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Abstract. The profound, beautiful and, at times, rather mysterious symbiosis
between mathematics and physics has always been a source of wonder, but, in the
past twenty years, the intensity of the mutual interaction between these two has
become nothing short of startling. Our objective here is to provide an introduction,
in terms as elementary as possible, to one small aspect of this relationship. Toward
this end we shall tell a story. Although we make no attempt to relate it chronologi-
cally, the story can be said to begin with the efforts of Yang and Mills to construct a
nonabelian generalization of classical electromagnetic theory, and to culminate in a
remarkable conjecture of Witten concerning the Donaldson invariants of a smooth
four-manifold.

1. Instantons and four-Manifolds

The central characters in our story are all “classical gauge theories” and we will
eventually introduce them in some generality (Section 3), but we would like to
begin by getting to know a few of them personally. For this we first recall the
construction of thequaternionic Hopf bundle

Sp (1) ↪→ S
7 π−→ HP

1. (1.1)

HereSp(1) is the Lie group of unit quaternions (thoseg ∈ H satisfying|g| = 1).
As a manifold it is diffeomorphic toS3, but it is also isomorphic to the Lie group
SU(2) of 2 × 2 complex matricesU that are unitary(U−1 = ŪT ) and satisfy

detU = 1. Indeed, every suchU can be written in the formU =
(

α β

−β̄ ᾱ

)
,

whereα, β ∈ C satisfy|α|2 + |β|2 = 1 and the map(
α β

−β̄ ᾱ

)
−→ α+ βj = α1 + α2i +

(
β1 + β2i

)
j

(1.2)
= α1 + α2i + β1j + β3k

27
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is an isomorphism. We will allow ourselves the luxury of adopting whichever
view of this Lie group is most convenient in any given situation. We will usually
think of S

7 as{p = (q1, q2) ∈ H
2; |q1|2 + |q2|2 = 1}. Then we can define a

smooth right actionσ : S
7 × Sp(1)→ S

7 of Sp(1) on S
7 by

σ (p, g) = p · g =
(
q1, q2

) · g =
(
q1g, q2g

)
.

This action is clearly free and the orbitsp · Sp(1) are submanifolds ofS7 dif-
feomorphic toS

3. The orbit spaceS7/Sp(1) is, by definition, thequaternionic
projective line HP

1. We will denote byπ : S
7 → HP

1 the projection map
which carriesp = (q1, q2) onto its orbitπ(p) = π(q1, q2) = [q1, q2]. Obviously,
π(p · g) = π(p) for all p ∈ S

7 andg ∈ Sp(1). HP
1 is given the quotient topology

determined byπ and the differentiable structure determined by the atlas consisting
of the two charts(Uk, ϕk), k = 1, 2, defined as follows:

Uk =
{
x =

[
q1, q2

] ∈ HP
1; qk 	= 0

}
, k = 1, 2

ϕk : Uk −→ H ∼= R
4, k = 1, 2

(1.3)
ϕ1 (x) = ϕ1

([
q1, q2

])
= q2

(
q1
)−1

ϕ2 (x) = ϕ2

([
q1, q2

])
= q1

(
q2
)−1

.

Clearly, ϕ1 and ϕ2 map ontoH, ϕ−1
1 (q) = [1, q], ϕ−1

2 (q) = [q, 1] and, on
ϕ1(U1 ∩ U2) = ϕ2(U1 ∩ U2) = H− {0},

ϕ1 ◦ ϕ−1
2 (q) = ϕ2 ◦ ϕ−1

1 (q) = q−1. (1.4)

It follows from this that we have, indeed, defined a differentiable structure. One
can further verify that, relative to this structure,π : S

7 → HP
1 is smooth and each

of the maps

Ψk : π−1 (Uk) −→ Uk × Sp (1) , k = 1, 2
(1.5)

Ψk(p) = Ψk

(
q1, q2

)
=
(
π(p), qk/|qk|

)
is a diffeomorphism that is equivariant with respect to the given right action of
Sp(1) on S

7 and the natural right action ofSp(1) on Uk × Sp(1) (this means
that, writingΨk(p) = (π(p), ψk(p)), whereψk(p) = qk/|qk|, we haveΨk(p ·
g) = (π(p), ψk(p)g) = (π(p), ψk(p)) · g). To summarize, what we have just
shown is thatS7 is a smooth principalSp(1) (i.e.,SU(2))-bundle overHP

1 with
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local trivializations given by (1.5). We note in passing that one can replace the
quaternionsH by the complex numbersC everywhere above and thereby construct
thecomplex Hopf bundle

U (1) ↪→ S
3 −→ CP

1. (1.6)

There are, of course, also the obvious higher dimensional generalizations
Sp(1) ↪→ S

4n−1 → HP
n−1 andU(1) ↪→ S

2n−1 → CP
n−1 for n > 2.

Remark. Let ϕS and ϕN be the stereographic projection maps from the north
and south poles of S

4, respectively, and let ϕ1 and ϕ2 be as in (1.3). If ϕ̄1 denotes
the map ϕ̄1(x) = ϕ1(x), then both ϕ−1

S ◦ ϕ2 and ϕ−1
N ◦ ϕ̄1 are diffeomorphisms

of HP
1 minus a point to S

4 minus a point. On the intersection of their domains
they agree and so determine a global diffeomorphism of HP

1 onto S
4. Composing

with π : S
7 → HP

1 gives a principal bundle

Sp(1) ↪→ S
7 −→ S

4

which is also often referred to as the quaternionic Hopf bundle. Some caution
is advised, however, since reversing the roles of ϕ1 and ϕ2 above gives another
identification of HP

1 with S
4, but the corresponding Sp(1)-bundle over S

4 is not
equivalent to the one we just described. This is most readily shown by computing
their Chern numbers which turn out to be 1 in the first case and −1 in the second
(we will briefly review these calculations shortly).

Now we focus our attention on a fixed pointp = (q1, q2) ∈ S
7 ⊆ H

2. The orbit
of ourSp(1)-action containingp (i.e., the fiber ofπ : S

7 → HP
1 aboveπ(p)) is a

copy ofS3. The subset of the tangent spaceTp(S7) to S
7 atp consisting of vectors

tangent to this fiber is called thevertical space at p and denoted Vertp(S7). It is
a three-dimensional linear subspace ofTp( S7) which, in turn, can be identified
with a linear subspace ofTp(H2) ∼= Tp(R8) ∼= R

8.

Thus, relative to the usual Euclidean inner product onR
8, Vertp(S7) has an or-

thogonal complement and we shall call the intersection of this orthogonal com-
plement withTp(S7) thehorizontal space at p and denote it Horp(S7). Thus, at
eachp ∈ S

7 we have a natural decomposition

Tp

(
S

7
) ∼= Vertp

(
S

7
)⊕ Horp

(
S

7
)
.

If one fixes ag ∈ Sp(1) and explicitly computes the derivative of the diffeomor-
phismσg : S

7 → S
7, σg(p) = σ(p, g) = p · g, it is easy to see that

(σg)∗p

(
Horp

(
S

7
))

= Horp·g
(
S

7
)
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and so the distribution{Horp(S7); p ∈ S
7} of four-dimensional subspaces satisfies

the conditions required of a connection on the Hopf bundle. This is called the
natural connection onSp(1) ↪→ S

7 π−→ HP
1. Now, any connection arises from

a connection one-form, i.e., a Lie algebra-valued one-form on the principal bundle
space whose kernel at each point is the horizontal space at that point. Identifying
the Lie algebra ofSp(1) with the pure imaginary quaternionsImH and defining
anImH-valued one-form onH2 by

ω̃ = Im(q̄1dq1 + q̄2dq2)

it is not difficult to see that the connection one-formω for the natural connection
on the Hopf bundle is the restriction ofω̃ to S

7, i.e.,

ω = ι∗ω̃ (1.7)

whereι : S
7 ↪→ H

2 is the inclusion map (the proof is on page 295 of [34]).

In the physics literature it is more common to describe connections (there called
gauge potentials) locally on the base manifold by pulling back the connection
one-form by sections corresponding to some trivializing cover of the bundle.
For the trivializations(Uk,Ψk), k = 1, 2, of the Hopf bundle given by (1.5)
eachUk covers all but one point ofHP

1 and it follows that the connectionω
is uniquely determined by either one of the corresponding pullbacks. For exam-
ple, it is easy to verify that the inverse ofΨ1 : π−1(U1) → U1 × Sp(1) is given
by Ψ−1

1 ([q1, q2], g) = (|q1|g, q2(q1/|q1|)−1g) ∈ S
7 ⊆ H

2 and so the associated
sections1 : U1 → π−1(U1) is

s1(x) = s1

([
q1, q2

])
= Ψ−1

1

([
q1, q2

]
, 1
)
=
(∣∣q1

∣∣ , q2
(
q1/
∣∣q1
∣∣)−1

)
.

SinceU1 is also the domain of the standard chart(U1, ϕ1) on HP
1 we can write

the pullbacks∗1ω in terms of these coordinates onHP
1. More precisely, we pull

s∗1ω back toH ∼= R
4 byϕ−1

1 . These calculations are carried out in detail on pages
256-258 of [34] and yield

A1 =
(
s1 ◦ ϕ−1

1

)∗
ω = Im

(
q̄

1 + |q|2dq
)

(1.8)

which we now simply regard as anImH-valued one-form onH. Oddly enough,
this one-form onR4 first appeared in the physics literature [4] where it was ini-
tially referred to as apseudoparticle. We will have more to say about this shortly.

Thus far we know only one connection on the Hopf bundle (the “natural” one)
and we would now like to produce some more. Recall that anautomorphism of
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Sp(1) ↪→ S
7 π−→ HP

1 is a diffeomorphismf : S
7 → S

7 of S
7 onto itself that

respects the group action(f(p · g) = f(p) · g) and that each such automorphism
induces a diffeomorphismfHP1 : HP

1 → HP
1 of HP

1 onto itself byπ ◦ f =
fHP1 ◦ π. If fHP1 happens to be the identity onHP

1, thenf is called a (global)
gauge transformation. Now, if f is any automorphism andω is any connection
one-form, then the pullbackf∗ω is also a connection one-form. Iff is a gauge
transformation, then the connectionsω andf∗ω are said to begauge equivalent.

Remark. The motivation here is as follows. In physics, a (local) section
s : U → π−1(U) of a principal bundle G ↪→ P

π−→ X is called a choice of gauge
on U and is regarded as a selection, at each x ∈ U , of a frame (coordinate sys-
tem) in some internal space. The gauge principle asserts that the laws of physics
should be invariant under an arbitrary change of gauge and, more particularly,
that quantities with the same set of gauge representations are to be regarded as
physically equivalent. For example, if ω is a connection and f is a gauge transfor-
mation, then, for any section s, f ◦ s is also a section and s∗(f∗ω) = (f ◦ s)∗ω.
Thus, ω and f∗ω have the same set of gauge potentials and so are taken to be
“equivalent”. For future reference we note that a local gauge transformation on
U can be identified with a map g : U → G which gives rise to a new section/gauge
sg : U → π−1(U) defined by sg(x) = s(x) · g(x) and that if ω is any connection,
A = s∗ω and Ag = (sg)∗ω, then

Ag = g−1Ag + g−1dg.

Although not entirely obvious, one can show (pages 297-303 of [34]) that, by
judiciously choosing automorphisms of the Hopf bundle by which to pull back the
natural connection, one can produce a new connection ωλ,n for each (λ, n) ∈
(0,∞)×H that is uniquely determined by the gauge potential

Aλ,n = Im
(

q̄ − n̄

λ2 + |q − n|2dq
)

(1.9)

on H (thus, A1 = A1,0). For reasons that we will discuss shortly, Aλ,n is called
the BPST-instanton with center n and spread λ. Although all of these differ from
the natural connection by an automorphism we will see that distinct pairs (λ, n)
give rise to connections that are not gauge equivalent.

Any connectionω has a curvatureΩ that can be calculated from the Cartan
Structure EquationΩ = dω + 1

2 [ω,ω] and is uniquely determined by a fam-
ily of pullbacks F = s∗Ω, called gauge field strengths, by sections corre-
sponding to some trivializing cover. For the connectionωλ,n on the Hopf bun-
dle the curvatureΩλ,n is uniquely determined by the single gauge field strength
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Fλ,n = dAλ,n + 1
2 [Aλ,n,Aλ,n]. A rather tedious, but routine calculation (pages

284-289 of [34]) gives

Fλ,n =
λ2

(λ2 + |q − n|2)2dq̄ ∧ dq

=
2λ2

(λ2 + |q − n|2)2
(
(dx1 ∧ dx2 − dx3 ∧ dx4)i (1.10)

+(dx1 ∧ dx3 + dx2 ∧ dx4)j + (dx1 ∧ dx4 − dx2 ∧ dx3)k
)

wherex1, x2, x3 andx4 are standard coordinates onR
4.

The ImH-valued two-formsFλ,n on H(∼= R
4) have a number of crucial prop-

erties. If “∗” denotes the Hodge star operator onR
4 arising from the usual ori-

entation and inner product and if we extend this operator toImH-valued forms
componentwise, then eachFλ,n is anti-self-dual (ASD) in the sense that

∗Fλ,n = −Fλ,n (1.11)

(page 333 of [34]). The Hodge star also gives a (pointwise) inner product on the
spacesΩp(R4), 0 ≤ p ≤ 4, of real-valuedp-forms onR

4 (if µ andν are in
Ωp(R4), then∗ν is in Ω4−p(R4) soµ ∧ ∗ν is in Ω4(R4) and so is a multiple of
the metric volume formvol onR

4 and one defines〈µ,ν〉 byµ∧∗ν = 〈µ,ν〉vol).
Combined with the Killing form on the Lie algebra this will give a pointwise inner
product on any space of Lie algebra-valued forms onR

4.

Remark. The conventions we adopt are as follows: The Lie algebra ImH is
isomorphic to the Lie algebra su(2) of 2 × 2 complex matrices A that are skew-
Hermitian (ĀT = −A) and tracefree ( trA = 0). We take as a basis for su(2)

the matrices Tj = −1
2 iσj , where σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
and σ3 =(

1 0

0 −1

)
are the Pauli spin matrices. Thus, every element of su(2) can be

written in the form

A = A1T1 +A2T2 +A3T3 = −1
2

(
A3i A2 +A1i

−A2 +A1i −A3i

)
. (1.12)

As the inner product associated with the Killing form of su(2) we take 〈A,B〉 =
−2 tr(AB) so that {T1, T2, T3} is an orthonormal basis. The structure constants
for this basis are given by [Ti, Tj ] = εijkTk (εijk is the Levi-Civita symbol with
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ε123 = 1). The structure constants for the basis {1
2 i,

1
2 j,

1
2k} for ImH are the

same ([x, y] = xy − yx = 2Im(xy) on ImH) so an isomorphism of ImH onto
su(2) is a1i + a2j + a3k→ (2a1)T1 + (2a2)T2 + (2a3)T3. In particular, our Lie
algebra inner product is four times the usual R

3 inner product ImH.

Now, if F = F1i + F2j + F3k is anImH-valued form onR4, each component
has a squared norm‖F i‖2 = 〈F i,F i〉 given by the Hodge dual as above. Our
Lie algebra squared norm‖F‖2 for F is then taken to be four times the sum of
these

‖F‖2 = 4
3∑

i=1

∥∥F i
∥∥2

. (1.13)

Writing F as ansu(2) matrix of complex-valued forms in the manner indicated
above,∗F is computed entrywise. Defining the wedge productF ∧ ∗F to be the
matrix product with entries multiplied by the ordinary wedge, a simple calculation
shows that

− tr (F ∧ ∗F) =
1
2
‖F‖2 vol . (1.14)

To compute‖Fλ,n‖2 for the BPST gauge field strength given by (1.10) one ob-
serves that, for example,

(dx1 ∧ dx2 − dx3 ∧ dx4) ∧ ∗ (dx1 ∧ dx2 − dx3 ∧ dx4
)

= − (dx1 ∧ dx2 − dx3 ∧ dx4
) ∧ (dx1 ∧ dx2 − dx3 ∧ dx4

)
= 2dx1 ∧ dx2 ∧ dx3 ∧ dx4 = 2 vol

and similarly for the rest so

‖Fλ,n‖2 = 4
(
3
(

8λ4

(λ2 + |q − n|2)4
))

=
96λ4

(λ2 + |q − n|2)4 . (1.15)

Notice that‖Fλ,n‖2 has a maximum value of96/λ4 at q = n and that, for a
fixedn, its variation withλ (illustrated in the Figure 1) is such that the “total field
strength”

1
2

∫
R4

‖Fλ,n‖2 vol =
∫
R4

48λ4

(λ2 + |q − n|2)4 vol = 8π2 (1.16)

remains constant at8π2.

Thus, the gauge potentialAλ,n on R
4 has field strength that is “centered” atn

in R
4 with a “spread” that is determined byλ (hence the terminology introduced
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Figure 1. BPST Field Strengths

earlier), and a total field strength that is independent ofλ andn (the reason for
this is, as we will see shortly, deeper than it might seem).

Let us now temporarily suppress from our minds where the potentialsAλ,n came
from (i.e., the Hopf bundle) and regard them simply as Lie algebra-valued one-
forms onR

4. Any such Lie algebra-valued one-formA on R
4 can be thought of

as a gauge potential for a connection on the trivialSp(1)- (or SU(2)-) bundle
overR4 and so has a gauge field strengthF = dA + 1

2 [A,A] on R
4. We define

theYang-Mills action YM(A) of A by

YM (A) =
∫
R4

− tr (F ∧ ∗F) =
1
2

∫
R4

‖F‖2 vol. (1.17)

This integral might well be infinite, of course, but if it is not we will say thatA
hasfinite action and think ofYM(A) as the total field strength of the gauge
potentialA.

In an attempt to describe the isotopic spin of a nucleon, Yang and Mills [49] de-
vised a non-abelian generalization of classical electromagnetic theory in which
the electromagnetic potential was replaced by ansu(2)-valued one-formA onR

4

(actually, on Minkowski spacetime, but we will restrict our attention to the Eu-
clidean version). The field strength for their potential was ourF and the “action”
(i.e., Lagrangian) of the theory wasYM(A). The field equations were the Euler-
Lagrange equations forYM(A) under variations ofA and it is not difficult to
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show that these are
dA ∗F = 0 (1.18)

wheredA ∗F = d ∗F + [A, ∗F ] is the covariant exterior derivative of∗F as-
sociated withA. Equations (1.17) are theYang-Mills equations on R

4. Quite
independently ofYM, any field strengthF satisfies a purely geometrical condi-
tion called theBianchi identity

dA F = 0 (1.19)

(page 268 of [34]). Now notice that if the field strengthF of A happens to
be ASD(∗F = −F), then (1.19) implies that (1.18) is automatically satisfied.
Thus, a gauge potentialA on R

4 with ASD field strengthF is a solution to
the Yang-Mills equations (it is shown on page 325 of [34] that these actually give
absolute minima for the Yang-Mills action). This is the context in which the BPST
instantonsAλ,n were first discovered. Belavin, Polyakov, Schwarz and Tyupkin
[4] sought finite action solutions to the Yang-Mills equations (1.18) onR

4 and
found them via the simpleranti-self-dual equations

∗F = −F . (1.20)

A finite action gauge potentialA on R
4 with ASD field strength is called an

instanton on R
4.

We have described a family of instantonsAλ,n parametrized by(λ, n) ∈ (0,∞)×
R

4. Now, ‖F‖2 is invariant under gauge transformation. This is essentially be-
cause it is defined in terms of the trace (1.14), which is invariant under conju-
gation, and a local gauge transformationg : U −→ G (see the Remark pre-
ceding (1.9)) conjugates field strengths, i.e.,Fg = g−1Fg. Thus, we con-
clude from (1.15) thatAλ,n andAλ′,n′ can be gauge equivalent if and only if
(λ′, n′) = (λ, n), i.e., distinct BPST instantons are gauge inequivalent. Never-
theless, they all have the same total field strengthYM(Aλ,n) and we must now
investigate this “coincidence” more closely.

Lately we have been thinking of theAλ,n simply as Lie algebra-valued one-forms
on R

4 and forgetting where they came from. They are, of course, much more.
They are pullbacks toR4 of the connectionsωλ,n onSp(1) ↪→ S

7 → HP
1. Let us

now identifyHP
1 with S

4 in the manner described at the beginning of the Remark
after (1.6). Eachωλ,n is then regarded as a connection one-form on

Sp (1) ↪→ S
7 −→ S

4 . (1.21)

Their pullbacks toS4 by the induced sections of (1.21), when written in coordi-
nates onR4 obtained by stereographic projection from the north pole ofS

4, are
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the gauge potentialsAλ,n. Summarizing, we find that theAλ,n (connection one-
forms on the trivialSp(1)-bundle overR4) “come from” connection one-forms
ωλ,n on the nontrivial Hopf bundle (1.21) overS4. Turning matters about, one
might say that the connections on the trivial bundle overR

4 “extend toS
4” in

the sense thatS4 = R4 ∪ {∞} is the one-point compactification ofR4 and, due
to their asymptotic behavior as‖x‖ → ∞ in R

4, the connections extend to the
point at infinity. Note, however, that the extension process involves not only the
connection, but the bundle on which it is defined as well. Now, a remarkable the-
orem of Karen Uhlenbeck [43] asserts that this interpretation is not as fanciful as
it might sound. Indeed, a very special case of this result states that ifA is any
finite actionImH-valued gauge potential onR4 with ASD field strengthF , then
there exists a unique (up to equivalence)Sp(1)-bundleSp(1) ↪→ P → S

4 overS4

and a connectionω onP whose pullback by some sections of P is A when writ-
ten in stereographic coordinates. Furthermore, the bundle to whichA “extends”
is uniquely determined by the Yang-Mills actionYM(A) of A as we shall now
explain.

An Sp(1)-bundleSp(1) ↪→ P
π−→ X over a compact, oriented, smooth four-

manifoldX is uniquely determined by a certain characteristic cohomology class,
called thesecond Chern class c2(P ) and constructed as follows. Choose a con-
nectionω on P . The curvatureΩ of ω is a Lie algebra-valued two-form onP .

One can show (Section 6.3 of [35]) that
1

8π2
tr(Ω∧Ω) is a real-valued four-form

on P which descends to (i.e., is the pullback byπ of) a closed four-form onX
whose cohomology classc2(P ) ∈ H4(X,R) does not depend on the choice ofω.
Two Sp(1)-bundles overX are known to be equivalent if and only if they have
the same second Chern class and, indeed, if and only if they have the samesecond
Chern number, defined by

c2 (P ) [X] =
∫
X

c2(P ) (1.22)

(which is always an integer). Now takeX to beS
4. Stereographic projection from

the north pole ofS4 is an orientation preserving diffeomorphism fromS4 minus
a point ontoR

4 soc2(P )[S4] can be computed by integrating pullbacks overR
4,

i.e.,

c2 (P )
[
S

4
]
=

1
8π2

∫
R4

tr(F ∧F) (1.23)

whereF is the corresponding field strength.
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Now let us consider an instantonA onR
4 with field strengthF . SinceF is ASD,

∗F = −F and so− tr(F∧∗F) = tr(F∧F). Uhlenbeck’s Theorem guarantees
thatA extends to a connection on some principalSp(1)-bundleSp(1) ↪→ P →
S

4 over S
4 and a comparison of (1.17) and (1.23) shows that the second Chern

number of this bundle is given by

c2(P )
[
S

4
]
=

1
8π2
YM (A) . (1.24)

Thus, the Yang-Mills action of an instantonA on R
4 is directly encoded in the

topology of the bundle overS4 to which A extends. Notice, however, that the
value ofYM(A) is entirely determined by the asymptotic behavior of the field
strengthF on R

4 so it is this physical characteristic of the gauge field that is rep-
resented by the Chern number. Physicists call−c2(P )[S4] theinstanton number,
or topological charge, of A. The “reason” that all of the BPST instantonsAλ,n

have the same Yang-Mills action is now clear: they all extend to (i.e., come from)
the sameSp(1)-bundle overS4, i.e., the Hopf bundle (1.21), which (1.16) now
shows to have Chern number one (as promised in the Remark following (1.6)).
Notice also that the topological charge of an instanton, being an integer, cannot be
altered by a continuous variation of the field and so is “conserved”, but for purely
topological reasons unlike the more common Noether conserved quantities. Such
topological conservation laws play a crucial role in understanding modern gauge
field theories.

Remark. For the complex Hopf bundle U(1) ↪→ S
3 → CP

1 one defines the
natural connection geometrically exactly as in the quaternionic case. The corre-
sponding connection one-form ω is the restriction to S

3 of the ImC-valued one-
form iIm(z̄1dz1 + z̄2dz2) on C2. Choosing a section and coordinates analogous

to those in the quaternionic case gives the gauge potential iIm
(

z̄

1 + |z|2 dz
)

on

C ∼= R
2. Identifying CP

1 with S
2 in the two ways indicated for HP

1 and S
4 gives

two inequivalent U(1)-bundles over S
2 (those with “first Chern number” ±1).

On each of these one obtains an induced connection, uniquely determined by a
gauge potential which, when written in spherical (rather than stereographic) co-

ordinates, takes the form − in
2

(1− cosφ)dθ, where n = ±1. More generally, one

has, for each n ∈ Z, a U(1)-bundle U(1) ↪→ Pn → S
2 over S

2 with first Chern
number n and on it a connection uniquely determined by the gauge potential

An = − in
2

(1− cosφ) dθ.
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This potential (and the corresponding connection) represent the field of a Dirac
monopole of magnetic charge −n. Just as for the instanton number, magnetic
charge is “topological” in that it is encoded in the topology of the bundle on
which the connection lives and is conserved for topological reasons. We will have
more to say about Dirac monopoles in Section 7.

There is another perspective on the topological nature of instantons which we now
briefly describe. Observe thatYM(A) < ∞ implies that‖F‖2 must approach
zero sufficiently fast as‖x‖ → ∞ in R

4. This, together withF = dA+ 1
2 [A,A]

would seem to require a similar decay for the components ofA and their first
derivatives. However, due to the gauge freedom available in the choice ofA
(‖F‖2 is gauge invariant), this is not the case. All that is necessary is that there
exist some local gauge transformationg : U → Sp(1), defined for sufficiently
large‖x‖, such that the potentialAg in this new gauge has components that decay
sufficiently fast (g need only be defined for large‖x‖ because the integral over any
compact set inR4 is necessarily finite). If such ag exists andS3

R is a three-sphere
in R

4 of sufficiently large radiusR that it is contained in the domain ofg, then

g| S3
R : S

3
R −→ Sp (1)

can be regarded as a map from the three-sphere to itself and so determines an el-
ement of the homotopy groupπ3(S3). But π3(S3) ∼= Z and an isomorphism is
provided by the Brouwer degreedeg. Thus, the asymptotic behavior ofF deter-
minesg, which determines[g|S3

R] ∈ π3(S3) and this gives an integerdeg(g|S3
R)

(the restrictions ofg to two such spheres are clearly homotopic and so have the
same degree). Thus, the various possible asymptotic behaviors for finite action
field strengths onR4 fall into “homotopy classes”, each labeled by an integer.
If F is ASD so thatA extends to a principalSp(1)-bundle overS4, then these
integers also characterize the bundles.

