — §*

which is also often referred to as the quaternionic Hopf bundle. Some caution
is advised, however, since reversing the roles of ¢; and ¢- above gives another
identification of HIP! with S*, but the corresponding Sp(1)-bundle over S* is not
equivalent to the one we just described. Thisis most readily shown by computing
their Chern numbers which turn out to be 1 in the first case and —1 in the second
(we will briefly review these cal culations shortly).

Now we focus our attention on a fixed pot= (¢*, ¢%) € S” C H?. The orbit

of our Sp(1)-action containing (i.e., the fiber ofr : S” — HP! abover(p)) is a

copy ofS3. The subset of the tangent spd¢gS™) to ST atp consisting of vectors
tangent to this fiber is called thertical space atp and denoted VeytST). Itis

a three-dimensional linear subspacelpf S7) which, in turn, can be identified
with a linear subspace @f,(H?) = T, (R®) = RS,

Thus, relative to the usual Euclidean inner productfn Vert,(S7) has an or-
thogonal complement and we shall call the intersection of this orthogonal com-
plement with7,,(S7) the horizontal space atp and denote it Hgx(S”). Thus, at
eachp € S” we have a natural decomposition

T, (S) = Vert, (S7) & Hor, (ST).

If one fixes ag € Sp(1) and explicitly computes the derivative of the diffeomor-
phismo, : S” — ST, a4(p) = o(p,g) = p- g, it is easy to see that

(0g),, (Hor, (S7)) = Hor,., (S7)
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and so the distributiofiHor,(S); p € S7} of four-dimensional subspaces satisfies
the conditions required of a connection on the Hopf bundle. This is called the
natural connection on Sp(1) — S7 "~ HP'. Now, any connection arises from

a connection one-form, i.e., a Lie algebra-valued one-form on the principal bundle
space whose kernel at each point is the horizontal space at that point. Identifying
the Lie algebra ofSp(1) with the pure imaginary quaterniodsH and defining
anImH-valued one-form ofil? by

@ =1Im(q'dq" + ¢°dg?)

it is not difficult to see that the connection one-fowrfor the natural connection
on the Hopf bundle is the restriction éfto S7, i.e.,

w=1'® @.7)

where. : S < H? is the inclusion map (the proof is on page 295 of [34]).

In the physics literature it is more common to describe connections (there called
gauge potentials) locally on the base manifold by pulling back the connection
one-form by sections corresponding to some trivializing cover of the bundle.
For the trivializations(Uy, V), & = 1,2, of the Hopf bundle given by (1.5)
eachU,, covers all but one point offP! and it follows that the connectiow

is uniquely determined by either one of the corresponding pullbacks. For exam-
ple, it is easy to verify that the inverse &f, : #—1(U;) — Uy x Sp(1) is given

by U ([¢*, 4%, 9) = (I¢']9,4*(¢*/|¢*|)~'g) € ST C H? and so the associated
sections; : Uy — 7 1(Uy) is

si@) = s ([¢'’]) =i ([".¢%) 1) = (o' |4 (a'/[a') ).

SinceU is also the domain of the standard chdri, ¢1) on HP! we can write

the pullbacksiw in terms of these coordinates &fP!. More precisely, we pull
stw back toH = R* by gol_l. These calculations are carried out in detail on pages
256-258 of [34] and yield

A= (81 o 801—1)* w = Im(ﬁdq) (1.8)

which we now simply regard as dmHH-valued one-form orl. Oddly enough,
this one-form orR* first appeared in the physics literature [4] where it was ini-
tially referred to as @seudoparticle. We will have more to say about this shortly.

Thus far we know only one connection on the Hopf bundle (the “natural” one)
and we would now like to produce some more. Recall thaawomorphism of
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T

Sp(1) — S -~ HP! is a diffeomorphismf : S” — S of S7 onto itself that
respects the group actidif(p - g) = f(p) - g) and that each such automorphism
induces a diffeomorphisnfyp: : HP! — HP! of HP! onto itself byw o f =
fupr o . If fyp1 happens to be the identity diP!, then f is called a ¢lobal)
gauge transformation. Now, if f is any automorphism and is any connection
one-form, then the pullback*w is also a connection one-form. Jfis a gauge
transformation, then the connecticlasand f*w are said to bgauge equivalent.

Remark.  The motivation here is as follows. In physics, a (local) section
s:U — 7~ Y(U) ofaprincipal bundle G — P - X iscalled a choice of gauge
on U and is regarded as a selection, at each « € U, of a frame (coordinate sys-
tem) in some internal space. The gauge principle asserts that the laws of physics
should be invariant under an arbitrary change of gauge and, more particularly,
that quantities with the same set of gauge representations are to be regarded as
physically equivalent. For example, if w isa connection and f isa gauge transfor-
mation, then, for any section s, f o s isalso a section and s*(f*w) = (f o s)*w.
Thus, w and f*w have the same set of gauge potentials and so are taken to be
“equivalent” . For future reference we note that a local gauge transformation on
U can beidentified withamap g : U — G which givesriseto a new section/gauge
59 : U — 7~ Y(U) defined by s9(z) = s(z) - g(x) and that if w is any connection,
A =s*wand A9 = (s7)*w, then

A9 =g L Ag + g dy.

Although not entirely obvious, one can show (pages 297-303 of [34]) that, by
judiciously choosing automor phisms of the Hopf bundle by which to pull back the
natural connection, one can produce a new connection w ,, for each (\,n) €
(0, 00) x H that is uniquely determined by the gauge potential

qg—n
n=Im| ———d 1.9

A, m(”ﬂq—n!? q) &9
on H (thus, A; = A, ). For reasons that we will discuss shortly, A, ,, is called
the BPST-instanton with center n and spread \. Although all of these differ from
the natural connection by an automorphism we will see that distinct pairs (A, n)
give rise to connections that are not gauge equivalent.

Any connectionw has a curvatur€? that can be calculated from the Cartan
Structure Equatiof2 = dw + 3[w,w] and is uniquely determined by a fam-
ily of pullbacks 7 = s*Q, called gauge field strengths, by sections corre-
sponding to some trivializing cover. For the connectiog,, on the Hopf bun-
dle the curvature, ,, is uniquely determined by the single gauge field strength
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Frn=dAy\, + %[.AM, A, ]. Arather tedious, but routine calculation (pages
284-289 of [34]) gives
/\2
(A2 + g —nl?)
2)2

R e ((dml Ada? — dad A dad)i (1.10)

5dq A dg

An —

+(da' A da? + da? A dat)j + (dzt A da? — da® A dm?’)k)

wherez!, 22, 23 andz? are standard coordinates BA.

The ImH-valued two-formsF ) ,, on H(= R*) have a number of crucial prop-
erties. If “” denotes the Hodge star operator Bf arising from the usual ori-
entation and inner product and if we extend this operatdnifl-valued forms
componentwise, then eadh, ,, is anti-self-dual (ASD) in the sense that

*Fan=—Fxn (1.11)

(page 333 of [34]). The Hodge star also gives a (pointwise) inner product on the
spaces’(R*), 0 < p < 4, of real-valuedp-forms onR* (if u andv are in
QP(R*), thenxv is in Q*P(R*) sou A xv is in Q*(R*) and so is a multiple of

the metric volume fornvol onR* and one define§u, v) by pAxv = (u, v)val).
Combined with the Killing form on the Lie algebra this will give a pointwise inner
product on any space of Lie algebra-valued form&dn

Remark. The conventions we adopt are as follows: The Lie algebra ImH is
isomorphic to the Lie algebra su(2) of 2 x 2 complex matrices A that are skew-
Hermitian (AT = —A) and tracefree (trA = 0). We take as a basis for su(2)

. . 0 1 0 —i
the matrices T; = —%IO'j,WhereCfl = ( Lo ) 09 = < ) 01 ) and o3 =
1

(1) _01 are the Pauli spin matrices. Thus, every element of su(2) can be
written in the form
A= AT + ATy + ATy = — 1 < A’ AR+ A > L (112)
2\ —A%+ A A%

As the inner product associated with the Killing form of su(2) we take (A, B) =
—21tr(AB) so that {71, T5,T3} isan orthonormal basis. The structure constants
for this basis are given by [T;,T;] = €;;ix Tk (€45 isthe Levi-Civita symbol with
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123 = 1). The structure constants for the basis {11, 3j, £k} for ImH are the
same ([z,y] = xy — yr = 2Im(zy) on ImH) so an isomorphism of ImH onto
su(2) isali+ a?j + a®k — (2a')T + (2a®)T, + (2a3)Ts. In particular, our Lie
algebra inner product is four times the usual R3 inner product ImH.

Now, if F = F'i + F?j + F’k is anImH-valued form onR*, each component
has a squared nortfjtrF*||> = (F*!, F*) given by the Hodge dual as above. Our
Lie algebra squared noriftF||? for F is then taken to be four times the sum of
these

17| = 42;5: [Eadlse (1.13)

Writing F as ansu(2) matrix of complex-valued forms in the manner indicated
above xF is computed entrywise. Defining the wedge prod&ch +F to be the
matrix product with entries multiplied by the ordinary wedge, a simple calculation
shows that

1
—tr(FAF) =5 | F ) vol . (1.14)

To compute||Fy ,,||? for the BPST gauge field strength given by (1.10) one ob-
serves that, for example,

(dzt A dz? — dz® A dzt) A x (dz' A dz? —da? A d:v4)
= - (d:v1 Adz? — dad A dm4) A (dm1 Adz? — dazd A d:v4)
= 2dz! A da? A dad A da? = 2vol
and similarly for the rest so

8\t 9614
Hj:A,nHQ =4 <3( 9 2 4)) =~ 12 ond” (1-15)
(A2 +[g —n|?) (A2 +[g —n|?)

Notice that||F, ,||> has a maximum value of6/\* at¢ = n and that, for a
fixed n, its variation withX (illustrated in the Figure 1) is such that the “total field
strength”

1 48)\*
5 | I1Frnl?vol = vol = 872 (1.16)
2 AT
R R
remains constant &tr2.

Thus, the gauge potentiad, ,, on R* has field strength that is “centered” rat
in R* with a “spread” that is determined by(hence the terminology introduced



34 Gregory L. Naber

" g

Figure 1. BPST Field Strengths

earlier), and a total field strength that is independenk ahdn (the reason for
this is, as we will see shortly, deeper than it might seem).

Let us now temporarily suppress from our minds where the potendals came

from (i.e., the Hopf bundle) and regard them simply as Lie algebra-valued one-
forms onR*. Any such Lie algebra-valued one-fors onR* can be thought of

as a gauge potential for a connection on the tri\ﬂﬁ( )- (or SU(2)-) bundle
overR* and so has a gauge field strength= d.A + 3[A, A] onR*. We define
theYang-Mills action Y M (.A) of A by

IMA) = | —tr(FAxF) = | F|I* vol. (1.17)
[-wmmedf

This integral might well be infinite, of course, but if it is not we will say thét
hasfinite action and think of Y M(.A) as the total field strength of the gauge
potential.A.

In an attempt to describe the isotopic spin of a nucleon, Yang and Mills [49] de-
vised a non-abelian generalization of classical electromagnetic theory in which
the electromagnetic potential was replaced bywgR)-valued one-form4 onR*
(actually, on Minkowski spacetime, but we will restrict our attention to the Eu-
clidean version). The field strength for their potential was®uwand the “action”

(i.e., Lagrangian) of the theory wasM (.A). The field equations were the Euler-
Lagrange equations fQ¥ M (.A) under variations of4 and it is not difficult to
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show that these are
dA«F =0 (1.18)

whered4 «F = d «F + [A, «F] is the covariant exterior derivative GfF as-
sociated withA. Equations (1.17) are théang-Mills equations on R*. Quite
independently o) M, any field strengthiF satisfies a purely geometrical condi-
tion called theBianchi identity

A F=0 (1.19)

(page 268 of [34]). Now notice that if the field streng#h of .A happens to

be ASD (xF = —XF), then (1.19) implies that (1.18) is automatically satisfied.
Thus, a gauge potentiall on R* with ASD field strengthF is a solution to

the Yang-Mills equations (it is shown on page 325 of [34] that these actually give
absolute minima for the Yang-Mills action). This is the context in which the BPST
instantonsA, ,, were first discovered. Belavin, Polyakov, Schwarz and Tyupkin
[4] sought finite action solutions to the Yang-Mills equations (1.18)Rdnand
found them via the simplanti-self-dual equations

«F = —F. (1.20)

A finite action gauge potentiald on R* with ASD field strength is called an
instanton on R,

We have described a family of instantads, ,, parametrized by, n) € (0, co0) x

R*. Now, ||F||? is invariant under gauge transformation. This is essentially be-
cause it is defined in terms of the trace (1.14), which is invariant under conju-
gation, and a local gauge transformatign: U — G (see the Remark pre-
ceding (1.9)) conjugates field strengths, i#J = g 'Fg. Thus, we con-
clude from (1.15) thatA, ,, and Ay, ,, can be gauge equivalent if and only if
(N,n') = (\,n), i.e., distinct BPST instantons are gauge inequivalent. Never-
theless, they all have the same total field stregthi(.A4, ,,) and we must now
investigate this “coincidence” more closely.

Lately we have been thinking of thd, ,, simply as Lie algebra-valued one-forms
on R* and forgetting where they came from. They are, of course, much more.
They are pullbacks t&* of the connectionss, ,, on Sp(1) — S7 — HP!. Letus

now identify HP! with S* in the manner described at the beginning of the Remark
after (1.6). Eachw, ,, is then regarded as a connection one-form on

Sp(1) — S — s, (1.21)

Their pullbacks t&S* by the induced sections of (1.21), when written in coordi-
nates orR* obtained by stereographic projection from the north pol&%fare
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the gauge potentialgl, ,,. Summarizing, we find that thd, ,, (connection one-
forms on the trivialSp(1)-bundle overR*) “come from” connection one-forms
wy ., ON the nontrivial Hopf bundle (1.21) ové&r. Turning matters about, one
might say that the connections on the trivial bundle dRér‘extend toS*” in

the sense tha@* = R* U {co} is the one-point compactification &* and, due

to their asymptotic behavior di|| — oo in R*, the connections extend to the
point at infinity. Note, however, that the extension process involves not only the
connection, but the bundle on which it is defined as well. Now, a remarkable the-
orem of Karen Uhlenbeck [43] asserts that this interpretation is not as fanciful as
it might sound. Indeed, a very special case of this result states thhisfany
finite actionImH-valued gauge potential dk* with ASD field strengthF, then
there exists a unique (up to equivalenseg)1)-bundleSp(1) — P — S* overS?

and a connectiow on P whose pullback by some sectierof P is .4 when writ-

ten in stereographic coordinates. Furthermore, the bundle to whitdxtends”

is uniquely determined by the Yang-Mills actighM (.A) of A as we shall now
explain.

An Sp(1)-bundle Sp(1) — P -~ X over a compact, oriented, smooth four-
manifold X is uniquely determined by a certain characteristic cohomology class,
called thesecond Chern class ¢, (P) and constructed as follows. Choose a con-
nectionw on P. The curvature of w is a Lie algebra-valued two-form oR.

. 1 .
One can show (Section 6.3 of [35]) thgfﬁ2 tr(2 A Q) is a real-valued four-form
s

on P which descends to (i.e., is the pullback tyof) a closed four-form onX
whose cohomology class(P) € H*(X,R) does not depend on the choiceuaf
Two Sp(1)-bundles overX are known to be equivalent if and only if they have
the same second Chern class and, indeed, if and only if they have theeam
Chern number, defined by

ca (P)[X] = /cg(P) (1.22)

(which is always an integer). Now také to beS*. Stereographic projection from
the north pole o8* is an orientation preserving diffeomorphism fréh minus
a point ontoR* socz(P)[S*] can be computed by integrating pullbacks oRér
ie.,
1
4
o (P)[SY] = 52 tr(F AF) (1.23)
R4

whereF is the corresponding field strength.
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Now let us consider an instantot on R* with field strengthF. SinceF is ASD,

«F = —F and so— tr(F AxF) = tr(F AF). Uhlenbeck’s Theorem guarantees
that.A extends to a connection on some principal1)-bundleSp(1) — P —

S* over S* and a comparison of (1.17) and (1.23) shows that the second Chern
number of this bundle is given by

e (P)[sY] = #y/\/t (A). (1.24)

Thus, the Yang-Mills action of an instanteA on R* is directly encoded in the
topology of the bundle ove$* to which .A extends. Notice, however, that the
value of Y M (.A) is entirely determined by the asymptotic behavior of the field
strengthF onR* so it is this physical characteristic of the gauge field that is rep-
resented by the Chern number. Physicists€all( P)[S%] theinstanton number,

or topological charge, of .A. The “reason” that all of the BPST instantosb, ,,

have the same Yang-Mills action is now clear: they all extend to (i.e., come from)
the sameSp(1)-bundle overS?, i.e., the Hopf bundle (1.21), which (1.16) now
shows to have Chern number one (as promised in the Remark following (1.6)).
Notice also that the topological charge of an instanton, being an integer, cannot be
altered by a continuous variation of the field and so is “conserved”, but for purely
topological reasons unlike the more common Noether conserved quantities. Such
topological conservation lawsplay a crucial role in understanding modern gauge
field theories.

Remark. For the complex Hopf bundle U(1) — S* — CP! one defines the
natural connection geometrically exactly as in the quaternionic case. The corre-
sponding connection one-form w is the restriction to S* of the ImC-valued one-
formilm(z'dz! + 22d22) on C2. Choosing a section and coordinates analogous
to those in the quaternionic case gives the gauge potential ilm <%‘Z’2dz) on
C = R?. Identifying CP* with S? in the two ways indicated for HIP! and S* gives
two inequivalent U(1)-bundles over S? (those with “ first Chern number” +1).
On each of these one obtains an induced connection, uniquely determined by a
gauge potential which, when written in spherical (rather than stereographic) co-

ordinates, takes the form —%(1 — cos ¢)df, wheren = +1. More generally, one

has, for eachn € Z,aU(1)-bundle U(1) — P, — S* over S? with first Chern
number » and on it a connection uniquely determined by the gauge potential
in

A, = ) (1 —cos¢)d.
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This potential (and the corresponding connection) represent the field of a Dirac
monopole of magnetic charge —n. Just as for the instanton number, magnetic
charge is “topological” in that it is encoded in the topology of the bundle on
which the connection lives and is conserved for topological reasons. We will have
more to say about Dirac monopoles in Section 7.

There is another perspective on the topological nature of instantons which we now
briefly describe. Observe thatM(.A) < oo implies that||F||> must approach
zero sufficiently fast afz|| — oo in R%. This, together withlF = d. A+ J[A, A]
would seem to require a similar decay for the componentgland their first
derivatives. However, due to the gauge freedom available in the choigk of
(/|IF||? is gauge invariant), this is not the case. All that is necessary is that there
exist some local gauge transformatign U — Sp(1), defined for sufficiently
large||z||, such that the potentiadl? in this new gauge has components that decay
sufficiently fast g need only be defined for lardle:|| because the integral over any
compact set ifR* is necessarily finite). If such@exists ands, is a three-sphere

in R* of sufficiently large radius? that it is contained in the domain gf then

9|8k : Sk — Sp (1)

can be regarded as a map from the three-sphere to itself and so determines an el-
ement of the homotopy groups(S*). But 73(S*) = Z and an isomorphism is
provided by the Brouwer degrekg. Thus, the asymptotic behavior & deter-
minesg, which determine$g|S%] € 73(S?) and this gives an integeleg(g|S%,)

(the restrictions of; to two such spheres are clearly homotopic and so have the
same degree). Thus, the various possible asymptotic behaviors for finite action
field strengths orR? fall into “homotopy classes”, each labeled by an integer.

If F is ASD so thatA extends to a principabp(1)-bundle overS?, then these
integers also characterize the bundles.

Remark. Briefly, thereason for thisisasfollows. S* = R*U{oo} consists of two
copies of the closed four-dimensional disc (upper and lower hemispheres) glued
together along the equator which is a copy of S* and which we can take to be S3,.
The restriction of any bundle over S* to either of these discsistrivial because the
disc is contractible. This provides a trivializing cover of S* consisting of just two
trivializations and hence essentially one transition function g. This one transition
function determines the bundle up to equivalence and its restriction to the equator
is a map from S3 to Sp(1) = S3. Furthermore, any map from S? to S? can
be regarded as such a restriction and homotopic maps correspond to equivalent
bundles. In particular, thisis true of the restricted gauge transformation g|§f{2 o)
the integer deg(g|S%) uniquely determines an Sp(1)-bundle over S*.
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Now let us consider somewhat more generally the Hopf bufglg) — S —

S* overS* with Chern number one. Any connectianon this bundle is uniquely
determined by the gauge potentidlon R* obtained by pulling back by the nat-
ural section or§* minus the north pole and then again by the inverse of stereo-
graphic projection from the north pole. This stereographic projection is an orien-
tation preserving conformal diffeomorphism and so preserves the Hodge dual. We
will say that the connectiow is anti-self-dual (ASD) if the gauge potentiald

is ASD (we will see shortly how to extend this notion to bundles over more gen-
eral four-manifolds). The set of ASD connections is invariant under global gauge
transformations of the bundle so we may consider thd $etf gauge equivalence
classes of ASD connections ¢ip(1) — S” — S*. This then is the same as the
set of gauge equivalence classes of ASD potentlats R* with Y M (A) = 872
(regarded as connection forms on the trivial bundle).

Each BPST instantol, ,, determines a poiritd, ,,] in M and we have already
observed that distinct pairfs\, n) give distinct points inM. A remarkable, and
very deep result of Atiyah, Hitchin and Singer [2] asserts that, in &€ty ele-
ment of M is represented by soma&, ,, and so the map

()‘7”) € (0,00) X R4 - [A)\,n] eEM

is a bijection. This picture aM as the half-spacéd, co) x R* in R, as simple

and pleasing as itis, is not the most informative. An alternative arises from the fact
that there is an orientation preserving conformal diffeomorphisit ofo) x R*

onto the open five-dimensional bal® in R®. Indeed, one can (pages 337-341
of [34]) introduce “spherical coordinates” oW that yield a picture of\ as B®

with [\A; o] at its center. Proceeding radially outward frqu#; ] toward a point
ondB% = S* one encounters potentials all of which have the same centaut
which become more and more concentrated, i.e., for which the spread0.

A particularly pleasing aspect of this picture is that the base mariifolof the
bundle emerges as the boundary of the moduli speice a compactification of

M (M = B5 — B5 = B5US*) and its points can be identified intuitively with
“delta function” potentials.

