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Abstract. Starting from the Amann-Conley-Zehnder finite reduction framework
in the non-compact Viterbo’s version we discuss the existence of global generat-
ing function with a finite number of auxiliary parameters describing the two-points
Characteristic Relation related to the geodesic problem in the Hamiltonian formal-
ism. This applies both to Analytical Mechanics and to General Relativity – we
construct a global object generalizing the World Function introduced by Synge,
which is well-defined only locally. Whenever the auxiliary parameters can be fully
removed, Synge’s World Function is restored.

1. Introduction

In the textbook by J. Synge [19] one can find the following definition:

Let P ′(x′) and P (x) be two points in the space-time, joined by a geodesic Γ with
equations xi = ξi(u) where u is a special1 parameter. Then the integral

Ω(P ′P ) = Ω(x′, x) =
1
2
(u1 − u0)

u1∫
u0

gijU
iU j du

taken along Γ with U i = dξi/du, has a value independent of the particular spe-
cial parameter chosen. If, as we shall suppose, the points P ′ and P determine a
unique geodesic passing through them, then Ω is a function of these two points.
As a function of the eight variables x′ and x we shall call it the world-functionof
space-time.

The World Function had a rather troubled history. The main criticism is that it
has only a local meaning, and even in simple cases we cannot use it for global
analysis. Really, Synge recognized this limitation a few lines after its definition.

1special parameters are the representative elements of a class of parameters invariant by affine
transformations.
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He used this object for approximations and to solve geodesic triangles in spaces of
small curvature. In more recent times, in the textbook by De Felice-Clarke [14],
it is used in measure theory to define spatial length between an observer and an
event, to measure the effect of curvature in the measure of angles, and in the study
of the Doppler effect.

From a strictly analytical mechanical point of view, the World Function appears as
the generating function of the canonical transformation induced by the differential
equations of the geodesic system, thought of in their Hamiltonian format, and it
exists whenever the phenomenon of the entanglement of geodesics in the base
manifold (the space-time) does not occur. Such a generating function is solution
of a certain Hamilton-Jacobi equation, and it has been a rather intriguing matter
along past years to establish a useful notion of ‘global solution’ in Hamilton-
Jacobi theory in a rigorous way. In order to give a comprehensible explanation of
our proposal about globalization of the World Function, we briefly review a few
elements of the geometric setting for the global theory of the Hamilton-Jacobi
equation.

Given a Hamilton-Jacobi problemH ◦ dS = e, H : T ∗Q → R, the symplectic
geometry environment provides a new concept of solutions, called geometric so-
lutions, i.e. Lagrangian submanifoldsΛ in the coisotropic fiberH−1(e) of T ∗Q.
These geometric solutions have not only local meaning. The description of the La-
grangian submanifolds is a crucial problem in the symplectic arena: a geometric
solution of a Hamilton-Jacobi problemH = e is meaningful – and then compa-
rable to the classical (weak) solutions [4] – if we are able to write for it some
generating functions, see e.g. [5–10, 20]. A fundamental tool in this area is the
Maslov-Hörmander theorem: it shows that we can locally describe Lagrangian
submanifoldsΛ ⊂ T ∗Q as image of the differential – with respect toq ∈ Q –
of a smooth functionS = S(q, u), valued at the stationary pointsu of a set of
auxiliary parametersu ∈ Rk, for a suitable integerk ∈ N. In other words,locally
at each pointλ ∈ Λ ⊂ T ∗Q

Λ =
{
(qi, pj); qi ∈ Q, pj = ∂S

∂qj
(qi, uA), for uA s.t.

∂S

∂uB
(qi, uA) = 0

}

with the transversality condition

rk
(

∂2S

∂uA∂qi
∂2S

∂uA∂uB

) ∣∣∣∣
Λ

= k = max .

The importance of havingglobal generating functionS is evident when we try
to construct classical solutions of the Hamilton-Jacobi problem from geometric
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ones. In fact, if the relation

∂S

∂uB
(qi, uA) = 0

can be solved with respect touA, i.e. if for everyq there exists one and only
oneuA = ũA(q) solving it, then we may define a classical (smooth) solution
S̃(q) := S(q, ũ(q)). It is well known that in general such a classical solution
does not exist globally (i.e. one cannot remove all auxiliary parametersu). This
is due mainly to the nonlinearity of the problem (Hamiltonian function and initial
data) and the related lack of transversality ofΛ with respect to the fibers ofπQ :
T ∗Q→ Q. Nevertheless, when the above stationarization procedure of producing
classical solutions fails, by the global generating function forΛ one can try to
build up viscosity solutions (in the sense of Crandall-Evans-Lions) by removing
the auxiliary parameters through suitableinf-sup procedures, e.g.

s = s(q) := inf
uA∈Rk1

sup
uα∈Rk2

S(q, uA, uα), k1 + k2 = k.

This program actually works in some interesting cases, see e.g. [4] and [9].