Remark. Briefly, the reason for this is as follows. S
4 = R

4∪{∞} consists of two
copies of the closed four-dimensional disc (upper and lower hemispheres) glued
together along the equator which is a copy of S

3 and which we can take to be S
3
R.

The restriction of any bundle over S
4 to either of these discs is trivial because the

disc is contractible. This provides a trivializing cover of S
4 consisting of just two

trivializations and hence essentially one transition function g. This one transition
function determines the bundle up to equivalence and its restriction to the equator
is a map from S

3 to Sp(1) ∼= S
3. Furthermore, any map from S

3 to S
3 can

be regarded as such a restriction and homotopic maps correspond to equivalent
bundles. In particular, this is true of the restricted gauge transformation g|S3

R so
the integer deg(g|S3

R) uniquely determines an Sp(1)-bundle over S
4.
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Now let us consider somewhat more generally the Hopf bundleSp(1) ↪→ S
7 →

S
4 overS4 with Chern number one. Any connectionω on this bundle is uniquely

determined by the gauge potentialA on R
4 obtained by pulling back by the nat-

ural section onS4 minus the north pole and then again by the inverse of stereo-
graphic projection from the north pole. This stereographic projection is an orien-
tation preserving conformal diffeomorphism and so preserves the Hodge dual. We
will say that the connectionω is anti-self-dual (ASD) if the gauge potentialA
is ASD (we will see shortly how to extend this notion to bundles over more gen-
eral four-manifolds). The set of ASD connections is invariant under global gauge
transformations of the bundle so we may consider the setM of gauge equivalence
classes of ASD connections onSp(1) ↪→ S

7 → S
4. This then is the same as the

set of gauge equivalence classes of ASD potentialsA onR
4 with YM(A) = 8π2

(regarded as connection forms on the trivial bundle).

Each BPST instantonAλ,n determines a point[Aλ,n] inM and we have already
observed that distinct pairs(λ, n) give distinct points inM. A remarkable, and
very deep result of Atiyah, Hitchin and Singer [2] asserts that, in fact,every ele-
ment ofM is represented by someAλ,n and so the map

(λ, n) ∈ (0,∞)× R
4 −→ [Aλ,n] ∈M

is a bijection. This picture ofM as the half-space(0,∞) × R
4 in R

5, as simple
and pleasing as it is, is not the most informative. An alternative arises from the fact
that there is an orientation preserving conformal diffeomorphism of(0,∞) × R

4

onto the open five-dimensional ballB5 in R
5. Indeed, one can (pages 337-341

of [34]) introduce “spherical coordinates” onM that yield a picture ofM asB5

with [A1,0] at its center. Proceeding radially outward from[A1,0] toward a point
on ∂B5 = S

4 one encounters potentials all of which have the same centern, but
which become more and more concentrated, i.e., for which the spreadλ → 0.
A particularly pleasing aspect of this picture is that the base manifoldS

4 of the
bundle emerges as the boundary of the moduli spaceM in a compactification of
M (M∼= B5 ↪→ B̄5 = B5 ∪ S

4) and its points can be identified intuitively with
“delta function” potentials.

One sees quite clearly in this example how the topologies of the underlying four-
manifoldS

4 and the moduli spaceM of ASD connections on the bundleSp(1) ↪→
S

7 → S
4 are inextricably linked. We will conclude by briefly describing an amaz-

ing generalization of this scenario due to Simon Donaldson [10].

We letX denote a compact, oriented, simply connected, smooth four-manifold.
H2(X,Z) will denote its second homology group (with integer coefficients) and

QX : H2 (X,Z)×H2 (X,Z) −→ Z
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its intersection form.

Remark. H2(X,Z) is a finitely generated, free Abelian group and each of its ele-
ments can be identified with a certain equivalence class represented by a smoothly
embedded, oriented, closed surface (two-manifold with boundary)

∑
in X. Very

roughly, the definition of QX goes as follows: For α1, α2 ∈ H2(X,Z) one can
select surfaces

∑
1,
∑

2 representing them that intersect transversely (i.e., at each
intersection point the tangent spaces to

∑
1 and

∑
2 span the tangent space to X).

An intersection point p is assigned the value 1 if an oriented basis for Tp(
∑

1)
together with an oriented basis for Tp(

∑
2) gives an oriented basis for Tp(X);

otherwise it is assigned the value -1. Then QX(α1, α2) is the (necessarily finite)
sum of these values over all the intersection points. QX is a symmetric, bilinear
form and is, moreover, unimodular, i.e., if α1, . . . , αt is a basis for H2(X,Z) over
Z, then the matrix (QX(αi, αj)) has determinant ±1. Here are a few examples:

X H2 (X,Z) QX

S
4 0 ∅

CP
2

Z (1)

CP
2

Z (−1)

S
2 × S

2
Z⊕ Z

(
0 1

1 0

)
.

HereCP
2 is the orbit space ofS5 = {(z1, z2, z3) ∈ C

3 : |z1|2+|z2|2+|z3|2 = 1}
by theU(1)-action(z1, z2, z3)·g = (z1g, z2g, z3g). It is naturally a complex two-

manifold and so has a canonical orientation.CP
2

is the same manifold with the
opposite orientation. A less pedestrian example is theKummer surface which
we will denoteK3 and which can be defined as the complex algebraic surface
in CP

3 (same definition asCP
2, but begin withS

7 ⊆ C
4) whose homogeneous

coordinatesz1, z2, z3, z4 satisfy(z1)4 + (z2)4 + (z3)4 + (z4)4 = 0. The rank of
H2(K3,Z) is 22 and the intersection form is(

0 1

1 0

)
⊕
(

0 1

1 0

)
⊕
(

0 1

1 0

)
⊕ (−E8)⊕ (−E8)

whereE8 is given by
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

2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 −1

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 0

0 0 0 0 −1 0 0 2


The intersection form can also be defined for topological four-manifolds, but we
will not enter into this here.

It has been known for some time that the intersection form is a basic invariant for
compact four-manifolds. In 1949, Whitehead proved that two compact, simply
connected four-manifoldsX1 andX2 have the same homotopy type if and only
if their intersection forms are equivalent (i.e., there exist bases forH2(X1,Z)
andH2(X2,Z) relative to whichQX1 andQX2 have the same matrix). In 1982,
Freedman [16] showed thatevery unimodular, symmetric, integer bilinear form is
the intersection form of at least one (and at most two) compact, simply connected
topological four-manifold(s). In particular, this is true of the vast, impenetra-
ble maze of positive definite forms (when the rank is 40 there are at least1051

equivalence classes of definite forms). Donaldson has shown that the differential
topologist need not venture into this maze because onlyone positive definite, uni-
modular, symmetric, integer bilinear form can arise as the intersection form of a
compact, simply connectedsmooth four-manifold.

Donaldson’s 1983 Theorem: be a compact, oriented, simply connected, smooth
four-manifold with positive definite intersection form QX . Then QX is standard,
i.e., there is a basis for H2(X,Z) over Z relative to which the matrix of QX is the
identity matrix.

Donaldson’s Theorem is remarkable, but still more remarkable is its proof, which
is a byproduct of the analysis of an instanton moduli space forX. We (very, very)
briefly sketch the idea. Consider the bundle overX analogous to the Hopf bundle
overS4, i.e., theSp(1)-bundle

Sp (1) ↪→ P −→ X
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overX with Chern number one. Next, choose a Riemannian metricg onX. Both
the bundle and the metric are to be regarded as auxiliary structures to facilitate
the study ofX. Fromg and the given orientation forX one obtains a Hodge star
operator and thereby a notion of ASD connection onP . In somewhat more detail,
the definition is as follows. Letω be a connection onSp(1) ↪→ P → X andΩ
and its curvature. ThenΩ is a globally defined Lie algebra-valued two-form onP .
It is horizontal in the sense that it vanishes when either of its arguments is vertical
(tangent to a fiber of the principal bundle). The corresponding local gauge field
strengthsF = s∗Ω onX are related by the adjoint representation ofSp(1) on its
Lie algebra and so these patch together to give a globally defined two-formFω
onX with values in the adjoint bundlead(P ) of P (the vector bundle associated
to P by the adjoint representation). The two-formFω is very often also called
the curvature ofω. It’s advantage is that it is defined on the four-manifoldX so
its Hodge dual two-form∗Fω is also a two-form and it makes sense to say that
the connectionω is anti-self-dual (ASD) if ∗Fω = −Fω .

Remark. For the record we point out that anti-self-dual connections can ex-
ist only on bundles with positive Chern number, whereas self-dual connections
(∗Fω = Fω) can exist only if the Chern number is negative. The discussion
to follow can be carried at equally well with self-dual connections on the bundle
with Chern number minus one.

Now, in general, there is no reason to believe that such ASD connections exist, but
a deep result of Taubes [41] asserts that, for manifolds satisfying the hypotheses
we have assumed ofX, the bundleSp(1) ↪→ P → X actually admits ASD con-
nections. Thus, we may introduce the moduli spaceM(g) of ASD connections on
P . This moduli spacedoes depend on the choice ofg and, for a randomly chosen
Riemannian metric, little can be said about its structure. One can show, however,
that, for some choice ofg (indeed, for a “generic” choice ofg), the moduli space
M has all of the following properties.

1. If m denotes half the number of homology classesα ∈ H2(X,Z) for which
QX(α,α) = 1, then there exist pointsp1, . . . , pm ∈ M such thatM−
{p1, . . . , pm} is a smooth, orientable five-manifold.

2. Eachpi, i = 1, . . . ,m, has a neighborhood inM that is homeomorphic to
a cone overCP

2 with pi at the vertex (the cone overCP
2 is the quotient of

CP
2 × [0, 1] obtained by identifying all points of the form(p, 1)).

3. There is a compact setK ⊆ M such thatM − K is a submanifold of
M−{p1, . . . , pm} diffeomorphic toX × (0, 1).
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Figure 2. The Moduli Space

Now we build a new spaceM0 fromM by cutting off the top half of each cone
and the bottom half of the cylinderX × (0, 1). M0 is compact (becauseK is
compact). It is also a manifold with boundary whose boundary consists of the
disjoint union of a copy ofX andm copies ofCP

2.

Now, in general, ifX1 andX2 are twon-manifolds and if there exists an(n+1)-
manifoldM with boundary whose boundary is a disjoint union ofX1 andX2,
thenM is called acobordism betweenX1 andX2. X1 andX2 are then said
to becobordant. Thus,M0 is a cobordism betweenX and a disjoint union of
CP

2’s. As it happens, the signature of the intersection form of a four-manifold is
a cobordism invariant. This fact, together with the positive definiteness ofQX ,
the known intersection form of

⊔
CP

2 and a bit of integer linear algebra suffice to
produce a basis forH2(X,Z) relative to which the matrix forQX is the identity
(page 347 of [34]).

Donaldson’s 1983 Theorem was the first gauge-theoretic assault on a problem in
the topology of smooth four-manifolds. Subsequent developments in what came
to be known asDonaldson Theory yielded spectacular results, but at a cost in
labor that seemed to grow exponentially with each new success (we will describe
some of the most basic elements of Donaldson theory in Sections 4 and 8).

A breakthrough occurred in 1993 when Kronheimer and Mrowka isolated the (ap-
parently large) class of four-manifolds of “simple type” and proved that, for these
at least, Donaldson theory had some realistic chance of becoming effectively com-
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putable. At precisely this moment, however, fate (or rather Ed Witten) intervened
and the subject of smooth four-manifold topology took an entirely new turn. This
is the story we would like to tell.

Figure 3. The Cobordism

2. SU(2) Yang-Mills-Higgs Theory on R
3

The notion of a “classical gauge theory”, which we have promised to define care-
fully in Section 3, is not adequately motivated by the examples of the preceding
section (which would be classified by physicists as “pure” Yang-Mills theories).
In general, gauge fields are coupled to (i.e., interact with) what we shall call “mat-
ter fields”. For example, electromagnetic fields (U(1)-gauge fields) are coupled
to charged particles and, in the original proposal of Yang and Mills[49], SU(2)-
gauge fields interact with nucleons and, at least in the absence of electromagnetic
fields, govern the evolution of their isotopic spin (proton/neutron) state. In this
section we will consider a concrete example which may seem a bit more abstruse,
but which has proven to be very important and which has the added advantage
of being derivable from either purely mathematical considerations (“dimensional
reduction”) or in the manner more familiar to physicists (“field content plus ac-
tion”). We will describe both.

Let us briefly return to the ASD equations onR
4 (it is traditional, and will be

convenient in this section, to think in matrix terms so that we now identifySp(1)
with SU(2) andImH with sp(1) in the manner described in (1.2) and the Remark
following (1.11)). Thus, we have a one-form̂A = Â1dx1 + Â2dx2 + Â3dx3 +
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Â4dx4 = Âαdxα onR
4 with eachÂα a smooth map onR4 taking values insu(2).

The gauge potential̂A gives rise to a gauge field strengtĥF = dÂ + 1
2 [ Â, Â]

which, in coordinates, is given by

F̂ =
1
2
F̂αβ dxα ∧ dxβ =

1
2

(
∂αÂβ − ∂βÂα +

[
Âα, Âβ

])
dxα ∧ dxβ (2.1)

where∂α means∂/∂xα. The Hodge dual of the field strengtĥF is given by
∗F̂ = 1

2 ∗ F̂αβ dxα ∧ dxβ, where∗F̂αβ = 1
2

∑4
γ,δ=1 εαβγδ F̂γδ andεαβγδ is

the totally anti-symmetric Levi-Civita symbol withε1234 = 1. Thus, the ASD
equations (1.20) can be written

F̂αβ = −1
2

4∑
γ,δ=1

εαβγδ F̂γδ, α, β = 1, 2, 3, 4. (2.2)

There are many duplications in this list of equations (e.g.,α = 3, β = 4 and
α = 1, β = 2 both reduce toF̂12 = −F̂34). Indeed, all of the equations in (2.2)
are easily seen to be contained in

F̂ij = −
3∑

k=1

εijk F̂k4, i, j = 1, 2, 3 (2.3)

whereεijk is totally anti-symmetric andε123 = 1 (e.g.,F̂12 = −F̂34 is equivalent
to F̂12 = −ε123 F̂34 = −∑3

k=1 ε12k F̂k4 ).

Now, the finite action solutions to (2.3) are just what we have called instantons
on R

4. We wish now to abandon the finite action condition and seek solutionsÂ
to (2.3) that arestatic, i.e., independent ofx4. With this assumption, (2.1) gives
F̂k4 = ∂kÂ4 + [Âk, Â4] so (2.3) becomes

F̂ij = −
3∑

k=1

εijk

(
∂kÂ4 +

[
Âk, Â4

] )
, i, j = 1, 2, 3. (2.4)

Let us now “reduce toR3” as follows: Fix (arbitrarily) some valuex4
0 of x4 and

consider the submanifoldR3 × {x4
0} of R

4 (henceforth written simplyR3). For
i = 1, 2, 3 we letAi = Âi|R3 and then defineA = A1dx1 +A2dx2 +A3dx3 =
Aidxi on R

3. The gauge potentialA on R
3 has a corresponding field strength

F = 1
2Fijdxi ∧ dxj, with componentsFij = F̂ij |R3. Note thatÂ4 does not

enter into either the potential or the field strength onR
3. However, if we define

ψ : R
3 → su(2) by

ψ = Â4|R3
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then the static ASD equations (2.4), when restricted toR
3, become

F̂ij = −
3∑

k=1

εijk (∂kψ + [Ak, ψ] ) , i, j = 1, 2, 3 (2.5)

or, in even more detail,

∂iAj − ∂jAi + [Ai,Aj ] = −
3∑

k=1

εijk (∂kψ + [Ak, ψ] ) . (2.6)

These we regard as field equations for anSU(2)-gauge potentialA coupled to a
matter fieldψ whose wavefunction takes values insu(2). Somewhat more pre-
cisely, A corresponds to a connection on the trivialSU(2)-bundle overR3 and
ψ is a section of the (likewise trivial) adjoint bundle. Thus,(∂kψ + [Ak, ψ])dxk

is the corresponding covariant exterior derivativedAψ of ψ and the sum on the
right-hand side of (2.6) gives the components of theR

3-Hodge dual ofdAψ.
Consequently, (2.6) can be written

F = − ∗ dAψ. (2.7)

In whatever form they are written these are called theBogomolny monopole
equations (beginning instead with the self-dual equations∗F̂ = F̂ on R

4 we
would have arrived atF = ∗dAψ and these go by the same name). Before ex-
plaining the origin of the “monopole” terminology we will describe another path
leading to the same set of equations.

We begin with the underlying base manifoldR
3 with its usual Riemannian metric

and orientation and with standard coordinatesx1, x2 andx3. Consider the trivial
SU(2)-bundle

SU(2) ↪→ R
3 × SU(2) −→ R

3

overR3 (where the right action ofSU(2) on R
3 × SU(2) being given byp · g =

(x, h) · g = (x, hg)). Thus, we have a natural global section

s : R
3 −→ R

3 × SU (2)
s (x) = (x, e)

wheree =
(

1 0

0 1

)
is the identity element ofSU(2). Any other global section

is then of the form

sg : R
3 −→ R

3 × SU(2)

sg (x) = s (x) · g (x) = (x, g(x))
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for some smooth map
g : R

3 −→ SU (2)

which we identify with a global gauge transformation on the bundle. A connection
onR

3× SU(2) is ansu(2)-valued one-formω onR
3× SU(2). Since the bundle

is trivial, ω is uniquely determined by the gauge potential

A = s∗ω.

Moreover, anysu(2)-valued one-form onR3 is the pullback bys of some connec-
tion onR

3 × SU(2) so we may restrict our attention entirely to globally defined
gauge potentialsA on R

3. A gauge transformationg : R
3 → SU(2) gives a new

gauge representation

Ag = (sg)∗ ω = g−1Ag + g−1dg

wheredg is the entrywise exterior derivative ofg : R
3 → SU(2). The curvature

Ω = dω + 1
2 [ω,ω] is likewise determined by the field strengthF = s∗Ω =

dA + 1
2 [A,A] and a gauge transformation gives

Fg = (sg)∗ Ω = g−1Fg.

We wish to construct a field theory in which one of the fields is anSU(2)-gauge
potentialA onR

3 as described above and the other, to whichA will be coupled, is
a so called “Higgs field”. Now, in general, a “matter field”, when quantized, rep-
resents a particle. The matter field itself is represented by a wavefunction which
takes values in some vector space and which transforms under a gauge transfor-
mation by some representation of the structure group (in our caseSU(2)) on that
vector space (we will expand upon these points in Section 3). More precisely,
the matter field is a section of the vector bundle associated to the given principal
bundle by some representation of the structure group on a vector space. When the
vector space is the Lie algebra of the structure group and the representation is the
adjoint representation (so that the vector bundle is the adjoint bundle) the matter
field is called a Higgs field.

The adjoint bundle of the trivial bundleSU(2) ↪→ R
3 × SU(2) → R

3 is like-
wise trivial and any section of it can be identified with a smooth mapΨ : R

3 ×
SU(2)→ su(2) that is equivariant, i.e., satisfies

Ψ(p · g) = g−1 ·Ψ(p)

Ψ ((x, h) · g) = g−1 ·Ψ(x, h)

Ψ (x, hg) = g−1Ψ(x, h) g.
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Since the bundle is trivial,Ψ is uniquely determined by

ψ = s∗Ψ = Ψ ◦ s
ψ (x) = Ψ (x, e)

(becauseΨ(x, g) = Ψ((x, e) ·g) = g−1ψ(x)g) and we will focus our attention on
ψ. A gauge transformationg : R

3 → SU(2) gives another gauge representation

ψg = (sg) ∗Ψ = g−1ψg

of the Higgs field.

We now write down an action (analogous to the Yang-Mills action (1.17)) the
Euler-Lagrange equations of which will govern the interaction ofA andψ. The
respective integrand will contain three terms. The first is theYang-Mills term
− tr (F ∧ ∗F) just as in (1.17). The second is called theinteraction term

− tr
(
dAψ ∧ ∗dAψ

)
, wheredAψ = dψ+[A, ψ] is the covariant exterior deriva-

tive ofψ (physicists would say that this term reflects the principle of minimal cou-
pling). Finally, there is a term intended to describe the internalself-interaction
energy of the matter fieldψ. The precise form of this term must be postulated by
choosing some non-negative, smooth, invariant, real-valued functionV on su(2)
and composing withψ. We takeV to be the familiar “Mexican hat” potential, i.e.,

V : su(2) −→ R V (A) =
λ

8

(
‖A‖2 − 1

)2

whereλ ≥ 0 is a constant and‖A‖2 = 〈A,A〉 = −2 tr(A2), as in the Remark
following (1.11). We will writeV ◦ ψ asV (ψ) = λ

8 (‖ψ‖2 − 1)2 and think of it
as a 0-form onR3 so that its Hodge dual isλ8 ∗ (‖ψ‖2 − 1)2 = λ

8 (‖ψ‖2 − 1)2vol.
With this we can write down the so-calledYang-Mills-Higgs action onR

3:

YMH (A, ψ)=
∫
R3

(
−tr(F ∧ ∗F)− tr

(
dAψ ∧ ∗dAψ

)
+

λ

8
∗
(
‖ψ‖2 − 1

)2)

=
1
2

∫
R3

(
‖F‖2 +

∥∥∥dAψ
∥∥∥2

+
λ

4

(
‖ψ‖2 − 1

)2
)

vol. (2.8)

This action is gauge invariant, i.e.,A → Ag, F → Fg andψ → ψg leaves the
integral unchanged (we have already seen thatFg = g−1Ag andψg = g−1ψg so
‖Fg‖2 = ‖F‖2 and‖ψg‖2 = ‖ψ‖2 and a short calculation gives

dAg

ψg = g−1
(
dAψ

)
g
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as well). We will generally be interested only infinite action field configurations
(A, ψ), i.e., those for which (2.8) is finite. Now, the requirement that the action
YMH(A, ψ) < ∞ implies that, as‖x‖ → ∞ in R

3, ‖A‖ → 0, ‖dAψ‖ → 0
and, at least ifλ 	= 0,

‖ψ‖ −→ 1. (2.9)

Indeed, it is shown in[22] that each of these limits is achieved uniformly on
R3. Now, whenλ = 0 there is no reason to suppose that finite action im-
plies ‖ψ‖ → 1 as ‖x‖ → ∞. However, it is also shown in[22] that, for
stationary configurations (i.e., those satisfying the Euler-Lagrange equations for
YMH(A, ψ)) one loses nothing by restricting attention to those that satisfy (2.9),
even whenλ = 0. More precisely, we have the following: For any finite ac-
tion critical point ofYMH(A, ψ) with λ = 0 there exists a constantc ≥ 0
such that‖ψ‖ → c uniformly as‖x‖ → ∞. If c = 0, then (A, ψ) is triv-
ial. If c 	= 0, then one can rescale to obtain a new configuration(A′, ψ′) given
by (A′(x), ψ′(x)) = (c−1A(c−1x), c−1ψ(c−1x)). Then(A′, ψ′) is also a finite
action critical point forYMH(A, ψ) with λ = 0 and it satisfies‖ψ′‖ → 1 uni-
formly as‖x‖ → ∞.

We intend to focus our attention on a certain limiting case of the Yang-Mills-Higgs
action (that in whichλ → 0 in (2.8)), but we retain a “virtual” self-interaction in
the form of the boundary condition (2.9)). First, however, we describe an impor-
tant general feature of the full action (2.8). Notice that it has some obvious abso-
lute minima. Indeed,YMH(A, ψ), which is non-negative, is zero whenA = 0
andψ = ψ0 is a constant insu(2) with ‖ψ0‖ = 1. Such an absolute minimum
is regarded as aground state of the system. The corresponding quantum state of
lowest energy is called avacuum state and physicists perform perturbation cal-
culations about such vacuum states. The point here is that these ground states are
not unique. A specific choice ofψ0 is said tobreak the symmetry fromSU(2) to
U(1). The rationale behind the terminology is as follows: A gauge transformation
g : R

3 → SU(2) acts onψ by ψ → ψg = g−1ψg. If the ground state is to be
gauge invariant, then we must haveg−1ψ0g = ψ0 and this occurs only ifg is in
the isotropy subgroup (stabilizer) ofψ0 in SU(2) under the adjoint action. We
claim that this isotropy subgroup is a copy ofU(1). Briefly, the argument is as
follows. LetH = {g ∈ SU(2) : g−1ψ0g = ψ0} be the isotropy subgroup. Obvi-
ously,−g ∈ H if and only if g ∈ H. Now, identifyingSU(2)/ ± e with SO(3)
(page 374 of [34]) andsu(2) with R

3, the adjoint action is just the natural action
of SO(3) on R

3, i.e., rotation (see the Appendix of [34]). This natural action of
SO(3) is transitive onS2 and the isotropy subgroup ofψ0 ∈ S

2 is H ′ = H/± e.
SinceSO(3) is compact,SO(3)/H ′ is homeomorphic toS2 (Theorem 1.6.6 of
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[34]). Thus,(SU(2)/± e)/(H/± e) ∼= S
2 soSU(2)/H ∼= S

2. Consequently,H
is one-dimensional. Being closed inSU(2), H is also compact. Now, a compact,
one-dimensional smooth manifold is a disjoint union of circles (Section 5.11 of
[33]) so, being a subgroup ofSU(2), H must be a single copy of the circleU(1).
What we have just witnessed is an instance of the phenomenon ofspontaneous
symmetry breaking in which a field theory with an exact symmetry groupG
gives rise to ground states that are invariant only under some proper subgroupH
of G.