One sees quite clearly in this example how the topologies of the underlying four-
manifoldS* and the moduli spac&1 of ASD connections on the bundf& (1) —

S” — S* are inextricably linked. We will conclude by briefly describing an amaz-
ing generalization of this scenario due to Simon Donaldson [10].

We let X denote a compact, oriented, simply connected, smooth four-manifold.
Hy(X,Z) will denote its second homology group (with integer coefficients) and

Q_)(ZHQ(X,Z) X HQ (X,Z) — 7
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its intersection form.

Remark. Hs(X,Z)isafinitely generated, free Abelian group and each of itsele-
ments can be identified with a certain equivalence class represented by a smoothly
embedded, oriented, closed surface (two-manifold with boundary) > in X. Very
roughly, the definition of @) x goes as follows. For o, e € Ho(X,Z) one can
select surfaces ) *,, >, representing them that intersect transversely (i.e., at each
intersection point the tangent spacesto > *, and ) _, span the tangent space to .X).
An intersection point p is assigned the value 1 if an oriented basis for 7,,(> ;)
together with an oriented basis for 7),(> ,) gives an oriented basis for 7,,(X);
otherwise it is assigned the value -1. Then @ x (a1, o) is the (necessarily finite)
sum of these values over all the intersection points. Q x isa symmetric, bilinear
formand is, moreover, unimodular, i.e, if aq, ..., s isabasisfor Hy(X,Z) over
Z, then the matrix (Q x (o, «;)) has determinant 1. Here are a few examples:

X Hy (X,Z) Qx
st 0 0
CP? Z (1)
CP Z (—1)
S? x §? yACY/ ( ol ) .
1 0

HereCP? is the orbit space @ = {(z', 22, 23) € C3 : |21 |2+ |22 2 +|2%)? = 1}

by theU (1)-action(z', 22, 23)-g = (z'g, 2%g, 23g). Itis naturally a complex two-
manifold and so has a canonical orientati@®" is the same manifold with the
opposite orientation. A less pedestrian example iskhenmer surface which

we will denote K3 and which can be defined as the complex algebraic surface
in CP3 (same definition a€P?, but begin withS” C C*) whose homogeneous
coordinates:!, 22, 23, 24 satisfy (21)* + (22)* + (23)* + (2*)* = 0. The rank of
Hy(K3,Z) is 22 and the intersection form is

0 1 0 1 0 1
o) %l o)l o )eEBIe=EY

whereFEy is given by



Topology, Geometry and Physics: Background for the Witten Conjecture Part| 41

o o o o
o O o o o
o o o o

o O o o o o
o O o o o

The intersection form can also be defined for topological four-manifolds, but we
will not enter into this here.

It has been known for some time that the intersection form is a basic invariant for
compact four-manifolds. In 1949, Whitehead proved that two compact, simply
connected four-manifoldX; and X, have the same homotopy type if and only

if their intersection forms are equivalent (i.e., there exist bases#gtX;, Z)

and Hs(X», Z) relative to whichQ x, andQ x, have the same matrix). In 1982,
Freedman [16] showed thatery unimodular, symmetric, integer bilinear form is
the intersection form of at least one (and at most two) compact, simply connected
topological four-manifold(s). In particular, this is true of the vast, impenetra-
ble maze of positive definite forms (when the rank is 40 there are at162st
equivalence classes of definite forms). Donaldson has shown that the differential
topologist need not venture into this maze because amypositive definite, uni-
modular, symmetric, integer bilinear form can arise as the intersection form of a
compact, simply connecteminooth four-manifold.

Donaldson’s1983 Theorem: bea compact, oriented, simply connected, smooth
four-manifold with positive definite intersection form QQ x. Then Q) x is standard,
i.e, thereisabasisfor Ho(X,7Z) over Z relative to which the matrix of @ x isthe
identity matrix.

Donaldson’s Theorem is remarkable, but still more remarkable is its proof, which
is a byproduct of the analysis of an instanton moduli spac&fowe (very, very)
briefly sketch the idea. Consider the bundle a¥eanalogous to the Hopf bundle
overS?, i.e., theSp(1)-bundle

Sp(l) =P — X
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over X with Chern number one. Next, choose a Riemannian mgtoic X. Both

the bundle and the metric are to be regarded as auxiliary structures to facilitate
the study ofX. Fromg and the given orientation fok one obtains a Hodge star
operator and thereby a notion of ASD connectionfbrin somewhat more detail,

the definition is as follows. Leb be a connection o8p(1) — P — X and(2

and its curvature. Thef? is a globally defined Lie algebra-valued two-form Bn

It is horizontal in the sense that it vanishes when either of its arguments is vertical
(tangent to a fiber of the principal bundle). The corresponding local gauge field
strengthsF = s*Q2 on X are related by the adjoint representatiortgf1) on its

Lie algebra and so these patch together to give a globally defined two#qsm

on X with values in the adjoint bundled (P) of P (the vector bundle associated

to P by the adjoint representation). The two-fotft, is very often also called

the curvature ofv. It's advantage is that it is defined on the four-manifaldso

its Hodge dual two-formxF, is also a two-form and it makes sense to say that
the connectionw is anti-self-dual (ASD) if «F, = —F .

Remark. For the record we point out that anti-self-dual connections can ex-
ist only on bundles with positive Chern number, whereas self-dual connections
(*Fw = Fw) can exist only if the Chern number is negative. The discussion
to follow can be carried at equally well with self-dual connections on the bundle
with Chern number minus one.

Now, in general, there is no reason to believe that such ASD connections exist, but
a deep result of Taubes [41] asserts that, for manifolds satisfying the hypotheses
we have assumed df, the bundleSp(1) — P — X actually admits ASD con-
nections. Thus, we may introduce the moduli sp&¢éy) of ASD connections on

P. This moduli spaceloes depend on the choice gfand, for a randomly chosen
Riemannian metric, little can be said about its structure. One can show, however,
that, for some choice gj (indeed, for a “generic” choice @f), the moduli space

M has all of the following properties.

1. If m denotes half the number of homology classes H» (X, Z) for which
Qx(a,a) = 1, then there exist pointgy,...,p,, € M such thatM —
{p1....,pm} is @ smooth, orientable five-manifold.

2. Eachp;, i = 1,...,m, has a neighborhood iM that is homeomorphic to
a cone ovefCP? with p; at the vertex (the cone ov&fP? is the quotient of
CP? x [0, 1] obtained by identifying all points of the foriip, 1)).

3. There is a compact séf C M such thatM — K is a submanifold of
M —{p1,...,pm} diffeomorphic toX x (0,1).
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Figure 2. The Moduli Space

Now we build a new spac#1, from M by cutting off the top half of each cone
and the bottom half of the cylindeX x (0,1). M, is compact (becaus& is
compact). It is also a manifold with boundary whose boundary consists of the
disjoint union of a copy ofX andm copies ofCP?.

Now, in general, ifX; and X, are twon-manifolds and if there exists dn + 1)-
manifold M with boundary whose boundary is a disjoint union26f and X5,
then M is called acobordism betweenX; and X,. X; and X, are then said

to becobordant. Thus, Mg is a cobordism betweeX and a disjoint union of
CP?s. As it happens, the signature of the intersection form of a four-manifold is
a cobordism invariant. This fact, together with the positive definiteneggxof

the known intersection form ¢f| CP? and a bit of integer linear algebra suffice to
produce a basis foH, (X, Z) relative to which the matrix fo€) x is the identity
(page 347 of [34]).

Donaldson’s 1983 Theorem was the first gauge-theoretic assault on a problem in
the topology of smooth four-manifolds. Subsequent developments in what came
to be known adDonaldson Theory yielded spectacular results, but at a cost in
labor that seemed to grow exponentially with each new success (we will describe
some of the most basic elements of Donaldson theory in Sections 4 and 8).

A breakthrough occurred in 1993 when Kronheimer and Mrowka isolated the (ap-
parently large) class of four-manifolds of “simple type” and proved that, for these
at least, Donaldson theory had some realistic chance of becoming effectively com-
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putable. At precisely this moment, however, fate (or rather Ed Witten) intervened
and the subject of smooth four-manifold topology took an entirely new turn. This
is the story we would like to tell.

2
_-CP

Collar { ~
“— X

Figure 3. The Cobordism

2. SU(2) Yang-Mills-Higgs Theory on R?

The notion of a “classical gauge theory”, which we have promised to define care-
fully in Section 3, is not adequately motivated by the examples of the preceding
section (which would be classified by physicists as “pure” Yang-Mills theories).
In general, gauge fields are coupled to (i.e., interact with) what we shall call “mat-
ter fields”. For example, electromagnetic field§ (1)-gauge fields) are coupled

to charged particles and, in the original proposal of Yang and Niils SU(2)-

gauge fields interact with nucleons and, at least in the absence of electromagnetic
fields, govern the evolution of their isotopic spin (proton/neutron) state. In this
section we will consider a concrete example which may seem a bit more abstruse,
but which has proven to be very important and which has the added advantage
of being derivable from either purely mathematical considerations (“dimensional
reduction”) or in the manner more familiar to physicists (“field content plus ac-
tion”). We will describe both.

Let us briefly return to the ASD equations & (it is traditional, and will be
convenient in this section, to think in matrix terms so that we now idestif1)
with SU(2) andImH with sp(1) in the manner described in (1.2) and the Remark
following (1.11)). Thus, we have a one-fadn= A;dz! + Aydz? + Agda® +
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Ayda* = A,dz® onR* with eachA,, a smooth map oRt* taking values i (2).
The gauge potential gives rise to a gauge field strengfh = d.4 + 1 [A A]
which, in coordinates, is given by

F= %ﬁaﬁ dz® A da® = % (00 s = 05 Ao + | Aa, Ag| ) d2® naa” (2.1)

Wherea means@/c‘)x The Hodge dual of the field strengﬁa‘ is given by
>)<.7: = 5 % fag dx® A d$ﬂ where*}'ag =3 275 1 €aBys .7'-75 and&ag,y(s is
the totally anti-symmetric Levi-Civita symbol withyo34 = 1. Thus, the ASD
equations (1.20) can be written

. 1 A
Faop = 9 Z Eapys Frs, a,3=1,2,3,4. (2.2)
~,0=1

There are many duplication§ in this Jist of equations (exg+= 3, § = 4 and
a =1, 8 = 2 both reduce toF;, = —F34). Indeed, all of the equations in (2.2)
are easily seen to be contained in

3
= ik Frar 1,5 =1,2,3 (2.3)
k=1

Wheree”k is totaIIy anti- symmetrlc and;»3 = 1 (e.g. Fia = —]—“34 is equivalent

t0 Fio = —e193 Faq = Zk 1 €12k Fia)-

Now, the finite action solutions to (2.3) are just what we have called instantons
onRR4. We wish now to abandon the finite action condition and seek solugibns

to (2.3) that arestatic, i.e., independent of*. With this assumption, (2.1) gives
Fia = O A4 + [Ak, A4] so0 (2.3) becomes

_ 23: Eijk (8kA4 + [Ak,fu} ) . i,j=1,23. (2.4)
k=1

Let us now “reduce t®3” as follows: Fix (arbitrarily) some value} of z* and
consider the submanifol®® x {z3} of R* (henceforth written simplyR3). For
i=1,2,3weletA; = A;|R? and then defined = A;dz! + Ayda? + Asda® =
A;dz' onR3. The gauge potentiad on R? has a corresponding field strength
F = LF;da’ A dad, with componentsF;; = F;;|R®. Note thatA, does not
enter into either the potential or the field strengthRoh However, if we define
P R? — su(2) by

) = Ay R?
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then the static ASD equations (2.4), when restricteRtpbecome

3
Z eij (Ok + AR, 9] ), 4,5 =1,2,3 (2.5)
or, in even more detalil,

k=1

These we regard as field equations fori(2)-gauge potentiald coupled to a
matter fieldyy whose wavefunction takes valuessm(2). Somewhat more pre-
cisely, A corresponds to a connection on the trividll’ (2)-bundle overR? and
1 is a section of the (likewise trivial) adjoint bundle. Th81) + [Az, ¢])dx”
is the corresponding covariant exterior derivata'irézp of ¢ and the sum on the
right-hand side of (2.6) gives the components of BieHodge dual ofdAy.
Consequently, (2.6) can be written

F = —xd4y. (2.7)

In whatever form they are written these are called Bugomolny monopole
equations (beginning instead with the self-dual equation® = F on R* we
would have arrived aFF = *d“4¢ and these go by the same name). Before ex-
plaining the origin of the “monopole” terminology we will describe another path
leading to the same set of equations.

We begin with the underlying base manifdid with its usual Riemannian metric
and orientation and with standard coordinatész? andz?. Consider the trivial
SU(2)-bundle

SU(2) — R x SU(2) — R?

overR? (where the right action o§U(2) onR3 x SU(2) being given by - g =
(z,h) - g = (x, hg)). Thus, we have a natural global section

s:R3 — R3 x SU(2)
s(z) = (z,¢€)

wheree = (1) (1) is the identity element a§U (2). Any other global section

is then of the form
s9:R3 — R3 x SU(2)
s9(z) = s(x) g(z) = (v,g())
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for some smooth map
g: R — SU(2)

which we identify with a global gauge transformation on the bundle. A connection
onR3 x SU(2) is ansu(2)-valued one-formw onRR? x SU(2). Since the bundle
is trivial, w is uniquely determined by the gauge potential

A =s*w.

Moreover, anyu(2)-valued one-form ofiR? is the pullback by of some connec-
tion onR? x SU(2) so we may restrict our attention entirely to globally defined
gauge potentialsd on R3. A gauge transformatiop : R3 — SU(2) gives a new
gauge representation

AV = (9 w=g 1 Ag+ g ldg

wheredg is the entrywise exterior derivative gf: R? — SU(2). The curvature
Q = dw + 3[w,w] is likewise determined by the field streng#i = s*Q =
dA+ 3[A, A] and a gauge transformation gives

FI=(s)"Q=g1Fyg.

We wish to construct a field theory in which one of the fields isSaf(2)-gauge
potential.A onR? as described above and the other, to whitivill be coupled, is

a so called “Higgs field”. Now, in general, a “matter field”, when quantized, rep-
resents a particle. The matter field itself is represented by a wavefunction which
takes values in some vector space and which transforms under a gauge transfor-
mation by some representation of the structure group (in our£&%e)) on that

vector space (we will expand upon these points in Section 3). More precisely,
the matter field is a section of the vector bundle associated to the given principal
bundle by some representation of the structure group on a vector space. When the
vector space is the Lie algebra of the structure group and the representation is the
adjoint representation (so that the vector bundle is the adjoint bundle) the matter
field is called a Higgs field.

The adjoint bundle of the trivial bundl§U (2) — R3 x SU(2) — R3 is like-
wise trivial and any section of it can be identified with a smooth nrapRR? x
SU(2) — su(2) that is equivariant, i.e., satisfies
V(p-g)=g " -¥(p)
v ((Ji,h) ' g) = g_l - (.T,h)
U (2,hg) = g~ "W (x,h) g.
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Since the bundle is trivial is uniquely determined by
P=8"V=Vos
¥ (x) =V (z,e€)

(becausel (z,g) = ¥((x,e)-g) = g9 (x)g) and we will focus our attention on
1. A gauge transformatiop : R® — SU(2) gives another gauge representation

09 = (%) 50 = g g

of the Higgs field.

We now write down an action (analogous to the Yang-Mills action (1.17)) the
Euler-Lagrange equations of which will govern the interactiondoénd. The
respective integrand will contain three terms. The first is\taag-Mills term
—tr(F A *F) just as in (1.17). The second is called timteraction term

—tr (dAw A *dAz/;> , whered“}y) = di)+[.A, ] is the covariant exterior deriva-
tive of ¢ (physicists would say that this term reflects the principle of minimal cou-
pling). Finally, there is a term intended to describe the intesdddinter action
energy of the matter field). The precise form of this term must be postulated by
choosing some non-negative, smooth, invariant, real-valued funttion su(2)

and composing withy. We takel” to be the familiar “Mexican hat” potential, i.e.,

Visu@) —R V(A= % (HA”2 . 1)2

where) > 0 is a constant anfA||> = (A4, A) = —21tr(A?), as in the Remark
following (1.11). We will writeV o ¢ asV () = 3 (||¢||* — 1) and think of it
as a 0-form orR? so that its Hodge dual i = ([|[|> — 1)> = 4(||¢[|> — 1)?vol.
With this we can write down the so-callé&thng-Mills-Higgs action onR3:

YMH (A, ) :/<—tr(a—' A *F) — tr <dA¢ A *d%) n % % (||1/)\|2 - 1)2>

R?y

_ %/ <||.7—'H2+Hd“41/)H2+% (\|¢||2—1)2>vo|. (2.8)
R3

This action is gauge invariant, i.e4 — A9, F — F9 andy — 9 leaves the
integral unchanged (we have already seenftat= ¢~ 1. Ag andy9 = g~ 1)g o

| F9)1? = || F||> and||49||? = ||| and a short calculation gives

'yt = g7 (ahe) g
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as well). We will generally be interested onlyfimite action field configurations
(A, 1), i.e., those for which (2.8) is finite. Now, the requirement that the action
YMH(A, ) < o implies that, ag|z|| — oo in R3, ||A|| — 0, |d4v| — 0
and, at least i\ # 0,

[ — 1. (2.9)

Indeed, it is shown in22| that each of these limits is achieved uniformly on
R3. Now, when)X = 0 there is no reason to suppose that finite action im-
plies [[¢| — 1 as|z| — oo. However, it is also shown if22] that, for
stationary configurations (i.e., those satisfying the Euler-Lagrange equations for
YMH(A,)) one loses nothing by restricting attention to those that satisfy (2.9),
even whenx = 0. More precisely, we have the following: For any finite ac-
tion critical point of YMH (A, ) with A = 0 there exists a constart > 0
such that|[)|| — ¢ uniformly as|jz|| — oco. If ¢ = 0, then (A, 1) is triv-

ial. If ¢ # 0, then one can rescale to obtain a new configuratidh ') given

by (A'(z),v'(z)) = (¢ L A(c tz), c71(c~tr)). Then(A',¢') is also a finite
action critical point forY MH(.A, ) with A = 0 and it satisfieg|¢/’|| — 1 uni-
formly as||z|| — oc.

We intend to focus our attention on a certain limiting case of the Yang-Mills-Higgs
action (that in which\ — 0 in (2.8)), but we retain a “virtual” self-interaction in
the form of the boundary condition (2.9)). First, however, we describe an impor-
tant general feature of the full action (2.8). Notice that it has some obvious abso-
lute minima. Indeedy MH(.A, ), which is non-negative, is zero whe4 = 0
andiy = 1) is a constant isu(2) with |[¢0|| = 1. Such an absolute minimum

is regarded as ground state of the system. The corresponding quantum state of
lowest energy is called wacuum state and physicists perform perturbation cal-
culations about such vacuum states. The point here is that these ground states are
not unique. A specific choice af, is said tobreak the symmetry from SU (2) to
U(1). The rationale behind the terminology is as follows: A gauge transformation
g : R3 — SU(2) acts omy by 1) — 19 = g~l4pg. If the ground state is to be
gauge invariant, then we must hayelyyg = vy and this occurs only i is in

the isotropy subgroup (stabilizer) @, in SU(2) under the adjoint action. We
claim that this isotropy subgroup is a copy©@f1). Briefly, the argument is as
follows. LetH = {g € SU(2) : g~ '10g = 10} be the isotropy subgroup. Obvi-
ously,—g € H ifand only if g € H. Now, identifying SU(2)/ + e with SO(3)
(page 374 of [34]) andu(2) with R3, the adjoint action is just the natural action
of SO(3) onR3, i.e., rotation (see the Appendix of [34]). This natural action of
SO(3) is transitive orS? and the isotropy subgroup @f, € S?is H' = H/ +e.
SinceSO(3) is compact,SO(3)/H’ is homeomorphic t&? (Theorem 1.6.6 of
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[34]). Thus,(SU(2)/ +e)/(H/ +e) = S?soSU(2)/H = S?. Consequently[

is one-dimensional. Being closed $t/(2), H is also compact. Now, a compact,
one-dimensional smooth manifold is a disjoint union of circles (Section 5.11 of
[33]) so, being a subgroup &fU (2), H must be a single copy of the cirdé(1).
What we have just witnessed is an instance of the phenomenspoofaneous
symmetry breaking in which a field theory with an exact symmetry groap
gives rise to ground states that are invariant only under some proper subigroup
of G.

With this digression behind us we return to the limiting case of the Yang-Mills-
Higgs action described above. Thus, we consider the action

A(A, ) = / <— tr (FA+F) — tr (dA@ZJ A *d““u)))

R?y

= % /( |F|1* + HdAwHQ)VOI

R3
and take as our configuration space

(2.10)

C= {(A,w) s A(AY) < oo, lim sup |1—||¢|| = 0} . (2.11)

R—00 ||z >R

The Euler-Lagrange equations for the actibqA, i) are theYang-Mills-Higgs

equations
{ «dA & F = [d%,w]

#dA «dAyY =0
and we seek solutions to thesedn Any configuration(.A, ¢) satisfying (2.12)
also satisfies an analogue of the Bianchi identity (1.19) which we write as

{ dAF =0
(2.13)

dAdAY = [F, ).

(2.12)

Now, just as in the case of the Yang-Mills action, one can find a simpler set of first
order equations whose solutions give absolute minima for the adtioh, ) in
(2.10) and so, in particular, satisfy the Yang-Mills-Higgs equations (2.12). To see
how these arise we reason as follows. B both F and *dAw are two-forms

and the Hodge dual is an isometry s d44||2 = ||d44||2. Now observe that

IF 2+ a2 = |72+ || +dd |2 = |F +xd 2|2 - 2(F, xdAy) (2.14)
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and similarly,
1|2 + [[dAp)1? = | F — +d 4|2 + 2(F, xd ).

It follows that A(.A4, ) will achieve its absolute minimum value (i.e., 0) when
F = £« dAzp and these we recognize as the Bogomolny monopole equations
introduced by quite different means earlier.