With this digression behind us we return to the limiting case of the Yang-Mills-
Higgs action described above. Thus, we consider the action

A(A, ψ) =
∫
R3

(
− tr (F ∧ ∗F)− tr

(
dAψ ∧ ∗dAψ

))
(2.10)

=
1
2

∫
R3

(
‖F‖2 +

∥∥∥dAψ
∥∥∥2 )

vol

and take as our configuration space

C =

{
(A, ψ) ;A(A, ψ) <∞, lim

R→∞
sup

‖x‖≥R
|1− ‖ψ‖| = 0

}
. (2.11)

The Euler-Lagrange equations for the actionA(A, ψ) are theYang-Mills-Higgs
equations  ∗dA ∗F =

[
dAψ,ψ

]
∗dA ∗ dAψ = 0

(2.12)

and we seek solutions to these inC. Any configuration(A, ψ) satisfying (2.12)
also satisfies an analogue of the Bianchi identity (1.19) which we write as dAF = 0

dAdAψ = [F , ψ] .
(2.13)

Now, just as in the case of the Yang-Mills action, one can find a simpler set of first
order equations whose solutions give absolute minima for the actionA(A, ψ) in
(2.10) and so, in particular, satisfy the Yang-Mills-Higgs equations (2.12). To see
how these arise we reason as follows. OnR

3, bothF and∗dAψ are two-forms
and the Hodge dual is an isometry so‖ ∗ dAψ‖2 = ‖dAψ‖2. Now observe that

‖F‖2+‖dAψ‖2 = ‖F‖2+‖∗dAψ‖2 = ‖F +∗dAψ‖2−2〈F , ∗dAψ〉 (2.14)
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and similarly,

‖F‖2 + ‖dAψ‖2 = ‖F − ∗dAψ‖2 + 2〈F , ∗dAψ〉.
It follows thatA(A, ψ) will achieve its absolute minimum value (i.e., 0) when
F = ± ∗ dAψ and these we recognize as the Bogomolny monopole equations
introduced by quite different means earlier.

The appellation “monopole” derives from a certain exact solution toF = −∗dAψ
discovered by t’Hooft, Polyakov, Prasad and Sommerfeld. In spherical coor-
dinates onR3 this solution is given byA = A1T 1 + A2T 2 + A3T 3, ψ =
ψ1T 1 + ψ2T 2 + ψ3T 3 (see the Remark following (1.11)), where

A1 = − ρ

sinh ρ
(sin θdφ+ cos θ sinφdθ)

A2 =
ρ

sinh ρ
(cos θdφ− sin θ sinφdθ)

A3 = − (1− cosφ) dθ

ψ1 = ψ2 = 0

ψ3 = coth ρ− 1
ρ

(the derivation of this solution is carried out in considerable detail on pages 141-
150 of [35]). Notice that, despite appearances to the contrary, this configuration
(A, ψ) is a globally defined, smooth object on all ofR

3 (the component functions
are actually real analytic everywhere, even atρ = 0). Furthermore, when viewed
from a distance (i.e., asρ→∞) the Higgs field approaches the constant valueT3

(sincecoth ρ − 1
ρ → 1) and the first two components ofA approach zero (since

ρ/ sinh ρ→ 0). On the other hand,A3 does not depend onρ so it remains fixed at
−(1−cos φ)dθ. Thus, for largeρ, A is effectively−(1−cos φ)dθ T 3. Under the
isomorphism ofsu(2) onto ImH described in the Remark following (1.11), this
becomes−k

2 (1− cosφ)dθ. Since the span ofk in ImH is just a copy ofImC we
recognize here just the potential for a Dirac monople (see the Remark following
(1.24)). Thus, the t’Hooft-Polyakov-Prasad-Sommerfeld monopole is a smooth
field configuration ofSU(2) Yang-Mills-Higgs theory which “looks like” a Dirac
monopole from afar. The most interesting thing about the appearance of the Dirac
monopole here is that it was entirely voluntary. In classical electromagnetic theory
magnetic monopoles are, but certainly need not be, inserted by hand, whereas in
SU(2) Yang-Mills-Higgs theory, they appear of their own accord (we return to
this point at the end of the section). We remark that the same potentialA paired
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with the Higgs field−ψ gives a solution to the “other” Bogomolny monopole
equationF = ∗dAψ.

Thus motivated we will refer to any(A, ψ) ∈ C satisfying (2.7) as amonopole
and will now associate with it a “monopole number”. Notice that ifF = −∗dAψ,
then (2.14) becomes‖F‖2 + ‖dAψ‖2 = −2〈F , ∗dAψ〉 so, for monopoles,

A (A, ψ) = −
∫
R3

〈F , ∗dAψ〉vol =
∫
R3

2tr
(
F ∧ ∗∗dAψ

)
=
∫
R3

2tr
(
F ∧ dAψ

)
=
∫
R3

Tr
(
F ∧ dAψ

)
where we now use Tr= 2 tr. Computing this integral for the t’Hooft-Polyakov-
Prasad-Sommerfeld monopole gives a value of4π. We normalize the action and
define themonopole number of any(A, ψ) ∈ C satisfying (2.7) by

N(A, ψ) =
1
4π

∫
R3

Tr
(
F ∧ dAψ

)
. (2.15)

Like the instanton number introduced in Section 1, this monopole number is, in
fact, an integer and one can see this in at least two different ways. Perhaps the
easiest to describe is as follows (consult [35] for details on the rest that we have to
say aboutN(A, ψ)): Since‖ψ‖ → 1 as‖x‖ → ∞ in R

3 there exists anR0 > 0
such that‖x‖ > R0 implies‖ψ(x)‖ > 1

2 . For‖x‖ > R0 we can therefore define

ψ̂ (x) = ψ(x)/ ‖ψ(x)‖

and, for anyR > R0,
ψ̂R = ψ̂|S2

R

whereS
2
R = {x ∈ R

3; ‖x‖ = R}. Now, ψ̂R can be regarded as a map fromS2 to
S

2 and so determines an element[ψ̂R] of the homotopy groupπ2(S2). Moreover,
sinceψ̂ is smooth on‖x‖ > R0, its restrictions to any two such spheres are clearly
homotopic so[ψ̂R] is independent ofR > R0 and we will denote it simply[ψ̂∞]
(physicists would refer tôψ∞ as the restriction of̂ψ to the “sphere at infinity”).
Now, π2(S2) ∼= Z and an isomorphism is provided by the Brouwer degree. One
can show that the monopole numberN(A, ψ) is equal to the degree of anŷψR,
R > R0, written

N(A, ψ) = deg
(
ψ̂∞
)

(2.16)
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and so, in particular, is an integer. Monopoles fall into distinct topological types
according to the homotopy type of the (normalized) Higgs field on large spheres
(these topological types are actually the connected components of the space of
solutions to (2.7) inC which are sometimes referred to astopological sectors in
physics). This is, of course, entirely analogous to our earlier description of the
instanton number in terms of the homotopy type of a gauge transformation on
large (three-) spheres.

We will conclude by briefly sketching a description of the monopole number as
the Chern number of aU(1)-bundle overS2 obtained by breaking theSU(2)
symmetry toU(1) through the selection of some ground stateψ0. Fix someR >
R0 as above.ψ is the pullbacks∗Ψ by the standard sections of SU(2) ↪→ R

3 ×
SU(2)→ R

3 of an equivariant mapΨ : R
3×SU(2)→ su(2). The restriction of

this trivial SU(2)-bundle overR3 to S
2
R is the trivialSU(2)-bundle overS2

R:

SU (2) ↪→ S
2
R × SU (2) π−→ S

2
R . (2.17)

Now letΨR = Ψ|S2
R × SU(2) andΨ̂R = ‖ΨR‖−1ΨR. Both are equivariant and

Ψ̂R takes values inS2
su(2) = {A ∈ su(2); ‖A‖2 = 1}. Furthermore,ψ̂R is the

pullback ofΨ̂R by the standard section of the trivial bundle (2.17). Thus,ψ̂R is
the standard gauge representation of a Higgs field on the bundle (2.17).

Now break the symmetry, i.e., select some ground stateψ0 ∈ S
2
su(2). The isotropy

subgroup ofψ0 (with respect to the adjoint action ofSU(2) on su(2)) is, as we
have seen, a copy ofU(1) and we will denote it simplyU(1). Now, one can
show thatΨ̂−1

R (ψ0) is a submanifold ofS2
R × SU(2) which is invariant under the

action ofU(1) and that, moreover, the restriction ofπ to this submanifold gives a
principalU(1)-bundle overS2

R:

U (1) ↪→ Ψ̂−1
R (ψ0)

π|Ψ̂−1
R (ψ0)−−−−−−−→ S

2
R. (2.18)

TheU(1)-bundle (2.18) is called a reduction of the structure group of (2.17) to
U(1). Now,U(1)-bundles overS2 are classified by their first Chern number (the
integral overS2 of the first Chern class) which is always an integer. The result
of interest to us here is that by choosing an appropriate connection on (2.18) and
writing down the formula for the first Chern number using this connection one
arrives at the expression (2.15) for the monopole number of(A, ψ).
We will conclude our discussion ofSU(2)-monopoles by very briefly discussing
an issue which must surely be troubling the reader. In classical electromagnetic
theory magnetic monopoles must be inserted by hand. One of Maxwell’s equa-
tions explicitly forbids the existence of “magnetic charges” and, in order to un-
derstand the consequences of their possible existence, Dirac [9] was forced to
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abandon (or, rather, modify) this equation and postulate the existence of a mag-
netic analogue of the electric charge. CertainSU(2)-monopoles “look like” Dirac
monopoles from a distance. One might wonder as to the “source” of their mag-
netic charge.

A naive hint concerning the source of the magnetic charge ofSU(2)-monopo-
les can be found in our earlier view of them as static, ASD potentials onR

4.
Recall that any solution to the ASD equations onR

4 also satisfies the full Yang-
Mills equationsdA ∗ F = 0 and the Bianchi identitydA F = 0 and that these
are regarded as a nonabelian generalization of Maxwell’s equations. The static
version of Maxwell’s equations that contains both electric and magnetic charge
densities (ρe andρm, respectively) is, in appropriate units and onR

3, d ∗F = 0,
dF = ∗ρm and∇2ψ = ρe, whereF is the magnetic field two-form andψ is the
electric potential. Noting thatdA F = 0 is equivalent to

dF = − [A,F ]

one can view the commutator term as playing the role of a magnetic charge den-
sity. The role of the Higgs fieldψ (or, more to the point, the boundary condition
‖ψ‖ → 1 as‖x‖ → ∞) is to break the symmetry at large distances fromSU(2)
down toU(1), thus turning theSU(2) theory into aU(1), i.e., electromagnetic,
theory.

3. Classical Gauge Theories

Abstracting the salient features of the examples in the preceding sections, we
now propose to enumerate a sequence of basic mathematical ingredients which
together will serve as our working definition of aclassical gauge theory.

1) A smooth, oriented, (semi-) Riemannian manifoldX.

Generally, this will be space(R3), a spacetime (e.g., Minkowski spacetimeR
1,3),

a Euclidean (“Wick rotated”) version of a spacetime (e.g.,R
4), a compactification

of one of these (e.g.,S4 = R
4 ∪ {∞}), an open submanifold of one of these (e.g.,

R
3\{0}), or some homotopy equivalent (e.g.,S

2 " R
3\{0}). The particles and

fields which it is the ultimate goal of gauge theory to describe “live” inX.

2) A finite dimensional vector spaceV equipped with an inner product〈 , 〉
(positive definite ifV is real and Hermitian ifV is complex).



Topology,Geometry and Physics: Background for the Witten Conjecture Part I 55

The particles have wavefunctions that take values inV. The choice ofV is dictated
by the internal structure of the particle (charge, spin, isospin, etc.) and soV is
called theinternal space. Typical examples areC (spin zero charged particles),
C

4 (Dirac electrons),C8 (nucleons), or the Lie algebraG of some Lie groupG
(Higgs fields). From the inner product〈 , 〉 one computes squared norms of
V-valued functions, forms, etc. and from these formulates action principles that
govern the dynamics (see 8) below).

3) A matrix Lie groupG and a representationρ : G→ GL(V) of G onV that
is orthogonal with respect to the inner product〈 , 〉 i.e.,

〈ρ (g) (v) , ρ (g) (w)〉 = 〈v,w〉

for all g ∈ G andv,w ∈ V.

G will generally be one of the classical groups (e.g.,U(1), SU(2), SO(4),
SL(2,C), etc.) or a product of these. In general,G describes a symmetry of
the physical system under consideration, whileρ describes the particular type
of invariance that a particle’s wavefunction exhibits under this symmetry. More
specifically, the Lie groupG plays the following dual roles

a) The inner product〈 , 〉 on V determines a class of orthonormal bases, or
frames, inV and these are related by the elements ofG, i.e., if P is the
collection of all such frames, then there is a (right) action ofG onP which
sends any framep ∈ P to a new framep · g ∈ P . By fixing (arbitrarily)
some frame at the outset one can therefore identify the elements ofG with
the frames.

b) G also acts onV (on the left) via the representationρ (v → ρ(g)(v) = g ·v)
and so acts on the wavefunction at each point. Ifψ(p) is a value of the
wavefunction described relative to the framep ∈ P , then its description
relative to the framep · g is

ψ (p · g) = g−1 · ψ (p) . (3.1)

The right action ofG on P transforms frames in the internal space and the left
action ofG on V describes the corresponding transformation law for the wave-
function.

4) A smooth principalG-bundleG ↪→ P
π−→ X overX.
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Typical examples are trivial bundles (e.g.,SU(2) ↪→ R
4 × SU(2) → R

4) and
Hopf bundles (e.g.,U(1) ↪→ S

3 → S
2 andSU(2) ↪→ S

7 → S
4). At eachx ∈ X

the fiberπ−1(x) is a copy ofG, thought of as the set of all frames in the internal
space atx ∈ X. A local sections : U → π−1(U) ⊆ P (U open inX and
π ◦ s = idU ) is a smooth selection of an internal frame at each point ofU relative
to which wavefunctions can be described onU . Such a local section is also called
a localgauge.

5) A connectionω onG ↪→ P
π−→ X with curvatureΩ.

As motivation for 5) we recall that, in classical electrodynamics, an electromag-
netic field is generally modeled by a two-formF defined on space or spacetime
(i.e., onX). The corresponding potential is a one-formA with F = dA. F is
globally defined onX, but, in general, potentials are only locally defined so that a
complete description ofF will require a number of potentials with domains that
coverX. In nonabelian gauge theories even the field strengths are, in general,
only locally defined onX. However, by virtue of the manner in which these lo-
cally defined forms onX are related on the intersections of their domains (the
local gauge transformation laws) one can piece them together into globally de-
fined forms on the bundle spaceP of some principal bundle (characterized by
transition functions that are simply read off from the transformation laws). These
are the connectionω and its curvatureΩ.

On the other hand, givenω andΩ one retrieves the physical potentials and fields
by choosing a local gauge/sections : U → P and pulling back toX : A = s∗ω
is thelocal gauge potential andF = s∗Ω is thelocal gauge field strength (both
in gauges). Another local gauges′ : U ′ → P with U ∩ U ′ 	= ∅ will be related to
s by s′(x) = s(x) · g(x), whereg : U ∩ U ′ → G and· is the right action in the
principal bundle. One generally writessg rather thats′ to explicitly display the
so-calledtransition function g. The corresponding potential and field strength
are writtenAg = (sg)∗ω andFg = (sg)∗Ω and are given by

Ag = g−1Ag + g−1dg (3.2)

and
Fg = g−1Fg (3.3)

onU ∩U ′. The change of gauges→ sg = s · g is alocal gauge transformation
and can be identified with the mapg : U∩U ′ → G. Thegauge principle, orprin-
ciple of local gauge invariance, is a cornerstone of modern theoretical physics
and asserts that such a gauge transformation alters only the appearance and not
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the physics of a situation, e.g., thatAg andFg represent the same potential and
field strength asA andF , only written in different internal coordinates.

Remark. Before recording the next item in our list of ingredients for a classical
gauge theory we recall several facts from geometry (see Section 5.7 of [34] for
more details). Given a principal G-bundle G ↪→ P

π−→ X and a left action of G
on some manifold F one can construct a fiber bundle P ×G F

πG−→ X associated
to the principal bundle by the left action whose typical fiber is F . In particular, if
F is a vector space V and the left action of G on V arises from a representation
ρ : G → GL(V) of G on V one obtains an associated vector bundle, usually
written P×ρV . A typical example is the adjoint bundle adP = P×adG, where V is
the Lie algebra G of the structure group G and ρ = adis the adjoint representation
of G on G (ad(g)(A) = gAg−1). We will need to use the fact (page 356 of [34])
that there are two equivalent ways of viewing a section of an associated bundle
P ×GF , i.e., either as a map ψ from X to P ×GF for which πG◦ψ is the identity,
or as a map ψ from P to F that is equivariant (ψ(p · g) = g−1 ·ψ(ρ)). The latter
view and (3.1) should motivate

6) A global sectionψ of the vector bundleP×ρV associated toG ↪→ P
π−→ X

by the representationρ : G→ GL(V) (or, equivalently, an equivariant map
ψ : P → V).

Particles coupled to (i.e., experiencing the effects of) the gauge field determined
by ω have locally defined wavefunctions taking values inV that are obtained
by solving field equations (see 8) below) that involve the local potentialsA. A
change of gauge changes the wavefunction by the representationρ (see (3.1)) so
these local wavefunctions piece together into a globally defined object called a
matter field that can be described in either of the two equivalent ways referred to
in 6).

Remark. It is entirely possible that more than one matter field is coupled to
the gauge field, but we will phrase our basic scheme for classical gauge theories
assuming that there is just one and leave it to the reader to add on more terms if
necessary.

7) A smooth, non-negative, real-valued functionV : V → R on V that is
invariant under the action ofG onV (V (g · v) = V (v)).

V is regarded as a potential function withV ◦ ψ = V (ψ) describing theself-
interaction energy of the matter fieldψ. Typically, this will depend only on
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‖v‖2 = 〈v, v〉, e.g.,λ
8 (‖v‖2 − 1)2, or 1

2m‖v‖2, whereλ andm are non-negative
constants.

8) An action (energy) functionalA(ω, ψ), the stationary points of which are
the physically significant field configurations(ω, ψ). The Euler-Langrange
equations forA(ω, ψ) are thefield equations (or, equations of motion) for
the classical gauge theory.

WhenX is Riemannian (as it is in cases of topological interest) one can generally
expect an action of the form

A (ω, ψ) = c

∫
X

(
‖Fω‖2 + c ‖dωψ‖2 + c2V (ψ)

)
vol (3.4)

wherec is some normalizing constant,c1 andc2 are “coupling constants”,Fω
is the globally defined two-form onX with values in the adjoint bundlead(P )
which locally reduces to the gauge field strengthsF = s∗Ω, dωψ is the covariant
exterior derivative of the matter fieldψ and the norms arise from the metric onX,
the inner product onV and some ad-invariant inner product onG.

We have already seen several examples of classical gauge theories that are of par-
ticular interest to us because of the topological nature of certain solutions to their
field equations. Later (Sections 5 and 7) we will see other, rather more compli-
cated examples whose impact on topology and geometry has been much more
profound. Of course, most examples of interest in physics are not topological in
nature at all, but we will nevertheless pause briefly to describe one of the simplest
of these (more details and still more examples are to be found in Chapter 2 of
[35]). The situation we intend to model (at the classical level) is the interaction of
an electromagnetic field with a charged, spin zero particle (e.g., aπ−-meson).

Remark. Certain technical complications, which we do not wish to become in-
volved in, arise for more familiar charged particles like the electron and proton.
The reason is that these have spin 1

2 and so, according to Dirac, have wave-
functions that transform under a certain representation of SL(2,C), whereas the
electromagnetic field to which it is coupled is a U(1)-gauge theory. To fit this in-
teraction into the general framework we have described would require “splicing”
a U(1)-bundle and an SL(2,C)-bundle together into a single U(1) × SL(2,C)-
bundle on which both objects may be thought to live. This can be done and the
process is carried out in more detail in Section 2.4 of [35].
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The arena within which electrodynamics is done isMinkowski spacetime R
1,3.

As a differentiable manifoldR1,3 is just R
4, but, rather than the usual Rieman-

nian metric onR4 we introduce the semi-RiemannianMinkowski metric given,
relative to standard coordinatesx0, x1, x2, x3 by

ηαβdxα ⊗ dxβ

where

ηαβ =


1, α = β = 0

−1, α = β = 1, 2, 3

0, α 	= β.

One thinks of the elements ofR
1,3 asevents whose standard coordinates are the

time (x0) and spatial(x1, x2, x3) coordinates by which the event is identified by
some fixed, but arbitrary inertial observer. The entire history of a (point) object
can then be identified with a continuous sequence of events (i.e., a curve) inR

1,3

called itsworldline.

Remark. We will denote by η the 4 × 4 matrix (ηαβ) and, even though η−1 is
actually equal to η, we will write η−1 = (ηαβ) to facilitate use of the Einstein
summation convention.

Now we letX denote some open submanifold ofR
1,3 (the charges creating our

electromagnetic field live inR1,3 and we intend to carve out their worldlines and
consider only the source free Maxwell equations on the resulting open submani-
fold of R

1,3). Traditionally, an electromagnetic field onX is modeled by a glob-
ally defined, real-valued two-formF onX that satisfies thesource free Maxwell
equations

dF = 0 and d∗F = 0

where∗ is the Hodge star onR1,3 determined by the usual orientation ofR
1,3

as R
4 and the Minkowski metric (specifically, ifF = 1

2Fαβdxα ∧ dxβ, then
∗F = 1

2∗Fαβdxα∧dxβ, where∗Fαβ = 1
2εαβγδF

γδ andF γδ = ηµγηνδFµν ). An
electromagnetic potential forF is a one-formA (generally only locally defined)
that satisfiesdA = F on its domain. In the gauge-theoretic formulation we
propose now these will both acquire a (trivial) Lie-algebra factor of−i (i.e., we
will deal instead withF = −iF andA = −iA).

Now we build the classical gauge theory model by introducing items 1) – 8).X,
as we have said, will be an open submanifold ofR

1,3, with the induced orientation
and semi-Riemannian metric. Since the particle we have in mind is charged and
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has spin zero, physics dictates that its wavefunction should have one complex
component so we takeV to be the (two-dimensional, real) vector spaceC with the
usual positive definite inner product〈 , 〉, which can be written

〈z1, z2〉 = 1
2
(z1z̄2 + z̄1z2) . (3.5)

The matrix Lie groupG of 3) is taken to beU(1). Now, every irreducible repre-
sentation ofU(1) on C is of the form

ρn : U (1) −→ GL (C)
(3.6)

ρn (g) (z) = g · z = gnz

for some integern and all of these are easily seen to be orthogonal with respect
to 〈 , 〉. Since electric charge is quantized we can measure it in multiples of the
electron’s charge, i.e., by an integer. We identify then in (3.6) with the charge of
the spin zero particle we have under consideration.

Now letU(1) ↪→ P
π−→ X be a principalU(1)-bundle overX andω a connec-

tion on the bundle with curvatureΩ = dω (sinceU(1) is abelian, all brackets are
zero). For any sections : U → P we can write the corresponding gauge potential
A and field strengthF (which areu(1) = ImC-valued) in terms of real-valued
formsA andF , respectively, as follows:

A = s∗ω = Aαdxα = −iAαdxα = −iA . (3.7)

F = s∗Ω =
1
2
Fαβdxα ∧ dxβ = −1

2
iFαβdxα ∧ dxβ = −iF . (3.8)

Fαβ = ∂αAβ − ∂βAα = −i (∂αAβ − ∂βAα) .

If s′ : U ′ → P is another section withU ∩ U ′ 	= ∅ and if, onU ∩ U ′, s′ =
s · g, whereg : U ∩ U ′ → U(1) is the local gauge transformation, then the
corresponding potential and field strength are given by

Ag = g−1Ag + g−1dg = A + g−1dg

and
Fg = g−1Fg = F

onU ∩ U ′ (again we use the fact thatU(1) is abelian). Notice thatFg = F is
the reason that field strengths in abelian gauge theories are globally defined on the
base manifoldX.

A matter field (item 6)) can be identified with a mapψ : P → C that is equivari-
ant, i.e., satisfies

ψ (p · g) = g−1 · ψ (p) = g−nψ (p) (3.9)
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for all p ∈ P and allg ∈ U(1), or, equivalently, with the corresponding section
of the vector bundleP ×ρn C (we will use the same symbolψ for both). As a
potential function (item 7)) we take

V : C −→ R
(3.10)

V (z) =
1
2
m 〈z, z〉 = 1

2
mzz̄ =

1
2
m |z|2

wherem > 0 is a constant (ultimately identified with the mass of the particle).
Sinceρn is orthogonal with respect to〈 , 〉, V is invariant under the action ofU(1)
onC, as required. Finally, we must specify an action (energy) functional (item 8)).

Remark. Since the metric on X is now semi-Riemannian, inner products of
forms need no longer be positive definite and we will refrain from writing norms
as we did in (3.4). Since we have thus far dealt only with su(2) (i.e., ImH)-valued
forms we briefly recall that ifα and β are two p-forms with values in some vector
space with an inner product, then one defines the (pointwise) inner product of α
and β as follows: Select a basis {Ta} and write α = αaTa and β = βbTb, where
αa and βb are real-valued p-forms. These real-valued forms have (pointwise)
inner products 〈αa,βb〉 defined by αa∧∗βb = 〈αa,βb〉vol and we define 〈α,β〉
by

〈α,β〉 = 〈αaTa,β
bTb〉 = 〈αa,βb〉〈Ta, Tb〉

(we rely upon the reader to decide which inner product is intended by looking at
what is inside). The result is independent of the choice of {Ta}. Applying this
to the ImC-valued two-form F of (3.8) with the standard inner product (3.5) on
ImC reveals that

F ∧ ∗F = −〈F ,F〉 vol =
1
2
FαβFαβvol = −1

2
FαβF

αβvol . (3.11)

Similarly, for any C-valued p-form µ one finds, again using the standard inner
product (3.5) on C and writing µ = µ1 + µ2i, that

µ ∧ ∗µ̄ = µ1 ∧ ∗µ1 + µ2 ∧ ∗µ2 = 〈µ,µ〉 vol . (3.12)

Finally, we remark that the switch to Minkowski spacetime necessitates a sign
change in the Yang-Mills term F ∧ ∗F of the action in order to ensure that the
energy of the field (which is related to its spatial integrals) is positive.

Now, as was the case forSU(2) Yang-Mills-Higgs theory, our action will contain
a Yang-Mills term, an interaction term and a potential term. Only the interaction
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term remains to be discussed and it, once again, is determined by “minimal cou-
pling”. In somewhat more detail, let us (temporarily) think of the matter fieldψ as
an equivariantC-valued map onP . Then the covariant exterior derivativedωψ is
justdψ acting onω-horizontal parts of tangent vectors. As a section of the vector
bundleP ×ρn C, ψ is determined by the pullbacks of the equivariant map and
the corresponding covariant exterior derivative is determined by the pullbacks of
dωψ. These are given locally onX and in standard coordinates by

(∂α + nAα)ψdxα = (∂α − inAα)ψdxα (3.13)

whereA = Aαdxα = −iAαdxα is the corresponding gauge potential (we are
thinking of the matter field as a section now and so writeψ rather thans∗ψ =
ψ ◦ s). Now, (3.12) gives

dωψ ∧ ∗dωψ = 〈dωψ,dωψ〉 vol

which, when written out locally in coordinates with (3.13) yields

〈dωψ,dωψ〉 = (∂αψ + nAαψ)
(
∂αψ̄ − nAαψ̄

)
(3.14)

= (∂αψ − inAαψ)
(
∂αψ̄ + inAαψ̄

)
whereAα = ηαβAβ, Aα = ηαβAβ and∂α = ηαβ∂β.

With this we can write down a proposed action for our system consisting of a
scalar field of massm and chargen coupled to an electromagnetic field deter-
mined by the local gauge potentialA = Aαdxα = −iAαdxα as

A (ω, ψ) =
1
2

∫
X

(
F ∧ ∗F + dωψ ∧ ∗dωψ +m ∗ |ψ|2

)

=
∫
X

(
−1

4
FαβF

αβ (3.15)

+
1
2
(∂αψ − inAαψ)

(
∂αψ̄ + inAαψ̄

)
+

1
2
m |ψ|2

)
vol.

The corresponding Euler-Lagrange equations are

(∂α − inAα) (∂α − inAα)ψ +m2ψ = 0 (3.16)

d ∗ F = 0 (3.17)

where∗ denotes the Minkowski spacetime Hodge star. Since−iF is the pullback
of a curvature form it satisfies the Bianchi identity and this gives

dF = 0. (3.18)
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The last two equations are just the sourcefree Maxwell equations, while (3.16) is
theKlein-Gordon equation coupling our scalar field to the electromagnetic field.

4. The Zero-Dimensional Donaldson Invariant

We have seen in Section 1 that pure Yang-Mills theory, which arose from attempts
by physicists to understand elementary particles, has deep consequences in differ-
ential topology (Donaldson’s 1983 Theorem). Coupling a gauge field to matter
fields, as inSU(2) Yang-Mills-Higgs theory, also yields some rather tantalizing
connections with topology, as we saw in Section 2. This is, however, just the be-
ginning of our story. From 1983 to 1994 the study of smooth four-manifolds was
dominated by the ideas of Simon Donaldson who showed how to extend the tech-
niques behind his theorem on intersection forms to construct remarkably sensitive
differential topological invariants for such manifolds (we describe the simplest of
these in this section). In 1988, Witten [46], prompted by Atiyah, produced a clas-
sical gauge theory in the sense of Section 3 which, upon quantization, was found
to contain certain observables whose expectation values were precisely these Don-
aldson invariants (the simplest of these invariants is the partition function of the
quantum field theory and we will “derive” it in Section 5). This construction of
Witten’s was a remarkable achievement and provided the most direct sort of link
between topology and physics. However, the most extraordinary aspect of all of
this did not emerge until the Fall of 1994 when his then recent work with Seiberg
on supersymmetric gauge theories led Witten [48] to conjecture that all of the
topological information contained in the Donaldson invariants could be extracted
also from the vastly simpler set of invariants now known as Seiberg-Witten invari-
ants (at least for a certain large class of four-manifolds). This part of the story will
be related in Sections 7 and 8.

We begin our journey down this road by outlining the construction of the so-called
zero-dimensional Donaldson invariant. Throughout this sectionB will denote
a compact, simply connected, oriented, smooth four-manifold (when the need
arises somewhat later we will recall the definition ofb+2 (B) and impose additional
assumptions regarding it). EverySU(2)-bundleSU(2) ↪→ P

π−→ B overB has
a second Chern numberc2(P )[B] ∈ Z which can be written as

c2(P ) [B] =
1

8π2

∫
B

tr (Fω ∧ Fω) (4.1)

whereω is any connection on the bundle andFω is its curvature (thought of
as a two-form onB with values in the adjoint bundlead(P )). Such bundles are
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characterized up to equivalence by this integer and we shall denote by

SU (2) ↪→ Pk
πk−→ B

the bundle withc2(Pk)[B] = k. Shortly we will explain why we are interested
only in those bundles withk > 0. C(Pk) will denote the set of all connection one-
forms onPk andG(Pk) is thegauge group of all (global) gauge transformations
of Pk (diffeomorphismsf of Pk onto itself satisfyingπk ◦ f = πk andf(p · g) =
f(p) · g for all p ∈ Pk andg ∈ SU(2)). G(Pk) acts onC(Pk) on the right by
pullback(ω −→ ω · f = f∗ω). Two connectionsω,ω′ ∈ C(Pk) are said to be
gauge equivalent if there is anf ∈ G(Pk) such thatω′ = f∗ω and we will denote
by [ω] the gauge equivalence class ofω. The set of all such gauge equivalence
classes is called themoduli space of connections onPk and written

B (Pk) = C (Pk) /G (Pk) = {[ω] ;ω ∈ C (Pk)} .

It is this moduli space that we wish to study. Unfortunately, it has no reasonable
mathematical structure in the smooth context in which we have just introduced
it so one must replace the smooth objects just defined with appropriate Sobolev
completions. This will require that some of the definitions be recast in other, but
equivalent forms.

Remark. Let us briefly recall a convenient means of defining Sobolev comple-
tions for a space of sections of a vector bundle. Begin with a compact Lie group
G and a principal G-bundle G ↪→ P

π−→ X over some compact, oriented man-
ifold X. Let V be a finite-dimensional real vector space with a positive-definite
inner product and ρ : G → GL(V) an orthogonal representation of G on V . Let
E = P ×ρ V be the associated vector bundle (any vector bundle over X can be
represented in this way). Let Ωi(X,E) be the space of i-forms on X with values in
E. In particular, Ω0(X,E) is the space of sections of E. Choosing a Riemannian
metric g on X one obtains natural inner products on each Ωi(X,E). Choosing a
connection ω on P induces covariant exterior differentiation operators

Ω0 (X,E) dω−→ Ω1 (X,E) dω−→ Ω2 (X,E) dω−→ · · · . (4.2)

Now suppose ξ ∈ Ω0(X,E). For each m = 0, 1, 2, . . . one defines the Sobolev
m-norm ‖ξ‖m of ξ by

‖ξ‖2m =
m∑

j=0

∫
X

‖(dω◦ m· · · ◦dω)(ξ)‖2 vol
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where vol is the metric volume form of g. This is, indeed, a norm on Ω0(X,E) and
different choices of the Riemannian metric g, the connection ω and the inner prod-
uct on V give rise to equivalent norms. The completion of Ω0(X,E) relative to
this norm is actually a Hilbert space L2

m(E). Sobolev embedding theorems guar-
antee that, by choosing m sufficiently large, one can achieve any desired degree of
smoothness for the elements of L2

m(E). More precisely, if l is a non-negative inte-
ger and m > 1

2(dimX)+ l, then L2
m(E) embeds in the space C l(X,E) of l-times

continuously differentiable sections of E. Also note that each Ωi(X,E) is itself a
space of sections of some vector bundle and so has Sobolev completions. Before
returning to the main development we remark for future reference that, unlike the
ordinary exterior derivative, the sequence (4.2) of covariant exterior derivatives
is generally not a complex. Indeed, when E = adP the composition of the first
two

dω ◦ dω : Ω0(X, adP ) −→ Ω2(X, adP )

is given by
dω ◦ dω (· ) = [Fω , · ] . (4.3)

Now we refashion our earlier definitions in such a way that we can define their
Sobloev completions in the manner described in the above Remark. Denote by
Ωi(Pk, su(2)) the vector of space ofi-forms onPk with values in the Lie al-
gebrasu(2). Then Ωi

ad(Pk, su(2)) will denote the subspace consisting of all
ϕ ∈ Ωi(Pk, su(2)) that aretensorial of type ad, i.e., satisfy the following two
conditions:

1. ϕ is horizontal in the sense that it vanishes whenever one of its arguments
is vertical (tangent to a fiber inPk).

2. For eachg ∈ SU(2) σ∗
gϕ = g−1 ·ϕ = g−1ϕg, whereσg : Pk → Pk is the

diffeomorphismσg(p) = p · g.

Finally, let Ωi(B, adPk) denote the space ofi-forms onB with values in the
adjoint bundleadPk. One easily shows thatΩi

ad(Pk, su(2)) andΩi(B, adPk) are
isomorphic (pull back elements ofΩi

ad(Pk, su(2)) by sections ofPk and show,
using 1) and 2), that these piece together to give elements ofΩi(B, adPk)). For
example, the curvatureΩ of a connectionω is ansu(2)-valued two-form that is
tensorial of type ad and the corresponding element ofΩ2(B, adPk) is what we
have been denotingFω. Our interest in this vector space is accounted for by the
following proposition.
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Proposition 4..1. C(Pk) is an affine space modeled on the vector space
Ω1

ad(Pk, su(2)) ∼= Ω1(B, adPk), i.e., if ω0 is any element of C(Pk), then

C (Pk) =
{
ω0 +ϕ ;ϕ ∈ Ω1

ad(Pk, su(2))
}
. (4.4)

The proof is simple since one need only show that ifω andω0 are inC(Pk), then
ω − ω0 is tensorial of type ad.

Now, eachΩi(B, adPk) is a space of sections of a vector bundle and so has
Sobolev completionsΩi

m(B, adPk) for m = 0, 1, 2, 3, . . . For sufficiently largem
its elements are all continuous sections so the isomorphismΩi(B, adPk)∼= Ωi

ad(Pk, su(2)) serves to define the Sobolev completionsΩi
ad,m(Pk, su(2)).

Thus, we can define a Sobolev space of connections onPk for each suchm by

Cm (Pk) =
{
ω0 +ϕ ;ϕ ∈ Ω1

ad,m (Pk, su(2))
}
,

whereω0 is any fixed, smooth connection onPk. For our purposes it will suffice
to takem = 3.

C3 (Pk) =
{
ω0 +ϕ ;ϕ ∈ Ω1

ad, 3 (Pk, su(2))
}
. (4.5)

To define Sobolev completions of the gauge groupG(Pk) we consider the nonlin-
ear adjoint bundleAdPk. This is the fiber bundle associated toSU(2) ↪→ Pk →
B by the adjoint (conjugation) action ofSU(2) on itself. In particular, its typical
fiber is the groupSU(2), although it is not a principal bundle. LetΩ0(B,AdPk)
be the set of smooth sections ofAdPk. It is a group under pointwise multiplica-
tion in the fibers and is easily seen to be isomorphic to the groupΩ0

Ad(Pk, SU(2))
of smooth mapsψ : Pk → SU(2) that are equivariant, i.e., satisfyσ∗

gψ = g−1 ·ψ,
or, equivalently,ψ(p · g) = g−1ψ(p)g (here the group operation is pointwise
multiplication inSU(2)). We care about these groups for the following reason.

Proposition 4..2. G(Pk) ∼= Ω0
Ad(Pk, SU(2)) ∼= Ω0(B,AdPk).

Once again the proof is simple. A gauge transformationf : Pk → Pk preserves
the fibers ofPk and satisfiesf(p · g) = f(p) · g so, for eachp ∈ Pk there is a
uniqueψ(p) ∈ SU(2) for whichf(p) = p · ψ(p) and this defines the appropriate
ψ ∈ Ω0

Ad(Pk, SU(2)). Now, unfortunately,Ω0(B,AdPk) consists of sections of
a fiber bundle with fiberSU(2) and not a vector bundle so it is not immediately
clear how to define its Sobolev completions. However, if we regardSU(2) as
a subset of the vector spaceM2×2(C) of 2 × 2-complex matrices, thenAdPk

embeds in the vector bundleE = Pk ×ρ M2×2(C), whereρ is the representation



Topology,Geometry and Physics: Background for the Witten Conjecture Part I 67

of SU(2) on M2×2(C) corresponding to conjugation. But the Sobolev spaces
L2

m(E) are defined (andC1 for sufficiently largem) so we can take

Gm (Pk) =
{
s ∈ L2

m (E) ; s (B) ⊆ AdPk

}
for suchm. It will suffice for our purposes to takem = 4 and we will abuse the
notation somewhat and write

G4 (Pk) = Ω0
4 (B,AdPk) (4.6)

(the Sobolev index forG must be one greater than that forC to ensure a smooth
action ofG onC). One can show ([15] or [30]) thatG4(Pk) is a Hilbert Lie group
with Lie algebra (tangent space at the identity11) that can be identified with

T11 (G4 (Pk)) = Ω0
4 (B, adPk) (4.7)

(this is at least believable since the sections inΩ0
4(B, adPk) can be exponentiated

pointwise to give elements ofΩ0
4(B,AdPk)).

Now, the action ofG(Pk) on C(Pk) extends to an action ofG4(Pk) on C3(Pk)
(same formulas since the elements ofG4(Pk) areC1 and those ofC3(Pk) are
continuous). It is shown in [15] and [30] that this action is actually smooth and
that, ifω ∈ C3(Pk) is fixed, the map ofG4(Pk) to C3(Pk) given by

f −→ ω · f
has a derivative at11 that can be identified with

dω : Ω0
4 (B, adPk) −→ Ω1

3 (B, adPk) . (4.8)

Remark. Differential operators extend to bounded operators on Sobolev com-
pletions and this is the meaning of dω here and henceforth.

In particular, the tangent space atω to the orbitω · G4(Pk) of ω underG4(Pk) is
given by

Tω (ω · G4 (Pk)) = im (dω) = dω
(
Ω0

4(B, adPk)
)
. (4.9)

Now, themoduli space

B3 (Pk) = C3 (Pk) /G4 (Pk)

of (Sobolev index 3) connections on Pk is the set of gauge equivalence classes
of the elements ofC3(Pk) modulo the action ofG4(Pk). SinceC3(Pk) is an affine
space (by its very definition (4.5)) it has a natural topology and we provideB3(Pk)
with the quotient topology, which one can show is Hausdorff ([15] or [30]).
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Our next objective is to study the local structure ofB3(Pk). Ideally, we would like
a local manifold structure at each[ω], but we will find that this is possible only for
what are called “irreducible” connectionsω. The definition is as follows. For any
ω ∈ C3(Pk) thestabilizer (or isotropy subgroup) of ω is the subgroup stab(ω)
of G4(Pk) that leavesω fixed, i.e.,

stab(ω) = {f ∈ G4 (Pk) ;ω · f = ω} .
Any such stabilizer contains the subgroupZ2 of G4(Pk) generated by±11 and
if this is all it contains, i.e., if stab(ω) = Z2, thenω is said to beirreducible;
otherwiseω is reducible. The following characterization of reducibility is proved
in [15] and [30] (indeed, these will be our references for everything further we
have to say about the moduli spaces).

Theorem 4..3. The following are equivalent for any ω ∈ C3(Pk).

a) ω is reducible, i.e., stab(ω)/Z2 is nontrivial.

b) stab(ω)/Z2
∼= U(1).

c) dω : Ω0
4(B, adPk) −→ Ω1

3(B, adPk) has nontrivial kernel.

We will denote byĈ3(Pk) the subset ofC3(Pk) of irreducible connections (it is,
in fact, an open subset) and by

B̂3 (Pk) = Ĉ3 (Pk) /G4 (Pk)

themoduli space of irreducible (Sobolev index 3) connections onPk. The latter
is an open subspace ofB3(Pk).
Now we turn to the local structure of these moduli spaces. First consider anω ∈
Ĉ3(Pk) so that[ω] ∈ B̂3(Pk). We will produce a “slice” of thêG4(Pk)-action on
C3(Pk) nearω, i.e., a submanifoldO of C3(Pk) such that

Tω (C3 (Pk)) = Tω (ω · G4 (Pk))⊕ Tω (O) (4.10)

and such that the restriction toO of the projection into the moduli space is injec-
tive nearω. Then the local structure of the moduli space near[ω] is the same as
that ofO nearω. To produce thisO we will first produce an “orthogonal decom-
position” ofTω(C3(Pk)) into Tω(ω · G4(Pk)) plus “something” and then use the
affine structure (4.5) ofC3(Pk) to define a submanifold having this “something”
as its tangent space atω.
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Choosing a Riemannian metricg on B and an ad-invariant inner product〈 , 〉
on the Lie algebrasu(2) gives rise to natural inner products on all of the vector
spacesΩi(B, adPk) so that the operatordω : Ω0(B, adPk) −→ Ω1(B, adPk)
has a formal adjointδω :

dω
Ω0 (B, adPk) ✲✛ Ω1 (B, adPk)

δω

(in fact, δω = −∗dω∗, where∗ is the Hodge dual corresponding tog and the
given orientation ofB). It turns out that

δω ◦ dω : Ω0 (B, adPk) −→ Ω0 (B, adPk)

is a (formally self-adjoint) elliptic operator. We use the same symbols for the ex-
tensions of these operators to the Sobolev completionsΩ0

4(B, adPk) andΩ1
3(B, adPk).

Elliptic theory (the generalized Hodge Decomposition Theorem) implies that

a) ker(δω ◦ dω) = ker(dω) is finite-dimensional
b) im(dω) = ker(δω)⊥

c) dω has closed range and
d) there is an orthogonal decomposition

Ω1
3 (B, adPk) = im (dω)⊕ ker (δω)

i.e.,
Tω (C3 (Pk)) = Tω (ω · G4 (Pk))⊕ ker (δω) (4.11)

(by (4.5) and (4.9)). Now, for anyε > 0, the submanifold

Oω,ε = {ω +A;A ∈ ker (δω) , ‖A‖3 < ε} (4.12)

clearly satisfies
Tω (Oω,ε) = ker (δω)

so
Tω (C3 (Pk)) = Tω (ω · G4 (Pk))⊕ Tω (Oω,ε). (4.13)

We claim that, for sufficiently smallε > 0, Oω,ε projects injectively into the
moduli space.

To prove this last claim one first observes that, sinceω ∈ Ĉ3(Pk) and Ĉ3(Pk) is
open inC3(Pk) we can takeε > 0 small enough to ensure thatOω,ε ⊆ Ĉ3(Pk).
Now consider the map

Ψ : Oω,ε × G4 (Pk) −→ Ĉ3 (Pk), Ψ
(
ω′, f

)
= ω′ · f.
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The derivative ofΨ at (ω, 11) is computed to be

(dΨ)(ω,11) : ker (δω)⊕ Ω0
4 (B, adPk) −→ ker (δω)⊕ im (dω)

(dΨ)(ω,11) =
(
Idker(δω ),d

ω) .
This is certainly surjective and, becauseω is assumed irreducible, Theorem 4.3 c)
implies that it is also injective. By the well known Open Mapping Theorem (a
bounded, surjective, linear operator between Banach spaces is an open mapping),
(dΨ)(ω,11) is an isomorphism. Thus, the Inverse Function Theorem for Banach
manifolds (see [29]) implies that, near(ω, 11), Ψ is a local diffeomorphism. More
precisely, for some (perhaps smaller)ε > 0 there is an open neighborhoodUω of
ω in Ĉ3(Pk) and an open setU11,ε = {f ∈ G4(Pk); ‖11−f‖4 < ε} in G4(Pk) such
that the restriction

Ψ : Oω,ε × U11,ε −→ Uω

is a diffeomorphism. In particular, no two things inOω,ε are gauge equivalent by
any gauge transformation that is withinε of 11. A “bootstrapping ” argument then
shows that, for a (possibly) still smallerε > 0, no two things inOω,ε are gauge
equivalent by any gauge transformation. For such anε > 0, O = Oω,ε projects
injectively intoB̂3(Pk) and so is our slice and provides a local manifold structure
for B̂3(Pk) near[ω]. In particular,B̂3(Pk) has the structure of a smooth Hilbert
manifold.

If ω ∈ C3(Pk) is reducible the analysis is similar except that to get an injective
projection into the moduli space one must first factor out the action of the stabilizer
of ω. More precisely, definingOω,ε as in (4.12) and̃stab(ω) = stab(ω)/Z2

∼=
U(1) one finds that, for sufficiently smallε > 0, the projection

Oω,ε/s̃tab(ω) −→ B3 (Pk)

is a homeomorphism onto an open neighborhood of[ω] in B3(Pk) which, in fact,
is a diffeomorphism outside the fixed point set of̃stab(ω). There are generally
singularities, where there is no local smooth structure, at the images of these fixed
points (e.g., these account for the cones in our picture of the moduli space used in
the proof of Donaldson’s 1983 Theorem).

Now, the objects of real interest in Donaldson theory are certain subspaces of
B3(Pk) and B̂3(Pk) which we now introduce. Begin by selecting some Rie-
mannian metricg on B. Together with the orientation ofB this gives a Hodge
star operation∗ on smooth forms defined onB. SinceB is four-dimensional,
∗ : Ω2(B, adPk) −→ Ω2(B, adPk) and, since the elements ofΩ2

2(B, adPk) are
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continuous, this extends to

∗ : Ω2
2 (B, adPk) −→ Ω2

2 (B, adPk) .

The curvature mapF : C(Pk) −→ Ω2(B, adPk), ω → Fω , also extends to a
smooth map

F : C3 (Pk) −→ Ω2
2 (B, adPk)

ω −→ Fω

so we may say that anω ∈ C3(Pk) is g-anti-self-dual ( g-ASD) if

∗Fω = −Fω .

Remark. The Chern number k of our bundle can be written as

k = c2(Pk)[B] =
1

8π2

∫
B

tr (Fω ∧ Fω )

=
1

8π2

∫
B

(∥∥F−
ω

∥∥2 − ∥∥F+
ω

∥∥2
)

vol

where F±
ω = 1

2(Fω ± ∗Fω) are the self-dual and anti-self-dual parts of Fω .
Consequently, when k < 0 we must have F+

ω 	= 0 and anti-self-dual connections
cannot exist. When k = 0 it is possible for anti-self-dual connections ω to exist,
but they must be flat (Fω = 0) because F+

ω = 0 and k = 0 gives F−
ω = 0 and

Fω = F+
ω + F−

ω . We will see shortly that these are not particularly interesting
and this will account for our restriction to bundles with k > 0.

Now we define

Asd3 (Pk,g) = {ω ∈ C3 (Pk) ;ω is g-ASD}

and
Âsd3 (Pk,g) =

{
ω ∈ Ĉ3 (Pk) ;ω is g-ASD

}
and the correspondingmoduli spaces

M (Pk,g) = Asd3 (Pk,g) /G4 (Pk)

M̂ (Pk,g) = Âsd3 (Pk,g) /G4 (Pk)
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of g-ASD andirreducible g-ASD connections. Donaldson theory is built on the
analysis of these moduli spaces.

Remark. Note that the Sobolev indices have been dropped on M(Pk,g) and
M̂(Pk,g). The reason is that, for any ω ∈ Asd3(Pk,g), elliptic regularity implies
that there is an f ∈ G4(Pk) such that ω · f is a smooth connection (see Section
5 of [15]). Thus, these moduli spaces do not depend on the choice of (sufficiently
large) Sobolev index.

For a givenB, g andk, Asd3(Pk,g) (and thereforeM(Pk,g)) might well be
empty. This is the case, for example, whenB is eitherS2 × S

2 or CP
2 with their

standard orientations and metrics (Fubini-Study in the case ofCP
2) andk = 1.

Changing the orientation of the manifold can have a dramatic effect, e.g., the
k = 1 bundle overCP

2
(also with the Fubini-Study metric) has a moduli space of

ASD connections that one can describe as explicitly as we did forS
4 in Section 1

(for more details on this and many more examples, see [12]). A general result of
considerable interest was proved by Taubes [41]. Through an ingenious “grafting”
procedure using thek = 1 instantons onS4 described in Section 1 he was able
to prove that thek = 1 bundle over anyB with b+2 (B) = 0 admitsg-ASD
connections for any Riemannian metricg (the definition ofb+2 (B) follows).

Remark. Since it will play a recurrent role from this point on we recall the defi-
nition of b+2 (B) for a compact, simply connected, oriented, smooth four-manifold
B. In Section 1 we introduced the intersection form

QB : H2 (B,Z)×H2 (B,Z) −→ Z.

It is an integer-valued, symmetric, bilinear form on the finitely-generated, free
abelian group H2(B,Z). If b2(B) is the rank of H2(B,Z), then one can write

b2 (B) = b+2 (B) + b−2 (B)

where b+2 (B) (b−2 (B)) is the maximal dimension of a subspace of H2(B,Z) on
which QB is positive (negative) definite. One can show that b+2 (B) (b−2 (B)) is
also the dimension of the space of self-dual (anti-self-dual) harmonic two-forms
on B (for any choice of a Riemannian metric on B) and this accounts for the role
it plays in the study of ASD connections.

Before proceeding with the study ofM(Pk,g) and M̂(Pk,g) for k > 0 we
explain our earlier comment that thek = 0 case is “not particularly interesting”
( k < 0 is definitely not interesting since the moduli spaces are empty). The
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k = 0 bundleSU(2) ↪→ P0 → B is trivial and, as we observed earlier, any ASD
connection on it is necessarily flat. Conversely, any flat connection is certainly
ASD ( Fω = 0 impliesF+

ω = 0). Since flat connections exist on any trivial
bundle (page 92 of Vol I of [24]), the moduli spaceM(P0,g) is nonempty (for
anyg). SinceB is simply connected, any two flat connections onB are gauge
equivalent (Proposition 2.2.3 of Vol I of [24]) soM(P0,g) is, in fact, just a single
point.

Now we return to the general study of the moduli spacesM(Pk,g) andM̂(Pk,g).
For this we consider the smooth map

pr+ ◦ F : C3 (Pk) −→ Ω2
+,2 (B, adPk)

whereF is the curvature map(F (ω) = Fω) and pr+ projects onto the self-dual
part. Thus, (

pr+ ◦ F
)
(ω) = F+

ω

and
Asd3 (Pk,g) =

(
pr+ ◦ F

)−1 (0) . (4.14)

At anyω ∈ C3(Pk,g) the derivative of this map can be identified with

dω+ = pr+ ◦ dω : Ω1
3 (B, adPk) −→ Ω2

+,2 (B, adPk)

(see page 54 of [15]). Now, we have already observed that, in general,dω ◦ dω is
not zero, but it follows from (4.3) that, whenω is ASD,

dω+ ◦ dω =
[
F+
ω , ·
]
= [0, ·] = 0

so
Im (dω) = dω

(
Ω0

4 (B, adPk)
) ⊆ ker

(
dω+
)
. (4.15)

Thus, we have associated with everyω ∈ Asd3(Pk,g) a complexE(ω)

0 −→ Ω0
4 (B, adPk)

dω
✲✛

δω
Ω1

3 (B, adPk)
dω+✲✛
δω+

Ω2
+,2 (B, adPk) −→ 0

where we have included also the adjointsδω andδω+ of dω anddω+, respectively.
This complex is, in fact, elliptic and the entire analysis of the local structure of the
moduli space near[ω] rests on an analysis of the structure ofE(ω) (the so-called
fundamental elliptic complex associated withω ∈ Asd3(Pk,g)). We begin by
simply enumerating some consequences of the generalized Hodge Decomposition
Theorem for elliptic complexes.



74 Gregory L. Naber

1) The Laplacians

∆ω0 = δω ◦ dω

∆ω1 = dω ◦ δω + δω+ ◦ dω+
∆ω2 = dω+ ◦ δω+

are all self-adjoint, elliptic operators.