The appellation “monopole” derives from a certain exact solutiah te —sxd“4y
discovered by t'Hooft, Polyakov, Prasad and Sommerfeld. In spherical coor-
dinates onR? this solution is given byd = AT + A%T? + A3T3, ¢ =
PITY + 2T? 4+ 43T (see the Remark following (1.11)), where

Al=__ P (sin @d¢ + cos € sin ¢dh)
sinh p
A? = — p (cos 6d¢ — sin € sin ¢dh)
sinh p
A3 = — (1 —cos ¢) df
Pl =4 =0
3 1
¥ =cothp — —
p

(the derivation of this solution is carried out in considerable detail on pages 141-
150 of [35]). Notice that, despite appearances to the contrary, this configuration
(A, ) is a globally defined, smooth object on all®? (the component functions
are actually real analytic everywhere, evemp at 0). Furthermore, when viewed
from a distance (i.e., gs— o0) the Higgs field approaches the constant valye
(sincecoth p — % — 1) and the first two components of approach zero (since

p/sinh p — 0). On the other hand4? does not depend gmso it remains fixed at
—(1—cos ¢)df. Thus, for largep, A is effectively— (1 — cos ¢)dd T3. Under the
isomorphism ofsu(2) onto ImH described in the Remark following (1.11), this
becomes—g(l — cos ¢)df. Since the span df in ImH is just a copy oflmC we
recognize here just the potential for a Dirac monople (see the Remark following
(1.24)). Thus, the t'Hooft-Polyakov-Prasad-Sommerfeld monopole is a smooth
field configuration ofSU (2) Yang-Mills-Higgs theory which “looks like” a Dirac
monopole from afar. The most interesting thing about the appearance of the Dirac
monopole here is that it was entirely voluntary. In classical electromagnetic theory
magnetic monopoles are, but certainly need not be, inserted by hand, whereas in
SU(2) Yang-Mills-Higgs theory, they appear of their own accord (we return to
this point at the end of the section). We remark that the same potehiaired
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with the Higgs field—¢ gives a solution to the “other” Bogomolny monopole
equationF = xd4.

Thus motivated we will refer to an4, ) € C satisfying (2.7) as anonopole
and will now associate with it a “monopole number”. Notice thaFif= —xd“4,
then (2.14) becomesF |2 + ||d4v||2 = —2(F, *d“44) so, for monopoles,

A(A ) = — / (F, xdAy)vol = / 2tr<.7:'/\**dA1/))

R3 R3
- /2tr<f/\d"41/1> - /Tr(]—'/\dAz/z>
R3 R3

where we now use T& 2 tr. Computing this integral for the t'Hooft-Polyakov-
Prasad-Sommerfeld monopole gives a valuémf We normalize the action and
define themonopole number of any(\A, ¢) € C satisfying (2.7) by

N(A, ) = / Tr .7-'/\ dAw) (2.15)

Like the instanton number introduced in Section 1, this monopole number is, in
fact, an integer and one can see this in at least two different ways. Perhaps the
easiest to describe is as follows (consult [35] for details on the rest that we have to
say aboutN (A, 1)): Since||y|| — 1 as|jz|| — oo in R3 there exists aRy > 0

such that|z| > R, implies |y(z)| > 3. For|z|| > Ry we can therefore define

W (2) = ()] ()]

and, for anyR > Ry,

Ur = PISk
whereS% = {z € R?;||z| = R}. Now, ¢z can be regarded as a map fr&thto
S? and so determines an elemént;] of the homotopy groupr,(S?). Moreover,
sincey is smooth or|zz|| > Ry, its restrictions to any two such spheres are clearly
homotopic sdi'z] is independent oft > R, and we will denote it SIS
(physicists would refer t@boo as the restriction of/; to the “sphere at infinity”).
Now, m(S?) = Z and an isomorphism is provided by the Brouwer degree. One
can show that the monopole numhbE(.A, 1) is equal to the degree of an/S/R,
R > Ry, written

N(A, ) = deg (v ) (2.16)
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and so, in particular, is an integer. Monopoles fall into distinct topological types
according to the homotopy type of the (normalized) Higgs field on large spheres
(these topological types are actually the connected components of the space of
solutions to (2.7) irC which are sometimes referred totapological sectorsin
physics). This is, of course, entirely analogous to our earlier description of the
instanton number in terms of the homotopy type of a gauge transformation on
large (three-) spheres.

We will conclude by briefly sketching a description of the monopole number as
the Chern number of & (1)-bundle overS? obtained by breaking th€U (2)
symmetry toU (1) through the selection of some ground stage Fix someR >

Ry as aboves) is the pullbacks* ¥ by the standard sectionof SU(2) — R? x
SU(2) — R3 of an equivariant ma@ : R3 x SU(2) — su(2). The restriction of

this trivial SU (2)-bundle oveiR? to S% is the trivial SU(2)-bundle oveS%:

SU (2) — S% x SU (2) = S%. (2.17)
Now let Wy = W|S% x SU(2) and¥y = ||Ug||~'Wg. Both are equivariant and
U takes values ifS2,,) = {A € su(2);|A|*> = 1}. Furthermoreyp, is the

pullback of U by the standard section of the trivial bundle (2.17). Th,fzys,is
the standard gauge representation of a Higgs field on the bundle (2.17).

Now break the symmetry, i.e., select some ground stgte Siu@). The isotropy
subgroup ofiy (with respect to the adjoint action &fU (2) on su(2)) is, as we
have seen, a copy d@f (1) and we will denote it simplyU(1). Now, one can
show that\i'j%l(wo) is a submanifold 0f% x SU(2) which is invariant under the
action ofU (1) and that, moreover, the restrictionoto this submanifold gives a
principal U (1)-bundle oveiS%:

U s 1 7"|‘i’1;1(¢0) 2

(1) = Uy () —— Sp. (2.18)

The U(1)-bundle (2.18) is called a reduction of the structure group of (2.17) to
U(1). Now, U(1)-bundles ovef? are classified by their first Chern number (the
integral overS? of the first Chern class) which is always an integer. The result
of interest to us here is that by choosing an appropriate connection on (2.18) and
writing down the formula for the first Chern number using this connection one
arrives at the expression (2.15) for the monopole numbéiot)).

We will conclude our discussion ¢fU (2)-monopoles by very briefly discussing

an issue which must surely be troubling the reader. In classical electromagnetic
theory magnetic monopoles must be inserted by hand. One of Maxwell’'s equa-
tions explicitly forbids the existence of “magnetic charges” and, in order to un-
derstand the consequences of their possible existence, Dirac [9] was forced to
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abandon (or, rather, modify) this equation and postulate the existence of a mag-
netic analogue of the electric charge. Certgiin(2)-monopoles “look like” Dirac
monopoles from a distance. One might wonder as to the “source” of their mag-
netic charge.

A naive hint concerning the source of the magnetic charg8(6f2)-monopo-

les can be found in our earlier view of them as static, ASD potential®tn
Recall that any solution to the ASD equationsRhalso satisfies the full Yang-
Mills equationsd“4 « F = 0 and the Bianchi identityl4 7 = 0 and that these

are regarded as a nonabelian generalization of Maxwell's equations. The static
version of Maxwell’'s equations that contains both electric and magnetic charge
densities (p. andp,,,, respectively) is, in appropriate units and®h d x F' = 0,

dF = xp,, andV?y = p,, whereF is the magnetic field two-form and is the
electric potential. Noting thatA F = 0is equivalent to

dF = — |A, 7|

one can view the commutator term as playing the role of a magnetic charge den-
sity. The role of the Higgs fielg (or, more to the point, the boundary condition
ll¥|| — 1 as||z|| — o) is to break the symmetry at large distances fist(2)

down toU(1), thus turning theSU (2) theory into al/ (1), i.e., electromagnetic,
theory.

3. Classical Gauge Theories

Abstracting the salient features of the examples in the preceding sections, we
now propose to enumerate a sequence of basic mathematical ingredients which
together will serve as our working definition otkassical gauge theory.

1) A smooth, oriented, (semi-) Riemannian manifald

Generally, this will be spacgR?), a spacetime (e.g., Minkowski spacetii®é&?),

a Euclidean (“Wick rotated”) version of a spacetime (&), a compactification
of one of these (e.gS* = R* U {o0}), an open submanifold of one of these (e.g.,
R3\{0}), or some homotopy equivalent (e.§2 ~ R3\{0}). The particles and
fields which it is the ultimate goal of gauge theory to describe “liveXin

2) A finite dimensional vector spadé equipped with an inner produgt, )
(positive definite if) is real and Hermitian i’ is complex).
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The particles have wavefunctions that take valuas.iithe choice ol is dictated

by the internal structure of the particle (charge, spin, isospin, etc.) amdiso
called theinternal space. Typical examples ar€ (spin zero charged particles),

C* (Dirac electrons)C? (nucleons), or the Lie algebi@ of some Lie group’
(Higgs fields). From the inner produgt, ) one computes squared norms of
V-valued functions, forms, etc. and from these formulates action principles that
govern the dynamics (see 8) below).

3) A matrix Lie groupG and a representatigh: G — GL(V) of G onV that
is orthogonal with respect to the inner product) i.e.,

(p(g) (v),p(9) (w)) = (v,w)

forall g € G andv,w € V.

G will generally be one of the classical groups (e.g.(1), SU(2), SO(4),
SL(2,C), etc.) or a product of these. In generél,describes a symmetry of
the physical system under consideration, whiléescribes the particular type
of invariance that a particle’s wavefunction exhibits under this symmetry. More
specifically, the Lie groug- plays the following dual roles

a) The inner product , ) on)V determines a class of orthonormal bases, or
frames, inV and these are related by the elementgzofi.e., if P is the
collection of all such frames, then there is a (right) actiod-ain P which
sends any frame € P to a new framey - g € P. By fixing (arbitrarily)
some frame at the outset one can therefore identify the elemettsvith
the frames.

b) G also acts oV (on the left) via the representatipnv — p(g)(v) = g-v)
and so acts on the wavefunction at each pointz)(f) is a value of the
wavefunction described relative to the frame= P, then its description
relative to the frame - g is

vp-g)=g"¥(p). (3.1)

The right action ofG on P transforms frames in the internal space and the left
action of G on V describes the corresponding transformation law for the wave-
function.

4) A smooth principalG-bundleG — P - X overX.
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Typical examples are trivial bundles (e.§/(2) — R* x SU(2) — R%*) and
Hopf bundles (e.gy/(1) — S? — S? andSU(2) — ST — S*). Ateachr € X
the fiberr—!(z) is a copy ofG, thought of as the set of all frames in the internal
space atr € X. A local sections : U — «~}(U) C P (U open inX and
mo s = idy) is a smooth selection of an internal frame at each poiit oflative

to which wavefunctions can be describedldnSuch a local section is also called
a localgauge.

5) A connectionw onG — P - X with curvatureQ.

As motivation for 5) we recall that, in classical electrodynamics, an electromag-
netic field is generally modeled by a two-forf defined on space or spacetime
(i.e., onX). The corresponding potential is a one-fodnwith FF = dA. F'is
globally defined onX, but, in general, potentials are only locally defined so that a
complete description of" will require a number of potentials with domains that
cover X. In nonabelian gauge theories even the field strengths are, in general,
only locally defined onX. However, by virtue of the manner in which these lo-
cally defined forms onX are related on the intersections of their domains (the
local gauge transformation laws) one can piece them together into globally de-
fined forms on the bundle spade of some principal bundle (characterized by
transition functions that are simply read off from the transformation laws). These
are the connectiow and its curvaturé?.

On the other hand, givela and(2 one retrieves the physical potentials and fields
by choosing a local gauge/sectien U — P and pulling back toX : A = s*w

is thelocal gauge potential andF = s*Q is thelocal gauge field strength (both

in gauges). Another local gauge’ : U’ — P with U N U’ = () will be related to
sby s'(z) = s(z) - g(x), whereg : U NU" — G and- is the right action in the
principal bundle. One generally write$ rather thats’ to explicitly display the
so-calledtransition function g. The corresponding potential and field strength
are written A9 = (s9)*w andF9 = (s9)*Q and are given by

AV =gt Ag+ g dg (3.2)
and
Fi=glFg (3.3)

onU NU’. The change of gauge— s9 = s - g is alocal gauge transformation

and can be identified with the mgp UNU’ — G. Thegauge principle, orprin-

ciple of local gauge invariance, is a cornerstone of modern theoretical physics
and asserts that such a gauge transformation alters only the appearance and not
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the physics of a situation, e.g., th& and F7 represent the same potential and
field strength asd andF, only written in different internal coordinates.

Remark. Before recording the next itemin our list of ingredients for a classical
gauge theory we recall several facts from geometry (see Section 5.7 of [34] for
more details). Given a principal G-bundle G — P - X and a left action of G
on some manifold F one can construct a fiber bundle P x F =% X associated
to the principal bundle by the left action whose typical fiber is F'. In particular, if
F isa vector space V and the left action of G on V arises from a representation
p: G — GL(V) of G onV one obtains an associated vector bundle, usually
written P x . Atypical exampleistheadjoint bundleadP = Px,qG, whereVis
theLiealgebra G of the structure group G and p = adisthe adjoint representation
of Gon G (ad(g)(A) = gAg~!). Wewill need to use the fact (page 356 of [34])
that there are two equivalent ways of viewing a section of an associated bundle
PxqgF,i.e,ether asamapy from X to P x g F for which 7 ot isthe identity,
or asamap « from P to F that is equivariant (v)(p - g) = g~! -4(p)). The latter
view and (3.1) should motivate

6) Aglobal section) of the vector bundlé’x ;) associated t6&/ — P X
by the representation: G — GL(V) (or, equivalently, an equivariant map
P —V).

Particles coupled to (i.e., experiencing the effects of) the gauge field determined
by w have locally defined wavefunctions taking valueslirthat are obtained

by solving field equations (see 8) below) that involve the local potendalsA
change of gauge changes the wavefunction by the representafiee (3.1)) so
these local wavefunctions piece together into a globally defined object called a
matter field that can be described in either of the two equivalent ways referred to
in 6).

Remark. It is entirely possible that more than one matter field is coupled to
the gauge field, but we will phrase our basic scheme for classical gauge theories
assuming that there is just one and leave it to the reader to add on more terms if
necessary.

7) A smooth, non-negative, real-valued functibh: ¥V — R onV that is
invariant under the action @ onV (V(g - v) = V(v)).

V is regarded as a potential function witho ¢y = V' (¢) describing theself-
interaction energy of the matter fieldy. Typically, this will depend only on
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[v]> = (v,0), €.9.,3(||[v][* — 1)?, or $m|v||?, whereX andm are non-negative

constants.

8) An action (energy) functionall(w, v), the stationary points of which are
the physically significant field configuratiolie, v/). The Euler-Langrange
equations ford(w, 1) are thefield equations (or, equations of motion) for
the classical gauge theory.

When X is Riemannian (as it is in cases of topological interest) one can generally
expect an action of the form

Aw) = [(IFl? +clav +avm)v @

X

wherec is some normalizing constant; andc, are “coupling constants’F,
is the globally defined two-form oX with values in the adjoint bundled(P)
which locally reduces to the gauge field strengths= s*€2, d“+ is the covariant
exterior derivative of the matter field and the norms arise from the metric &n
the inner product oY and some ad-invariant inner product @n

We have already seen several examples of classical gauge theories that are of par-
ticular interest to us because of the topological nature of certain solutions to their
field equations. Later (Sections 5 and 7) we will see other, rather more compli-
cated examples whose impact on topology and geometry has been much more
profound. Of course, most examples of interest in physics are not topological in
nature at all, but we will nevertheless pause briefly to describe one of the simplest
of these (more details and still more examples are to be found in Chapter 2 of
[35]). The situation we intend to model (at the classical level) is the interaction of
an electromagnetic field with a charged, spin zero particle (exg--meson).

Remark. Certain technical complications, which we do not wish to become in-
volved in, arise for more familiar charged particles like the electron and proton.
The reason is that these have spin % and so, according to Dirac, have wave-
functions that transform under a certain representation of SL(2, C), whereas the
electromagnetic field to which it is coupled isa U (1)-gauge theory. To fit thisin-
teraction into the general framework we have described would require “ splicing”

aU(1)-bundle and an SL(2, C)-bundle together into asingle U(1) x SL(2,C)-
bundle on which both objects may be thought to live. This can be done and the
process is carried out in more detail in Section 2.4 of [35].
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The arena within which electrodynamics is dondlimkowski spacetime R'3.
As a differentiable manifol®®? is justR4, but, rather than the usual Rieman-
nian metric onR* we introduce the semi-Riemannidhinkowski metric given,
relative to standard coordinate8, !, 22, 2> by

Napdz® ® dab

where
1, a=p8=0
TNapg = _17 a:ﬁ:17273
0, a#p0.

One thinks of the elements &' asevents whose standard coordinates are the
time (2°) and spatialz!, 22, 23) coordinates by which the event is identified by
some fixed, but arbitrary inertial observer. The entire history of a (point) object
can then be identified with a continuous sequence of events (i.e., a cuiRé&y in
called itsworldline.

Remark. We will denote by 7 the 4 x 4 matrix (n.5) and, even though ! is
actually equal to n, we will write n~' = (n°?) to facilitate use of the Einstein
summation convention.

Now we let X denote some open submanifold®¥? (the charges creating our
electromagnetic field live ilR1:> and we intend to carve out their worldlines and
consider only the source free Maxwell equations on the resulting open submani-
fold of R':3). Traditionally, an electromagnetic field ot is modeled by a glob-
ally defined, real-valued two-forr’ on X that satisfies theource free M axwell
equations

dF =0 and d«F =0

wherex is the Hodge star o' determined by the usual orientation &f>
asR* and the Minkowski metric (specifically, i’ = 1F,3dz® A dz”, then
«F = 1xFopda® NdaP, wherexF,3 = a7 andF?° = #7190 F,,). An
electromagnetic potential fdF' is a one-formA (generally only locally defined)
that satisfieslA = F on its domain. In the gauge-theoretic formulation we
propose now these will both acquire a (trivial) Lie-algebra factor-ofi.e., we
will deal instead withF = —iF and. A = —iA).

Now we build the classical gauge theory model by introducing items 1) X8).

as we have said, will be an open submanifoldRf, with the induced orientation
and semi-Riemannian metric. Since the particle we have in mind is charged and
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has spin zero, physics dictates that its wavefunction should have one complex
component so we take to be the (two-dimensional, real) vector spétwith the
usual positive definite inner product ), which can be written

1
(21,22) = 3 (2122 + Z122) - (3.5)

The matrix Lie groupG of 3) is taken to bé/(1). Now, every irreducible repre-
sentation ofU/ (1) onC is of the form

pn U (1) — GL(C)

p(9)(z) = g-2=4g"z
for some integern and all of these are easily seen to be orthogonal with respect
to (, ). Since electric charge is quantized we can measure it in multiples of the
electron’s charge, i.e., by an integer. We identify the (3.6) with the charge of
the spin zero particle we have under consideration.
Now letU(1) — P - X be a principal’(1)-bundle overX andw a connec-
tion on the bundle with curvatur® = dw (sincelU (1) is abelian, all brackets are
zero). For any section: U — P we can write the corresponding gauge potential

A and field strengtt# (which areu(1) = ImC-valued) in terms of real-valued
forms A and F', respectively, as follows:

A=s"w=A,dx" = —iA,dz" = —iA. (3.7)
1 1
F=5"Q=;Fasda® A dz’ = —5iFapdz® A daf = —iF . (3.8)
Fop = 0aAp — 0gAn = —1 (00 Ag — 95Aa) -

If s : U' — P is another section witl/ N U’ # () and if, onU N U’, s’ =
s-g, whereg : UNU" — U(1) is the local gauge transformation, then the
corresponding potential and field strength are given by

AV =gt Ag+ g ldg=A+gdyg

(3.6)

and
Fi=g'Fg=F
onU N U’ (again we use the fact that(1) is abelian). Notice thaF? = F is
the reason that field strengths in abelian gauge theories are globally defined on the
base manifoldX.

A matter field (item 6)) can be identified with a map. P — C that is equivari-
ant, i.e., satisfies

Y(p-g)=g " (p)=g " (p) (3.9)
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forallp € Pandallg € U(1), or, equivalently, with the corresponding section
of the vector bundle” x,, C (we will use the same symbal for both). As a
potential function (item 7)) we take

V:C—R
(3.10)
1 11
Vi(z) = §m<z, z) = gmez = §m|z|

wherem > 0 is a constant (ultimately identified with the mass of the particle).
Sincep,, is orthogonal with respect to, ), V' is invariant under the action éf(1)
onC, as required. Finally, we must specify an action (energy) functional (item 8)).

Remark. Since the metric on X is now semi-Riemannian, inner products of
forms need no longer be positive definite and we will refrain from writing norms
aswedidin (3.4). Snce we have thusfar dealt only with su(2) (i.e., Im[H)-valued
forms we briefly recall that if o and 3 are two p-forms with values in some vector
space with an inner product, then one defines the (pointwise) inner product of «
and 3 asfollows: Sdlect abasis {7} and write a« = T, and 8 = B'T}, where
a® and 3° are real-valued p-forms. These real-valued forms have (pointwise)
inner products (., 3) defined by a® A 8% = (a®, B°)vol and we define (ax, 3)
by
<a7 ,3) = <aaTa7 IBbTb> = <aa7 IBb> <Ta7 Tb>

(we rely upon the reader to decide which inner product is intended by looking at
what is inside). The result is independent of the choice of {7,}. Applying this

to the ImC-valued two-form F of (3.8) with the standard inner product (3.5) on
ImC reveals that

1 1
FAF =—(F Fjvol = 5 wpFPvol = -3 waFPvol . (3.11)

Smilarly, for any C-valued p-form p one finds, again using the standard inner
product (3.5) on C and writing i = ! + p?i, that

A= pt Aspt + p? A sp® = (u,p) vol (3.12)

Finally, we remark that the switch to Minkowski spacetime necessitates a sign
change in the Yang-Mills term F A «JF of the action in order to ensure that the
energy of the field (which isrelated to its spatial integrals) is positive.

Now, as was the case féift/ (2) Yang-Mills-Higgs theory, our action will contain
a Yang-Mills term, an interaction term and a potential term. Only the interaction
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term remains to be discussed and it, once again, is determined by “minimal cou-
pling”. In somewhat more detail, let us (temporarily) think of the matter fieks
an equivarianC-valued map orP. Then the covariant exterior derivatid®’ ¢ is
justde acting onw-horizontal parts of tangent vectors. As a section of the vector
bundle P x,, C, ¢ is determined by the pullbacks of the equivariant map and
the corresponding covariant exterior derivative is determined by the pullbacks of
d“. These are given locally oK and in standard coordinates by

(0 + nAy) Yda® = (0, — inAy) Ypda® (3.13)

where A = A,dx* = —iA,dz® is the corresponding gauge potential (we are
thinking of the matter field as a section now and so wyiteather thans*y =
1 0 s). Now, (3.12) gives

d¥y A *d@vp = (d¥1p, d¥e) val
which, when written out locally in coordinates with (3.13) yields
(d¥9,d“Y) = (Dot +nAat)) (0°¢ — nAY)
= (0at) — inAat) (0% + iInA%Y)
where A% = % Ag, A* = n*P Az ando® = n*P9,.
With this we can write down a proposed action for our system consisting of a

scalar field of mass: and charge: coupled to an electromagnetic field deter-
mined by the local gauge potentidl = A,dz* = —iA,dz“ as

Aw, ) = %/(T/\*.’F+d“’¢/\*d‘”¢+m* |¢|2)
X

|
_ /<_1Faﬁpaﬁ (3.15)
X

(3.14)

1 - . 1
+§ (0at) — inAy1)) (8“1/) + inA%Zz) + 5™ |1/)|2> vol.
The corresponding Euler-Lagrange equations are

(0n — inAy) (0% — iNAY) Y+ m2h =0 (3.16)
d«F =0 (3.17)

wherex denotes the Minkowski spacetime Hodge star. SiacE is the pullback
of a curvature form it satisfies the Bianchi identity and this gives

dF = 0. (3.18)
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The last two equations are just the sourcefree Maxwell equations, while (3.16) is
theKlein-Gordon equation coupling our scalar field to the electromagnetic field.

4. The Zero-Dimensional Donaldson | nvariant

We have seen in Section 1 that pure Yang-Mills theory, which arose from attempts
by physicists to understand elementary particles, has deep consequences in differ-
ential topology (Donaldson’s 1983 Theorem). Coupling a gauge field to matter
fields, as inSU(2) Yang-Mills-Higgs theory, also yields some rather tantalizing
connections with topology, as we saw in Section 2. This is, however, just the be-
ginning of our story. From 1983 to 1994 the study of smooth four-manifolds was
dominated by the ideas of Simon Donaldson who showed how to extend the tech-
niques behind his theorem on intersection forms to construct remarkably sensitive
differential topological invariants for such manifolds (we describe the simplest of
these in this section). In 1988, Witten [46], prompted by Atiyah, produced a clas-
sical gauge theory in the sense of Section 3 which, upon quantization, was found
to contain certain observables whose expectation values were precisely these Don-
aldson invariants (the simplest of these invariants is the partition function of the
guantum field theory and we will “derive” it in Section 5). This construction of
Witten’s was a remarkable achievement and provided the most direct sort of link
between topology and physics. However, the most extraordinary aspect of all of
this did not emerge until the Fall of 1994 when his then recent work with Seiberg
on supersymmetric gauge theories led Witten [48] to conjecture that all of the
topological information contained in the Donaldson invariants could be extracted
also from the vastly simpler set of invariants now known as Seiberg-Witten invari-
ants (at least for a certain large class of four-manifolds). This part of the story will
be related in Sections 7 and 8.

We begin our journey down this road by outlining the construction of the so-called
zero-dimensional Donaldson invariant. Throughout this seciowill denote

a compact, simply connected, oriented, smooth four-manifold (when the need
arises somewhat later we will recall the definitiorbgf B) and impose additional
assumptions regarding it). Eves{/(2)-bundleSU(2) — P - B over B has

a second Chern numbey(P)[B] € Z which can be written as

1
a(P) B = o / tr (Fo A Fo) 4.1)
B
wherew is any connection on the bundle ai#d,, is its curvature (thought of

as a two-form onB with values in the adjoint bundled(P)). Such bundles are
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characterized up to equivalence by this integer and we shall denote by
SU(2) — P, =% B

the bundle withey(P;)[B] = k. Shortly we will explain why we are interested
only in those bundles with > 0. C(P;;) will denote the set of all connection one-
forms onP;, andG(P;) is thegauge group of all (global) gauge transfor mations

of Py (diffeomorphismsf of P, onto itself satisfyingry o f = mp andf(p-g) =
f(p)-gforallp € P,andg € SU(2)). G(Px) acts onC(P) on the right by
pullback (w — w - f = f*w). Two connectionsv,w’ € C(P;) are said to be
gauge equivalent if there is anf € G(P) such thaty’ = f*w and we will denote
by [w] the gauge equivalence classwf The set of all such gauge equivalence
classes is called thmoduli space of connections orP, and written

B(P) =C(F) /G (Pr) = {lw];w e C(P)}.

It is this moduli space that we wish to study. Unfortunately, it has no reasonable

mathematical structure in the smooth context in which we have just introduced

it so one must replace the smooth objects just defined with appropriate Sobolev
completions. This will require that some of the definitions be recast in other, but

equivalent forms.

Remark. Let us briefly recall a convenient means of defining Sobolev comple-
tions for a space of sections of a vector bundle. Begin with a compact Lie group
G and a principal G-bundle G — P -~ X over some compact, oriented man-
ifold X. Let V be a finite-dimensional real vector space with a positive-definite
inner product and p : G — GL(V) an orthogonal representation of G on ). Let
E = P x,V bethe associated vector bundle (any vector bundle over X can be
represented in thisway). Let Q¢(X, E) bethe space of i-forms on X with valuesin
E. Inparticular, Q°(X, E) isthe space of sections of £. Choosing a Riemannian
metric g on X one obtains natural inner products on each (X, E). Choosing a
connection w on P induces covariant exterior differentiation operators

0 x,B) ¥ ol (x,B) L o2x, ) (4.2)

Now suppose ¢ € Q°(X, E). For eachm = 0, 1,2, ... one defines the Sobolev
m-norm ||£]|,,, of £ by

€2, = [ l@=e - o) (@) vo

Jj=0 X
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where vol isthe metric volumeformof g. Thisis, indeed, anormon Q°(X, E) and
different choices of the Riemannian metric g, the connection w and theinner prod-
uct on V give rise to equivalent norms. The completion of Q°(X, E) relative to
this normis actually a Hilbert space L2, (E). Sobolev embedding theorems guar-
antee that, by choosing m sufficiently large, one can achieve any desired degree of
smoothness for the elements of L2, (E). More precisely, if  isa non-negative inte-
ger and m > $(dim X )+, then L2, (E) embedsin the space C'(X, E) of I-times
continuously differentiable sections of E. Also note that each Q*(X, E) isitself a
space of sections of some vector bundle and so has Sobolev completions. Before
returning to the main development we remark for future reference that, unlike the
ordinary exterior derivative, the sequence (4.2) of covariant exterior derivatives
is generally not a complex. Indeed, when £ = ad P the composition of the first
two
d¥ 0 d¥ : Q°(X,adP) — Q*(X,adP)

isgiven by
d“od” (-)=[Fu,"]. (4.3)

Now we refashion our earlier definitions in such a way that we can define their
Sobloev completions in the manner described in the above Remark. Denote by
Qi(Py,su(2)) the vector of space offorms on P, with values in the Lie al-
gebrasu(2). Then (P, su(2)) will denote the subspace consisting of all

@ € QH(Pg,su(2)) that aretensorial of type ad, i.e., satisfy the following two
conditions:

1. pishorizontal in the sense that it vanishes whenever one of its arguments
is vertical (tangent to a fiber iR},).

2. Foreacty € SU(2) ohp =g - ¢ = g 'y, whereo, : P, — Py is the
diffeomorphismo,(p) = p - g.

Finally, let Q!(B,adP;) denote the space afforms on B with values in the
adjoint bundlead P;. One easily shows th&t’ , (P, su(2)) andQ(B,ad P;) are
isomorphic (pull back elements 6t (P, su(2)) by sections ofP, and show,
using 1) and 2), that these piece together to give elemeri(df, ad P;,)). For
example, the curvatur® of a connectionw is ansu(2)-valued two-form that is
tensorial of type ad and the corresponding elemer*fB, ad P;,) is what we
have been denoting',,. Our interest in this vector space is accounted for by the
following proposition.
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Proposition 41. C(Py) is an affine space modeled on the vector space
QL (P, su(2)) 2 QY(B,adPy), i.e, if wg isany element of C(P), then

C(Py) = {wo+ ¢ i € Qy(Pr,5u(2)} . (4.4)

The proof is simple since one need only show that indw are inC(Fy), then
w — wy is tensorial of type ad.

Now, eachQi(B,adP;) is a space of sections of a vector bundle and so has
Sobolev completiong? (B, adP;) form = 0,1, 2,3, ... For sufficiently largen

its elements are all continuous sections so the isomorpHiE(B,adPy)

>~ O (Pg,5u(2)) serves to define the Sobolev completiagifs,, m (P, su(2)).
Thus, we can define a Sobolev space of connection8,dor each suchn by

Crn (P) = {wo + ¢ 50 € Qbg,m (Py,5u(2))},

wherewy is any fixed, smooth connection df,. For our purposes it will suffice
to takem = 3.

C3 (Pr) = {wo+ ¢ ;¢ € 0q,3(Pr,5u(2) } . (4.5)

To define Sobolev completions of the gauge grGup.) we consider the nonlin-
ear adjoint bundleAd . This is the fiber bundle associated46’(2) — P, —

B by the adjoint (conjugation) action &fUU (2) on itself. In particular, its typical
fiber is the groupsU (2), although it is not a principal bundle. L&(B, AdFP;)
be the set of smooth sections &flP;. It is a group under pointwise multiplica-
tion in the fibers and is easily seen to be isomorphic to the gitdyg Pr., SU(2))

of smooth mapg : P, — SU(2) that are equivariant, i.e., satisfy ) = g,
or, equivalently,)(p - g) = g~ '9(p)g (here the group operation is pointwise
multiplication inSU (2)). We care about these groups for the following reason.

Proposition 42. G(Py) = Q8 (P, SU(2)) 2 Q°(B, AdFP,).

Once again the proof is simple. A gauge transformafionP, — P, preserves
the fibers ofP, and satisfies (p - g) = f(p) - g so, for eactp € P there is a
uniquey(p) € SU(2) for which f(p) = p - ¢(p) and this defines the appropriate
Y € Q9 4(Px, SU(2)). Now, unfortunately2®(B, AdPy) consists of sections of
a fiber bundle with fibelSU (2) and not a vector bundle so it is not immediately
clear how to define its Sobolev completions. However, if we regdid2) as

a subset of the vector spadéds,o(C) of 2 x 2-complex matrices, theAd Py
embeds in the vector bundle = P, x, M>.2(C), wherep is the representation
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of SU(2) on Msy«2(C) corresponding to conjugation. But the Sobolev spaces
L2 (E) are defined (and' for sufficiently largem) so we can take

G (Pr) = {s € Ly, (E);5(B) C AdPy}

for suchm. It will suffice for our purposes to take: = 4 and we will abuse the
notation somewhat and write

Gs (Py) = Qf (B, AdP) (4.6)

(the Sobolev index fo must be one greater than that tbto ensure a smooth
action ofG onC). One can show ([15] or [30]) th&t,(P) is a Hilbert Lie group
with Lie algebra (tangent space at the identifythat can be identified with

Ty (Ga (Py)) = Q4 (B, adPy) (4.7)
(this is at least believable since the section€B, ad P;) can be exponentiated

pointwise to give elements 61} (B, AdPy)).

Now, the action ofG(FP;) on C(P;) extends to an action df,(Fy) on Cs(Fy)
(same formulas since the elementscf P;) are C! and those ofC3(P;) are
continuous). It is shown in [15] and [30] that this action is actually smooth and
that, ifw € C3(Py) is fixed, the map 0§, (Py) to C3(Fy;) given by

f—w-f
has a derivative at that can be identified with

d¥ : Q% (B,adP,) — QL (B,adP;). (4.8)

Remark. Differential operators extend to bounded operators on Sobolev com-
pletions and this is the meaning of d* here and henceforth.

In particular, the tangent spacewato the orbitw - G4(Py) of w underG,(Py) is
given by
Tw (w - Gy (Py)) =im (d¥) = d (Q3(B,adPy)) - (4.9)

Now, themoduli space
Bs (Py) = Cs3 (Pg) /G4 (Py)

of (Sobolev index 3) connections on P is the set of gauge equivalence classes
of the elements of;3(P;) modulo the action of4(Px). SinceCs(Fy) is an affine
space (by its very definition (4.5)) it has a natural topology and we prdsi¢e;, )
with the quotient topology, which one can show is Hausdorff ([15] or [30]).
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Our next objective is to study the local structure3af P, ). Ideally, we would like
a local manifold structure at ea@h], but we will find that this is possible only for
what are called “irreducible” connections The definition is as follows. For any
w € C3(Py) thestabilizer (orisotropy subgroup) of w is the subgroup stat)
of G4(P) that leavesw fixed, i.e.,

stab(w) = {f € G4 (Pr);w - f =w}.

Any such stabilizer contains the subgrodp of G4(P;) generated byt-1 and

if this is all it contains, i.e., if stafw) = Zo, thenw is said to berreducible;
otherwisew is reducible. The following characterization of reducibility is proved

in [15] and [30] (indeed, these will be our references for everything further we
have to say about the moduli spaces).

Theorem 43. The following are equivalent for any w € Cs(Py).

a) wisreducible, i.e., stab(w)/Zz isnontrivial.
b) stab(w)/Zs> = U(1).
0 d¥ : Q(B,adP;) — Qi(B,adP;) hasnontrivial kernel.

We will denote byCs(P;) the subset of5(P;,) of irreducible connections (it is,
in fact, an open subset) and by

Bs (P) = C3(Py) /Ga (Pr)

themoduli space of irreducible (Sobolev index 3) connectionson P,. The latter
is an open subspace Bf(FPy).

Now we turn to the chal structure of these moduli spaces. First consideran
Cs(Py) so thatjw] € Bs(Py). We will produce a “slice” of thej,( Py )-action on
Cs(Py) nearw, i.e., a submanifold of C5(P;) such that

Tw (C3(Pr)) = T (w - Gu (Pr)) © T (O) (4.10)

and such that the restriction & of the projection into the moduli space is injec-
tive nearw. Then the local structure of the moduli space nedris the same as
that of © nearw. To produce thig) we will first produce an “orthogonal decom-
position” of Ti,, (C3(Py)) into Ty, (w - Ga(Py)) plus “something” and then use the
affine structure (4.5) of3(Py) to define a submanifold having this “something”
as its tangent space at
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Choosing a Riemannian metricon B and an ad-invariant inner produ¢t, )

on the Lie algebrau(2) gives rise to natural inner products on all of the vector
spaces)!(B,adP;) so that the operatat® : Q°(B,adP;,) — QY(B,adP;)
has a formal adjoind*:

dw
QY (B, adPy) Q! (B,adP;)
5(4)
(in fact, 6% = —xd“=x, wherex is the Hodge dual corresponding goand the

given orientation of3). It turns out that
6% 0d¥ : Q¥ (B,adP,) — Q° (B, adP;)

is a (formally self-adjoint) elliptic operator. We use the same symbols for the ex-
tensions of these operators to the Sobolev complefdji®, ad P;,) andQi (B, ad Py).
Elliptic theory (the generalized Hodge Decomposition Theorem) implies that

a) ker(0“ o d“¥) = ker(d“) is finite-dimensional
b) im(d¥) = ker(6%)+

¢) d“ has closed range and

d) there is an orthogonal decomposition

QL (B,adP;) = im (d*) @ ker (0*)

i.e.,

Tw (C3(Pr)) = Ty (w - G4 (Py)) @ ker (6%) (4.11)
(by (4.5) and (4.9)). Now, for any > 0, the submanifold

Owe={w+ A; A cker(6¥),|All; <e} (4.12)

clearly satisfies
SO

T (C3(Pr)) = Tw (w-Gu (Pr)) © Tw (Ow,s)' (4.13)
We claim that, for sufficiently smalk > 0, O, . projects injectively into the
moduli space.

To prove this last claim one first observes that, siace Cs(P;) andCs(Py) is
open inC3(P;) we can takes > 0 small enough to ensure théx,, . C Cs(F).
Now consider the map

U : Oy X Gy (Py) — C3(Py), U (W f)=w'"f.
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The derivative of¥ at (w, 1) is computed to be
(AW) 4y : ker (6“) @ QF (B, adP,) — ker (6) @ im (d*)
(d\:[l)(le) = (Idker((;w)7dw) .

This is certainly surjective and, becausés assumed irreducible, Theorem 4.3 c)
implies that it is also injective. By the well known Open Mapping Theorem (a
bounded, surjective, linear operator between Banach spaces is an open mapping),
(dV¥)w,1) is an isomorphism. Thus, the Inverse Function Theorem for Banach
manifolds (see [29]) implies that, ne@w, 1), ¥ is a local diffeomorphism. More
precisely, for some (perhaps smaller) 0 there is an open neighborhoég, of
win C3(P,) and an open séfy . = {f € G4(Py); |1 — f|l4 < €} in G4(P;,) such
that the restriction

v Ow@ X U]l,a — Uw

is a diffeomorphism. In particular, no two thingsdh, . are gauge equivalent by
any gauge transformation that is withdrof 1. A “bootstrapping ” argument then
shows that, for a (possibly) still smaller> 0, no two things inO,, . are gauge
equivalent by any gauge transformation. For sucls an0, O = O, . projects
injectively into B3(P;,) and so is our slice and provides a local manifold structure
for Bs(P,) near|w]. In particular,33(P;) has the structure of a smooth Hilbert
manifold.

If w € C3(Py) is reducible the analysis is similar except that to get an injective
projection into the moduli space one must first factor out the action of the stabilizer
of w. More precisely, defining@,, . as in (4.12) andtaljw) = staliw)/Z, =

U(1) one finds that, for sufficiently smadl > 0, the projection

O, o /stab(w) — Bs (Py)

is a homeomorphism onto an open neighborhoofuoin Bs(P;) which, in fact,

is a diffeomorphism outside the fixed point sets/rﬁt(w). There are generally
singularities, where there is no local smooth structure, at the images of these fixed
points (e.g., these account for the cones in our picture of the moduli space used in
the proof of Donaldson’s 1983 Theorem).

Now, the objects of real interest in Donaldson theory are certain subspaces of
Bs(P,) and Bs(P,) which we now introduce. Begin by selecting some Rie-
mannian metrigy on B. Together with the orientation dB this gives a Hodge

star operationx on smooth forms defined oB. SinceB is four-dimensional,

*: Q*(B,adPy) — Q%(B,adPy) and, since the elements 08(B, ad P;) are
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continuous, this extends to
% : Q% (B,adP,) — Q2 (B,adPy).

The curvature mag : C(P,) — Q?(B,adP;), w — F,, also extends to a
smooth map

F :C3(P,) — Q%(B,adPy)
w— F,
so we may say that an € C3(Py) is g-anti-self-dual ( g-ASD) if

*Fw:_Fw.

Remark. The Chern number & of our bundle can be written as

1
k:CQ(Pk)[B]:— tr(Fw/\Fw)
87r2B/
— gz [ (IFG I = |F5 | ) vo
B

where Fi = %(Fw + xF,) are the self-dual and anti-self-dual parts of F,,.
Consequently, when k& < 0 we must have F; # 0 and anti-self-dual connections
cannot exist. When k& = 0 it is possible for anti-self-dual connections w to exist,
but they must be flat (F,, = 0) because F, = 0 and k = 0 gives F, = 0 and
F,, = F}, + F_. e will see shortly that these are not particularly interesting
and thiswill account for our restriction to bundles with & > 0.

Now we define
Asds (P, g) = {w € C3(Py);w is g-ASD}

and
Ast (Py,g) = {w € Cs(Py);w is g-ASD}
and the correspondingoduli spaces

M (Py,g) = Asts (P, g) /Ga (Pr)

M (Py,g) = Asts (P, g) /G (Pr)
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of g-ASD andirreducible g-ASD connections. Donaldson theory is built on the
analysis of these moduli spaces.

Remark. Note that the Sobolev indices have been dropped on M(Py, g) and
M(Pk,g). Thereasonisthat, for any w € Asds( Py, g), eliptic regularity implies
that thereisan f € G4(P) such that w - f is a smooth connection (see Section
5 of [15]). Thus, these moduli spaces do not depend on the choice of (sufficiently

large) Sobolev index.

For a givenB, g andk, Asds(Py,g) (and thereforeM (P, g)) might well be
empty. This is the case, for example, whris eitherS? x S? or CIP? with their
standard orientations and metrics (Fubini-Study in the caggPd) andk = 1.
Changing the orientation of the manifold can have a dramatic effect, e.g., the
k = 1 bundle ovelCP” (also with the Fubini-Study metric) has a moduli space of
ASD connections that one can describe as explicitly as we dif*far Section 1

(for more details on this and many more examples, see [12]). A general result of
considerable interest was proved by Taubes [41]. Through an ingenious “grafting”
procedure using the = 1 instantons or* described in Section 1 he was able

to prove that thek = 1 bundle over anyB with b5 (B) = 0 admits g-ASD
connections for any Riemannian metgigthe definition ofb; (B) follows).

Remark. Snceit will play a recurrent role from this point on we recall the defi-
nition of b5 (B) for a compact, simply connected, oriented, smooth four-manifold
B. In Section 1 we introduced the intersection form

Qp : Hy (B,7) x Hy (B, Z) —> 7.

It is an integer-valued, symmetric, bilinear form on the finitely-generated, free
abelian group Hy(B,Z). If ba(B) istherank of Hy(B,Z), then one can write

by (B) = by (B) + by (B)

where b5 (B) (b, (B)) is the maximal dimension of a subspace of H(B,Z) on
which @ is positive (negative) definite. One can show that by (B) (b, (B)) is
also the dimension of the space of self-dual (anti-self-dual) harmonic two-forms
on B (for any choice of a Riemannian metric on B) and this accounts for the role
it plays in the study of ASD connections.

Before proceeding with the study o¢1(P,,g) and M(P,,g) for k > 0 we
explain our earlier comment that tlhe= 0 case is “not particularly interesting”
( £ < 0 is definitely not interesting since the moduli spaces are empty). The
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k = 0 bundleSU(2) — Py — B is trivial and, as we observed earlier, any ASD
connection on it is necessarily flat. Conversely, any flat connection is certainly
ASD ( F,, = 0 implies F}, = 0). Since flat connections exist on any trivial
bundle (page 92 of Vol | of [24]), the moduli spage (P, g) is honempty (for

any g). SinceB is simply connected, any two flat connections Brare gauge
equivalent (Proposition 2.2.3 of Vol | of [24]) sbt(Fy, g) is, in fact, just a single
point.

Now we return to the general study of the moduli spaté&P;, g) andM(Pk, g).