2) The spacesker(∆ωk ), k = 0, 1, 2, of harmonic forms are finite-dimensional and
consist of smooth forms (smoothness follows from “elliptic regularity”).

3) Each of the cohomology groups

H0 (ω) = ker (dω)

H1 (ω) = ker
(
dω+
)
/im (dω)

H2 (ω) = Ω2
+,2 (B, adPk) /im

(
dω+
)

associated withE(ω) contains a unique harmonic representative. In particular,

Hk (ω) ∼= ker (∆ωk ) , k = 0, 1, 2

so all of these cohomology groups are finite-dimensional and we may define the
index of the complexE(ω) by

Ind(E (ω)) = dim
(
H0 (ω)

)− dim
(
H1 (ω)

)
+ dim

(
H2 (ω)

)
= dim (ker (∆ω0 ))− dim (ker (∆ω1 )) + dim (ker (∆ω2 )) .

4) There are orthogonal decompositions

Ω0
4 (B, adPk) ∼= im (δω)⊕ ker (dω)

Ω1
3 (B, adPk) ∼= im (dω)⊕ ker (δω)

Ω2
+,2 (B, adPk) ∼= im

(
dω+
)⊕ ker

(
δω+
)
.

Now we put all of this information to use in the following way. Fix an element
ω ∈ Asd3(Pk,g) and restrict the map pr+ ◦F to one of the setsOω,ε (see (4.12))

pr+ ◦ F
∣∣Oω,ε : Oω,ε −→ Ω2

+,2 (B, adPk) .

Then (
pr+ ◦ F

)−1 (0) = Asd3 (Pk,g) ∩ Oω,ε (4.16)

and the derivative atω is

dω+
∣∣ ker (δω) : ker (δω) −→ Ω2

+,2 (B, adPk) . (4.17)
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Before proceeding we recall a few facts from analysis.

Remark. Recall that a bounded linear map T : H1 → H2 between two Hilbert
spaces is said to be Fredholm if either of the following two equivalent conditions
is satisfied:

a) dim(ker T ) <∞, dim(ker T ∗) <∞ and imT is closed.
b) H1

∼= ker T ⊕ imT ∗ and H2
∼= ker T ∗ ⊕ imT .

We will soon appeal to the following infinite-dimensional version of theImplicit
Function Theorem: Let X andY be Hilbert manifolds,F : X → Y a smooth
map andx0 ∈ X a point at which the derivativeDfx0 : Tx0(X) → TF (x0)(Y )
is a surjective Fredholm map. Then there exists an open neighborhood ofx0 in
F−1(F (x0)) that is a smooth (finite-dimensional) manifold of dimension

dim (ker (Dfx0)) .

We will show that the mapdω+| ker(δω) is always Fredholm and determine con-
ditions under which it is surjective, thus setting up an application of the Implicit
Function Theorem to obtain a smooth manifold structure for Asd3(Pk,g) ∩ Oω,ε

nearω. If, in addition, the projection of Asd3(Pk,g)∩Oω,ε into the moduli space
is injective (i.e., ifω is irreducible) this will give a finite-dimensional smooth
manifold structure for the moduli space near[ω].
To see thatdω+| ker(δω) is Fredholm we reason as follows. First, we have that
ker(dω+| ker(δω)) = ker(dω+)/im(dω) = H1(ω) by 4) and 3) so this is finite-
dimensional by 3). Next observe that(dω+| ker(δω))∗ = δω+ |im(dω+| ker(δω)) =
δω+ |im(dω+) so ker((dω+| ker(δω))∗) = ker(δω+ |im(dω+)) which is finite-dimen-
sional becauseker(δω+ ) = H2(ω) is finite-dimensional. Finally, im(dω+| ker(δω))
= im(dω+) = (ker(δω+ ))⊥ by 4) so this is closed. We have verified the require-
ments of a) in the Remark above sodω+| ker(δω) is Fredholm.

Now we determine when the mapdω+| ker(δω) is surjective. Sincedω+ acts on
Ω1

3(B, adPk) ∼= im(dω)⊕ ker(δω) and sincedω+ vanishes identically on im(dω)
by (4.15),dω+| ker(δω) is surjective if and only ifdω+ is surjective, i.e., if and only
if im(dω+) = Ω2

+,2(B, adPk). But, by 3), this is the case if and only ifH2(ω) is
trivial.

Noting thatH0(ω) is trivial if and only if ker(dω) is trivial and, by Theorem
4.3 c), this is the case if and only ifω is irreducible we arrive at the following
interpretations of the cohomology groups ofE(ω).

H0 (ω) = 0⇐⇒ ω is irreducible (4.18)
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H1 (ω) = ker
(
dω+
∣∣ ker (δω)

)
= kernel of the derivative of pr+ ◦ F

∣∣Oω,ε atω (4.19)

H2 (ω) = 0⇐⇒ dω+
∣∣ ker (δω) is surjective. (4.20)

Recalling that whenω is irreducible the projection into the moduli space is injec-
tive nearω we can summarize all of this in the following theorem.

Theorem 4..4. At ω ∈ Asd3(Pk,g) the map

pr+ ◦ F
∣∣Oω,ε : Oω,ε −→ Ω2

+,2 (B, adPk)

has derivative

dω+
∣∣ ker (δω) : ker (δω) −→ Ω2

+,2 (B, adPk)

that is Fredholm. The derivative is surjective if and only if H2(ω) = 0 and, in
this case, (

pr+ ◦ F
∣∣Oω,ε

)−1 (0) = Asd3 (Pk,g) ∩ Oω,ε

is a smooth manifold of dimension

dim
(
ker
(
dω+
∣∣ ker (δω)

))
= dim

(
H1 (ω)

)
near ω. If, in addition, H0(ω) = 0, then the projection into the moduli space
M(Pk,g) gives a chart of dimension dim(H1(ω)) near [ω].

Notice that ifH0(ω) = 0 andH2(ω) = 0 are both trivial, then Ind(E(ω)) =
− dim(H1(ω)) so, if we could calculate the index of the elliptic complexE(ω),
we would have (minus) the dimension of the moduli space near[ω]. The Atiyah-
Singer Index Theorem gives the index ofE(ω) in terms of topological data onB
andSU(2) ↪→ Pk → B. In our present context the result is

Ind (E (ω)) = −8k + 3
(
1 + b+2 (B)

)
(4.21)

(see pages 267-271 of [12]). Note, in particular, that the result is independent of
ω so we obtain the following consequence of Theorem 4.4.

Corollary 4..5. If H0(ω) = 0 and H2(ω) = 0 for every ω ∈ Asd3(Pk,g), then
the moduli space M(Pk,g) = M̂(Pk,g) is a smooth manifold of dimension
8k − 3(1 + b+2 (B)).
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For a given choice of the Riemannian metricg it may or may not be the case that
H0(ω) = 0 andH2(ω) = 0 for everyω ∈ Asd3(Pk,g). We will see shortly,
however, that for “almost all” choices ofg, H2(ω) will be trivial for all ω ∈
Asd3(Pk,g) and, with one additional restriction on the topology ofB, the same
is trueH0(ω). First, however, we note that ifω ∈ Asd3(Pk,g) andH2(ω) = 0,
then the slice Asd3(Pk,g) ∩ Oω,ε still has a local manifold structure nearω,
but if H0(ω) 	= 0 one can only obtain a one-to-one projection into the moduli
space by first factoring out the action of the stabilizer ofω. The consequence is
that, near[ω],M(Pk,g) is not smooth but has a neighborhood homeomorphic to
this quotient, which turns out to be a cone overCP

4k−2 with [ω] at the vertex.
Reducible connections, when they exist, give rise to cone-like “singularities” in
the moduli space.

Next we will require a brief discussion of various “generic metrics” theorems
which assert that, under certain circumstances, “almost all” choices for the Rie-
mannian metricg give rise to “nice” moduli spaces of ASD connections. Begin
by considering the spaceR of all Riemannian metrics onB. This is a space of
sections of a fiber bundle overB and can be given the structure of a (pathwise
connected) Hilbert manifold. With this structure one can show that

1. There is a denseGδ-set inR such that, for everyg in this set, anyg-ASD
connectionω onPk, k > 0, satisfiesH2(ω) = 0.

2. If b+2 (B) > 0, then there is a denseGδ-set inR such that, for everyg in
this set, anyg-ASD connectionω onPk, k > 0, satisfiesH2(ω) = 0 and
H0(ω) = 0.

In short, for “generic”g, M(Pk,g) = M̂(Pk,g) is (either empty or) a smooth
manifold of dimension8k − 3(1 + b+2 (B)).
We will not attempt to sketch proofs of these last two results, but, very roughly,
here is how one might go about showing thatM̂(Pk,g) is smooth for a generic
choice ofg. Consider the so-called parametrized moduli space

M̂(Pk,R) =
{
([ω] ,g) ∈ B̂3(Pk)×R ; ω is g-ASD

}
.

This is an infinite dimensional smooth submanifold ofB̂3(Pk) × R. One shows
that the projection map

M̂(Pk,R) −→ R
is smooth with Fredholm derivative at each point. The Sard-Smale Theorem (infi-
nite dimensional version of Sard’s Theorem) implies that the set of regular values
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of the projection is a denseGδ-set inR. But then, for anyg in this set, the inverse
image (

B̂3(Pk)× {g}
)
∩ M̂(Pk,R) = M̂(Pk,g)

is a smooth submanifold of̂M(Pk,R).

Remark. The restriction on b+2 (B) arises because the subset of R consisting of
those g for which reducible g-ASD connections on Pk exist is a countable union
of smooth submanifolds of codimension b+2 (B). If b+2 (B) = 0, then reducibles are
generically unavoidable. As we saw in Section 1 this is a good, not a bad thing as
it leads to Donaldson’s theorem on definite intersection forms.

Crudely put, the idea behind defining the Donaldson polynomial invariants is to
regard the moduli spaceŝM(Pk,g) as cycles over which to integrate certain care-
fully selected differential forms. In order to carry out such a program these moduli
spaces must be orientable and, if the result is to be a differential topological in-
variant, the integrals must be independent of the choice of (generic)g. We now
record two results that guarantee this.

Theorem 4..6. Suppose g is a Riemannian metric on B for which H2(ω) = 0 for
every g-ASD connection ω on Pk, k > 0. Then the moduli space M̂(Pk,g) is
orientable. An orientation for M̂(Pk,g) can be uniquely specified by choosing an
orientation for B and an orientation for the vector space H2

+(B,R) of self-dual
two-forms on B.

The proof amounts to constructing an explicit model for the determinant line bun-
dle (top exterior power) ofM̂(Pk,g) from a family of differential operators onB
and exhibiting a nonzero section (see Sections 5.4.1 and 7.1.6 of[12]).
To state the final result of this section we consider two metricg0 andg1 in the
denseGδ-set inR on whichH2(ω) = 0 for all g-ASD connections. SinceR is
pathwise connected we can join them with a path{gt; 0 ≤ t ≤ 1} in R. Define
the parametrized moduli space

M̂(Pk, {gt}) =
{
([ω] , t) ∈ B̂3(Pk)× [0, 1] ; [ω] ∈ M̂(Pk,gt)

}
.

Theorem 4..7. If g0 and g1 are in the dense Gδ-set in R on which H2(ω) = 0
for all g-ASD connections ω, then, for a generic path {gt; 0 ≤ t ≤ 1} joining
them, M̂(Pk, {gt}) is a smooth, orientable submanifold of B̂3(Pk) × [0, 1] with
boundary. A choice of orientation µ for H2

+(B,R) determines an orientation for
M̂(Pk, {gt}). Moreover, the oriented boundary of M̂(Pk, {gt}) is the disjoint
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union of M̂(Pk,g1) with the orientation induced by µ and M̂(Pk,g0) with the
orientation opposite to that induced by µ.

In short, a generic variation ofg variesM̂(Pk,g) within a single homology class.
Even ifM̂(Pk,g0) andM̂(Pk,g1) are smooth manifolds one cannot, in general,
arrange that the intermediate moduli spacesM̂(Pk,gt) are all smooth. There may
be finitely many values oft for which one encounters reducible connections. Even
this can be avoided, however, if one is willing to assume ofB thatb+2 (B) > 1. In
this case a generic path{gt} from g0 to g1 has the property that eacĥM(Pk,gt)
is a smooth, orientable manifold.

With the apparatus we have now assembled one is almost (but not quite) in a po-
sition to begin building the Donaldson invariants. The remaining obstacle (and
it is a serious one) is that the moduli spaceŝM(Pk,g) are generally not com-
pact so one cannot integrate over them (more precisely, they do not determine a
fundamental homology class with which to pair cohomology classes). One over-
comes this obstacle by replacinĝM(Pk,g) with what is known as its “Uhlenbeck
compactification”. We intend to not overcome, but circumvent the obstacle by
considering only a special case (an outline of the general situation is available in
Section 8).

Notice that, by an appropriate arrangement ofb+2 (B) and the Chern numberk, it
is entirely possible for the dimension8k − 3(1 + b+2 (B)) of the generic moduli
spaceM̂(Pk,g) to come out just zero. In this case,̂M(Pk,g) is a 0-dimensional,
oriented manifold (given an orientation ofH2

+(B,R)), i.e., it is a set of isolated
points[ω] each equipped with a sign which we will write(−1)[ω]. As it happens,
the moduli space is necessarily compact in this case so we can add these signs to
obtain an integer

γ0 (B) =
∑

[ω]∈M̂(Pk ,g)

(−1)[ω]. (4.22)

One can show (from the homology result Theorem 4.7 and the remarks following
it) that if b+2 (B) > 1, then this integer does not depend on the choice of (generic)
metricg and is, in fact, an orientation preserving diffeomorphism invariant ofB
(assuming the orientation ofH2

+(B,R) is fixed). Under all of these circumstances
the integerγ0(B) is called thezero-dimensional Donaldson invariant of B.

Our concern here is not with calculatingγ0(B) nor with using it to obtain topo-
logical information (for a nontrivial calculation and application see Section 9.1 of
[12]). Rather we would like to show that, by adoping a slightly different perspec-
tive, γ0(B) is in many ways analogous to an Euler characteristic. This, in turn,
will eventually lead us to formulas forγ0(B) that evolve into the partition func-
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tion for the topological quantum field theory of Witten referred to at the beginning
of this section.

Before describing our new perspective onγ0(B) we will breifly review some stan-
dard material on the Euler number of a vector bundle. We consider an oriented,
real vector bundleπE : E → X of even rank (fiber dimension)2k over a com-
pact, oriented manifoldX of dimension2k, e.g., the tangent bundle of a compact,
oriented2k-manifold. The typical fiber ofE will generally be denotedV and will
usually come equipped with a positive definite inner product (e.g., from a fiber
metric onE). The exterior algebra ofV will be denoted

∧
V =

⊕∞
p=0

∧p V and
should be thought of as the graded algebra of polynominals with real coefficients
in the odd (anti-commuting) variablesψ1, . . . , ψ2k, where{ψ1, . . . , ψ2k} is some
fixed oriented, orthonormal basis forV . The volume form forV corresponding
to {ψ1, . . . , ψ2k} is vol = ψ1 · · ·ψ2k, where we omit the customary wedge∧
and write the product in

∧
V by juxtaposition. There are a number of ways to

approach the definition of the Euler number of the vector bundleE, several of
which will be important to us. We proceed as follows. TheEuler number χ(E)
of the vector bundleπE : E → X is defined by

χ (E) =
∫
X

e (E) (4.23)

wheree(E) ∈ H2(X,R) is the “Euler class” ofE, for which we offer two (equiv-
alent) definitions.

The Euler class ofE can be defined by the Chern-Weil procedure in a manner
entirely analogous to the familiar definitions of Chern and Pontryagin classes. We
briefly review the ideas behind this procedure. LetG ↪→ P

πP−→ X be a principal
G-bundle with connectionω and curvatureΩ. Let {ξ1, . . . , ξn} be a basis for the
Lie algebraG of G and writeω = ωaξa andΩ = Ωaξa, whereωa ∈ Ω1(P ) and
Ωa ∈ Ω2(P ), a = 1, . . . , n, are real-valued forms. LetC[G]G be the algebra of
complex-valued polynomialsP on G that areadG-invariant(P(g−1ξg) = P(ξ)
for all g ∈ G and ξ ∈ G). One can realizeC[G]G concretely as follows: Let
{x1, . . . , xn} be the basis forG∗ dual to{ξ1, . . . , ξn} and think of thexi as linear
functions onG. The symmetric algebraS(G∗) can be identified with the polyno-
mial algebraR[x1, . . . , xn] and tensoring withC givesC[x1, . . . , xn] from which
we select the ad-invariant elements to getC[G]G. Next we denote byΩ∗(P )BAS

the graded algebra of real-valued forms onP that arebasic, i.e., G-invariant
(σ∗

gϕ = ϕ for everyg ∈ G, whereσg(p) = p · g), andhorizontal (ιWϕ = 0
for all vertical vector fieldsW , whereιW denotes interior multiplication byW ).
These are precisely the forms onP which descend toX, i.e., for which there is a
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ϕ̄ ∈ Ω∗(X) such thatπ∗
P ϕ̄ = ϕ. Now there is a map

CWω : C[G]G −→ Ω∗(P )BAS

called theChern-Weil homomorphism, defined by “evaluating the polynomial
on the curvature ofω”. More precisely, ifP ∈ C[G]G has degreek and if we
denote byP also the correspondingk-multilinear map onG (obtained by polar-
ization), then

CWω(P) = P(Ω) = P(Ωa1ξa1 , . . . ,Ω
akξak

)
= P(ξa1 , . . . , ξak

)Ωa1 ∧ · · · ∧Ωak .

Being basic,P(Ω) is the pullback byπP of a form P̄(Ω) on X which can be
shown to be closed and whose (deRham) cohomology class[P̄(Ω)] ∈ H2k(X,R)
does not depend on the choice ofω. Making specific choices forP gives rise to
various characteristic classes of the bundle. For example, ifG = U(1), then
i

2π
[tr(Ω)] is the first Chern class and, ifG = SU(2), then− 1

8π2
[tr(Ω ∧Ω)] is

the second Chern class (see Chapter XII, Vol. II, of [24] for more details).

Now, to define the Euler class of our vector bundleπE : E → X by this procedure
we will require a principal bundle and an invariant polynomial. For the former we
select a fiber metric onπE : E → X and consider the corresponding oriented,
orthonormal frame bundle

πSO
SO(2k) ↪→ FSO(E) ✲ X. (4.24)

For theSO(2k)-invariant polynomial we select thePfaffian

Pf : so(2k) −→ R

defined as follows: To each skew-symmetric matrixQ = (qij) ∈ so(2k) we
associate an element ∑

i<j

qijψ
iψj =

1
2
ψTQψ

in
∧2 V (here “T ” means transpose andψ = (ψ1 · · ·ψ2k )T ). Then(1

2ψ
TQψ)k

is in
∧2k V and so it is just a multiple of the volume formvol = ψ1 · · ·ψ2k.

We definePf(Q) by

1
k!

(
1
2
ψTQψ

)k

= Pf(Q)vol. (4.25)
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One can show thatPf is ad(SO(2k))-invariant (in fact, it is a square root of
the determinant, i.e.,(Pf(Q))2 = detQ for eachQ in so(2k)). Now choose a
connectionω on the frame bundle (4.24), denote its curvature byΩ and define the
Euler class e(E) of πE : E → X by e(E) = (−2π)−k[Pf(Ω)], which we prefer
to write as

e (E) = (2π)−k [Pf (−Ω)
]
. (4.26)

Locally, e(E) is given by

e (E) = (2π)−k [Pf (−s∗Ω)] (4.27)

wheres is any section of the frame bundle (4.24). With this our definition of the
Euler number (4.23) is complete.

Remark. The famous Gauss-Bonnet-Chern Theorem asserts that when E is
the tangent bundle TX of X, then the Euler number χ(TX) is, in fact, the Euler
characteristic (alternating sum of Betti numbers) of X and so is a topological
invariant of X.

Example. We consider the two-sphere S
2 with its usual orientation and Rieman-

nian metric and its tangent bundle π : TS
2 → S

2. The corresponding oriented,
orthonormal frame bundle is SO(2) ↪→ FSO(TS

2) πSO−→ S
2. If θ and φ are the

usual spherical coordinates on S
2, then {e1, e2} = { ∂

∂φ ,
1

sinφ
∂
∂θ} is an oriented,

orthonormal frame field on S
2, i.e., a section s of FSO(S2). The dual oriented,

orthonormal field of one-forms is {e1, e2} = {dφ, sin φdθ} so the metric volume
form is e1 ∧ e2 = sinφdφ ∧ dθ. One computes de1 = 0 = 0(e1 ∧ e2) and
de2 = cosφdφ ∧ dθ = cotφ(e1 ∧ e2) so 0 · e1 + (cot φ)e2 = cotφdθ. Thus, the
Levi-Civita connection ω on the frame bundle is determined by

s∗ω =

(
0 cosφdθ

− cosφdθ 0

)

so its curvature Ω = dω (as SO(2) is abelian) is

s∗Ω =

(
0 − sinφdφ ∧ dθ

sinφdφ ∧ dθ 0

)
.

A representative of the Euler class is therefore

(2π)−1 Pf (−s∗Ω) =
1
2π

sinφdφ ∧ dθ.
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Notice that the Euler number

χ
(
TS

2
)
=

1
2π

∫
S2

sinφdφ ∧ dθ = 2

which is, of course, the Euler characteristic of S
2.

There is an alternative description of the Euler class that will be important to us
soon. Denote byH∗

CV (E,R) the compact-vertical cohomology ofE (generated
by the differential forms onE whose restriction to each fiber ofπE : E → X
has compact support). One can show that there is a unique elementU(E) ∈
H2k

CV (E,R) whose integral over each fiber is 1. This is called theThom class of
πE : E → X and it has the property that, ifs : X → E is any section of the
vector bundle, e.g., the zero-section, then

e (E) = s∗U(E). (4.28)

It is not clear from either of these definitions, but the Euler numberχ(E) is ac-
tually an integer. An alternative description ofχ(E) in which its integrality is
manifest is contained in the so-calledPoincaré-Hopf Theorem. To state this we
recall that, for any sections : X → E, the images(X) is a submanifold ofE
diffeomorphic toX. This is, in particular, true of the zero sections0 : X → E
and one often identifiesX with s0(X). Thens(X) ∩ s0(X) is the set of zeros of
s (if E = TX, s is a vector field onX and these are its singularities). We will
say thats is generic if s(X) intersectss0(X) transversely (meaning that, for any
s(x) ∈ s(X) ∩ s0(X), Ts(x)(E) = Ts(x)(s(X)) ⊕ Ts(x)(s0(X))). According to
the Thom Transversality Theorem, generic sections are dense in the space of all
sections. For such a sections, s(X) ∩ s0(X) is necessarily a finite set of isolated
points and we attach a sign to each such pointp as follows: sign(p) = 1 if an
oriented basis forTp(s(X)) together with an oriented basis forTp(s0(X)) is an
oriented basis forTp(E); otherwise, sign(p) = −1. Theintersection number of
s(X) ands0(X) is the sum of these signs over all points ins(X) ∩ s0(X). The
Poincaré-Hopf Theorem asserts thatthe Euler number χ(E) is the intersection
number of any generic section.

With this digression behind us we may return to the new perspective on the
Donaldson invariantγ0(B) promised earlier. For this and all subsequent discus-
sions we intend to employ a more economical notation, dropping all references to
Sobolev indices, writingP for Pk G for G4(Pk), etc.

The gauge groupG does not act freely on the spacêA of irreducible connections
since even irreducible connections have aZ2 stabilizer. However,̂G = G/Z2 does
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act freely onÂ so we have an infinite-dimensional principal bundle

Ĝ ↪→ Â −→ B̂ (4.29)

over the Banach manifold̂B (note that the orbits inÂ of the Ĝ-action are the
same as those of theG-action so the quotient is still̂B). We build a vector bundle
associated to this principal bundle as follows. Consider the (infinite-dimensional)
vector spaceΩ2

+(B, adP ) of self-dual two-forms onB with values in the adjoint
bundle. We claim that there is a smooth left action ofĜ on Ω2

+(B, adP ). To see
this we think ofG as the group of sections of the nonlinear adjoint bundleAdP
under pointwise multiplication. Since the elements ofΩ2

+(B, adP ) take values
in the su(2) fibers of adP , G acts on these values by conjugation. Moreover,
conjugation has the same effect at±f ∈ G so thisG-action onΩ2

+(B, adP )
descends to aG/Z2 = Ĝ-action. Thus, we have an associated vector bundle

Â ×Ĝ Ω2
+ (B, adP )

the elements of which are equivalence classes[ω, γ] = [ω ·f, f−1 ·γ] withω ∈ Â,
γ ∈ Ω2

+(B, adP ) andf ∈ Ĝ.

Now recall that sections of associated vector bundles can be identified with equiv-
ariant maps from the principal bundle space into the vector space. In our case we
have an obvious map from̂A into Ω2

+(B, adP ), i.e., the self-dual curvature map:

F+ : Â −→ Ω2
+(B, adP )

(4.30)
F+ (ω) = F+

ω =
1
2
(Fω + ∗Fω) .

Since the action of̂G on Â is by conjugation and curvatures transform by conju-
gation under a gauge transformation,F+ is equivariant:

F+ (ω · f) = F+
ω·f = f−1F+

ωf = f−1 · F+
ω = f−1 · F+ (ω)

F+ can therefore by identified with a section

s+ : B̂ −→ Â ×Ĝ Ω2
+(B, adP )

of our vector bundle, given explicitly by

s+ ([ω]) =
[
ω,F+

ω
]

for every[ω] ∈ B̂. This section isFredholm in the sense that its local represen-
tatives, thought of as sections of trivial bundles, i.e.,Ω2

+(B, adP )-valued maps
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on open subsets of the Banach manifoldB̂, have derivatives at each point that are
(linear) Fredholm maps. Notice now that the moduli spaceM̂ of anti-self-dual
connections(F+

ω = 0) is precisely the zero set of the sections+. Identifying B̂
with the image of the zero section

s0 : B̂ −→ Â ×Ĝ Ω2
+(B, adP )

we conclude that

M̂ = s+(B̂) ∩ s0(B̂). (4.31)

In the case in whichM̂ is 0-dimensional so that each point of the intersection
(4.31) acquires a sign and the Donaldson invariantγ0(B) is the sum of these
signs one sees quite clearly the sense in whichγ0(B) can be regarded (at least
formally) as an infinite-dimensional analogue of the Poincar´e-Hopf version of an
Euler number.