For this we consider the smooth map

prioF :C5(Py) — Q% 5 (B,adP;)

whereF is the curvature mapF'(w) = F,) and pr, projects onto the self-dual
part. Thus,
(pry o F) (w) = Ff,

and !
Asds (Py,g) = (pri.o F) ™ (0). (4.14)
Atanyw € C3(Pg, g) the derivative of this map can be identified with
d¥ =pr, od“ : Q3 (B,adP;) — Q3 , (B, adFy)

(see page 54 of [15]). Now, we have already observed that, in ged&rald® is
not zero, but it follows from (4.3) that, when is ASD,

d¥od® = [F,-] =1[0,]=0

SO
Im (d¥) = d* (2} (B,adPy)) C ker (d¥). (4.15)
Thus, we have associated with everye Asds( Py, g) a complext(w)

dv dv
0 — QY (B,adP,) === Q) (B,adP;)
6&}

0% 5 (B,adP;) — 0

(43

+

where we have included also the adjointsandd of d“ andd?, respectively.

This complex is, in fact, elliptic and the entire analysis of the local structure of the
moduli space nedw] rests on an analysis of the structureggiv) (the so-called
fundamental elliptic complex associated witlhv € Asds(Py,g)). We begin by
simply enumerating some consequences of the generalized Hodge Decomposition
Theorem for elliptic complexes.
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1) The Laplacians
g =0"o0d¥
Y =d¥0dY 467 0dy
=df oo
are all self-adjoint, elliptic operators.

2) The spaceker(AY), k = 0,1, 2, of harmonic forms are finite-dimensional and
consist of smooth forms (smoothness follows from “elliptic regularity”).

3) Each of the cohomology groups
H° (w) = ker (d*)
H' (w) = ker (%) /im (d*)
H? (w) = Q% 5 (B,adP) /im (dY)
associated witlf (w) contains a unique harmonic representative. In particular,
H* (w) 2 ker (AY), k=0,1,2

so all of these cohomology groups are finite-dimensional and we may define the
index of the complext (w) by

Ind (€ (w)) = dim (H° (w)) — dim (H' (w)) + dim (H? (w))
= dim (ker (Af)) — dim (ker (AY)) + dim (ker (AY)) .

4) There are orthogonal decompositions

im (%) & ker (d*)
im (d“) & ker (6“)
im (d9) & ker (6%) .

0% (B,adP;) =
QL (B, adP)
03 5 (B,adPy)

IIZ

IIZ

Now we put all of this information to use in the following way. Fix an element
w € Asts(Py, g) and restrict the map pro F' to one of the seté),, . (see (4.12))

prooF|Ope: Oue — QF 5 (B,adPy).

Then
(pry o F) ™' (0) = Ascs (Py,g) N O (4.16)

and the derivative ab is

d¥ | ker (6*) : ker (6¥) — Q7 , (B, adPy). (4.17)
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Before proceeding we recall a few facts from analysis.

Remark. Recall that a bounded linear map T : Hy, — H, between two Hilbert
spacesis said to be Fredholm if either of the following two equivalent conditions
is satisfied:

a) dim(ker T") < oo, dim(ker 7*) < oo and im7" is closed.
b) Hi ZkerT @& imT™* and Hy = ker T* & imT.

We will soon appeal to the following infinite-dimensional version of timplicit
Function Theorem: Let X andY be Hilbert manifolds,F' : X — Y a smooth
map andzy € X a point at which the derivativ® f., : Ty, (X) — Tp)(Y)
is a surjective Fredholm map. Then there exists an open neighborhaqgirof
F~Y(F(z0)) that is a smooth (finite-dimensional) manifold of dimension

dim (ker (D fz,)) -

We will show that the map? | ker(*) is always Fredholm and determine con-
ditions under which it is surjective, thus setting up an application of the Implicit
Function Theorem to obtain a smooth manifold structure forsABg, g) N O -
nearw. If, in addition, the projection of Asd Py, g) N Oy, - into the moduli space

is injective (i.e., ifw is irreducible) this will give a finite-dimensional smooth
manifold structure for the moduli space néat.

To see thatl?| ker(6*) is Fredholm we reason as follows. First, we have that
ker(d¥%| ker(6*)) = ker(d¥)/im(d“) = H'(w) by 4) and 3) so this is finite-
dimensional by 3). Next observe th@l?| ker(0%))* = §%|im(d%| ker(é*)) =

0% |im(d%) so ker((d¥|ker(6%))*) = ker(d%|im(d%)) which is finite-dimen-
sional becausker(6%) = H?(w) is finite-dimensional. Finally, i | ker(6))

= im(d¥) = (ker(6¥))* by 4) so this is closed. We have verified the require-
ments of a) in the Remark above &8 | ker(6*) is Fredholm.

Now we determine when the maj¥’| ker(0*) is surjective. Sincel? acts on
QL(B,adPy) = im(d¥) @ ker(0*) and sincel¥ vanishes identically on i)

by (4.15),d%| ker(6) is surjective if and only itl¥ is surjective, i.e., if and only

if im (d%) = Q% ,(B,adP;). But, by 3), this is the case if and only H?(w) is
trivial.

Noting that H%(w) is trivial if and only if ker(d¥) is trivial and, by Theorem
4.3 c), this is the case if and only d is irreducible we arrive at the following
interpretations of the cohomology groups&itv).

H° (w) = 0 <= w is irreducible (4.18)
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H' (w) = ker (d¥| ker (6))
= kernel of the derivative of pro F| O, . atw (4.19)
H? (w) = 0 <= d¥|ker (8“) is surjective (4.20)

Recalling that whew is irreducible the projection into the moduli space is injec-
tive nearw we can summarize all of this in the following theorem.

Theorem 44. Atw € Asds(Py, g) the map

proo F‘ Owe:0pe — 93_72 (B,adFPy)
has derivative

d¥| ker (6) : ker (6*) — Q4 , (B, adPy)

that is Fredholm. The derivative is surjective if and only if H?(w) = 0 and, in
this case,
(pryoF|Oue) " (0) = Asds (Py,g) N Ou e

is a smooth manifold of dimension
dim (ker (d¥|ker (6*))) = dim (H' (w))

near w. If, in addition, H°(w) = 0, then the projection into the moduli space
M(Py, g) givesa chart of dimension dim(H ! (w)) near [w].

Notice that if H(w) = 0 and H?(w) = 0 are both trivial, then In(f (w)) =
—dim(H!(w)) so, if we could calculate the index of the elliptic complgw),
we would have (minus) the dimension of the moduli space figarThe Atiyah-
Singer Index Theorem gives the index&fw) in terms of topological data oB
andSU(2) — P, — B. In our present context the result is

Ind (€ (w)) = —8k + 3 (1 + b5 (B)) (4.21)

(see pages 267-271 of [12]). Note, in particular, that the result is independent of
w SO we obtain the following consequence of Theorem 4.4.

Corollary 45. If H%(w) = 0 and H?(w) = 0 for every w € Asds(Py, g), then

the moduli space M(Py,g) = M(Py,g) is a smooth manifold of dimension
8k — 3(1+ b] (B)).
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For a given choice of the Riemannian meid may or may not be the case that
H'w) = 0 and H*(w) = 0 for everyw € Asds(Py,g). We will see shortly,
however, that for “almost all” choices @f, H?(w) will be trivial for all w €
Asds (P, g) and, with one additional restriction on the topology®fthe same

is true H(w). First, however, we note thatd € Asds(Py, g) and H?(w) = 0,
then the slice Asg(P;,g) N O, still has a local manifold structure near,

but if H%(w) # 0 one can only obtain a one-to-one projection into the moduli
space by first factoring out the action of the stabilizetwofThe consequence is
that, neafw], M(Py, g) is not smooth but has a neighborhood homeomorphic to
this quotient, which turns out to be a cone o@#**~2 with [w] at the vertex.
Reducible connections, when they exist, give rise to cone-like “singularities” in
the moduli space.

Next we will require a brief discussion of various “generic metrics” theorems
which assert that, under certain circumstances, “almost all” choices for the Rie-
mannian metrigy give rise to “nice” moduli spaces of ASD connections. Begin
by considering the spac® of all Riemannian metrics o. This is a space of
sections of a fiber bundle ové? and can be given the structure of a (pathwise
connected) Hilbert manifold. With this structure one can show that

1. There is a dens@'s-set inR such that, for every in this set, anyy-ASD
connectiorw on P, k > 0, satisfiesH?(w) = 0.

2. If b5 (B) > 0, then there is a deng&;-set inR such that, for every in
this set, anyy-ASD connectionw on Py, k > 0, satisfiesH?(w) = 0 and
Hw) = 0.

In short, for “generic’g, M(Py,g) = M(Pk,g) is (either empty or) a smooth
manifold of dimensiorgk — 3(1 + b3 (B)).

We will not attempt to sketch proofs of these last two results, but, very roughly,
here is how one might go about showing tiet( Py, g) is smooth for a generic
choice ofg. Consider the so-called parametrized moduli space

~

M(Py, R) = {([w] .)€ Bs(P) X R; w is g-Aso}.

This is an infinite dimensional smooth submanifold{P;) x R. One shows
that the projection map
M(Py,R) — R
is smooth with Fredholm derivative at each point. The Sard-Smale Theorem (infi-
nite dimensional version of Sard’s Theorem) implies that the set of regular values
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of the projection is a dengg;-set inR. But then, for any in this set, the inverse
image
(Bs(P2) x {g}) N M(PL, R) = M(Pr. )

is a smooth submanifold o¥1(P;, R).

Remark. Therestriction on bj (B) arises because the subset of R consisting of
those g for which reducible g-ASD connections on P, exist is a countable union
of smooth submanifolds of codimension b3 (B). If b5 (B) = 0, then reducibles are
generically unavoidable. Aswe saw in Section 1 thisisa good, not a bad thing as
it leads to Donaldson’s theorem on definite intersection forms.

Crudely put, the idea behind defining the Donaldson polynomial invariants is to
regard the moduli space‘éf(Pk, g) as cycles over which to integrate certain care-
fully selected differential forms. In order to carry out such a program these moduli
spaces must be orientable and, if the result is to be a differential topological in-
variant, the integrals must be independent of the choice of (gengri¢fe now
record two results that guarantee this.

Theorem 46. Suppose g is a Riemannian metric on B for which H?(w) = 0 for
every g-ASD connection w on Py, k > 0. Then the moduli space M(Pk,g) is
orientable. An orientation for M (P, g) can be uniquely specified by choosing an
orientation for B and an orientation for the vector space H? (B,R) of self-dual
two-forms on B.

The proof amounts to congtructing an explicit model for the determinant line bun-
dle (top exterior power) aM ( Py, g) from a family of differential operators oB
and exhibiting a nonzero section (see Sections 5.4.1 and 7.11.8|pf

To state the final result of this section we consider two mefgi@and g, in the
denseG;-set inR on which H?(w) = 0 for all g-ASD connections. Sincg is
pathwise connected we can join them with a pgglx 0 < ¢ < 1} in R. Define
the parametrized moduli space

M(Pi{g.) = {(w].1) € Bo(P) x 0,1]: [w] € M(Prg,) } -

Theorem 47. If g, and g, are in the dense Gs-set in R on which H?(w) = 0
for all g-ASD connections w, then, for a generic path {g,;0 < ¢ < 1} joining
them, M(Py, {g,}) isa smooth, orientable submanifold of B3(P;) x [0,1] with
boundary. A choice of orientation 1. for H2 (B, R) determines an orientation for
M(Ps,{g;}). Moreover, the oriented boundary of M (P, {g;}) is the disoint



Topology, Geometry and Physics: Background for the Witten Conjecture Part| 79

union of M(P,, g,) with the orientation induced by 1 and M(P;, g,) with the
orientation opposite to that induced by .

In short, a generic variation @fvariesM(Pk, g) within a single homology class.
Even if M(Py, g,) and M (P, g,) are smooth manifolds one cannot, in general,
arrange that the intermediate moduli spatésP;, g, ) are all smooth. There may
be finitely many values affor which one encounters reducible connections. Even
this can be avoided, however, if one is willing to assude:hatbQ(B) >1.1In

this case a generic paflg, } from g, to g, has the property that eacWt (P, g;)
is a smooth, orientable manifold.

With the apparatus we have now assembled one is almost (but not quite) in a po-
sition to begin building the Donaldson invariants. The remaining obstacle (and
it is a serious one) is that the moduli spadéS(Pk,g) are generally not com-

pact so one cannot integrate over them (more precisely, they do not determine a
fundamental homology class with which to pair cohomology classes). One over-
comes this obstacle by replacimét(Pk, g) with what is known as its “Uhlenbeck
compactification”. We intend to not overcome, but circumvent the obstacle by
considering only a special case (an outline of the general situation is available in
Section 8).

Notice that, by an appropriate arrangementpfB) and the Chern numbd, it
is entirely possible for the dimensicit — 3(1 + b3 (B)) of the generic moduli
spaceM (P, g) to come out just zero. In this cas&! (P, g) is a 0-dimensional,
oriented manifold (given an orientation &2 (B, R)), i.e., it is a set of isolated
points[w] each equipped with a sign which we will write-1)!. As it happens,
the moduli space is necessarily compact in this case so we can add these signs to
obtain an integer

w(B)= > (-Hl (4.22)

[W]eM(Pr.g)

One can show (from the homology result Theorem 4.7 and the remarks following
it) that if b3 (B) > 1, then this integer does not depend on the choice of (generic)
metricg and is, in fact, an orientation preserving diffeomorphism invarian® of
(assuming the orientation éf? (B, R) is fixed). Under all of these circumstances
the integeryy(B) is called thezero-dimensional Donaldson invariant of B.

Our concern here is not with calculating(B) nor with using it to obtain topo-
logical information (for a nontrivial calculation and application see Section 9.1 of
[12]). Rather we would like to show that, by adoping a slightly different perspec-
tive, 7o(B) is in many ways analogous to an Euler characteristic. This, in turn,
will eventually lead us to formulas foy,(B) that evolve into the partition func-
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tion for the topological quantum field theory of Witten referred to at the beginning
of this section.

Before describing our new perspectivewiiB) we will breifly review some stan-
dard material on the Euler number of a vector bundle. We consider an oriented,
real vector bundlery : F — X of even rank (fiber dimensiordk over a com-
pact, oriented manifolX” of dimensior2k, e.g., the tangent bundle of a compact,
oriented2k-manifold. The typical fiber of2 will generally be denoted’” and will
usually come equipped with a positive definite inner product (e.g., from a fiber
metric onk). The exterior algebra df will be denoted\ V = 2, A"V and
should be thought of as the graded algebra of polynominals with real coefficients
in the odd (anti-commuting) variables , . .., 4%, where{y!, ..., 42} is some

fixed oriented, orthonormal basis fof. The volume form forl corresponding

to {y!,..., 9%} isvol = ¢! where we omit the customary wedge

and write the product i\ V' by juxtaposition. There are a nhumber of ways to
approach the definition of the Euler number of the vector buidleseveral of
which will be important to us. We proceed as follows. TH@er number x(E)

of the vector bundler;; : E — X is defined by

X (E) = /e (E) (4.23)

wheree(E) € H?(X,R) is the “Euler class” ofz, for which we offer two (equiv-
alent) definitions.

The Euler class oF can be defined by the Chern-Weil procedure in a manner
entirely analogous to the familiar definitions of Chern and Pontryagin classes. We
briefly review the ideas behind this procedure. Get~ P =% X be a principal
G-bundle with connection and curvaturd2. Let{¢,,...,¢,} be a basis for the
Lie algebrag of G and writew = w?, andQ = Q%¢,, wherew® € Q'(P) and

Q% € Q%(P),a = 1,...,n, are real-valued forms. Lét[G]“ be the algebra of
complex-valued polynomial® on G that areadG-invariant(P(g~¢g) = P(€)
forall g € G and¢ € G). One can realiz&€[G]¢ concretely as follows: Let
{x',... 2"} be the basis fog* dual to{¢;, ..., &,} and think of ther® as linear
functions onG. The symmetric algebr&(G*) can be identified with the polyno-
mial algebraR|[z!, ..., 2"] and tensoring witlC givesC|z!, ..., 2"] from which

we select the ad-invariant elements to Gé§]“. Next we denote b2*(P)gas

the graded algebra of real-valued forms Brthat arebasic, i.e., G-invariant
(0, = o foreveryg € G, whereoy(p) = p - g), andhorizontal Ly = 0

for all vertical vector fieldd1', where.y;; denotes interior multiplication biy").
These are precisely the forms éhwhich descend t, i.e., for which there is a



Topology, Geometry and Physics: Background for the Witten Conjecture Part| 81

@ € *(X) such thatr, = ¢. Now there is a map
CWy : C[G)¢ — Q*(P)Bas

called theChern-Weil homomorphism, defined by “evaluating the polynomial
on the curvature ofs”. More precisely, ifP € C[G]® has degreé and if we
denote byP also the corresponding-multilinear map ong (obtained by polar-
ization), then

CWo(P) = P(Q) = P(Q" &, ..., 2%,
= P(&arse o Ea)J QA AQ

Being basic,P(Q) is the pullback byrp of a form P(€2) on X which can be
shown to be closed and whose (deRham) cohomology (R$3)] € H?**(X,R)

does not depend on the choicewf Making specific choices foP gives rise to
various characteristic classes of the bundle. For exampl@, # U(1), then

5 [tr(€2)] is the first Chern class and,# = SU(2), then—%[tr(ﬂ AQ)]is

1
o w2
the second Chern class (see Chapter XllI, Vol. Il, of [24] for more details).
Now, to define the Euler class of our vector bund}e: £ — X by this procedure
we will require a principal bundle and an invariant polynomial. For the former we
select a fiber metric oy : £ — X and consider the corresponding oriented,
orthonormal frame bundle

TSO

SO(2k) — Fso(E) (4.24)

For theSO(2k)-invariant polynomial we select tHefaffian
Pf:so(2k) — R

defined as follows: To each skew-symmetric matgx= (g¢;;) € so(2k) we
associate an element

o
> ap’ = SuTQY
i<j
in A\” V' (here “T” means transpose ang= (' ---¢?#)T'). Then(347 Qy)*
is in A% V and so it is just a multiple of the volume forvol = ¢! - - - 2%
We defineP f(Q) by

1

1 k
= <§¢TQ¢> = Pf(Q)vol. (4.25)
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One can show thaPf is ad(SO(2k))-invariant (in fact, it is a square root of
the determinant, i.e(Pf(Q))? = det Q for eachQ in so(2k)). Now choose a
connectionw on the frame bundle (4.24), denote its curvatur&Xgnd define the
Euler classe(E) of 7 : E — X bye(E) = (—27)"*[Pf(2)], which we prefer
to write as

e(E) = (2m) " [PF(-Q)]. (4.26)

Locally, e(E) is given by
e(E) = @2r) F[Pf(—-s*Q)] (4.27)

wheres is any section of the frame bundle (4.24). With this our definition of the
Euler number (4.23) is complete.

Remark. The famous Gauss-Bonnet-Chern Theorem asserts that when E is
the tangent bundle 7X of X, then the Euler number x(7°X) is, in fact, the Euler
characteristic (alternating sum of Betti numbers) of X and so is a topological
invariant of X.

Example. We consider the two-sphere S? with its usual orientation and Rieman-
nian metric and its tangent bundle 7 : TS? — S?. The corresponding oriented,
orthonormal frame bundle is SO(2) — Fso(TS?) ™% S2. 1f § and ¢ are the
usual spherical coordinates on %, then {ei,e2} = {&, 254} isan oriented,
orthonormal frame field on S?, i.e., a section s of F5o(S?). The dual oriented,
orthonormal field of one-forms is {e!, 2} = {d¢, sin ¢df} so the metric volume
formis el A €2 = singdg A df. One computes de! = 0 = 0(e! A €?) and
de? = cos ¢dg A df = cot (e A e?) 00 - el 4 (cot ¢)e? = cot ¢pdf. Thus, the
Levi-Civita connection w on the frame bundle is determined by

. 0 cos ¢pdf
sfw =
— cos ¢df 0

soitscurvature 2 = dw (as SO(2) isabelian) is

0 —singdg A df
s = .
sin ¢d¢g A dO 0

A representative of the Euler classistherefore

2r) ' Pf(-s*Q) = % sin ¢dg A d6.



Topology, Geometry and Physics: Background for the Witten Conjecture Part| 83

Notice that the Euler number

x (TS?) = %/sinqﬁdd)/\d022

82
which is, of course, the Euler characteristic of S2.

There is an alternative description of the Euler class that will be important to us
soon. Denote byZ/, (E,R) the compact-vertical conomology & (generated

by the differential forms orf whose restriction to each fiberafz : £ — X

has compact support). One can show that there is a unique eléMé&nt
HZ,(E,R) whose integral over each fiber is 1. This is called Ti®m class of

7r : E — X and it has the property that, f : X — FE is any section of the
vector bundle, e.g., the zero-section, then

e(E) =s"U(E). (4.28)

It is not clear from either of these definitions, but the Euler numié?) is ac-
tually an integer. An alternative description fE) in which its integrality is
manifest is contained in the so-callBdincar &Hopf Theorem. To state this we
recall that, for any sectios : X — F, the images(X) is a submanifold off
diffeomorphic toX. This is, in particular, true of the zero sectisp: X — E
and one often identifieX with so(X). Thens(X) N so(X) is the set of zeros of
s (if E =TX, sis avector field onX and these are its singularities). We will
say thats is generic if s(X) intersectsso(X) transversely (meaning that, for any
s(x) € s(X) Nso(X), Ty(a)(E) = Ty(z)(5(X)) © Ty (s50(X))). According to
the Thom Transversality Theorem, generic sections are dense in the space of all
sections. For such a sections(X) N so(X) is necessarily a finite set of isolated
points and we attach a sign to each such ppias follows: sigiip) = 1 if an
oriented basis foff},(s(X)) together with an oriented basis @},(so(X)) is an
oriented basis fof},(£); otherwise, sigp) = —1. Theintersection number of
s(X) ands(X) is the sum of these signs over all pointssitX') N so(X). The
Poincag-Hopf Theorem asserts thtite Euler number x(E) is the intersection
number of any generic section.

With this digression behind us we may return to the new perspective on the
Donaldson invariant(B) promised earlier. For this and all subsequent discus-
sions we intend to employ a more economical notation, dropping all references to
Sobolev indices, writing? for Py, G for G4(Py), etc.