Taking this analogy seriously would suggest the possibility of an integral repre-
sentation ofγ0(B) modeled on our definition (4.23) of the Euler number. Notice,
however, that such an “integral” would necessarily be over the infinite-dimensional
moduli spaceB̂ and such integrals are notoriously difficult to define rigorously.
But, as Hitchin [21] has phrased it, “This is such stuff as quantum field theory
is made of.” Indeed, it was Edward Witten who first produced such an integral
representation ofγ0(B), not directly, but as what is called the “partition function”
of the quantum field theory introduced in [46]. We intend to produce Witten’s par-
tition function, but not from the quantum field theory arguments of [46]. Rather
we will follow Atiyah and Jeffrey [3] who showed that an integral formula for
the Euler number of a (finite-dimensional) vector bundle proved by Mathai and
Quillen [32], when formally applied to the vector bundlêA ×Ĝ Ω2

+(B, adP ),
yields precisely this partition function.

5. Mathai-Quillen Formalism and Witten’s Partition Function

We begin by having a closer look at the expression (4.27) for the Euler class of
the oriented, real vector bundleπE : E → X. Recall that we denote byV the
typical fiber of the bundle, which we assume has dimension2k and a positive
definite inner product. We fix, once and for all, an oriented, orthonormal basis
{ψ1, . . . , ψ2k} for V . We regard the elements of the exterior algebra

∧
V as poly-

nomials with real coefficients in the odd (anti-commuting) variablesψ1, . . . , ψ2k

and provide
∧
V with its usualZ2-grading
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∧
V =

∞⊕
i=0

∧iV ∼=
( ∞⊕

i=0

∧2iV
)
⊕
( ∞⊕

i=0

∧2i+1V
)

= (
∧
V )0 ⊕ (

∧
V )1 .∧

V is therefore a supercommutative superalgebra. One can define the expo-
nential map on

∧
V by the usual power series, noting that the series eventually

terminates for any element of
∧
V due to the anti-commutativity of the multipli-

cation.

TheBerezin (or fermionic) integral of an elementf of
∧
V is the (real) coeffi-

cient ofψ1 · · ·ψ2k = vol in the polynomialf and we will write this as∫
fDψ = fvol .

For example, our definition (4.25) of the Pfaffian ofQ ∈ so(2k) can be written∫
e

1
2
ψT Qψ Dψ = Pf (Q) . (5.1)

In particular, (4.27) now gives representatives of the Euler class as Berezin inte-
grals of the form

(2π)−k
∫

e
1
2
ψT (−s∗Ω)ψ Dψ. (5.2)

We will also need to extend this notion of Berezin integration in the following
way. LetA be any other supercommutative superalgebra and consider the (super)
tensor productA⊗∧V . Regard the elements ofA⊗∧V as polynomials in the
odd variablesψ1, . . . , ψ2k with coefficients inA and define the Berezin integral
of such anF ∈ A⊗∧V to be the coefficient (inA) of ψ1 · · ·ψ2k = vol∫

FDψ = Fvol.

As an example we introduce coordinatesu1, . . . , u2k on V corresponding to the
basisψ1, . . . , ψ2k. Thus,{u1, . . . , u2k} is the basis forV ∗ dual to{ψ1, . . . , ψ2k}.
Let A = Ω∗(V ) be the algebra of differential forms onV (which, throughout
this section, we take to be complex-valued). Thus, eachduj is in Ω1(V ) and
−idujψ

j = iψjduj (sum overj = 1, . . . , 2k) is in Ω∗(V )⊗∧V . Writing du for
(du1 · · · du2k)� we will show that∫

eiψT du Dψ =
∫

eiψjduj Dψ = du1 · · · du2k (5.3)
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(by which we meandu1 ∧ · · · ∧ du2k ∈ Ω2k(V )). Indeed,∫
eiψT du Dψ =

∫
eiψjdujDψ =

∫
ei(ψ1du1+···+ψ2kdu2k) Dψ

=
∫

eiψ1du1 · · · eiψ2kdu2k Dψ
(the elementsψjduj are even inΩ∗(V )⊗ ∧V and so commute)

=
∫ (

1 + iψ1du1

) · · · (1 + iψ2kdu2k

)
Dψ

=
∫ (

iψ1du1

) · · ·(iψ2kdu2k

)
Dψ

(only this product contributes to the coefficient ofψ1 · · ·ψ2k)

= (i)2k
∫

(−1)
1
2
(2k)(2k+1) du1 · · · du2k ψ

1 · · ·ψ2k Dψ
= du1 · · · du2k .

Notice that if we write‖u‖2 = u2
1 + · · · + u2

2k ∈ Ω0(V ) and identify this with
‖u‖2 ⊗ 1 ∈ Ω∗(V )⊗∧V , then

(2π)−k
∫

e−
1
2
‖u‖2+iψT du Dψ = (2π)−k e−

1
2
‖u‖2

du1 · · · du2k (5.4)

which is a form onV that integrates to 1 overV . It does not have compact support
onV , but one can think of it as a “Gaussian representative” of the Thom class of
the vector bundle over a point whose fiber isV (the compact vertical cohomology
of a vector bundle is isomorphic to the cohomology of forms that are “rapidly
decreasing” in the fibers and the usual discussion of the Thom class extends easily
to this context). Shortly we will introduce the so-called “universal Thom form”
of Mathai and Quillen [32] which adds one more term to the exponent in (5.4)
to produce what is called an “equivariant differential form.” For this though we
require a brief digression.

Equivariant cohomology arose from attempts to understand the topology of the
orbit spaceM/G of a topological space on which some topological groupG acts.
We will be concerned only with the case in whichM is a smooth manifold andG
is a compact, connected matrix Lie group acting smoothly onM on the left. For
this action we will write

σ : G×M −→M

σ (g,m) = g ·m = σg(m) = σm(g).
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We denote byG the Lie algebra ofG, C[G] the algebra of complex-valued poly-
nomials onG andΩ∗(M) the algebra of complex-valued differential forms on
M . We consider the tensor productC[G] ⊗ Ω∗(M), every element of which is
a sum of terms of the formα = P ⊗ ϕ, whereP ∈ C[G] andϕ ∈ Ω∗(M).
These are best thought of asΩ∗(M)-valued polynomials onG (e.g., α(ξ) =
(P ⊗ ϕ)(ξ) = P(ξ)ϕ for eachξ ∈ G). Rather than the usual tensor product
grading onC[G] ⊗ Ω∗(M) we will, for reasons that will become clear shortly,
“double the degrees” inC[G]. More precisely, ifα = P ⊗ϕ we define

degα = deg (P ⊗ϕ) = 2degP + degϕ (5.5)

wheredegP is the algebraic degree of the polynomialP anddegϕ is the coho-
mological degree of the formϕ. Thus,

C [G]⊗ Ω∗(M) =
⊕

2i+j=k

C
i [G]⊗ Ωj(M).

The action ofG onM together with the adjoint action ofG on G give a natural
action ofG on C[G] ⊗ Ω∗(M), i.e., if α = P ⊗ ϕ andg ∈ G, theng · α is the
element ofC[G]⊗ Ω∗(M) whose value at anyξ ∈ G is

(g · α) (ξ) = (g · (P ⊗ϕ)) (ξ) = P (g−1ξg
)
σ∗

g−1 ϕ.

An elementα of C[G] ⊗ Ω∗(M) is said to beG-invariant if g · α = α for every
g ∈ G. This is easily seen to be equivalent toα(gξg−1) = σ∗

g−1 α(ξ) for every
g ∈ G and everyξ ∈ G. The algebra of allG-invariant elements ofC[G]⊗Ω∗(M)
is denoted

Ω∗
G(M) = [C [G]⊗ Ω∗(M)]G

and its elements are calledG-equivariant differential forms onM . Our grading
of C[G]⊗ Ω∗(M) gives

Ω∗
G(M) =

∞⊕
k=0

Ωk
G(M) =

⊕
2i+j=k

[
C

i[G]⊗ Ωj(M)
]G

and we will takeΩk
G(M) to be trivial fork < 0. If α ∈ Ω∗

G(M), then, for each
ξ ∈ G, α(ξ) is an element ofΩ∗(M) and so can be written

α (ξ) = α (ξ)[0] + α (ξ)[1] + · · ·+ α (ξ)[n]

whereα(ξ)[k] ∈ Ωk(M) andn = dimM . Similarly, we will writeα[k] for the part
of α in Ωk

G(M). Notice that bothC[G]G (thoseP ∈ C[G] satisfyingP(g−1ξg) =
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P(ξ) for all g ∈ G and ξ ∈ G) andΩ∗(M)G (thoseϕ ∈ Ω∗(M) satisfying
σ∗

g−1 ϕ = ϕ for all g ∈ G) can be identified with subalgebras ofΩ∗
G(M) via

P → P ⊗ 1 andϕ→ 1⊗ϕ, respectively.

Next we define theG-equivariant exterior derivative dG onΩ∗
G(M) as follows:

For anyα ∈ C[G]⊗ Ω∗(M) and anyξ ∈ G we define

(dGα) (ξ) = d (α (ξ))− ιξ# (α (ξ)) (5.6)

whereξ# is the vector field onM defined, at eachm ∈M , by

ξ# (m) =
d
dt

(exp (−tξ) ·m)|t=0 (5.7)

and ιξ# denotes interior multiplication byξ# (the minus sign in (5.7) is due to
the fact thatG acts onM on the left and ensures that the mapξ → ξ# is a
homomorphism of Lie algebras). Alternatively, if{ξ1, . . . , ξn} is a basis forG
and if we writeιa for ι

ξ#
a

, then

dG = 1⊗ d− xa ⊗ ιa (5.8)

where{x1, . . . , xn} is a basis forG∗ dual to{ξ1, . . . , ξn} and we regard each
xa as an element ofC[G]. It is enough to verify (5.8) for elements of the form
α = P ⊗ ϕ and this is straightforward. Now, for any element ofC[G] ⊗ Ω∗(M)
of the formα = P ⊗ϕ we havedegα = 2degP + degϕ and so

deg ((1⊗ d) (α)) = 2degP + (degϕ+ 1) = degα+ 1

and

deg ((xa ⊗ ιa) (α)) = 2 (degP + 1) + (degϕ− 1) = degα+ 1

imply thatdeg(dGα) = degα + 1 (this is the reason for the peculiar grading on
C[G] ⊗ Ω∗(M)). One also verifies thatdG preserves the subalgebraΩ∗

G(M) of
invariant elements and satisfies, for anyα ∈ C[G]⊗ Ω∗(M) and anyξ ∈ G

((dG ◦ dG) (α)) (ξ) = −Lξ# (α (ξ)) (5.9)

whereLξ# is the Lie derivative with respect to the vector fieldξ#. Since an
invariant elementα of C[G] ⊗ Ω∗(M) satisfiesLξ#(α(ξ)) = 0 for everyξ ∈ G
we obtain from (5.9) that

dG ◦ dG = 0 on Ω∗
G(M). (5.10)
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Thus
(Ω∗

G(M),dG)

is a cochain complex. The cohomology of this complex is called theCartan
model of theG-equivariant cohomology of M and is denotedH∗

G(M). In some-
what more detail, an elementα of Ω∗

G(M) is said to beG-equivariantly closed if
dGα = 0 andG-equivariantly exact if α = dGβ for someβ ∈ Ω∗

G(M). Writing
dk

G for the restriction ofdG to Ωk
G(M) we have

dk−1
G dk

G
Ωk−1

G (M) ✲ Ωk
G(M) ✲ Ωk+1

G (M)

with dk
G ◦ dk−1

G = 0 so that

H∗
G (M) =

∞⊕
k=0

Hk
G (M) =

∞⊕
k=0

ker
(
dk

G

)
/im
(
dk−1

G

)
.

Notice that ifM is a single point (connected zero-dimensional manifold), then
every element ofΩ∗

G(M) is of the formP ⊗ 1 for someP ∈ C[G]G. Each of
these isG-equivariantly closed, but none isG-equivariantly exact so

H∗
G (pt) ∼= C[G]G . (5.11)

Notice also that ifG is trivial, then so is the Lie algebraG so there are only
constant polynomials onG. Everything isG-invariant so one can identifyΩ∗

G(M)
with Ω∗(M). Furthermore,ιξ# = ι0 = 0 sodG agrees withd and we conclude
that

G = {1} =⇒ H∗
G (M) ∼= H∗

de Rham(M) . (5.12)

Example. To gain some familiarity with these definitions we will compute just
one equivariant cohomology group from scratch. We consider the standard action
of G = S

1 on M = S
3 that gives rise to the complex Hopf bundle. Specifically,

we consider
S

3 =
{(

z1, z2
) ∈ C

2;
∣∣z1
∣∣2 +

∣∣z2
∣∣2 = 1

}
and define a left action of S

1 = {eiθ; θ ∈ R} on S
3 by

eiθ · (z1, z2
)
=
(
eiθz1, eiθz2

)
.

The action is clearly free and the orbit space S
3/S1 is, by definition, the complex

projective line CP
1, which is diffeomorphic to S

2. Since S
1 is one-dimensional, its



Topology,Geometry and Physics: Background for the Witten Conjecture Part I 91

Lie algebra has a single generator. Choose one such and denote it ξ1. We denote
by x1 the corresponding dual basis vector so that C[G] can be identified with the
algebra C[x1] of polynomials with complex coefficients in the single “variable”
x1. Since S

1 is abelian, all of these polynomials are S
1-invariant so[

C
[
x1
]⊗ Ω∗(S3)

]S1

= C
[
x1
]⊗ Ω∗(S3)S1

. (5.13)

We will leave it to the reader to show thatH0
S1(S3) ∼= C andH1

S1(S3) is trivial so
that we may turn our attention toH2

S1(S3). Thus, we consider

d1
S1 d2

S1

Ω1
S1(S3) ✲ Ω2

S1(S3) ✲ Ω3
S1(S3)

and computeker(d2
S1)/im(d1

S1). Now notice that (5.13) together with the grading
we have defined onΩ∗

S1(S3) imply that every element ofΩ1
S1(S3) can be written

in the form
1⊗ η, (5.14)

whereη ∈ Ω1(S3)S1
, and every element ofΩ2

S1(S3) can be written in the form

1⊗ ω + x1 ⊗ f (5.15)

whereω ∈ Ω2(S3)S1
andf is a complex-valued function onS3 that is constant

on eachS1-orbit. Now, letω̃ ∈ Ω2
S1(S3) beS

1-equivariantly closed. Writẽω =
1⊗ ω + x1 ⊗ f as in (5.15). Then

0 = dS1ω̃ =
(
1⊗ d− x1 ⊗ ι1

) (
1⊗ ω + x1 ⊗ f

)
= 1⊗ dω + x1 ⊗ (df − ι1ω)

implies that
dω = 0 and df = ι1ω. (5.16)

We show first that there exists ana ∈ C and anη ∈ Ω1(S3)S1
such that(

1⊗ ω + x1 ⊗ f
)− a

(
x1 ⊗ 1

)
= d1

S1 (1⊗ η) (5.17)

i.e.,
1⊗ ω + x1 ⊗ (f − a) = 1⊗ dη − ι1η. (5.18)

Now, in order for (5.18) to be satisfied we must havedη = ω andι1η = a − f
so we will simply solve these equations. Sincedω = 0 by (5.16) and since
H∗

de Rham(S
3) = 0, ω must be exact in the de Rham sense, i.e.,ω is a differential

of something inΩ1(S3). To see that we can choose this element ofΩ1(S3) to be
S

1-invariant we require a general lemma.
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Lemma 5..1. If ω ∈ Ωk+1(M)G is (de Rham) exact, then there exists an η ∈
Ωk(M)G with dη = ω.

The proof of the lemma proceeds in the following way. One shows that any
α ∈ Ω∗(M) can be “G-invariantized” in the sense that there is a cochain map
I : Ω∗(M) → Ω∗(M)G which reduces to the identity onΩ∗(M)G ⊆ Ω∗(M)
(“cochain map” meansd◦I = I ◦d). This map is constructed by “averaging over
the groupG”. In somewhat more detail, one chooses an invariant measuredG on
G and, forα ∈ Ωk(M), p ∈M andv1, . . . , vk ∈ Tp(M), defines

(I (α))p (v1, . . . , vk) =
∫
G

(
σ∗

gα
)
p
(v1, . . . , vk) dG

=
∫
G

αg·p
(
(σg)∗p (v1) , . . . , (σg)∗p (vk)

)
dG.

Now, if ω ∈ Ωk+1(M)G is exact there is anα ∈ Ωk(M) with dα = ω. But
I(α) ∈ Ωk(M)G andω = I(ω) = I(dα) = d(I(α)) as required.

Returning to the proof of (5.18), we can now select anη ∈ Ω1(S3)S1
withω = dη

and so the first equation is satisfied. Furthermore, sinceη is S
1-invariant,

0 = L1η = (d ◦ ι1 + ι1 ◦ d)η = d (ι1η) + ι1ω = d (ι1η + f) .

SinceS
3 is connected this implies thatι1η + f is some constant functiona, i.e.,

ι1η = a−f so, for thisa, the second condition is satisfied as well. This completes
the proof of (5.18) and therefore of (5.17).

To understand the conclusion to be drawn from (5.17) we observe thatx1 ⊗ 1 is
S

1-equivariantly closed and so determines anS
1-equivariant cohomology class in

H2
S1(S3). Thus, (5.17) implies that the cohomology class ofω̃ = 1⊗ω+x1⊗f is

a multiple (bya) of the cohomology class ofx1⊗ 1. Sinceω̃ was an arbitraryS1-
equivariantly closed element ofΩ2

S1(S3) we conclude thatH2
S1(S3) is generated

by the class ofx1 ⊗ 1. We conclude by showing thatx1 ⊗ 1 is notdS1-exact so
that this class is nontrivial and therefore

H2
S1(S3) ∼= C. (5.19)

To prove this we assume to the contrary that there is an elementη̃ in Ω1
S1(S3) with

d1
S1η̃ = x1 ⊗ 1. η̃ can be written as̃η = 1 ⊗ η, whereη ∈ Ω1(S3)S1

. Thus,

d1
S1(1⊗ η) = x1 ⊗ 1, i.e.,

1⊗ dη − x1 ⊗ ι1η = x1 ⊗ 1
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so we must have

dη = 0 and ι1η = −1. (5.20)

But dη = 0 andH1
de Rham(S

3) = 0 imply thatη is de Rham exact and Lemma 5.1

implies that there is anf ∈ Ω0(S3)S1
with η = df . Thus,

ι1η = ι1 (df) = L1f − d (ι1f) = 0− d (0) = 0

and so the second condition in (5.20) could not be satisfied. Thus,x1 ⊗ 1 cannot
bedS1-exact and the proof of (5.19) is complete.

We should point out that, for each of the examples we have described forH∗
S1(S3),

the S
1-equivariant cohomology group ofS3 agrees with the corresponding ordi-

nary de Rham cohomology group (with complex coefficients) of the orbit space
S

3/S1 ∼= S
2. That this is no accident is the content of a beautiful theorem of Henri

Cartan (see [20] for a proof of a much more general result).

Theorem 5..2 (Cartan) Let M be a smooth manifold and G a compact, connected
Lie group. Suppose there is a smooth, free action of G on M on the left. Then the
G-equivariant cohomology algebra H∗

G(M) is isomorphic to the de Rham coho-
mology H∗

de Rham(M/G) with complex coefficients of the orbit manifold M/G.

Finally, we must introduce a notion of integration for equivariant forms and coho-
mology classes. For this we now assume thatM is compact and oriented and that
theG-action onM preserves the orientation (each diffeomorphismσg : M →M
is orientation preserving). For eachα ∈ Ω∗

G(M) we define an element
∫
M

α ∈
C[G]G by setting, for eachξ ∈ G(∫

M

α
)
(ξ) =

∫
M

α (ξ) def=
∫
M

α (ξ)[n]

wheren = dimM . Note that
∫

M

α really isG-invariant since

( ∫
M

α
) (

gξg−1
)
=
∫
M

α
(
gξg−1

)
[n]

=
∫
M

σ∗
g−1

(
α(ξ)[n]

)
=
∫
M

α(ξ)[n] =
( ∫

M

α
)
(ξ).
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Notice also that ifα is dG-exact (say,α = dGβ), then, for eachξ ∈ G, α(ξ)[n] =
d(β(ξ)[n−1]) so, by Stokes’ Theorem,

∫
M

α = 0 ∈ C[G]G. The conclusion is that

the integration map ∫
M

: Ω∗
G(M) −→ C[G]G

descends to cohomology:∫
M

: H∗
G(M) −→ C[G]G .

Now we return to the general development. We wish to write out a specific rep-
resentative of an equivariant cohomology class called the “universal Thom form”
(for vector bundles with typical fiberV ). For this we takeM = V (our real vector
space of dimension2k with a positive definite inner product) andG = SO(V )
with its defining action onV . Thus, we seek an element of

Ω∗
SO(V )(V ) = [C[so(V )]⊗ Ω∗(V )]SO(V )

and we will obtain it as the Berezin integral of an element ofA ⊗ ∧V , where
A = C[so(V )]⊗Ω∗(V ). Recalling the notation introduced earlier,{ψ1, . . . , ψ2k}
is a fixed orthonormal basis forV , {u1, . . . , u2k} is its dual basis of coordi-
nate functions onV , {ξ1, . . . , ξn} is a basis for the Lie algebraG = so(V ) and
{x1, . . . , xn} is its dual basis, regarded as linear functions onso(V ), i.e., as ele-
ments ofC[so(V )]. Now define, for eachξ ∈ so(V ), a linear transformation

Mξ : V −→ V

by

Mξ(ψ) = .
d
dt

(exp (tξ) · ψ)|t=0

for eachψ ∈ V . Write Ma for Mξa and notice that, for eachξ = xa(ξ)ξa ∈
so(V ),

Mξ = xa (ξ)Ma.

Furthermore, if(Mξ) denotes the matrix ofMξ relative to{ψ1, . . . , ψ2k}, then
(Mξ) ∈ so(2k) and

−1
2

2k∑
l=1

ψlxa (ξ)Maψ
l =

1
2
ψ�(Mξ)ψ
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so (5.1) gives ∫
e−

1
2

∑
l ψlxa(ξ)Maψl Dψ = Pf (Mξ) . (5.21)

Now notice that−1
2

∑
l ψ

lxaMaψ
l =

∑
l (−1

2x
a) ⊗ 1 ⊗ (ψl(Maψ

l)) can be
regarded as an element ofC[so(V )]⊗ Ω∗(V )⊗∧V and therefore so can

e−
1
2

∑
l ψlxaMaψl

.

We now intend to include this factor in the integrand on the left-hand side of
(5.4) to obtain what is called theMathai-Quillen universal Thom form ν for V ,
defined by

ν = (2π)−k
∫

e−
1
2
‖u‖2+iψjduj− 1

2

∑
l ψlxaMaψl Dψ

(5.22)

= (2π)−k e−
1
2
‖u‖2

∫
exp

(
iψjduj − 1

2

∑
l

ψlxaMaψ
l

)
Dψ.

For example, if one carries out the Berezin integration in (5.22) forV = R
2 (usual

orientation and inner product) andSO(V ) = SO(2) the result is

ν = (2π)−1 e−
1
2
(u2

1+u 2
2 ) du1du2 + (2π)−1 x1e−

1
2
(u 2

1 +u 2
2 ) . (5.23)

Note that each term in (5.23) isSO(2)-invariant, has degree2 = dimV and the
first (in C

0[so(2)] ⊗ Ω2(R2)) integrates to 1 overR2. In general, one can verify
the following properties of the formν given by (5.22).

1. ν is an SO(V )-invariant element ofC[so(V )] ⊗ Ω∗(V ) of degree2k =
dimV .

2. ν is SO(V )-equivariantly closed(dSO(V ) ν = 0) and so determines an
equivariant cohomology class

[ν] ∈ H2k
SO(V ) (V ) .

3. The integral of (theC0[so(V )]⊗ Ω2k(V )-part of)ν overV is 1.

ν is called a universal Thom form because, as we now show, one can produce
from it a (Gaussian) representative of the Thom class for any vector bundle whose
typical fiber isV . We recall that any such vector bundle can be regarded as the
vector bundle associated to some principalG-bundle by a representation ofG on
V . Thus, let us supposeG is a Lie group and

ρ : G −→ SO(V )
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is a representation ofG onV . Thenρ induces a Lie algebra homomorphism

ρ∗ : G −→ so(V )

(just the derivative ofρ at the identity inG). It then follows easily from the fact
thatν is anSO(V )-equivariantly closed form onV that

νG = (2π)−k e−
1
2
‖u‖2
∫

exp

(
iψjduj − 1

2

∑
l

ψl (xa ◦ ρ∗)Maψ
l

)
Dψ (5.24)

is aG-equivariantly closed form onV .

Now suppose thatG ↪→ P
πP−→ X is a principalG-bundle over a compact, smooth

manifold of dimension2k = dimV . Then the representationρ determines an as-

sociated vector bundleP ×ρ V
πρ−→ X overX with typical fiberV . We show

now that there is a generalization of the Chern-Weil mapCWω : C[G]G →
Ω∗(P )BAS

∼= Ω∗(X) (Section 4) which associates with everyG-equivariantly
closed form onV an ordinary form on the vector bundle spaceP ×ρ V and that,
when applied toνG, one obtains a (Gaussian) representative of the Thom class of
P ×ρ V .

Begin by considering the commutative diagram

P × V
prP−−−−→ P

q

* *πP

P ×ρ V −−−−→
πρ

X

where prP is the projection onto the first factor andq is the map

q (p, ψ) = q
(
p · g, g−1 · ψ) = [p, ψ]

which projectsP × V onto the orbit spaceP ×ρ V of theG-action(p, ψ) · g =
(p · g, g−1 · ψ) = (p · g, ρ(g−1)(ψ)). Since the action ofG onP is free, so is this
action ofG onP × V and we may regard

G ↪→ P × V
q−→ P ×ρ V

as a principalG-bundle. In particular, we have an isomorphism

Ω∗(P × V )BAS
∼= Ω∗(P ×ρ V )

between the algebras of ordinary forms onP ×ρ V and the forms onP × V that
are basic with respect to the action ofG on P × V . Thus, to specify a form on
P ×ρ V (e.g., a Thom form) it is enough to specify a basic form onP × V .
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Now choose a connectionω onG ↪→ P → X. Thenω′ = pr ∗
P ω is a connection

onG ↪→ P × V → P ×ρ V . Identifying T(p,ψ)(P × V ) with Tp(P ) ⊕ Tψ(V ),
theω′-horizontal spaces are clearly given by Hor(p,ψ)(ω′) ∼= Horp(ω)⊕ Tψ(V ).
The decomposition

T(p,ψ) (P × V ) ∼= (Horp (ω)⊕ Tψ (V ))⊕ Vert(p,ψ) (P × V )

determines a projectionhω′ of forms onP × V toω′-horizontal forms onP × V
(evaluate onω′-horizontal parts of tangent vectors). Now, for anyα = P ⊗
ϕ ∈ Ω∗

G(V ) one can evaluate the polynomial partP on the curvatureΩ of the
connectionω as in the ordinary Chern-Weil map to obtainP(Ω)⊗ϕ ∈ Ω∗(P )⊗
Ω∗(V ). This one can identify with a formP(Ω) ∧ ϕ onP × V which, because
P⊗ϕ isG-invariant, is inΩ∗(P×V )G. It is generally not horizontal, however, so
we compose with the horizontal projectionhω′ to define thegeneralized Chern-
Weil homomorphism, also denoted

CWω : Ω∗
G(V ) −→ Ω∗(P × V )BAS

∼= Ω∗(P ×ρ V )

by
CWω (α) = CWω (P ⊗ϕ) = hω′ (P (Ω) ∧ϕ) (5.25)

for elements of the formP ⊗ ϕ and then by linearity on all ofΩ∗
G(V ). One can

show thatCWω is actually a cochain map

d ◦ CWω = CWω ◦ dG (5.26)

and so carriesG-equivariantly closed forms onV to ordinary closed forms on
P×V which then descend to closed forms onP×ρV . Applying this procedure to
theG-equivariantly closed formνG of (5.24) gives a closed, basic formCWω(νG)
onP × V which one can write formally as the horizontal projection of

(2π)−k e−
1
2
‖u‖2

∫
exp

(
iψjduj − 1

2

∑
l

ψl (xa (ρ∗Ω))Maψ
l

)
Dψ (5.27)

which it is customary to write more compactly as

(2π)−k e−
1
2
‖u‖2

∫
exp
(
iψT du+

1
2
ψT (ρ∗Ω)ψ

)
Dψ. (5.28)

In this last expression(ρ∗Ω) is to be interpreted as the skew-symmetric matrix
image of theG-curvature under (the derivative of) the representation whenso(V )
is identified withso(2k). We generally work directly with (5.28), but one obtains
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a (Gaussian) representative of the Thom class (which pulls back to an Euler form)
by replacingΩ by −Ω, or, what amounts to the same thing, the transpose ofΩ,
cf. (4.26).

As an example of what the result of such a calculation might look like we return to
the universal Thom form (5.23) forV = R

2 andSO(V ) = SO(2). For the vector
bundle with fiberR2 we take the tangent bundleTS

2 of the two-sphere. This we
describe as an associated bundle in the following way. The usual orientation and
Riemannian metric onS2 give an oriented, orthonormal frame bundle

SO(2) ↪→ FSO

(
S

2
) πSO−→ S

2.

If ρ : SO(2) → SO(2) is the identity representation, i.e.,ρ = id SO(2), then
FSO(S2)×ρ R

2 is the tangent bundle ofS2. Moreover,ρ∗ : so(2)→ so(2) is also
the identity sox1 ◦ ρ∗ = x1 and

νSO(2) = (2π)−1 e−
1
2
(u 2

1 +u 2
2 )
(
x1 + du1du2

)
.

Choosing a connectionω = ω1ξ1 with curvatureΩ = Ω1ξ1 on the frame bundle
FSO(S2) we havex1(ρ∗Ω) = Ω1 soCWω(νSO(2) ) is the horizontal projection
(determined byω′ = pr∗FSO(S2)ω) of

µ = (2π)−1 e−
1
2
(u 2

1 +u 2
2 )
(
Ω1 + du1du2

)
.

The horizontal projection of this form onFSO(S2) × R
2 can either be described

by evaluatingµ on ω′-horizontal parts or explicitly calculated from the easily
verified formulahω′(µ) = µ − (pr∗FSO(S2)ω

1) ∧ ι
ξ#
1
µ. Performing this latter

calculation gives

CWω
(
νSO(2)

)
= (2π)−1 e−

1
2
(u2

1+u2
2)
(
Ω1 + du1du2

(5.29)

+(pr∗FSO(S2)ω
1) ∧ (u1du1 + u2du2)

)
.

In general, we will denote byU the horizontal projection of the form (5.28) and
will, at least temporarily, write this as

U = (2π)−k e−
1
2
‖u‖2

∫
exp
(
iψT du+

1
2
ψT (ρ∗Ω)ψ

)
Dψ (5.30)

(evaluated on horizontal parts) .

Since our primary concern, however, is with Euler forms we will want to pull the
form to whichU descends onP ×ρ V back by a section of the vector bundle.
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Now, any section of the associated bundleP ×ρ V can be written as

(s, S ◦ s) q
x ✲ (s (x) , S (s (x))) ✲ [s (x) , S (s (x))]

wheres is a section ofG ↪→ P → X andS : P → V is an equivariant map
(S(p · g) = ρ(g−1)(s(p))). Thus, if we temporarily writeU = q∗Ũ , then

(q ◦ (s, S ◦ s))∗ Ũ = ((1, S) ◦ s)∗ (q∗Ũ) = s∗ ((1, S)∗U) .

Thus, to pullŨ back by a section ofP ×ρV we compute(1, S)∗U , which simply
pulls theV -factors ofU back by the equivariant mapS, and then pull this form
onP back by a section of the principal bundle. We will illustrate with an example
(taken from [28]). Begin with the formCWω(νSO(2) ) in (5.29). As a section
of the principal bundleFSO(S2) we choose the oriented, orthonormal frame field
corresponding to the spherical coordinate chart:

s (φ, θ) =
(
φ, θ, ∂φ,

1
sinφ

∂θ

)
.

We choose an equivariant mapFSO(S2) S−→ R
2 by beginning with a vector field

on S
2 (section ofTS

2). This can be chosen arbitrarily and we will takeV =
γ sin θ∂φ + γ cos θ cotφ∂θ, whereγ is an arbitrary real parameter (withγ = 1
this is the infinitesimal generator for rotations about thex-axis). Relative to the
frame field introduced above the components ofV areγ sin θ andγ cos θ cotφ so
we defineS on the image ofs by

S ◦ s (φ, θ) = (γ sin θ, γ cos θ cosφ)

and elsewhere by equivariance. Pull back theR
2-parts ofCWω(νSO(2) ) byS ◦ s

by substitutingu1 = γ sin θ andu2 = γ cos θ cosφ. One finds that

(2π)−1e−
1
2
(u 2

1 +u2
2) = (2π)−1 e−

1
2
γ2(sin2 θ+cos2 θ cos2 φ)

du1du2 = du1 ∧ du2 = γ2 cos2 θ sinφdφ ∧ dθ

and

u1du1 + u2du2 = γ2
(
sin θ cosφ sin2 φdθ − cos2 θ sinφ cos φdφ

)
.

As in our earlier computation of the Euler number ofTS
2 we substitute the (trans-

posed) Levi-Civita connections∗ω and curvatures∗Ω so thats∗Ω1 = sinφdφ ∧
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dθ ands∗(pr∗FSO(S2)ω
1) = − cosφdθ. The result of all of these substitutions is

the following representative of the Euler class ofS
2:

(2π)−1 e−
1
2
γ2(sin2 θ+cos2 θ cos2 φ) sinφ

(
1 + γ2 cos2 θ sin2 φ

)
dφ ∧ dθ. (5.31)

In particular, one obtains the not altogether obvious integral formula

1
2π

2π∫
0

π∫
0

e−
1
2
γ2(sin2 θ+cos2 θ cos2 φ) sinφ

(
1 + γ2 cos2 θ sin2 φ

)
dφdθ = 2

(note that, forγ = 0, this reduces to our earlier computation of the Euler charac-
teristic ofS2).

We recall now that our interest in the Mathai-Quillen formalism stems from the
fact that Atiyah and Jeffrey [3] have shown how it can be adapted and formally
applied to the infinite-dimensional vector bundlêA ×Ĝ Ω2

+(B, adP ) to yield an
integral representation of the 0-dimensional Donaldson invariant which coincides
with the partition function of Witten’s topological quantum field theory [46]. We
begin now with the appropriate adaptation of the formula (5.30), still working
in the finite-dimensional context. In addition to the assumptions we have made
thus far we will henceforth assume thatP is oriented and that the action ofG
on P preserves orientation (i.e., each of the diffeomorphismsσg is orientation
preserving). We now make a specific choice of connection onG ↪→ P → X.

Remark. Before proceeding we must recall that for any action of a compact
Lie group G on a manifold M it is always possible to construct a Riemannian
metric 〈 , 〉G on M that is G-invariant, i.e., for which the diffeomorphisms σg:
M → M are all isometries. Roughly, this is done by selecting some Riemannian
metric 〈 , 〉 on M and, at each point p ∈ M , averaging over G relative to some
invariant measure dG on G, i.e., defining, for all Vp,Wp ∈ Tp(M),

〈Vp,Wp〉G =
∫
G

〈(σg)∗p(Vp), (σg)∗p(Wp)〉dG.

We fix, once and for all, aG-invariant Riemannian metric, denoted simply〈 , 〉,
onP . At eachp ∈ P this Riemannian metric defines an orthogonal complement
to the vertical subspace ofTp(P ) (tangent space to theG-orbit atp) and, sinceG
acts by isometries, these orthogonals are invariant under the action ofG and so
they determine a connectionω onP . Henceforth, we will use this connection on
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P exclusively. In particular, the pullback connectionω′ = pr∗Pω onP × V has
Hor(p,ψ)(ω′) ∼= Tp(p ·G)⊥ ⊕ Tψ(V ) at each point.

Now we proceed with some cosmetic surgery on (5.30). First recall the Cartan for-
mulaΩ = dω+ 1

2 [ω,ω] and notice that the second term vanishes onω-horizontal
vectors by definition. Since the formula forU in (5.30) is to be evaluated onω′-
horizontal parts and since Hor(p,ψ)(ω′) ∼= Horp(ω) ⊕ Tψ(V ), the result will be
the same whether or not1

2 [ω,ω] is present. Thus, we may write

U = (2π)−k e−
1
2
‖u‖2

∫
exp
(
iψT du+

1
2
ψT (ρ∗(dω))ψ

)
Dψ (5.32)

(evaluated on horizontal parts) .

For the next manipulation ofU we will require a few preliminaries. Begin by
defining, at each,p ∈ P , a linear map

Cp : G −→ Vertp(P ) ⊆ Tp (P )

by

Cp (ξ) = ξ# (p) =
d
dt

(p · exp (tξ))|t=0 .

This is an isomorphism onto Vertp(P ), but we wish to regard it as a map into
Tp(P ). Now choose some ad-invariant inner product( , ) on G. Tp(P ) has an
inner product〈 , 〉p arising from the Riemannian metric onP . Thus,Cp has an
adjoint

C∗
p : Tp (P ) −→ G

defined by
〈w,Cp (η)〉p =

(
C∗

p (w) , η
)

for all w ∈ Tp(P ) andη ∈ G. In particular,

〈Cp (ξ) , Cp (η)〉p =
(
C∗

p (Cp (ξ)) , η
)
= (Rp (ξ) , η)

where
Rp = C∗

p ◦ Cp : G −→ G.
It is easy to see thatRp is self-adjoint and has trivial kernel so we have an inverse

R−1
p : G −→ G.

Now, sinceCp carriesG isomorphically onto Vertp(P ) there is also an inverse

C−1
p : Vertp(P ) −→ G
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and we claim that this agrees withωp on Vertp(P ), i.e.,

C−1
p (w) = ωp (w) , w ∈ Vertp(P ). (5.33)

Indeed, ifw ∈ Vertp(P ), thenw = η#(p) = Cp(η) for a uniqueη ∈ G. ω is
a connection form soωp(η#(p)) = η for everyη ∈ G. Thus,ωp(w) = η =
C−1

p (w).
Now we define a one-formθ ∈ Ω1(P,G∗) onP with values in the dualG∗ of G
as follows: Forp ∈ P andw ∈ Tp(P ), θp(w) ∈ G∗ is the mapθp(w) : G → R

given by
(θp (w)) (ξ) = 〈Cp(ξ), w〉p =

(
ξ, C∗

p (w)
)
. (5.34)

Note thatθp vanishes on horizontal vectors atp becauseω-horizontal means〈 , 〉-
orthogonal to theG-orbit throughp, i.e., to Vertp(P ), andCp(ξ) is in Vertp(P ).
Now, if we use the inner product( , ) to identify G∗ andG, the last equality
in (5.34) shows thatθp(w) is identified withC∗

p(w). Thus, regarded as aG-
valued one-form onP , θ is justC∗ so, in particular,C∗ ∈ Ω1(P,G) vanishes on
horizontal vectors. We claim that

C∗ = R ◦ ω (5.35)

i.e., C∗
p(w) = Rp(ωp(w)) for everyw ∈ Tp(P ). Since both sides vanish on

horizontal vectors one need only verify (5.35) whenw ∈ Vertp(P ). But then
(5.33) gives

Rp (ωp (w)) = Rp

(
C−1

p (w)
)
=
(
C∗

p ◦ Cp

) (
C−1

p (w)
)
= C∗

p(w).

Fixing a basis forG we can identify eachRp with an invertible matrix andω
with a matrix of real-valued one-forms onP so (5.35) becomes a matrix equation
C∗ = Rω which we write as

ω = R−1C∗.

From this we compute

dω = dR−1 ∧ C∗ +R−1dC∗.

Noting that the first term vanishes on horizontal vectors we find that in the expres-
sion (5.32) forU we may replacedω by R−1dC∗ to obtain

U=(2π)−k e−
1
2
‖u‖2

∫
exp
(
iψT du+

1
2
ψT
(
ρ∗
(
R−1dC∗))ψ)Dψ (5.36)

(evaluated on horizontal parts) .
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The next objective is to remove the explicit appearance of the inverse in (5.36)
by using the Fourier inversion formula. We begin with a brief review of the
Fourier transform. LetW be an oriented real vector space of dimensionn with
volume elementdw ∈ ∧n W ∗ and letw1, . . . , wn be coordinates onW with
dw = dw1 · · · dwn. Let y1, . . . , yn be coordinates onW ∗ dual tow1, . . . , wn and
dy = dy1 · · · dyn ∈

∧n W the volume element forW ∗. LetS(W ) andS(W ∗) be
the Schwartz spaces of rapidly decreasing functions inw1, . . . , wn andy1, . . . , yn,
respectively. Finally, let〈 , 〉 denote the natural pairing betweenW andW ∗. The
Fourier transform off ∈ S(W ) is f̂ ∈ S(W ∗) defined by

f̂ (y) = (2π)−n/2
∫
W

e−i〈w,y〉f (w) dw.

The Fourier inversion formula then asserts that

f (w) = (2π)−n/2
∫

W ∗

ei〈w,y〉f̂ (y) dy.

Combining these two formulas gives

f (w) = (2π)−n
∫

W ∗

∫
W

ei〈w,y〉e−i〈z,y〉f (z) dzdy.

Assuming now thatW andW ∗ are identified via some inner product we will write
this simply as

f (w) = (2π)−n
∫∫

ei〈w,y〉e−i〈z,y〉f (z) dzdy (5.37)

with the understanding that both integrations are overW and the exponents are
inner products.

The situation to which we would like to apply (5.37) is as follows. IfR is a
positive self-adjoint matrix, then one can use the formula to computef(R−1w).
To get an integral that does not explicitly involve the inverse, however, we also
make the change of variabley → Ry. Then〈R−1w,Ry〉 = 〈w, y〉 andd(Ry) =
detRdy so

f
(
R−1w

)
= (2π)−n

∫∫
ei〈w,y〉e−i〈z,Ry〉f (z) detRdzdy. (5.38)

Now we return to our last expression (5.36) forU . Letting φ = (φ1, . . . , φn)
denote a Lie algebra variable inG we consider the function onG defined by

f (φ) = (2π)−k e−
1
2
‖u‖2

∫
exp
(
iψT du+

1
2
ψT (ρ∗ (φ))ψ

)
Dψ.
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Each value off is an element ofΩ∗(V ) whose components (relative todu1, . . . ,
duk) are polynomials inφ.

Remark. These polynomials are not in the Schwartz space S(G), but we never-
theless propose to apply the Fourier formula (5.38) componentwise to f(φ). This
is rather sloppy, of course, but could be made more precise by inserting a rapidly
decaying test function e−ε(φ,φ) and taking the limit as ε → 0. Since our objec-
tive is a formula to be applied formally in an infinite-dimensional situation where
complete rigor is (for the time being, at least) out of the question anyway, we will
not be scrupulous about such details.

Letting λ = (λ1, . . . , λn) be another Lie algebra variable inG we apply (5.38)
with w = dC∗ (i.e., with w = dC∗(χ1, χ2) for each pair(χ1, χ2) of tangent
vectors) to get

U=f
(
R−1dC∗) = (2π)−n

∫∫
ei(dC∗,λ) e−i(φ,Rλ) f (φ) detRdφdλ

=(2π)−n (2π)−k
∫∫

ei(dC∗,λ) e−i(φ,Rλ) e−
1
2
‖u‖2

∫
exp
(
iψTdu

+
1
2
ψT (ρ∗ (φ))ψ

)
Dψ detRdφdλ

U=(2π)−n (2π)−k e−
1
2
‖u‖2
∫∫∫

exp
(
iψT du+

1
2
ψT (ρ∗ (φ))ψ

(5.39)

+i (dC∗, λ)− i (φ,Rλ)
)
detRDψdλdφ (evaluated on horizontal parts).

Notice that this expression contains one fermionic and two ordinary (“bosonic”)
integrations.

Next we would like to include the parenthetical remark “evaluated on horizontal
parts” in (5.39) directly into the integral expression forU . For this we require
the notion of a “normalized vertical volume form” on a principal bundle, which
is essentially an analogue of a Thom form on a vector bundle. Thus, we con-

sider a principalG-bundleG ↪→ Q
πQ−→ M with M compact and orientable and

dimG = n. We assume the bundle itself to be orientable in the sense that there
exists ann-form Ψ on Q such that, ifm ∈ M and ιm : π−1

Q (m) ↪→ Q is the

inclusion, thenι∗mΨ is an orientation form for the submanifoldπ−1
Q (m) ∼= G. It

follows thatQ is orientable and we assume it to be oriented by the so-called local
product orientationπ∗

QωM ∧Ψ, whereωM is an orientation form forM . One
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can assume also that the action ofG onQ is orientation preserving (these matters
are discussed in detail in Chapter VII, Vol I, of [24]). We will henceforth make
these assumptions of our underlying principal bundleG ↪→ P

πP−→ X as well. A
normalized vertical volume form for the bundle is ann-formW onQ such that,
if ιm : π−1

Q (m) ↪→ Q is the inclusion of a fiber, then∫
π−1

Q (m)

ι∗mW = 1. (5.40)

It is not difficult to show that one can construct such a formW from a connection
ω on Q as follows. Choose a positive definite ad-invariant inner product( , )
on G, normalized so that the volume ofG (arising from the corresponding bi-
invariant Riemannian metric onG) is 1. Let{ξ1, . . . , ξn} be an orthonormal basis
for G relative to( , ) and consistent with the orientationG inherits as a fiber of
Q. Writeω = ωaξa, whereωa ∈ Ω1(Q), a = 1, . . . , n. One then shows that

W = ω1 ∧ . . . ∧ ωn (5.41)

is a normalized vertical volume form forG ↪→ Q
πQ−→ M . Such a form has a

number of properties of interest to us. For any top rank formβ onM one has∫
M

β =
∫
Q

π∗
Qβ ∧W (5.42)

(essentially Fubini’s Theorem together with (5.40)). Furthermore, the process of
evaluating an elementϕ of Ω∗(Q) onω-horizontal parts (i.e., of computing the
ω-horizontal projectionhω(ϕ) ofϕ) can be accomplished as follows. An explicit
formula forhω(ϕ) reads

hω (ϕ) = ϕ− ω1 ∧ ι1ϕ− ω2 ∧ ι2ϕ− . . .− ωn ∧ ιnϕ (5.43)

+
∑

1≤a1<...<ar≤n
r>1

(−1)r(r+1)/2ωa1 ∧ . . . ∧ ωar ∧ (ιa1 ◦ . . . ◦ ιar) (ϕ)

whereιa = ι
ξ#
a

. Thushω(ϕ) ∧W = ϕ ∧W (by (5.41)) so one can arrive at
hω(ϕ) by wedge multiplyingϕ byW and integrating over the fibers to obtain

hω (ϕ)
∫

π−1
Q (m)

ι∗mW = hω (ϕ) .
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Notice that what is really going on here is thatϕ ∧W kills all of the terms in
ϕ with vertical parts (becauseW has a full contingent ofn vertical coordinate
differentials) and the surviving terms are just those ofhω(ϕ) with an extra factor
of W which we integrate out (i.e., ignore). The conclusion is that “evaluating on
ω-horizontal parts” can be accomplished by “multiplying by the vertical volume
form (5.41) and integrating over the fibers”.

We wish to apply this observation to the formU of (5.39), where the principal
bundle isG ↪→ P × V

q−→ P ×ρ V . However, we would like to include the
procedure as part of the integration formula so we begin by showing thatW can
be written as a Berezin integral.

Denote by{η1, . . . , ηn} an orthonormal basis forG relative to the normalizedG-
invariant inner product( , ) on G introduced above (we will be more specific
about the choice of this basis shortly). Regard these as odd generators of

∧
(G)

and consider the following element ofΩ∗(Q)⊗∧(G):

e
∑n

a=1 ωaηa = eω1η1 . . . eωnηn = (1 + ω1η1) . . . (1 + ωnηn) . (5.44)

Performing a Berezin integration with respect toη gives∫
e
∑n

a=1 ωaηaDη =
∫

(1 + ω1η1) . . . (1 + ωnηn)Dη =
∫
ω1η1 . . .ωnηnDη

= (−1)n(n−1)/2
∫
ω1 . . .ωn η1 . . . ηnDη.

If we now choose{η1, . . . , ηn} to be the same as{ξ1, . . . , ξn} if n(n − 1)/2 is
even and an odd permutation of{ξ1, . . . , ξn} if n(n− 1)/2 is odd, this gives∫

e
∑n

a=1 ωaηaDη = ω1 . . .ωn = ω1 ∧ . . . ∧ ωn =W (5.45)

for the normalized vertical volume form ofG ↪→ Q
πQ−→M .

We would now like to express the Berezin integral representation (5.45) forW
without explicit reference to the connection formsωa. For this we assume, as
for G ↪→ P

πP−→ X earlier, thatQ is a Riemannian manifold and thatω is the
connection onQ whose horizontal spaces are the orthogonal complements to the
G-orbits. Thus, we have available the mapsC, C∗ andR and all of the results
we have proved about them (note that this is true of the bundleG ↪→ P × V

q−→
P ×ρ V when the metric, connection and orientation are taken to be the pullbacks
by prP : P × V → P of those we have chosen forP ). Now consider the element
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of C
1[G]⊗Ω1(Q) whose value at anyη ∈ G is the one-form(C∗, η) onQ defined

by

(C∗, η) (χ) = (C∗χ, η) = 〈χ,Cη〉 =
〈
χ, η#

〉
(5.46)

for any vector fieldχ onQ. Now let{A1, . . . , An, . . . , Ad} be local coordinates
onQ (wheren = dimG). Then

(C∗, η) =
d∑

j=1

(
C∗
(

∂

∂Aj

)
, η

)
dAj .

WriteC∗( ∂
∂Aj ) =

∑n
i=1 aijηi so that

(C∗, η) =
d∑

j=1

n∑
i=1

aij (ηi, η) dAj =
n∑

i=1

 d∑
j=1

aijdAj

 (ηi, η) .

Define one-formsβi onQ by βi =
∑d

j=1 aijdAj. Then

(C∗, η) =
n∑

i=1

βi (ηi, η) =
n∑

i=1

βi (ηi, ·) (η) =
n∑

i=1

βiη
i (η)

where{η1, . . . , ηn} = {(η1, ·), . . . , (ηn, ·)} is the basis forG∗ dual to{η1, . . . , ηn}.
Now identify

∑n
i=1 βiη

i ∈ Ω∗(Q) ⊗∧(G∗) with
∑n

i=1 βiηi ∈ Ω∗(Q) ⊗∧(G)
and compute the Berezin integral∫

e
∑n

i=1 βiηiDη = (−1)n(n−1)/2 β1 ∧ . . . ∧ βn

= (−1)n(n−1)/2
(
a11dA1 + . . .+ a1ddAd

)
∧ . . . ∧

(
an1dA1 + . . .+ anddAd

)
= (−1)n(n−1)/2

∑
H

det (aH) dAH

whereH = {h1, . . . , hn}, 1 ≤ h1 < . . . < hn ≤ d, dAH = dAh1 ∧ . . . ∧ dAhn

and

aH =


a1h1 · · · a1hn

...
...

anh1 · · · anhn

 .

We compute the determinantsdet(aH) as follows. For eachj = 1, . . . , n,
C∗( ∂

∂Aj ) =
∑n

i=1 aijηi and so

aij =
(
C∗
(

∂

∂Aj

)
, ηi

)
=
(
R

(
ω

(
∂

∂Aj

))
, ηi

)
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by (5.35). Now let us writeω = ω̃1η1 + · · ·+ ω̃nηn. By the way we have chosen
{η1, . . . , ηn}, {ω̃1, . . . , ω̃n} is at worst a permutation of{ω1, . . . ,ωn} and, in
any case,

ω̃1 ∧ . . . ∧ ω̃n = (−1)n(n−1)/2 ω1 ∧ . . . ∧ ωn = (−1)n(n−1)/2 W .

Now we have

ω

(
∂

∂Aj

)
= ω̃1

(
∂

∂Aj

)
η1 + . . . + ω̃n

(
∂

∂Aj

)
ηn

and

R

(
ω

(
∂

∂Aj

))
= ω̃1

(
∂

∂Aj

)
R (η1) + . . .+ ω̃n

(
∂

∂Aj

)
R (ηn)

so that

aij = ω̃1

(
∂

∂Aj

)
(R (η1) , ηi) + . . .+ ω̃n

(
∂

∂Aj

)
(R (ηn) , ηi) .

Consequently,

aH =


(R (η1) , η1) · · · (R (ηn) , η1)

...
...

(R (η1) , ηn) · · · (R (ηn) , ηn)



ω̃1

(
∂

∂Ah1

)
· · · ω̃1

(
∂

∂Ahn

)
...

...

ω̃n

(
∂

∂Ah1

)
· · · ω̃n

(
∂

∂Ahn

)
 .

(5.47)
Thus,

det (aH ) = detR det (ω̃H) (5.48)

whereω̃H is the matrix shown in (5.47). Since

ω̃j =
d∑

i=1

ω̃j

(
∂

∂Ai

)
dAi , j = 1, . . . , n
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we find that∫
e
∑n

i=1 βiηiDη = (−1)n(n−1)/2
∑
H

det (aH) dAH

= (−1)n(n−1)/2
∑
H

detRdet (ω̃H) dAH

= (−1)n(n−1)/2 detR
∑
H

det (ω̃H) dAH

= (−1)n(n−1)/2 detR ω̃1 ∧ . . . ∧ ω̃n

= (detR)W .