The gauge groug does not act freely on the spageof irreducible connections
since even irreducible connections havé,astabilizer. Howeverg = G/Zo does
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act freely onA so we have an infinite-dimensional principal bundle
G A—B (4.29)

over the Banach manifold (note that the orbits ind of the G-action are the
same as those of tig-action so the quotient is stit}). We build a vector bundle
associated to this principal bundle as follows. Consider the (infinite-dimensional)
vector spacé)? (B, ad P) of self-dual two-forms orB with values in the adjoint
bundle. We claim that there is a smooth left actiorgain 0% (B,adP). To see

this we think ofG as the group of sections of the nonlinear adjoint burftde®
under pointwise multiplication. Since the eIementSﬁf(B,adP) take values

in the su(2) fibers ofadP, G acts on these values by conjugation. Moreover,
conjugation has the same effect-af € G so thisG-action onQ?% (B, adP)
descends to §/7Z, = G-action. Thus, we have an associated vector bundle

A xs Q3 (B,adP)

the elements of which are equivalence classes| = [w- f, f Ay withw € A,

v €02 (B,adP)andf € G.

Now recall that sections of associated vector bundles can be identified with equiv-
ariant maps from the principal bundle space into the vector space. In our case we
have an obvious map frord into Q2 (B, ad P), i.e., the self-dual curvature map:

Ft . A— Q%(B,adP)

1
Ft(w)=F} = §(Fw +xFy).

(4.30)

Since the action of on A is by conjugation and curvatures transform by conju-
gation under a gauge transformatidi! is equivariant:

Ft(w - f)=FL,=f'FGf=f1Fi=f"F(w)
F* can therefore by identified with a section

sy :B— Axg Q% (B,adP)
of our vector bundle, given explicitly by

s+ ((w]) = [w, F§]

for every|w] € B. This section isredholm in the sense that its local represen-
tatives, thought of as sections of trivial bundles, i®?,(B, ad P)-valued maps
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on open subsets of the Banach manifBlchave derivatives at each point that are
(linear) Fredholm maps. Notice now that the moduli spAdeof anti-self-dual
connectiong F'{, = 0) is precisely the zero set of the sectiop. Identifying 5
with the image of the zero section

so:B— A X g Q2 (B,adP)

we conclude that

M = s, (B)Nso(B). (4.31)

In the case in which\ is 0-dimensional so that each point of the intersection
(4.31) acquires a sign and the Donaldson invarigyitB) is the sum of these
signs one sees quite clearly the sense in whiglB) can be regarded (at least
formally) as an infinite-dimensional analogue of the Poiaeddopf version of an
Euler number.

Taking this analogy seriously would suggest the possibility of an integral repre-
sentation ofyy(B) modeled on our definition (4.23) of the Euler number. Notice,
however, that such an “integral” would necessarily be over the infinite-dimensional
moduli spacef3 and such integrals are notoriously difficult to define rigorously.
But, as Hitchin [21] has phrased it, “This is such stuff as quantum field theory
is made of.” Indeed, it was Edward Witten who first produced such an integral
representation ofy(B), not directly, but as what is called the “partition function”

of the quantum field theory introduced in [46]. We intend to produce Witten’s par-
tition function, but not from the quantum field theory arguments of [46]. Rather
we will follow Atiyah and Jeffrey [3] who showed that an integral formula for
the Euler number of a (finite-dimensional) vector bundle proved by Mathai and
Quillen [32], when formally applied to the vector bundie Xg 02 (B, adP),
yields precisely this partition function.

5. Mathai-Quillen Formalism and Witten’s Partition Function

We begin by having a closer look at the expression (4.27) for the Euler class of
the oriented, real vector bundle; : £ — X. Recall that we denote by the
typical fiber of the bundle, which we assume has dimen8&iorand a positive
definite inner product. We fix, once and for all, an oriented, orthonormal basis
{1, ..., 4?*} for V. We regard the elements of the exterior algehyrd as poly-
nomials with real coefficients in the odd (anti-commuting) variablés. . . , )%

and provide/\ V with its usualZ,-grading
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AV = é AT = (é AV @ (é AZHY)
=0 =0 1=0
=(AV)e® (AV), -

/\V is therefore a supercommutative superalgebra. One can define the expo-
nential map on\ V' by the usual power series, noting that the series eventually
terminates for any element ¢{ V' due to the anti-commutativity of the multipli-
cation.

TheBerezin (or fermionic) integral of an elementf of A V is the (real) coeffi-
cient ofy! - - - % = vol in the polynomialf and we will write this as

[P0 = fua

For example, our definition (4.25) of the Pfaffian@fc so(2k) can be written

/e%wTW DY = Pf(Q). (5.1)

In particular, (4.27) now gives representatives of the Euler class as Berezin inte-
grals of the form

(2m)~* / o3V (=" py,. (5.2)

We will also need to extend this notion of Berezin integration in the following
way. Let A be any other supercommutative superalgebra and consider the (super)
tensor producd ® A V. Regard the elements ef ® A V' as polynomials in the

odd variables)?, ..., %" with coefficients inA and define the Berezin integral

of such anf’ € A® AV to be the coefficient (im) of 1! - - - )?* = vol

| FPv = .

As an example we introduce coordinates . . . , ug; on V corresponding to the
basisy!, ..., ¢¥?*. Thus,{ui, ..., us} is the basis fob* dual to{«!, ... %"},
Let A = Q*(V) be the algebra of differential forms dn (which, throughout
this section, we take to be complex-valued). Thus, e&achis in Q!(V) and
—idu;¢? = ip?du;j (sumoverj = 1,...,2k)isin Q*(V)® A V. Writing du for
(duy - - - dugg) " we will show that

/eindu Dy — /eiwduj Dip = duy - - - dugy (5.3)
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(by which we meanlu; A --- A dug, € Q2%(V)). Indeed,
/eindu Dip = /eizpjduj-pw _ /ei(wldul+“‘+¢2kdu2k) Do)
_ / gidun it duz 1y,
(the elements)’ du; are even im2*(V) ® AV and so commute)
- /(1 +igptduy) - - (1 n i¢2kdUQk) Dy
- / (i duy) - - (np%duzk) Dy

(only this product contributes to the coefficientyf - - - 12%)
_ (I)Zk /(_1)é(2k)(2k‘+1) du1 . dUQk 1/}1 . ,(/}216 Dw
= du1~~~du2k .

Notice that if we write||u? = v + - + u%k € QO(V) and identify this with
Jul?®1 € Q*(V) @ AV, then

(ZW)_k/e—%HUIIQJrWTd“ Dy = 2m) Fe 2l P duy - duy,  (5.4)

which is a form on that integrates to 1 ovér. It does not have compact support
onV, but one can think of it as a “Gaussian representative” of the Thom class of
the vector bundle over a point whose fibel/igthe compact vertical conomology

of a vector bundle is isomorphic to the cohomology of forms that are “rapidly
decreasing” in the fibers and the usual discussion of the Thom class extends easily
to this context). Shortly we will introduce the so-called “universal Thom form”
of Mathai and Quillen [32] which adds one more term to the exponent in (5.4)
to produce what is called an “equivariant differential form.” For this though we
require a brief digression.

Equivariant cohomology arose from attempts to understand the topology of the
orbit spacelV/ /G of a topological space on which some topological gréuacts.

We will be concerned only with the case in whigh is a smooth manifold an@

is a compact, connected matrix Lie group acting smoothlpbin the left. For

this action we will write

c:GxM—M

o (g,m) =g -m=04(m)=om(g).
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We denote byg the Lie algebra of7, C[G] the algebra of complex-valued poly-
nomials onG and Q*(M) the algebra of complex-valued differential forms on
M. We consider the tensor produ€{G] @ Q*(M), every element of which is
a sum of terms of the form = P ® ¢, whereP € C[G] andy € Q*(M).
These are best thought of &5°(M)-valued polynomials o (e.g., «(§) =

(P @) = P&y for eaché € G). Rather than the usual tensor product
grading onC[G] ® Q*(M) we will, for reasons that will become clear shortly,
“double the degrees” it[G]. More precisely, ifc = P ® ¢ we define

dega =deg (P ® ) =2deg P + deg o (5.5)

wheredeg P is the algebraic degree of the polynomflanddeg  is the coho-
mological degree of the formp. Thus,

Clglo(M)= @ C'[Glo® (M)
2i+j=k
The action ofG on M together with the adjoint action @ on G give a natural
action of G onC[G] ® Q*(M), i.e.,ifa = P ® p andg € G, theng - « is the
element ofC[G] ® Q*(M) whose value at any € G is

(9-a)(€)=(g- (P2 @) (&) =P(97'69) 751 .

An elementa of C[G] ® Q*(M) is said to beG-invariant if g - o = « for every
g € G. This is easily seen to be equivalentdgég—!) = 0,1 a(§) for every
g € Gandever¥ € G. The algebra of alfz-invariant elements of [G] @ Q* (M)
is denoted

Q6(M) = [C[G) ® Q" (M))©
and its elements are call€d-equivariant differential formson M. Our grading
of C[G] ® Q*(M) gives

oo

QM) =P M) = P [CG]© Y (M)]

k=0 2itj=k

G

and we will takeQ%, (M) to be trivial fork < 0. If a € Q% (M), then, for each
€ € G, a(é) is an element of2* (1) and so can be written

a(§) =a@g+al@y+-+al@y

wherea(§) ) € QF(M) andn = dim M. Similarly, we will write ) for the part
of ain Q& (M). Notice that bothC[G]€ (thoseP e C[g] satisfyingP (g~ '£g) =
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P(¢) for all g € G and¢ € G) and Q*(M)C (thosep € Q*(M) satisfying
a;_l ¢ = @ forall g € G) can be identified with subalgebras Qf,(M) via
P —P®landp — 1 Q® ¢, respectively.

Next we define th&-equivariant exterior derivative dg on Qg (M) as follows:
For anya € C[G] ® Q*(M) and any¢ € G we define

(dga) (§) = d(a(§)) — tex ((§)) (5.6)

where¢# is the vector field onM/ defined, at eachn € M, by

L exp (—t€) -m),_ (5.7)

5#(7”):&

and .4 denotes interior multiplication by# (the minus sign in (5.7) is due to

the fact thatG acts onM on the left and ensures that the map— (7 is a
homomorphism of Lie algebras). Alternatively,{ifi,...,¢,} is a basis forg
and if we writey,, for Lt then

dg=10d—2"® 4 (5.8)

where {z!,... 2"} is a basis forG* dual to {¢1,...,&,} and we regard each
x® as an element of[G]. It is enough to verify (5.8) for elements of the form
a =P ® ¢ and this is straightforward. Now, for any element@fj] @ Q* (M)

of the forma = P ® ¢ we havedeg o = 2deg P + deg ¢ and so

deg ((1®d) () =2degP + (degp + 1) =dega+1
and
deg (2% @ 1g) (@) =2 (degP 4+ 1) + (degp — 1) = dega + 1

imply thatdeg(dga) = deg a + 1 (this is the reason for the peculiar grading on
C[G] ® Q*(M)). One also verifies that preserves the subalgebf¥, (M) of
invariant elements and satisfies, for ang C[G] ® Q*(M) and any € G

((dgoda) (@) (§) = —Lex (a (§)) (5.9)

where Eg# is the Lie derivative with respect to the vector figdf. Since an
invariant elementy of C[G] @ Q*(M) satisfiesC.«(a(&)) = 0 for everyé € G
we obtain from (5.9) that

dgode =0 on Q5(M). (5.10)



90 Gregory L. Naber

Thus
(QG(M),de)

is a cochain complex. The cohomology of this complex is calledGhetan

model of the G-equivariant cohomology of M and is denotedi () ). In some-
what more detail, an elemeatof Q¢ (M) is said to beG-equivariantly closed if

dga = 0 andG-equivariantly exact if o = dg/ for somes € QF(M). Writing

dk, for the restriction ofl¢ to QF,(M) we have

I &
Q5 (M) —— QM) Q¢ (M)
with d% o d%! = 0 so that
HE (M) = é HE (M) = ™ Ler <dk) /im <dk_1)
G G G G :
k=0 k=0

Notice that if M is a single point (connected zero-dimensional manifold), then
every element of2},(M) is of the formP ® 1 for someP € C[G]®. Each of
these igG-equivariantly closed, but none s-equivariantly exact so

Hg (pt) = C[G]“ . (5.11)

Notice also that ifGG is trivial, then so is the Lie algebr@ so there are only
constant polynomials o@. Everything isG-invariant so one can identifQ, (M)
with Q*(M). Furthermore;.» = 1o = 0 sodg agrees withl and we conclude
that

G={1} = H5 (M) = Hjernam(M) - (5.12)

Example. To gain some familiarity with these definitions we will compute just
one equivariant cohomology group from scratch. WWe consider the standard action
of G = S'on M = S3 that gives rise to the complex Hopf bundle. Specifically,

we consider
s? = {(s,2%) e C% 2! + |7 = 1}

and define a left action of S' = {e'?;0 € R} onS? by
olf . (21, 22) = (eiez1’eiezz) '

The action is clearly free and the orbit space S3/S! is, by definition, the complex
projective line CP!, which is diffeomorphic to S2. Snce S! isone-dimensional, its
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Lie algebra has a single generator. Choose one such and denote it &;. We denote
by x! the corresponding dual basis vector so that C[G] can be identified with the
algebra C[z!] of polynomials with complex coefficients in the single “ variable’
x!. Snce S' isabelian, all of these polynomials are S'-invariant so

[C[+'] ® 5(s%)]° = C[+!] @ 0 (Y. (5.13)

We will leave it to the reader to show thatY, (S*) = C and H{, (S?) is trivial so
that we may turn our attention 2, (S*). Thus, we consider

dd d?
0h(8%) — 0L(S?) —

ACY

and computeker(dZ, ) /im(d4, ). Now notice that (5.13) together with the grading
we have defined o, (S*) imply that every element dfg, (S®) can be written
in the form

L®mn, (5.14)
wheren € Q'(S*)¥, and every element 682, (S?) can be written in the form
low+z'ef (5.15)

wherew € 02(S?)S" and f is a complex-valued function o that is constant
on eachS!-orbit. Now, letw € Q2,(S®) beS'-equivariantly closed. Writes =
l®w+z' ® fasin(5.15). Then
O=dgw=(1®d-z'®ou)(lew+az'®f)
=1@dw+2' @ (df —yw)

implies that
dw=0 and df = pw. (5.16)
We show first that there exists ane C and ani € Q1(S?)S' such that
(leow+as'®f)—a(z'®1)=ds (1®@n) (5.17)
i.e.,
1w+ ®(f—a)=1®dn —un. (5.18)

Now, in order for (5.18) to be satisfied we must havg= w anduyn = a — f
so we will simply solve these equations. Sintke = 0 by (5.16) and since
Hje rhantS?) = 0, w must be exact in the de Rham sense, iels a differential
of something in2!(S?). To see that we can choose this elemer26fS?) to be
Sl-invariant we require a general lemma.
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Lemmasl. If w € Q¥1(M)Y is (deRham) exact, then there exists an n €
QF (M) with dn = w.

The proof of the lemma proceeds in the following way. One shows that any
a € (M) can be G-invariantized” in the sense that there is a cochain map
I: Q"(M) — Q*(M)% which reduces to the identity an*(M)¢ C Q*(M)
(“cochain map” meando I = I od). This map is constructed by “averaging over
the groupG”. In somewhat more detail, one chooses an invariant meakkiren

G and, fora € QF(M), p € M andvy, ..., v € T,(M), defines

(I (), (v1,...,v5) = /(a;a)p (v1y...,v;)dG

G

— [t (00, (1) (o)., (00)) dG.
G
Now, if w € QF1(M)% is exact there is am € QF(M) with daw = w. But
I(a) € QF(M)Y andw = I(w) = I(da) = d(I(«)) as required.
Returning to the proof of (5.18), we can now selectjan 91(83)51 withw = dn
and so the first equation is satisfied. Furthermore, siniseS'-invariant,

0=Lim=(douyu+uod)n=d(un)+uw=d(un+f).

SinceS? is connected this implies thain + f is some constant functiom i.e.,
11m = a— f so, for thisa, the second condition is satisfied as well. This completes
the proof of (5.18) and therefore of (5.17).

To understand the conclusion to be drawn from (5.17) we observe thatl is
S!-equivariantly closed and so determinesSarequivariant cohomology class in
HZ, (S?). Thus, (5.17) implies that the cohomology classof 1@w+a'® f is

a multiple (bya) of the cohomology class af* ® 1. Sincea was an arbitrang! -
equivariantly closed element 612, (S*) we conclude thaffZ, (S*) is generated
by the class of:! ® 1. We conclude by showing that' ® 1 is notdg:-exact so
that this class is nontrivial and therefore

Hz (S%) = C. (5.19)

To prove this we assume to the contrary that there is an elefnierfes, (S*) with
d,m = z' ® 1. 7 can be written ag) = 1 ® n, wheren < Q1(s3)S'. Thus,
dél(l @n)=r'®1,ie.,

lednp—z'eun=2'®1
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SO0 we must have
dn=0 and uyn=-1. (5.20)

Butdn = 0 andH, Rhan(S3) = 0 imply thatn is de Rham exact and Lemma 5.1
implies that there is aif € Q°(S?)S" with 5 = df. Thus,

Llnzal(df):£1f—d(L1f):0—d(0):0

and so the second condition in (5.20) could not be satisfied. THus,1 cannot
bedg:-exact and the proof of (5.19) is complete.

We should point out that, for each of the examples we have describéigf(ﬁ3),

the S'-equivariant cohomology group 6f agrees with the corresponding ordi-
nary de Rham cohomology group (with complex coefficients) of the orbit space
S3/S! = §2. That this is no accident is the content of a beautiful theorem of Henri
Cartan (see [20] for a proof of a much more general result).

Theorem 52 (Cartan) Let M bea smooth manifold and G a compact, connected
Lie group. Suppose thereis a smooth, free action of G on M on the left. Then the
G-equivariant cohomology algebra H¢, (M) isisomorphic to the de Rham coho-
mology H e ghant M/ G) with complex coefficients of the orbit manifold M /G.

Finally, we must introduce a notion of integration for equivariant forms and coho-
mology classes. For this we now assume thais compact and oriented and that
the G-action onM preserves the orientation (each diffeomorphism M — M

is orientation preserving). For eache Q, (M) we define an elemenfa €
M
C[G]¢ by setting, for eacl € G

([a)©o=[a@® [a)
M M M

wheren = dim M. Note that [ « really isG-invariant since
M

(/a> (9¢97") =/a(g£g_1)[n] =/021 (&)

M M M

:/a(g)[n] - (/a)(é)-

M M
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Notice also that ifx is dg-exact (sayp = dg/3), then, for eacly € G, (&), =
d(B(£)[,—1)) SO, by Stokes’ Theoremf v = 0 € C[G]“. The conclusion is that
M

the integration map
/:Q*G(M) — Clgl°
M

descends to cohomology:

/:H;;(M) g,

M

Now we return to the general development. We wish to write out a specific rep-
resentative of an equivariant conomology class called the “universal Thom form”
(for vector bundles with typical fibdr). For this we také/ = V (our real vector
space of dimensiok with a positive definite inner product) ard = SO(V')

with its defining action ofV. Thus, we seek an element of

Qé@(\/)(v) = [C[so(V)] ® Q*(V)]S@(V)

and we will obtain it as the Berezin integral of an elementdok A V, where
A = Cls0(V)]@Q*(V). Recalling the notation introduced earlié!, . . . , 12}
is a fixed orthonormal basis fdr, {u,...,us} is its dual basis of coordi-
nate functions o/, {{1,...,&,} is a basis for the Lie algeb@ = so(V') and
{x',... 2"} is its dual basis, regarded as linear functionsefl’), i.e., as ele-
ments ofC[so(V')]. Now define, for eaclj € so(V), a linear transformation

Mg 'V —V
by .
Me(v) = .= (exp (t€) - ¥) e

for eachy € V. Write M, for M, and notice that, for each = 2%(§)&, €
so(V),
M¢ = % (&) M,.

Furthermore, if(M¢) denotes the matrix of/; relative to{y?, ..., 4%}, then
(M¢) € so(2k) and

1 1
—5 D Wt () Moy = SuT (Me)y
=1
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so (5.1) gives
ez L1V OM Dy, — Pr(M) . (5.21)

Now notice that—1 >, pla?M! = 3, (—32%) ® 1 ® (¥ (Myy')) can be
regarded as an element©fso(V)] ® 2*(V) ® A V and therefore so can

e~ 3 Ly Wt Mat

We now intend to include this factor in the integrand on the left-hand side of
(5.4) to obtain what is called thd athai-Quillen universal Thom form v for V,
defined by

V= (27.[.)—k/e—§|u|2+iwjdu]-—; > et Moy Dw

(5.22)
_ (2m)~F e~ Hll? / exp (izpjduj - %waw@wl) Dy.
l

For example, if one carries out the Berezin integration in (5.22)fer R? (usual
orientation and inner product) aS@ (V') = SO(2) the result is

v=(2m)"" e~ 3(ui+uy) duydug + (27) plems(ul+us) (5.23)

Note that each term in (5.23) BO(2)-invariant, has degre2 = dim V" and the
first (in C°[s0(2)] ® Q2(R?)) integrates to 1 oveR?. In general, one can verify
the following properties of the form given by (5.22).

1. v is anSO(V)-invariant element ofC[so(V)] ® Q*(V) of degree2k =
dim V.

2. v is SO(V)-equivariantly closeddsg) v = 0) and so determines an
equivariant cohomology class

V] € H ) (V).
3. The integral of (th&°[s0(V)] @ Q% (V)-part of)v overV is 1.

v is called a universal Thom form because, as we now show, one can produce
from it a (Gaussian) representative of the Thom class for any vector bundle whose
typical fiber isV. We recall that any such vector bundle can be regarded as the
vector bundle associated to some princi@abundle by a representation 6fon

V. Thus, let us suppos@ is a Lie group and

p:G— SO(V)
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is a representation @ on V. Thenp induces a Lie algebra homomorphism
ps G —s0(V)

(just the derivative op at the identity inG). It then follows easily from the fact
thatv is anSO(V')-equivariantly closed form off” that

v = (2m) Fezllul? / exp (Wduj - %Z ! (2% 0 p,) Mazpl) Dy (5.24)
l

is aG-equivariantly closed form oW'.