Thus,

W = (detR)−1
∫

e
∑n

i=1 βiηiDη. (5.49)

We have already seen that, with our identification ofG∗ with G via ( , ), (C∗, ·)
is identified with

∑n
i=1 βiηi, i.e.,(C∗, η) =

∑n
i=1 βiη

i(η) for eachη ∈ G. Sub-
stituting this into the Berezin integral (5.49) it is best (notationally) to retain ref-
erence to the fermionic variableη and write

W = (detR)−1
∫

e(C∗,η) Dη. (5.50)

Now we return to the expression (5.39) forU and enforce the horizontal projection
by multiplying byW in the form (5.50). In this way thedetR cancels and we
simply add the term(C∗, η) to the exponent to obtain

U=(2π)−n (2π)−k
∫∫∫∫

exp
(
− 1

2
‖u‖2 + iψT du+

1
2
ψT (ρ∗ (φ))ψ

(5.51)

+ i(dC∗, λ)− i(φ,Rλ) + (C∗, η)
)
DηDψdλdφ.

Remarks. One should keep in mind that we are here applying the result (5.50)to
the principal bundle G ↪→ P × V

q−→ P ×ρ V . Moreover, in (5.51)there is also
an implicit integration over the fibers to remove the vertical volume form after it
has served its purpose of killing the vertical parts.

The formU in (5.51), after integrating out the vertical parts, is a basic form on
P × V which, regarded as a form onP ×ρ V , represents the Thom class. Pulling
U back by a section ofP ×ρ V gives a representative of the Euler class which,
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when integrated overX, gives the Euler number. We have already observed that
every section ofP ×ρ V is of the formx→ [s(x), S(s(x))], wheres is a section
of P andS : P → V is an equivariant map and that pulling back by such a
section amounts to pulling back theV -factors ofU by S and then pulling back
the resulting form onP by s. Thus, our Euler form is the pullback bys of

(2π)−n (2π)−k
∫∫∫∫

exp
(
− 1

2
‖S‖2 + iψTdS +

1
2
ψT (ρ∗ (φ))ψ

(5.52)

+i (dC∗, λ)− i (φ,Rλ) + (C∗, η)
)
DηDψdλdφ

where we have written simplyS for S∗u = u ◦ S. Integrating this overX gives
the Euler number. On the other hand, if we refrain from pulling back bys (and
from integrating out the vertical volume form), (5.52) gives a form onP whose
integral overP is also the Euler number ofP ×ρ V .

We have one last bit of cosmetic surgery to perform onU . There is a common
notational device in (supersymmetric) physics whereby the integral of a top rank
form on a manifold is written as two successive integrations, one fermionic and
one bosonic. Recall that the integral of a (properly decaying)function ϕ on an
oriented, Riemannian manifoldP is defined by multiplying the volume formdω
of P by ϕ and integrating this overP∫

P

ϕdω.

Now, if α is any (properly decaying) form onP written in terms of local coordi-
natesxi onP (α = α(xi,dxi)) and if one introduces odd variablesχi (generators
for some exterior algebra), then one can define an elementα(xi, χi) of this exte-
rior algebra by formally making the substitutionsdxi → χi. Then the fermionic
integral ∫

α
(
xi, χi

)Dχ
is precisely the function one integrates (next todω as above) to get the integral of
α overP ∫

P

α =
∫
P

∫
α
(
xi, χi

)Dχdω.

Applying this convention to the expression for the Euler number obtained by inte-
grating overP gives the final formula toward which all of this has been leading us.
For this we will explicitly indicate all of the dependences on the three fermionic
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(χ, η, ψ) and three bosonic(λ, φ, ω) variables (in particular, all of the terms giv-
ing rise to forms onP (iψT dS, i(dC∗, λ), and(C∗, η)) are regarded as functions
of the new fermionic variableχ). We will also (finally!) suppress all but one of
the integral signs.

(2π)−n (2π)−k
∫

exp
{
− 1

2
‖S (ω)‖2 +

1
2
ψT (ρ∗ (φ))ψ

+ iψT dSω (χ) + i (dC∗
ω (χ, χ) , λ) (5.53)

− i(φ,Rωλ) + (C∗
ωχ, η)

}
DχDηDψdλdφdω

This we will call theAtiyah-Jeffrey formula for the Euler number ofP ×ρ V .
Our objective now is to formally apply it to the infinite-dimensional vector bundle
Â×ĜΩ

2
+(B, adP ) of Donaldson theory withS = F+ as the equivariant map. The

result will be, formally at least, an expression for an “Euler number” for the bundle
(which, however, depends on the choice ofS) and also, as it happens, the partition
function for Witten’s topological quantum field theory (i.e., the zero-dimensional
Donaldson invariant ofB). We must emphasize at the outset that what we intend
to do here is not mathematics (and certainly not physics). Our objective is to find,
within the context of the infinite-dimensional vector bundlêA ×Ĝ Ω2

+(B, adP )
associated with the Donaldson invariant, formal field-theoretic analogues of the
various bosonic and fermionic variables appearing in (5.53) and natural identifi-
cations of the terms in the exponent of (5.53) with functions of these variables. In
the process the (perfectly well-defined) bosonic and fermionic integrals in (5.53)
will metamorphose into Feynman integrals over spaces of fields with all of their
attendant mathematical difficulties. The purist will argue that this is meaningless
manipulation of symbols and we can offer no credible defense against the charge.
The only mitigating circumstance is that such formal manipulations have proved
extraordinarily productive for both physics and mathematics and promise to be
even more so in the future as the two subjects continue to re-establish lines of
communication.

We begin with a brief summary of the notation accumulated in Section 4. Through-
out the remainder of this sectionB will denote a compact, simply connected,
oriented, smooth four-manifold withb+2 (B) > 1 and we will consider only the
structure groupG = SU(2) with Lie algebrasu(2). g will denote a generic Rie-
mannian metric onB andSU(2) ↪→ P

π−→ B a smooth principalSU(2)-bundle
overB. Â is the space of irreducible connections onP , G is the group of gauge
transformations and̂G = G/Z2 is G modulo its center. Then̂B = Â/G ∼= Â/Ĝ is
the moduli space of irreducible connections onP . Next, Asd(P,g) = Âsd(P,g)
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is the space ofg-ASD connections onP andM = Asd(P,g)/G ∼= Asd(P,g)/Ĝ
is the moduli space of gauge equivalence classes of (irreducible)g-ASD connec-
tions onP . ThenĜ ↪→ Â → B̂ is a principalĜ-bundle and̂G acts onΩ2

+(B, adP )
on the left so we have an associated vector bundleÂ×ĜΩ

2
+(B, adP )→ B̂. A sec-

tion is determined by the equivariant mapS = F+ : Â → Ω2
+(B, adP ) defined

byS(ω) = F+(ω) = F+
ω = 1

2(Fω+∗Fω).M is identified with the zero set of
this section, i.e., with the intersection of the images of the corresponding section
and the zero-section. We assume for the remainder of this section that the Chern
number of the bundleSU(2) ↪→ P

π−→ B has been fixed so that the dimension of
M is zero. Then the Donaldson invariantγ0(B) given by (4.22) can be viewed as
the intersection number of the section corresponding toS, i.e., as an “Euler num-
ber” for the bundleÂ×ĜΩ2

+(B, adP ). The formal extension of (5.53) to this new
infinite-dimensional context “should” provide an integral (Gauss-Bonnet-Chern)
representation of the Donaldson invariant.

We begin by recalling that our derivation of the Atiyah-Jeffrey formula (5.53)
assumes the existence of a Riemannian metric on the principal bundle space (in
our case,Â) for which the group(Ĝ) acts by isometries. Such a metric is easy to
produce. SinceÂ is open inA (the space of all connections onP ) andA is an
affine space modeled onΩ1(B, adP )

Tω(Â) ∼= Ω1 (B, adP )

for eachω ∈ Â. Now, all of the spacesΩk(B, adP ) have naturalL2-inner prod-
ucts arising from the metricg onB (and the corresponding Hodge star∗) and an
invariant inner product on the Lie algebra. Taking the inner product onsu(2) to
be(A,B) = −tr (AB) this is given by

〈α,β〉k = −
∫
B

tr (α ∧ ∗β) . (5.54)

In particular, this is true forTω(Â) and this defines a metric on̂A. Since the inner
product is invariant under the action of̂G (pointwise conjugation by an element
of P ×Ad SU(2)), Ĝ acts by isometries on̂A. This metric defines a connection
on Ĝ ↪→ Â → B̂ whose horizontal spaces are the orthogonal complements to the
gauge orbits. Indeed, we already know these horizontal spaces since (4.11) gives
the orthogonal decomposition

Tω(Â) ∼= Tω(ω · Ĝ)⊕ ker (δω) = im (dω)⊕ ker (δω) (5.55)

wheredω : Ω0(B, adP ) → Ω1(B, adP ) is the covariant exterior derivative and
δω : Ω1(B, adP )→ Ω0(B, adP ) is its formal adjoint relative to the natural inner
products (5.54) on the spaces of forms.
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The first term we must contend with in the exponent of the Atiyah-Jeffrey formula
(5.53) is−1

2‖S(ω)‖2, whereS = F+ : Â → Ω2
+(B, adP ) and the norm is

computed in the natural inner product〈 , 〉2 on Ω2(B, adP ) at eachω ∈ Â.
Thus,

−1
2
‖S (ω)‖2 = −1

2

∥∥F+
ω
∥∥2 =

1
2

∫
B

tr
(
F+
ω ∧ ∗F+

ω
)
=

1
2

∫
B

tr
(
F+
ω ∧ F+

ω
)
.

Using the orthogonality of the Hodge decomposition one finds that this can be
written as

−1
2
‖S (ω)‖2 =

1
4

∫
B

tr(Fω ∧ ∗Fω) +
1
4

∫
B

tr(Fω ∧ Fω). (5.56)

The first term is of the typical Yang-Mills variety for a classical gauge theory,
whereas the second Witten [46] calls a topological term because it is, up to a
constant, the Chern number of the underlyingSU(2)-bundle.

Remark. Witten [46] employs the notation more common in physics whereby
everything is written in such a way as to appear local. We will not attempt to
translate all that we do into this language, but will illustrate with (5.56). Let
{Ta} be an orthonormal basis for su(2) relative to (A,B) = − tr(AB), e.g.,
Ta = − 1√

2
iσa, a = 1, 2, 3, and σ1, σ2, σ3 are the Pauli spin matrices. Write

Fω = 1
2Fαβdxα ∧ dxβ , where Fαβ = F a

αβTa and ∗Fω = 1
2 F̃αβdxα ∧ dxβ ,

where F̃αβ = F̃ a
αβTa. Raise indices with g to get Fαβ = gαα′

gββ′
Fα′β′ and

F̃αβ = gαα′
gββ′

F̃α′β′ . A quick computation shows that 1
4 tr(Fω ∧ ∗Fω) =

1
4 tr(FαβF

αβ)volg and 1
4 tr(Fω ∧ Fω) = 1

4 tr(FαβF̃
αβ)volg . Writing volg as√

gd4x one obtains the two terms corresponding to (5.56)in (2.41)of [46]:

−1
2
‖S (ω)‖2 =

∫
B

√
gd4xtr

(1
4
FαβF

αβ +
1
4
FαβF̃

αβ
)
. (5.57)

To proceed we must sort out the appropriate analogues, in the Donaldson theory
context, of the mapsC, C∗ andR. At each pointω in the principal bundle space
Â, Cω is the map from the Lie algebra of̂G, which we have seen can be identified
with Ω0(B, adP ), to the tangent spaceTω(Â) ∼= Ω1(B, adP ) defined, for each
ξ ∈ Ω0(B, adP ) by

Cω (ξ) =
d
dt

(ω · exp (tξ))|t=0 .



114 Gregory L. Naber

Computing this derivative locally gives

Cω (ξ) = dωξ. (5.58)

Consequently,C∗
ω is the formal adjoint

C∗
ω = δω : Ω1 (B, adP ) −→ Ω0 (B, adP ) (5.59)

of dω relative to the natural inner products on the spaces of forms and so

Rω = C∗
ω ◦ Cω = ∆ω0 : Ω0 (B, adP ) −→ Ω0 (B, adP ) (5.60)

is the scalar Laplacian corresponding toω.

With this information in hand we consider the term−i(φ,Rωλ) in (5.53). Bothφ
andλ are in the Lie algebra so we introduce two “bosonic” fields

φ,λ ∈ Ω0 (B, adP )

and interpret( , ) as the natural inner product〈 , 〉0 onΩ0(B, adP ).

Remark. We apply the adjectives “bosonic” and “fermionic” to the fields we
introduce only because of the type of integral these variables correspond to in
(5.53). We do not claim to have justified any physical connotations associated
with the terms.

Thus, the term−i(φ, Rωλ) is to be interpreted as

−i (φ, Rωλ) = −i 〈φ,∆ω0 λ〉0 = i
∫
B

tr (φ ∧ ∗ (∆ω0 λ))

(5.61)

= i
∫
B

tr (∗ (φ∆ω0 λ)) .

Remark. As Atiyah and Jeffrey [3] point out, the real field φ must be replaced
by iφ and λ must be replaced by 1

2λ to conform to Witten’s notation. In physics
notation, the corresponding term in [46] is∫

B

√
gd4x tr

(1
2
φDαD

αλ
)
.
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Next we consider the term(C∗
ωχ, η) in (5.53). SinceC∗

ω mapsΩ1(B, adP ) to
Ω0(B, adP ) we will need two fermionic fields

η ∈ Ω0 (B, adP )

and
χ ∈ Ω1 (B, adP )

and, as above,( , ) = 〈 , 〉0. Thus, we find that

(C∗
ωχ,η) = 〈δωχ,η〉0 = 〈χ,dωη〉1 = −

∫
B

tr (χ ∧ ∗dωη) . (5.62)

The fermionic variableψ in the Mathai-Quillen formalism arises from the odd
generators of the exterior algebra of the fiber vector spaceV . In our case this
vector space isΩ2

+(B, adP ) so we introduce a fermionic field

ψ ∈ Ω2
+(B, adP ).

Now consider the termiψT dSω(χ) in (5.53). S is the self-dual curvature map
S = F+ : Â → Ω2

+(B, adP ) and we noted in Section 4 that the derivative of this
map atω ∈ Â is identified with

dω+ : Ω1(B, adP ) −→ Ω2
+(B, adP )

so
dSω (χ) = dω+χ (5.63)

for eachχ ∈ Ω1(B, adP ). We will interpret finite-dimensional expressions such
as

ATB =
(
A1 . . . Ar

)
B1

...

Br

 = A1B1 + . . .+ArBr

in terms of the appropriate field-theoretic inner product so thatiψT dSω(χ) be-
comes

i
〈
ψ,dω+χ

〉
2
= i 〈ψ,dωχ〉2
(becauseψ is self-dual and the Hodge decomposition is orthogonal)

= i 〈dωχ,ψ〉2 = −i
∫
B

tr (dωχ ∧ψ)

iψT dSω (χ) = −i
∫
B

tr (dωχ ∧ψ) . (5.64)
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Next we consider the term12ψ
T (ρ∗(φ))ψ in (5.53). We know already thatφ ∈

Ω0(B, adP ) andψ ∈ Ω2
+(B, adP ). In the Mathai-Quillen form,ρ corresponds

to the action ofG on V that gives rise to the associated vector bundle. In our
case,Ĝ (regarded as sections of the nonlinear adjoint bundle) acts onΩ2

+(B, adP )
pointwise by conjugation. At each point this is just the ordinary adjoint action of
SU(2) on its Lie algebra for which the infinitesimal action is just bracket. Thus,
for eachφ ∈ Ω0(B, adP ), ρ∗(φ) acts onψ ∈ Ω2

+(B, adP ) by

ρ∗ (φ)ψ = [φ,ψ]

so 1
2ψ

T (ρ∗(φ))ψ is interpreted as12ψ
T (ρ∗(φ))ψ = 1

2 〈ψ, [φ,ψ]〉2 which we
rearrange as follows

1
2
ψT (ρ∗ (φ))ψ =

1
2
〈ψ, [φ,ψ]〉2 =

1
2
〈[φ,ψ] ,ψ〉2

= −1
2

∫
B

tr ([φ,ψ] ∧ ∗ψ) = −1
2

∫
B

tr ([φ,ψ] ∧ψ)

becauseψ is self-dual. Now, any ad-invariant inner product( , ) on any Lie
algebra satisfies(x, [y, z]) = ([x, y], z) so in this last integral we may replace
[φ,ψ] ∧ψ byφ[ψ,ψ]. Moreover, tr(AB) = tr (BA) so we conclude that

1
2
ψT (ρ∗(φ))ψ = −1

2

∫
B

tr([ψ,ψ]φ). (5.65)

The only remaining term in (5.53) isi(dC∗
ω(χ,χ),λ) and this requires a bit more

work. C∗ is a one-form onÂ with values inΩ0(B, adP ). We computedC∗ at
ω ∈ Â as follows. Fixχ1,χ2 ∈ TωÂ. SinceA is an affine space and̂A is open
in A we may regardχ1 andχ2 as constant vector fields on̂A. Thus,

dC∗
ω (χ1,χ2) = χ1 (C∗χ2)− χ2 (C∗χ1)− C∗ ([χ1,χ2])

= χ1 (C∗χ2)− χ2 (C∗χ1)

whereC∗χi is the function onθ → C∗
θχi = δθχi for i = 1, 2. Now

(χ1 (C∗χ2)) (ω) = χ1 (ω) (C∗χ2) = χ1 (C∗χ2) (5.66)

=
d
dt
C∗
ω+tχ1

(χ2)|t=0 =
d
dt
δω+tχ1 (χ2)|t=0 .

We computeδω+tχ1 as follows: For anyλ ∈ Ω0(B, adP ),

dω+tχ1 (λ) = dωλ+ t [χ1,λ] = dωλ+ tBχ1
(λ)
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whereBχ1
: Ω0(B, adP )→ Ω1(B, adP ) is given byBχ1

(λ) = [χ1,λ]. Thus,

δω+tχ1 (χ2) = δωχ2 +B∗
χ1

(χ2)

whereB∗
χ1

: Ω1(B, adP )→ Ω0(B, adP ) is the adjoint ofBχ1
. We claim that

B∗
χ1

(χ2) = −∗ [χ1, ∗χ2] . (5.67)

Indeed, for anyλ ∈ Ω0(B, adP ),〈
Bχ1

(λ) ,χ2

〉
1
= 〈[χ1,λ] ,χ2〉1 = −

∫
B

tr ([χ1,λ] ∧ ∗χ2)

=
∫
B

tr ([λ,χ1] ∧ ∗χ2) =
∫
B

tr (λ ∧ [χ1, ∗χ2])

=
∫
B

tr (λ ∧ ∗∗ [χ1, ∗χ2]) = −〈λ, ∗ [χ1, ∗χ2]〉0

= 〈λ,−∗ [χ1, ∗χ2]〉0
which establishes (5.67). Thus,δω+tχ1(χ2) = δωχ2 − t∗[χ1, ∗χ2] and comput-
ing the derivative att = 0 gives, from (5.66),

(χ1 (C∗χ2)) (ω) = −∗ [χ1, ∗χ2] .

Interchangingχ1 andχ2 gives

(χ2 (C∗χ1)) (ω) = −∗ [χ2, ∗χ1] .

Since these are independent ofω we haveχ1(C∗χ2) = −∗[χ1, ∗χ2] and
χ2(C∗χ1) = −∗[χ2, ∗χ1]. One can verify that, for anyα,β ∈ Ω1(B, adP ),
∗[β, ∗α] = −∗[α, ∗β] so we may write∗[χ2, ∗χ1] = −∗[χ1, ∗χ2] and thereby
obtain

dC∗
ω (χ1,χ2) = −2∗ [χ1, ∗χ2] (5.68)

for anyω ∈ Â. Thus

i 〈dC∗
ω (χ1,χ2) ,λ〉0 = i 〈λ,dC∗

ω (χ1,χ2)〉0
= −i

∫
B

tr (λ ∧ ∗ (−2∗ [χ1, ∗χ2]))

= 2i
∫
B

tr (λ ∧ [χ1, ∗χ2]) = 2i
∫
B

tr ([χ1, ∗χ2]λ)
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and finally

i(dC∗
ω(χ,χ),λ) = 2i

∫
B

tr ([χ, ∗χ]λ) . (5.69)

With this we have identified all of the terms in the exponent in (5.53). Each is the
integral overB of a trace and so we may collect them all together into∫

B

tr
(1
4
Fω ∧ ∗Fω +

1
4
Fω ∧ Fω − 1

2
[ψ,ψ]φ− idωχ ∧ψ

(5.70)
+ 2i [χ, ∗χ]λ+ i ∗ (φ∆ω0 λ)− χ ∧ ∗dωη

)
.

Now we introduce some of the terminology used in physics. Each fixed choice
of the three bosonic(ω ∈ Â,φ,λ ∈ Ω0(B, adP )) and three fermionic(η ∈
Ω0(B, adP ), χ ∈ Ω1(B, adP ), ψ ∈ Ω2

+(B, adP )) fields will be called afield
configuration and will be denoted

Φ = (ω,φ,λ,η,χ,ψ) .

For each such choice the expression (5.70) is a number so this integral can be
regarded as a function ofΦ. Minus this function is theDonaldson-Witten action
functional

SDW [Φ] =
∫
B

tr
(
− 1

4
Fω ∧ ∗Fω − 1

4
Fω ∧ Fω +

1
2
[ψ,ψ]φ+ idωχ ∧ψ

− 2i [χ, ∗χ]λ− i ∗ (φ∆ω0 λ) + χ ∧ ∗dωη
)

(5.71)

Thus, in our present infinite-dimensional context the integral in (5.53) can be writ-
ten ∫

e−SDW [Φ] DΦ (5.72)

where we have abbreviatedDχDηDψdλdφdω as simplyDΦ. It is only in this
last expression that we leave the world of mathematically well-defined objects and
proceed “formally”.

In (5.72) we have omitted the constant(2π)−n(2π)−k in (5.53) since, in our
present circumstances, bothn andk would be infinite. In the physics literature one
often sees the integral (5.72) normalized with a factor of1/vol(G), wherevol(G)
is intended to represent the “volume” of the gauge groupG. About this we will
have nothing further to say, but, for certain remarks we wish to make here and in
Section 7, we point out that the physicists often include in the exponent in (5.72),
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or directly in the action (5.71), a factor of1/e2, wheree is a so-calledcoupling
constant. Mathematically, one can view the inclusion of such a factor inSDW [Φ]
as simply a different choice of invariant inner product on the Lie algebrasu(2),
which is determined only up to a positive constant multiple. Classically, one can
rescale and give this factor any convenient value. However, upon quantization
the different values of the coupling constant give rise to an entire one-parameter
family of quantum field theories and the computability (“renormalizability”) of
the theory generally depends on this value. Since this dependence on the coupling
constant (or, rather, a lack thereof in the cases of topological interest) is relevant to
a few comments we will make here and somewhat later, we record the following
alternative to (5.72) ∫

e−SDW [Φ]/e2 DΦ. (5.73)

This integral represents thepartition function of the quantum field theory con-
structed by Witten in [46]. Of course, Witten arrived at the action (5.71) and
therefore the partition function by quite a different route than the one we have fol-
lowed. We began with the zero-dimensional Donaldson invariant, regarded it as an
“Euler number” and massaged the Mathai-Quillen integral representation of this
Euler number until it could be formally applied in our infinite-dimensional context
to yield (5.71) and (5.72). Witten’s arguments leading toSDW [Φ] were physical,
but the objective was to describe a quantum field theory in which the Donaldson
invariants appeared as expectation values of certain observables and, in particular,
the zero-dimensional invariant was the partition function. How then did Witten
uncover the Donaldson invariants in the field theory with actionSDW [Φ]?
Witten chose the field contentΦ = (ω,φ,λ,η,χ,ψ) and actionSDW [Φ] in
order to ensure the presence of certain symmetries (gauge invariance and “BRST-
like” symmetries). The BRST symmetries are expressed in terms of a certain
operatorQ on the fields which squares to zero(Q ◦ Q = 0) and so determines
cohomology classes that are taken to represent the physical states of the theory.
The energy-momentum tensor of the theory (defined in terms of the variation of
the action under an infinitesimal change in the Riemannian metricg of the under-
lying four-manifoldB) turns out to beQ-exact (and so cohomologically trivial).
With this, certain formal manipulations with functional integrals imply that the
partition function of the theory is independent of both the metricg and the cou-
pling constante in the sense that its infinitesimal variation with respect to either
g or e is zero.

Note: These are hallmarks of what are today calledcohomological field the-
ories. In such field theories the expectation values of observables are also “in-
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dependent ofg” in the same sense. This has led the physicists to refer to such
field theories as “topological quantum field theories” and the expectation values
as “topological invariants”. However, these are very different uses of the terms
“independent ofg” and “topological invariant” than one would encounter in math-
ematics. For example, we have seen in Section 4 that the zero-dimensional Don-
aldson invariantγ0(B) is only independent of ageneric choice ofg and even this
is true only whenb+2 (B) > 1. Even granting this,γ0(B) is an invariant of the
differentiable structure of B and certainly not of its topology.

The fact that the partition function is independent of the coupling constante is
particularly significant since one is then free to compute it in the limit of either
small (e → 0) or large(e → ∞) values, whichever is most convenient or most
informative. For small values ofe, physicists employ a technique known as semi-
classical approximation which, again because of the symmetries ofSDW [Φ], one
can show is actually exact in our case. This phenomenon is an infinite-dimensional
analogue of a well-known finite-dimensional theorem on the exactness of the sta-
tionary phase approximation due to Duistermaat and Heckman [13]. As we shall
see in the next section this theorem is most properly understood within the context
of equivariant cohomology and the localization of certain integals of equivariant
differential forms to the fixed point set of the group action. Similarly, the BRST
operatorQ can be viewed as the equivariant exterior derivative in a model of the
G-equivariant cohomology ofA and Witten shows that, for certain well-chosen
observables in his field theory, the path integral representations of their expec-
tation values localize to the (finite-dimensional) moduli spaces of anti-self-dual
connections thus yielding integral formulas for the Donaldson invariants. For the
particular case we have under consideration, the partition function (which, be-
ing invariant, descends to the moduli space of fields) localizes to a sum over the
zero-dimensional moduli space of ASD connections yieldingγ0(B).
In the following Part II of this survey we will take up our story at this point with
a rather detailed discussion of the simplest of the “Equivariant Localization” the-
orems and its relation to the theorem of Duistermaat and Heckman on exact sta-
tionary phase approximation. This done, we will turn to the question of what can
be learned by examining the partition function in the limite → ∞ of large cou-
pling constants in a section on “Duality and Seiberg-Witten”. Finally then we will
consider “The Witten Conjecture” itself.
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