Now suppose tha® — P -2 X is a principalG-bundle over a compact, smooth
manifold of dimensior2k = dim V. Then the representatigndetermines an as-
sociated vector bundl® x, V/ 7, X over X with typical fiberV. We show

now that there is a generalization of the Chern-Weil n@&y,, : C[G]¢ —
O*(P)gas = Q*(X) (Section 4) which associates with eveRrequivariantly
closed form on/” an ordinary form on the vector bundle spaeée<, V and that,
when applied ta/g, one obtains a (Gaussian) representative of the Thom class of
Px,V.

Begin by considering the commutative diagram

PxVv 22, p

| |~

Px,V — X

P

where py is the projection onto the first factor apds the map

ap.)=q(p-9.97" - ¥) =[p,]

which projectsP x V onto the orbit spacé x, V' of the G-action (p, ) - g =
(p-9,971-¥)=(p-g,p(g71)(¥)). Since the action off on P is free, so is this
action of G on P x V and we may regard

G—PxV-5Px,V
as a principalz-bundle. In particular, we have an isomorphism
Q*(P X V)BAS = *(P Xp V)

between the algebras of ordinary formsBnx , V and the forms o x V' that
are basic with respect to the action@fon P x V. Thus, to specify a form on
P x,V (e.g., aThom form) it is enough to specify a basic formrox V.
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Now choose a connectian onG — P — X. Thenw’ = pryfw is a connection
onG — P xV — P x, V. Identifying T, ,,,(P x V') with T),(P) & Ty(V),
the w'-horizontal spaces are clearly given by kor) (w') = Hor,(w) © Ty (V).
The decomposition

Tip) (P x V) = (Hor, (w) ® Ty (V) @ Vert,y) (P x V)

determines a projectioh,,, of forms onP x V to w’-horizontal forms orP x V
(evaluate onw’-horizontal parts of tangent vectors). Now, for any= P ®

¢ € QL(V) one can evaluate the polynomial p&ton the curvature2 of the
connectionw as in the ordinary Chern-Weil map to obtd{) @ ¢ € Q*(P) ®
Q*(V). This one can identify with a forr?(£2) A ¢ on P x V which, because
PR is G-invariant, is inQ* (P x V)%, Itis generally not horizontal, however, so
we compose with the horizontal projectidg,s to define thegeneralized Chern-
Weil homomor phism, also denoted

CWo : (V) — QF (P x V)pas = (P x, V)

by
CWeo (@) = CWe (P @ ) = he (P (£2) A ) (5.25)

for elements of the formP ® ¢ and then by linearity on all df2f,(1"). One can
show thatC'V,, is actually a cochain map

do CWy = CWy 0 dg (5.26)

and so carrieg7-equivariantly closed forms ofr to ordinary closed forms on
P xV which then descend to closed formsBrx , V. Applying this procedure to
the G-equivariantly closed form¢ of (5.24) gives a closed, basic fo@WV,, (v)
on P x V which one can write formally as the horizontal projection of

(2r) " * e~ zllul? / exp (Wduj - %Zw’ (2% (pu§2)) Moot ) Dy (5.27)
!
which it is customary to write more compactly as
(2m) " F e zllul? / exp (indu + %sz (p«Q2) w) Di. (5.28)

In this last expressiofip. () is to be interpreted as the skew-symmetric matrix
image of theGG-curvature under (the derivative of) the representation vgléW)
is identified withso(2k). We generally work directly with (5.28), but one obtains
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a (Gaussian) representative of the Thom class (which pulls back to an Euler form)
by replacing® by —€2, or, what amounts to the same thing, the transpod@,of
cf. (4.26).

As an example of what the result of such a calculation might look like we return to
the universal Thom form (5.23) fdr = R? andSQ (V') = SO(2). For the vector
bundle with fiberR? we take the tangent bundigS? of the two-sphere. This we
describe as an associated bundle in the following way. The usual orientation and
Riemannian metric 082 give an oriented, orthonormal frame bundle

SO(2) — Fso (S?) =9 §2
If p: SO(2) — SO(2) is the identity representation, i.es, = id go(2), then

Fs0(S?) x,R? is the tangent bundle 6°. Moreover,p,. : s0(2) — so0(2) is also
the identity sar! o p, = 2! and

vso() = (2m) " e 2 (ul+ug) (z' + durduz ) .

Choosing a connectio = w'¢; with curvatureQ = Q'¢; on the frame bundle
Fs0(S?) we havez!(p.Q) = Q' soCW,,(vs0(2) ) is the horizontal projection
(determined by’ = pr*FSO(SQ)w) of

= (2m)"* o2 (ur’ Fug) (! +durdus ) .

The horizontal projection of this form oRso (S?) x R? can either be described
by evaluatingu on w’-horizontal parts or explicitly calculated from the easily
verified formulahyy () = p — (pr}so(gg)wl) A Lt K- Performing this latter
calculation gives

CW,, (v — (2m) te 2 (Wi+u3) (Q 4 duydu
w (vso() = (27) ( 1dug (5.29)

_|_(pl}so(82)w1) A (urduy + ugdug) ).

In general, we will denote b/ the horizontal projection of the form (5.28) and
will, at least temporarily, write this as

U = (2r) Feallul?® / exp (wTdu + %wT (p«£2) ¢> Dy (5.30)
(evaluated on horizontal pajts

Since our primary concern, however, is with Euler forms we will want to pull the
form to whichU descends o x, V' back by a section of the vector bundle.
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Now, any section of the associated bunéfle<, V' can be written as

s,Sos
( ) (s(x),S (s (x))) ! [s (), 5 (s (x))]

wheres is a section of¢ — P — X andS : P — V is an equivariant map
(S(p-g) = plg~1)(s(p))). Thus, if we temporarily writd/ = ¢*U, then

X

(go(s,808)*U = ((1,8) 08)* (¢*U) = s* ((1,5)* U).

Thus, to pullU back by a section aP X,V we computg1, S)*U, which simply
pulls theV-factors ofU back by the equivariant ma, and then pull this form

on P back by a section of the principal bundle. We will illustrate with an example
(taken from [28]). Begin with the forn€ W, (vso(2) ) in (5.29). As a section

of the principal bundleFso (S?) we choose the oriented, orthonormal frame field
corresponding to the spherical coordinate chart:

S (¢7 0) = <¢7078¢7 Lﬁ@) .

sin ¢

We choose an equivariant méfo (S?) — R? by beginning with a vector field
on §? (section of 'S?). This can be chosen arbitrarily and we will take =
v sin 004 + v cos 6 cot ¢y, Where is an arbitrary real parameter (with= 1
this is the infinitesimal generator for rotations about thaxis). Relative to the
frame field introduced above the component¥’adre~ sin 6 and-y cos € cot ¢ SO
we defineS on the image o by

Sos(¢,0)=(ysinb,~ycosbcos )

and elsewhere by equivariance. Pull backlieparts ofCWe(vso(2) ) By Sos
by substitutingu; = sin 8 andus = ~y cos 6 cos ¢. One finds that

(27T)—1e—%(u12+u§) _ (27r)—1 e—%'yz(sin2 6-+cos? 6 cos? ¢)
duidug = dug A dug = 72 cos® fsin odo A db
and
urduy 4 uadug = 2 (Sin 0 cos ¢ sin? ¢df — cos? 0 sin ¢ cos gbqu) .

As in our earlier computation of the Euler numbeflt#? we substitute the (trans-
posed) Levi-Civita connectiosi*w and curvature* so thats* Q! = sin ¢deg A
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df and s*(pr;SO(Sg)wl) = —cos ¢df. The result of all of these substitutions is
the following representative of the Euler classSof

(2m) "L a7 (i 040?008 9) iy b (1 4 4% cos? Osin® ¢) dp A df.  (5.31)

In particular, one obtains the not altogether obvious integral formula

2 ™

Zi // e_%’YQ(SiHQ (9+C052 0 cos? ¢) Sin(ﬁ (1 _'_,.Y2 COS2 081112 (b) d(bd@ — 2
™
00

(note that, fory = 0, this reduces to our earlier computation of the Euler charac-
teristic of S2).

We recall now that our interest in the Mathai-Quillen formalism stems from the
fact that Atiyah and Jeffrey [3] have shown how it can be adapted and formally
applied to the infinite-dimensional vector bundJer Q2 (B, adP) to yield an
integral representation of the 0-dimensional Donaldson invariant which coincides
with the patrtition function of Witten’s topological quantum field theory [46]. We
begin now with the appropriate adaptation of the formula (5.30), still working
in the finite-dimensional context. In addition to the assumptions we have made
thus far we will henceforth assume th&tis oriented and that the action &f

on P preserves orientation (i.e., each of the diffeomorphismss orientation
preserving). We now make a specific choice of connectiotren P — X.

Remark. Before proceeding we must recall that for any action of a compact
Lie group G on a manifold M it is always possible to construct a Riemannian
metric ( , )g on M that is G-invariant, i.e., for which the diffeomorphisms o:
M — M areall isometries. Roughly, thisis done by selecting some Riemannian
metric ( , ) on M and, at each point p € M, averaging over G relative to some
invariant measure dG' on G, i.e., defining, for all V,,, W), € T,,(M),

(VW) = / (09)sp(Vi)s (76 op (W) )G
G

We fix, once and for all, &-invariant Riemannian metric, denoted simply ),

on P. At eachp € P this Riemannian metric defines an orthogonal complement
to the vertical subspace @,(P) (tangent space to th@-orbit atp) and, sinces

acts by isometries, these orthogonals are invariant under the acti@mantl so
they determine a connectian on P. Henceforth, we will use this connection on
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P exclusively. In particular, the pullback connectiah = priw on P x V has
Hor(, ) (w') = T,(p - G)*= & T,,(V') at each point.

Now we proceed with some cosmetic surgery on (5.30). First recall the Cartan for-
mula = dw—i—%[w, w] and notice that the second term vanishessemorizontal
vectors by definition. Since the formula f&F in (5.30) is to be evaluated aw'-
horizontal parts and since Hgr) (w’) = Hor,(w) © Ty (V), the result will be

the same whether or nét[w, w] is present. Thus, we may write

U= (277)_k e~ allull? /eXp (indu + %@ZJT (ps(dw)) w> D (5.32)
(evaluated on horizontal pajts

For the next manipulation o/ we will require a few preliminaries. Begin by
defining, at eacly € P, a linear map

Cp: G — Vert,(P) C T, (P)

by

Cp(&)=¢*(p) = % (p - exp (t€))ly—o -

This is an isomorphism onto Ve(tP), but we wish to regard it as a map into
T,(P). Now choose some ad-invariant inner prodgct) onG. 7,(P) has an
inner product( , ), arising from the Riemannian metric agh Thus,C, has an
adjoint
C,:T,(P)—¢G
defined by
(w,Cyp (0), = (C; (w) 1)

for all w € T,,(P) andn € G. In particular,

(Cp (&), Cp (), = (G5 (G (€)) ) = (B (&) 1)

where
Ry=Cpo0C,:G—G.

Itis easy to see thak,, is self-adjoint and has trivial kernel so we have an inverse
R':G—G.
Now, sinceC,, carriesG isomorphically onto Vegi(P) there is also an inverse

Cp_l : Vert,(P) — G
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and we claim that this agrees with, on Vert,(P), i.e.,

C, H(w) = wy (w) ,w € Vert,(P). (5.33)
Indeed, ifw € Vert,(P), thenw = n#(p) = Cp(n) for a uniquen € G. wis
a connection form sa,(n*(p)) = n for everyn € G. Thus,w,(w) = n =
CyH(w).
Now we define a one-formd € Q'(P,G*) on P with values in the dua§* of G
as follows: Forp € P andw € T,,(P), 8,(w) € G* is the mapd,(w) : G — R
given by

(0p (w)) (&) = (Cp(&),w), = (§, Cp(w)) . (5.34)
Note thatd,, vanishes on horizontal vectorsyabecausevs-horizontal means, )-
orthogonal to the&>-orbit throughp, i.e., to Ver;(P), andCy(§) is in Vert,(P).
Now, if we use the inner produdt, ) to identify G* and G, the last equality
in (5.34) shows thad,(w) is identified withC;(w). Thus, regarded as -
valued one-form orP, @ is justC* so, in particularC* € Q*(P,G) vanishes on

horizontal vectors. We claim that
C*=Row (5.35)

i.e., Cp(w) = Ry(wp(w)) for everyw € T,(P). Since both sides vanish on
horizontal vectors one need only verify (5.35) whene Vert,(P). But then
(5.33) gives

Ry, (wp (W) = Ry, (C, 1 (w)) = (Cp 0 Cy) (Cy M (w)) = Ci(w).

p

Fixing a basis forg we can identify eachz, with an invertible matrix andv
with a matrix of real-valued one-forms dnso (5.35) becomes a matrix equation
C* = Rw which we write as

w=RC*
From this we compute
dw =dR ' AC* + R71dC*.

Noting that the first term vanishes on horizontal vectors we find that in the expres-
sion (5.32) fortU we may replacelw by R~'dC* to obtain

U=(2r) F e zllul’ / exp (wTdu + %1[)T(p* (R'dC™)) ¢> Dy (5.36)

(evaluated on horizontal pajts
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The next objective is to remove the explicit appearance of the inverse in (5.36)
by using the Fourier inversion formula. We begin with a brief review of the
Fourier transform. Letl be an oriented real vector space of dimensiowith
volume elementlw € A" W* and letw,...,w, be coordinates oV with

dw = dw; - - - dw,. Letyy, ..., y, be coordinates ol * dual tow-, ..., w, and

dy =dy; - - - dy, € A" W the volume element fdi*. Let S(1W) andS(W*) be

the Schwartz spaces of rapidly decreasing functionsin. . , w, andyy, ..., yn,
respectively. Finally, let , ) denote the natural pairing betweBnandW*. The
Fourier transform off € S(W)is f € S(W*) defined by

Flo) = (@m) " [ e f () dw.
w
The Fourier inversion formula then asserts that

f (w) = (2m) ™ / 00 f () dy.

W*
Combining these two formulas gives

fw)=2r)™" W) g=i(zy) £ (2) dzdy.
1l

Assuming now thatV andW* are identified via some inner product we will write
this simply as

fw)=2r)™" / / vl =i £ (2) dzdy (5.37)

with the understanding that both integrations are d¥eand the exponents are
inner products.

The situation to which we would like to apply (5.37) is as follows. Rfis a
positive self-adjoint matrix, then one can use the formula to compuisw).

To get an integral that does not explicitly involve the inverse, however, we also
make the change of variable— Ry. Then(R~w, Ry) = (w,y) andd(Ry) =

det Rdy so

f (R ') = (2m) ™" / / vl () det Rdzdy. (5.38)

Now we return to our last expression (5.36) for Letting ¢ = (¢1,...,¢5)
denote a Lie algebra variable ¢hwe consider the function of defined by

F@) = @r) e fexp (Taus 07 (. 0)v) Do
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Each value off is an element of2*(V') whose components (relative da, . . .,
duyg) are polynomials inp.

Remark. These polynomials are not in the Schwartz space S(G), but we never-
theless propose to apply the Fourier formula (5.38) componentwise to f(¢). This
israther doppy, of course, but could be made more precise by inserting a rapidly
decaying test function e=<(#:%) and taking the limit as e — 0. Since our objec-
tiveisa formula to be applied formally in an infinite-dimensional situation where
completerigor is (for the time being, at least) out of the question anyway, we will
not be scrupulous about such details.

Letting A = (\1,...,\,) be another Lie algebra variable éhwe apply (5.38)
with w = dC* (i.e., withw = dC*(x1, x2) for each pair(x1, x2) of tangent
vectors) to get

U=f(R7'dC*) = 2m)™" / / HACA) =R £ (4) det RAdgdA

=(2m) " (2m) " / / eldC"A) o=1(@.R) =3 [lull® / exp <11/1Tdu

507 (02 (9)) ) Do det Rdgx

1,112 1
U=(20) " (2m) e [ [ [exp (67 au-+ 5070 (0) -
+i(dC*, ) —i(¢, R\) ) det RDydAd¢ (evaluated on horizontal parts).

Notice that this expression contains one fermionic and two ordinary (“bosonic”)
integrations.

Next we would like to include the parenthetical remark “evaluated on horizontal
parts” in (5.39) directly into the integral expression {gr. For this we require

the notion of a “normalized vertical volume form” on a principal bundle, which
is essentially an analogue of a Thom form on a vector bundle. Thus, we con-
sider a principalG-bundleG — @ 79 M with M compact and orientable and
dim G = n. We assume the bundle itself to be orientable in the sense that there
exists ann-form ¥ on @ such that, ifm € M and,, : wél(m) — () is the
inclusion, then, ¥ is an orientation form for the submanifokgl(m) =Gt
follows that(Q is orientable and we assume it to be oriented by the so-called local
product orientatiomawM A ¥, wherew), is an orientation form fol/. One
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can assume also that the action’bn () is orientation preserving (these matters
are discussed in detail in Chapter VII, Vol |, of [24]). We will henceforth make
these assumptions of our underlying principal bur@le~ P —% X as well. A
normalized vertical volumeform for the bundle is am-form W on(Q such that,

if o TI'él(m) — (@ is the inclusion of a fiber, then

/ W o= 1. (5.40)
75 (m)

Itis not difficult to show that one can construct such a fd#from a connection
w on  as follows. Choose a positive definite ad-invariant inner product)
on G, normalized so that the volume ¢t (arising from the corresponding bi-
invariant Riemannian metric af) is 1. Let{¢, ..., &,} be an orthonormal basis
for G relative to( , ) and consistent with the orientati@s inherits as a fiber of
Q. Write w = w?,, wherew® € QY(Q), a = 1,...,n. One then shows that

W=wA.. A" (5.41)

is a normalized vertical volume form fa@r — Q "9, M. Such a form has a
number of properties of interest to us. For any top rank f@ron A/ one has

/ﬂ = /waﬂ AW (5.42)
M Q

(essentially Fubini’'s Theorem together with (5.40)). Furthermore, the process of
evaluating an elemenp of Q*(Q) on w-horizontal parts (i.e., of computing the
w-horizontal projectiorh,, () of ) can be accomplished as follows. An explicit
formula for i, () reads

ho(p) =@ —w A —w? Agp — ... — W ALy (5.43)

I Z (_1)7'(r+1)/2wa1 AN WA (La1 0...014,.) ()

1<a1<..<ar<n
r>1

where., = Lt Thushy, () AW = ¢ A W (by (5.41)) so one can arrive at
hw () by wedge multiplyingp by W and integrating over the fibers to obtain

ho (@) [ 5, W = he ().

w5 (m)
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Notice that what is really going on here is thatn W kills all of the terms in

o with vertical parts (becaus® has a full contingent of. vertical coordinate
differentials) and the surviving terms are just thoségf) with an extra factor

of W which we integrate out (i.e., ignore). The conclusion is that “evaluating on
w-horizontal parts” can be accomplished by “multiplying by the vertical volume
form (5.41) and integrating over the fibers”.

We wish to apply this observation to the forn of (5.39), where the principal
bundle isG — P x V -4 P x, V. However, we would like to include the
procedure as part of the integration formula so we begin by showing¥haan

be written as a Berezin integral.

Denote by{n,...,n,} an orthonormal basis f@ relative to the normalized:-
invariant inner product , ) on G introduced above (we will be more specific
about the choice of this basis shortly). Regard these as odd generaiy(§ pf
and consider the following element 8f (Q) ® A(G):

ela=L Walle — W1 oWntn — (1 4 oymy)... (14 wnin) - (5.44)

Performing a Berezin integration with respectjtgives

/ezg_l wanapn = / (1 + wlTll) s (1 + wnnn) Dn = /wlT/l ..wpn Dy
— (—1)”(”_1)/2 /w1 cowp M ... D

If we now choose{7;,...,n,} to be the same a&;,...,&,} if n(n —1)/2is
even and an odd permutation i, ..., &, } if n(n — 1)/2 is odd, this gives

/ezg—1wa’7al)n:wl...wn:wl/\.../\wnZW (545)

. . iy
for the normalized vertical volume form 6f — Q —% M.

We would now like to express the Berezin integral representation (5.43)for
without explicit reference to the connection formeg. For this we assume, as

for G — P =% X earlier, thatQ is a Riemannian manifold and that is the
connection or) whose horizontal spaces are the orthogonal complements to the
G-orbits. Thus, we have available the mapsC* and R and all of the results

we have proved about them (note that this is true of the bufidle P x V —%

P %,V when the metric, connection and orientation are taken to be the pullbacks
by prp : P x V' — P of those we have chosen fét). Now consider the element
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of C'[G] ® Q'(Q) whose value at any < G is the one-form(C*, 1) onQ defined
by

(C*,m) (x) = (C*x,m) = (x,Cn) = <x,n#> (5.46)
for any vector fieldy on Q. Now let{A',... A" ..., A%} be local coordinates
on @ (wheren = dim GG). Then

d )
* — * [ 2 7
(C*\n) ; (O (aA]) m) dA7

Write C*(%) = Z?:l ai;jn; SO that

d n n d
(C*m) = aij (nin)dAT =) ( aijdAj) (13 m) -
j=1

Jj=11i=1 =1

Define one-formg3, onQ by 8, = Z;l:l aijdA’. Then
(€5 = Bimim)=>_ Bimi-) () =>_ B’ (n)
=1 =1 =1
where{n',....n"} ={(n1,+),..., (0, )} isthe basis fog* dual to{n1, ..., 7, }.

Now identify 31, B € Q*(Q) @ A(G*) with 357, Bini € Q*(Q) ® A\(G)
and compute the Berezin integral

/eZ?-lﬁimpn —(—)"=D2 g A AR,
— (=1)"-D/2 (andAl ot alddAd) A A <an1dA1 ot anddAd)

= (=12 Z det (ap) dAH
H

whereH = {hy,...,hy},1 < hy < ... < h, <d,dA" =dA" A ... A A
and

Alhy - Qlhy,
ap =
Anhy te Gnh,
We compute the determinant&t(ay) as follows. For eachy = 1,....n,

C*(%) =", a;;n; and so

= (e (o) ) = (2 (@w)) )
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by (5.35). Now let us writev = &'y + - - - +&"n,. By the way we have chosen
{1, ...}, {@Y,...,&"} is at worst a permutation dfw!,...,w"} and, in
any case,

and
) e )
(o) = () v )
so that
o =6t (505 ) @)+ oo+ 6" (555 ) ()0
Consequently,
- 0 - 0
(R(m)sm) - (R [© <a,4m>“' w! (mm)
ag = ; ; ; ;
(R(m),nn) - (R(1n) s 1n) &n< 9 )Q” 0
OAM OAhn
(5.47)
Thus,
det (ag ) = det Rdet (@pg) (5.48)

wherew g is the matrix shown in (5.47). Since

d
. ) .
@ =) &ﬂ( i>dAZ, j=1,...,n
< 0A
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we find that

/ eXim Aimpy — (—1)"=D/2 3™ det (ayr) d AV
H
= (—1)"" 2 3" det Rdet (@) dAY
H

=(-1)""" V2 det R det (@) dA”
H

= (=" D2 det R @' AL A"
= (det R) W.

Thus,
W = (det R)* / ei=1 Biipy, (5.49)

We have already seen that, with our identificatiogdfwith G via ( , ), (C*,-)

is identified with>"" | 8;m;, i.e.,(C*,n) = > | B;n'(n) for eachn € G. Sub-
stituting this into the Berezin integral (5.49) it is best (notationally) to retain ref-
erence to the fermionic variableand write

W = (det R)™* / (€7 . (5.50)

Now we return to the expression (5.39) drand enforce the horizontal projection
by multiplying by W in the form (5.50). In this way thdet R cancels and we
simply add the terniC*, ) to the exponent to obtain

=20 )" [[[[exp (= 51l + i dut 3670 )0
(5.51)
Fi(dCH, ) — i(, RA) + (C*,n) )DandAdgb.

Remarks. One should keep in mind that we are here applying the result (5.50)to
theprincipal bundle G — P x V 2. p X, V. Moreover, in (5.51)thereis also
an implicit integration over the fibers to remove the vertical volume form after it
has served its purpose of killing the vertical parts.

The formU in (5.51), after integrating out the vertical parts, is a basic form on
P x V which, regarded as a form an x, V, represents the Thom class. Pulling
U back by a section of x, V gives a representative of the Euler class which,
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when integrated ovek, gives the Euler number. We have already observed that
every section of” x, V' is of the forma — [s(x), S(s(z))], wheres is a section

of PandS : P — V is an equivariant map and that pulling back by such a
section amounts to pulling back thé-factors ofU by S and then pulling back
the resulting form orP by s. Thus, our Euler form is the pullback yof

n)y " em ™ [[[[exp (= 3112+ wTds + 207 (0. (0)
(5.52)
i (ACH,A) —i(6, RN + (C*,1) )andmp

where we have written simply for S*u = u o S. Integrating this ovelX gives
the Euler number. On the other hand, if we refrain from pulling back gnd
from integrating out the vertical volume form), (5.52) gives a formfmwhose
integral overP is also the Euler number a@f x, V.

We have one last bit of cosmetic surgery to performlén There is a common
notational device in (supersymmetric) physics whereby the integral of a top rank
form on a manifold is written as two successive integrations, one fermionic and
one bosonic. Recall that the integral of a (properly decayiagdtion ¢ on an
oriented, Riemannian manifol® is defined by multiplying the volume formiw

of P by ¢ and integrating this oveP

/ pdw.

P

Now, if « is any (properly decaying) form oR written in terms of local coordi-
natesr’ on P(a = a(x!, dz?)) and if one introduces odd variablgs (generators
for some exterior algebra), then one can define an elemgrit x?) of this exte-
rior algebra by formally making the substitutiods’ — x‘. Then the fermionic

integral
/ a(z',x') Dx

is precisely the function one integrates (nextéoas above) to get the integral of

a overP
/a = //a (xi,xi) Dydw.
P P

Applying this convention to the expression for the Euler number obtained by inte-
grating overP gives the final formula toward which all of this has been leading us.
For this we will explicitly indicate all of the dependences on the three fermionic
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(x,n, ) and three bosoni€\, ¢, w) variables (in particular, all of the terms giv-
ing rise to forms onP (iy1dS,i(dC*, \), and(C*, 7)) are regarded as functions
of the new fermionic variablg). We will also (finally!) suppress all but one of
the integral signs.

n) " em ™ [exp{ = SIS @I+ 597 (0) v
+iyp"dS, (x) +1(dCE (x, %), A) (5.53)
—i(, Rud) + (Clx,m) YDXDyDidAdpdw

This we will call theAtiyah-Jeffrey formula for the Euler number of” x, V.

Our objective now is to formally apply it to the infinite-dimensional vector bundle
AxQQi(B, ad P) of Donaldson theory witly = F' as the equivariant map. The
result will be, formally at least, an expression for an “Euler number” for the bundle
(which, however, depends on the choiceésdfand also, as it happens, the partition
function for Witten’s topological quantum field theory (i.e., the zero-dimensional
Donaldson invariant o). We must emphasize at the outset that what we intend
to do here is not mathematics (and certainly not physics). Our objective is to find,
within the context of the infinite-dimensional vector bundﬁexG 02 (B,adP)
associated with the Donaldson invariant, formal field-theoretic analogues of the
various bosonic and fermionic variables appearing in (5.53) and natural identifi-
cations of the terms in the exponent of (5.53) with functions of these variables. In
the process the (perfectly well-defined) bosonic and fermionic integrals in (5.53)
will metamorphose into Feynman integrals over spaces of fields with all of their
attendant mathematical difficulties. The purist will argue that this is meaningless
manipulation of symbols and we can offer no credible defense against the charge.
The only mitigating circumstance is that such formal manipulations have proved
extraordinarily productive for both physics and mathematics and promise to be
even more so in the future as the two subjects continue to re-establish lines of
communication.

We begin with a brief summary of the notation accumulated in Section 4. Through-
out the remainder of this sectioR will denote a compact, simply connected,
oriented, smooth four-manifold with; (B) > 1 and we will consider only the
structure grougy = SU(2) with Lie algebrasu(2). g will denote a generic Rie-
mannian metric o3 andSU(2) — P —— B a smooth principabU (2)-bundle
over B. A is the space of irreducible connections Bng is the group of gauge
transformations ang = G/Z, is G modulo its center. TheB = A/G =~ A/G is

the moduli space of irreducible connections®nNext, Asd P, g) = Ks\d(P,g)
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is the space o§-ASD connections o and M = Asd(P, g)/G = Asd(P, g)/G

is the moduli space of gauge equivalence classes of (irredugbD connec-

tions onP. Theng — A — Bis a principalg-bundle andj acts onQ? (B, ad P)

on the left so we have an associated vector buﬂdk% 0% (B,adP) — B. A sec-

tion is determined by the equivariant mép= F* : A — Q2% (B, adP) defined

by S(w) = F(w) = F{, = {(Fw+*Fw). M is identified with the zero set of
this section, i.e., with the intersection of the images of the corresponding section
and the zero-section. We assume for the remainder of this section that the Chern
number of the bundl8U (2) — P -~ B has been fixed so that the dimension of
M is zero. Then the Donaldson invariant B) given by (4.22) can be viewed as
the intersection number of the section correspondingj, tice., as an “Euler num-

ber” for the bundle xQQi(B, ad P). The formal extension of (5.53) to this new
infinite-dimensional context “should” provide an integral (Gauss-Bonnet-Chern)
representation of the Donaldson invariant.

We begin by recalling that our derivation of the Atiyah-Jeffrey formula (5.53)
assumes the existence of a Riemannian metric on the principal bundle space (in
our case,A) for which the group(G) acts by isometries. Such a metric is easy to
produce. Sinced is open inA (the space of all connections an) and A is an

affine space modeled do' (B, ad P)

Tw(A) = Q! (B, adP)

for eachw € A. Now, all of the space€* (B, ad P) have natural.?-inner prod-
ucts arising from the metrig on B (and the corresponding Hodge stgrand an
invariant inner product on the Lie algebra. Taking the inner produchg®) to
be (A, B) = —tr (AB) this is given by

(o, B)), = —/tr(a A x3). (5.54)
B

In particular, this is true fof}, (A) and this defines a metric o#. Since the inner
product is invariant under the action @f(p0|ntW|se conjugation by an element

of P xq SU(2)), G acts by isometries opl. This metric defines a connection
onG — A — B whose horizontal spaces are the orthogonal complements to the
gauge orbits. Indeed, we already know these horizontal spaces since (4.11) gives
the orthogonal decomposition

Tw(A) = Ty (w - G) @ ker (6°) = im (d¥) @ ker (6¥) (5.55)
whered® : Q°(B,adP) — Q!(B,adP) is the covariant exterior derivative and

§“ : QY(B,adP) — Q°(B,adP) is its formal adjoint relative to the natural inner
products (5.54) on the spaces of forms.
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The first term we must contend with in theAexponent of the Atiyah-Jeffrey formula
(5.53) is—3||S(w)||?, whereS = F* : A — Q2% (B,adP) and the norm is
computed in the natural inner produgt, ), on Q2(B,adP) at eachw € A.
Thus,

SIS @)IP = | F5|* = /m«(Fw*Fw ;/tr(Fz{,/\F:;).
B B

Using the orthogonality of the Hodge decomposition one finds that this can be
written as

1 1 1
B B

The first term is of the typical Yang-Mills variety for a classical gauge theory,
whereas the second Witten [46] calls a topological term because it is, up to a
constant, the Chern number of the underly#ig(2)-bundle.

Remark. Witten [46] employs the notation more common in physics whereby
everything is written in such a way as to appear local. We will not attempt to
translate all that we do into this language, but will illustrate with (5.56) Let
{T,} be an orthonormal basis for su(2) relative to (A, B) = — tr(AB), eg.,

T, = —%iaa, a = 1,2,3, and o1, 09,03 are the Pauli spin matrices. Write

Fy = §Fapda® A daf, where Fo3 = F2,T, and #Fyy = $F,pda® A da?,
where F3 = F2;T,. Raiseindices with g to get F*% = g*'¢%% F, 5 and
FoB = goo' B F,, 5. A quick computation shows that 1 tr(Fo A +Fy) =
Ltr(FogF*®)volg and 1 tr(Fw A Fu) = 1 tr(F,3F*?)volg. Writing volg as
\/§d4x one obtains the two terms corresponding to (5.56)in (2.41)of [46]:

1 | B,
SIS @) = /\/§d4xtr(ZFa5F O LEsP). (557)
B

To proceed we must sort out the appropriate analogues, in the Donaldson theory
context, of the map€’, C* andR. At each point in the principal bundle space

A, C,, is the map from the Lie algebra ¢f which we have seen can be identified
with Q°(B, adP), to the tangent spacg, (A) = Q!(B,adP) defined, for each

¢ € Q%(B,adP) by

Co () = % (w - exp (£€))],_ -
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Computing this derivative locally gives
Co (&) = d¥e. (5.58)
Consequently(7 is the formal adjoint
Ci =6%: QY (B,adP) — Q° (B, adP) (5.59)
of d“ relative to the natural inner products on the spaces of forms and so
Ry =ChoCpw =AY :Q%(B,adP) — Q° (B, adP) (5.60)

is the scalar Laplacian corresponding.io

With this information in hand we consider the terri¢, R, \) in (5.53). Bothg
and\ are in the Lie algebra so we introduce two “bosonic” fields

o, A € Q°(B,adP)
and interpre{ , ) as the natural inner produ¢t ) onQY(B, adP).

Remark. We apply the adjectives “ bosonic” and “ fermionic” to the fields we
introduce only because of the type of integral these variables correspond to in
(5.53) We do not claim to have justified any physical connotations associated
with the terms.

Thus, the term-i(¢, R, ) is to be interpreted as

(b, RuA) = —i (b, AY A}, :1/ i (¢ A% (A¥A))

B

= i/ tr (x (PAFN)) .
B

(5.61)

Remark. As Atiyah and Jeffrey [3] point out, the real field ¢ must be replaced
by i¢p and A must be replaced by %)\ to conform to Witten's notation. In physics
notation, the corresponding termin [46] is

/ N tr<%¢DaDo‘)\).
B
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Next we consider the terfiC},x,n) in (5.53). SinceC}, mapsQ!(B,adP) to
0°(B,ad P) we will need two fermionic fields

n € Q°(B,adP)

and
x € Q' (B,adP)

and, as above,, ) = (, )o. Thus, we find that

(Clxm) = (3 = Godm), = = [ (ensdn). (562
B

The fermionic variablep in the Mathai-Quillen formalism arises from the odd
generators of the exterior algebra of the fiber vector spacdn our case this
vector space i€ (B, ad P) so we introduce a fermionic field

¥ € Q2 (B,adP).

Now consicjer the terny”'dS,, (x) in (5.53). S is the self-dual curvature map
S=F":A— Q%(B,adP) and we noted in Section 4 that the derivative of this

map atw € A is identified with
d% : QY(B,adP) — Q2 (B, adP)

SO
dSw (x) = d¥x (5.63)

for eachy € Q!(B,adP). We will interpret finite-dimensional expressions such

as
Bl

ATB=(A'...A")| : | =A'B'+...+A4"B"
B

in terms of the appropriate field-theoretic inner product so ithatlS,, () be-
comes

i <¢7 dﬁX>2 =i <'¢7 de)Q
(becausep is self-dual and the Hodge decomposition is orthogonal)

=i(d¥x, ), = —i/tr (d¥x A1)

B

ipTdS, (x) = —i / tr (d¥“x A ). (5.64)

B
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Next we consider the terréz/;T(p*(qﬁ))z/; in (5.53). We know already thap <
QY%(B,adP) andvy € Q% (B,adP). In the Mathai-Quillen formp corresponds

to the action ofG on V that gives rise to the associated vector bundle. In our
case (regarded as sections of the nonlinear adjoint bundle) adB @3, ad P)
pointwise by conjugation. At each point this is just the ordinary adjoint action of
SU(2) on its Lie algebra for which the infinitesimal action is just bracket. Thus,
for eachg € Q°(B, adP), p.(¢) acts omp € Q% (B, adP) by

ps (@)Y = (6, Y]
so 397 (p.(¢))y is interpreted asyp” (p.(¢))p = 1(ap, [¢,1])> which we

rearrange as follows
1

ST (0 (@)% = L (. [0 1) = 5 (9.4], %)
——5 [wlowinw) =5 [w(swin)
B B

becausey is self-dual. Now, any ad-invariant inner product ) on any Lie
algebra satisfie$z, [y, z]) = ([z,y],2) so in this last integral we may replace
[, ] A\ 1 by @[, 1]. Moreover, t{AB) = tr (BA) so we conclude that

S0 @) =5 [ (vl (5.65)

B

The only remaining term in (5.53) i6dC (x, x), A) and this requires a bit more
work. C* is a one-form onA with values inQ°(B,adP). We computelC* at
w € A as follows. Fixxi, X2 € T.,A. SinceA is an affine space and is open
in A we may regardy, andy, as constant vector fields of. Thus,

dCq (X1, X2) = x1 (C*x2) — x2 (C™x1) — C* ([x1, Xx2])
=x1 (C"x2) — x2 (C*x1)

whereC*x; is the function or® — Cgx; = 59X¢ fori=1,2. Now

(X1 (C"x2)) (w) = x1 (W) (C"x2) = x1 (C"x2) (5.66)

d .. d
- ECertXl (X2)|t:0 - E(s T (XQ)\t=0‘

We computes“ X1 as follows: For any € Q°(B, adP),

49X (A) = dA+ £ [x;, A] = d¥A + By, (A)
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whereB,, : Q°(B,adP) — Q'(B,adP) is given byBy, (A) = [x;, A]. Thus,
§UTX (xp) = 0¥ + By, (x2)
whereBj, : Q'(B,adP) — Q°(B,adP) is the adjoint ofB,, . We claim that
By, (X2) = —* [x1,*Xa] - (5.67)
Indeed, for any\ € Q°(B, adP),

(By, (V)1 x2), = (1 A Xa)y = — / tr (s Al A +xa)

U:J\ U:J\

tr ([A, xq] A*xe) = [ tr (AA X, *X3))

Sy}

1 (A A X, X)) = — (A X, X))o

—~

)‘7 —* [X17 >|<)(2]>0

which establishes (5.67). Thu&/ X1 (x,) = §“ x5 — t*[x1, *X5] and comput-
ing the derivative at = 0 gives, from (5.66),

(X1 (C"x2)) (W) = —* [x1,*X2] -
Interchangingy; andx, gives

(X2 (C"x1)) (W) = == [X2, *X1] -

Since these are independent ©f we havex;(C*x,) = —x[xy,*Xx-] and
X2(C*x1) = —*[x2,*Xx1]. One can verify that, for anw, 3 € Q'(B,adP),
x[3, xa] = —x[a, x3] SO we may writex[x,, *x;] = —*[Xx1, *Xx2] and thereby
obtain

dCg (X1s X2) = —2# [x1, *Xa] (5.68)

for anyw € A. Thus
1<dC(TJ (X17 XZ) ) A> =1 A7d X17X2)>
— i [ (A (-2t b))

B
21/tr (AN X1, %X2)) 21/tr [X1,*X2] A
B B
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and finally

i(dCL(x, x), A) = Qi/tr([x,*x] A). (5.69)
B

With this we have identified all of the terms in the exponent in (5.53). Each is the
integral overB of a trace and so we may collect them all together into

1 1 1 .
/tr(ZFw N+Fo+ 1Fw A Fo — S [, 4] ¢ — idX A ¢

B (5.70)

+ 21 [x, #x] A + 1% (QAFTA) — x A *d“’n).

Now we introduce some of the terminology used in physics. Each fixed choice
of the three bosonitw € A, ¢, A € Q°(B,adP)) and three fermionidn <
QY(B,adP), x € QY(B,adP), ¢ € Q%(B,adP)) fields will be called dield
configuration and will be denoted

@: (quvaan)Xa,(:b)'

For each such choice the expression (5.70) is a number so this integral can be
regarded as a function @. Minus this function is th&onaldson-Witten action
functional

1 1 1 .
B

= 2x XA~ % (AR A) + X A +dn) (5.71)

Thus, in our present infinite-dimensional context the integral in (5.53) can be writ-
ten

/ e oow(® D (5.72)

where we have abbreviatday DnDydAd¢dw as simplyD®. It is only in this
last expression that we leave the world of mathematically well-defined objects and
proceed “formally”.

In (5.72) we have omitted the constafr)~"(27)~* in (5.53) since, in our
present circumstances, bottandk would be infinite. In the physics literature one
often sees the integral (5.72) normalized with a factor afol (G), wherevol (G)

is intended to represent the “volume” of the gauge grupAbout this we will

have nothing further to say, but, for certain remarks we wish to make here and in
Section 7, we point out that the physicists often include in the exponent in (5.72),
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or directly in the action (5.71), a factor @fe?, wheree is a so-callectoupling
constant. Mathematically, one can view the inclusion of such a factdf imy [®]

as simply a different choice of invariant inner product on the Lie algeb(a),

which is determined only up to a positive constant multiple. Classically, one can
rescale and give this factor any convenient value. However, upon quantization
the different values of the coupling constant give rise to an entire one-parameter
family of quantum field theories and the computability (“renormalizability”) of
the theory generally depends on this value. Since this dependence on the coupling
constant (or, rather, a lack thereof in the cases of topological interest) is relevant to
a few comments we will make here and somewhat later, we record the following
alternative to (5.72)

e~ Sow(®l/e* D, (5.73)

This integral represents thpartition function of the quantum field theory con-
structed by Witten in [46]. Of course, Witten arrived at the action (5.71) and
therefore the partition function by quite a different route than the one we have fol-
lowed. We began with the zero-dimensional Donaldson invariant, regarded it as an
“Euler number” and massaged the Mathai-Quillen integral representation of this
Euler number until it could be formally applied in our infinite-dimensional context
to yield (5.71) and (5.72). Witten’s arguments leadingisny [®] were physical,

but the objective was to describe a quantum field theory in which the Donaldson
invariants appeared as expectation values of certain observables and, in particular,
the zero-dimensional invariant was the partition function. How then did Witten
uncover the Donaldson invariants in the field theory with actigm, [®]?

Witten chose the field conte® = (w, p, A, n, x, 1) and actionSpy [®] in

order to ensure the presence of certain symmetries (gauge invariance and “BRST-
like” symmetries). The BRST symmetries are expressed in terms of a certain
operator( on the fields which squares to zef@ o @Q = 0) and so determines
cohomology classes that are taken to represent the physical states of the theory.
The energy-momentum tensor of the theory (defined in terms of the variation of
the action under an infinitesimal change in the Riemannian mgtfche under-

lying four-manifold B) turns out to bey-exact (and so cohomologically trivial).

With this, certain formal manipulations with functional integrals imply that the
partition function of the theory is independent of both the mejrand the cou-

pling constank in the sense that its infinitesimal variation with respect to either

g or e is zero.

Note: These are hallmarks of what are today caletlomological field the-
ories. In such field theories the expectation values of observables are also “in-
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dependent ofy” in the same sense. This has led the physicists to refer to such
field theories as “topological quantum field theories” and the expectation values
as “topological invariants”. However, these are very different uses of the terms
“independent og” and “topological invariant” than one would encounter in math-
ematics. For example, we have seen in Section 4 that the zero-dimensional Don-
aldson invarianty,(B) is only independent of generic choice ofg and even this

is true only wherb] (B) > 1. Even granting this;o(B) is an invariant of the
differentiable structure of B and certainly not of its topology.

The fact that the partition function is independent of the coupling constant
particularly significant since one is then free to compute it in the limit of either
small (e — 0) or large(e — oo) values, whichever is most convenient or most
informative. For small values ef, physicists employ a technique known as semi-
classical approximation which, again because of the symmetri€gsgf®|, one

can show is actually exact in our case. This phenomenon is an infinite-dimensional
analogue of a well-known finite-dimensional theorem on the exactness of the sta-
tionary phase approximation due to Duistermaat and Heckman [13]. As we shall
see in the next section this theorem is most properly understood within the context
of equivariant cohomology and the localization of certain integals of equivariant
differential forms to the fixed point set of the group action. Similarly, the BRST
operator() can be viewed as the equivariant exterior derivative in a model of the
G-equivariant cohomology aft and Witten shows that, for certain well-chosen
observables in his field theory, the path integral representations of their expec-
tation values localize to the (finite-dimensional) moduli spaces of anti-self-dual
connections thus yielding integral formulas for the Donaldson invariants. For the
particular case we have under consideration, the partition function (which, be-
ing invariant, descends to the moduli space of fields) localizes to a sum over the
zero-dimensional moduli space of ASD connections yielding3).

In the following Part Il of this survey we will take up our story at this point with

a rather detailed discussion of the simplest of the “Equivariant Localization” the-
orems and its relation to the theorem of Duistermaat and Heckman on exact sta-
tionary phase approximation. This done, we will turn to the question of what can
be learned by examining the partition function in the limi#t> oo of large cou-

pling constants in a section on “Duality and Seiberg-Witten”. Finally then we will
consider “The Witten Conjecture” itself.
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