A first rigorous attempt to globalize the Maslov-H¨ormander theorem was made
by Laudenbach [16], Sikorav [18] and Chaperon [11] for the compact case. Later,
Viterbo [21] built up a global version in the non-compact caseRn using the re-
duction techniques of Amann, Conley and Zehnder [2, 12]. Viterbo’s theorem
states the existence of global generating function for Lagrangian submanifolds,
geometric solutions of an evolution problem of Hamilton-Jacobi, starting from
zero-section ofT ∗Rn with Hamiltonian functionH : T ∗Rn → R with sec-
ond partial derivatives uniformly bounded. It is not yet available in literature
a version for non-compact and non-parallelizable manifolds. The aim of Chap-
eron and Viterbo was mainly to construct a new global theory of weak solu-
tions for Hamilton-Jacobi problem – the so-calledmin-max solutions based on
the Lusternik-Schnirelman theory.

Here is a scheme for the proof of Viterbo’s statement:

1. Viterbo’s theorem describes Lagrangian submanifolds connected by a Hamil-
tonian isotopy to the zero-section ofT ∗Rn. The curves in the Sobolev space
H1([0, T ], T ∗Rn), starting from zero section, are described by the couple
(qT , φ) whereqT is theq-projection of the final point (at the timet = T )
andφ ∈ L2 is the velocity of the curve.

2. The Action Functional is considered as a formal global generating func-
tion with infinite parameters (inL2). In fact, the variation of the Action
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Functional (obtained with a variation of velocity) is zero exactly in corre-
spondence to the solutions of the related Hamilton system.

3. Developing velocities in Fourier series and keeping the finite kernel (terms
from −N to N ) and the infinite tail, one can observe that, forN large
enough, the finite kernel of velocity of a solution determines the full solu-
tion (by a fixed-point lemma). So, one may consider only a finite number
of parameters, obtaining in this way a global generating function.

We notice that Viterbo considers curves starting from zero-section, i.e. with van-
ishing initial conjugate momentum, and constructs an objectΛ ⊂ T ∗Rn. This
fact simplifies the proof a lot. By minor changes, one could carry out the same
construction by starting from any exact Lagrangian submanifold.

Now, in order to construct a generating function of a symplectic relation, that is,
an object insideT ∗Rn×T ∗Rn, we have to reformulate the framework drastically.
Moreover, in the original theory all works for fixed initial vanishing momentum
p0 = 0 and fixed final configurationqT . On the other side, since our aim here is to
construct a two-points generating function with auxiliary parameters describing
the above symplectic relation, we have to fix both initial and final configurations
q0 andqT .

Curves will be identified by the the straight segment betweenq0 andqT plus loops.
The variations of a curve will be still given by loops. This approach via restoring
loops can be found also in a recent paper [13].

It is worth noticing that, after the seminal paper [20] by Tulczyjew on the Hamilton-
Jacobi theory, Hamilton Principal Functions with auxiliary parameters were con-
sidered for the first time in [5] and [7].

Under some suitable hypothesis, when the Lagrangian functionL is the (half of
the) quadratic form valued on the 4-velocity related to a Riemannian or a Semi-
Riemannian metric, our construction leads to a generating function with auxiliary
parameters which is exactly the announced globalization of the World Function
of Synge, see Theorem 1 and Corollary 3. For the related Hamilton Principal
Function, see Corollary 5.

2. A Two-point Version of Viterbo’s construction

In this sectionQ = Rn andH will denote a Hamiltonian functionH : T ∗Rn →
R. Adopting standard notations, as in [1, 3, 6], we denote byω = dp ∧ dq =
n∑
i=1
dpi ∧ dqi the standard symplectic 2-form onT ∗Rn. The Hamiltonian vector



Global World Functions 5

fieldXH is defined byiXH
ω = −dH. Denoting curves byγ = (q, p) and setting

J =
(

O I

−I O

)
, the related Hamilton equationsγ̇ = XH(γ) = J∇H(γ) read

q̇ =
∂H

∂p
(q, p), ṗ = −∂H

∂q
(q, p).

We denote byφtH the flow ofXH ,
dφtH
dt

= J∇H(φtH). We consider the standard

projections
T ∗Rn pr1←−−− T ∗Rn × T ∗Rn pr2−−−→ T ∗Rn

and we carry out the symplectic structureω̄ onT ∗Rn × T ∗Rn ∼= T ∗ (Rn × Rn)
by the following twofold pull-back of the standard symplectic 2-form onRn

ω̄ := pr∗2ω − pr∗1ω = dp2 ∧ dq2 − dp1 ∧ dq1.
We recall that theCharacteristic Relation of the Hamiltonian systemH is the set
C of points (q1, p1; q2, p2) ∈ T ∗Rn × T ∗Rn such that, for someT ∈ R, one
has(q2, p2) = φTH(q1, p1). It comes out thatC is a Lagrangian submanifold of

(T ∗Rn × T ∗Rn, ω̄), that isω̄
∣∣
C = 0 anddim C = 2n = 1

2
dim(T ∗Rn × T ∗Rn).

Theorem 1. Let H : T ∗Rn → R be a C2 Hamiltonian function. Suppose the
following condition is satisfied

sup
(q,p)∈T ∗Rn

∣∣∇2H
∣∣ = C < +∞.

Then the set Λ ⊂ T ∗Rn × T ∗Rn defined by

Λ :=
{
(q0, p0, qT , pT ) ∈ T ∗Rn × T ∗Rn; φTH(q0, p0) = (qT , pT )

}
(∗)

admits a global generating function with finite auxiliary parameters

S : Rn × Rn × Rk → R, (q0, qT , u) �→ S(q0, qT , u)

such that:

p0 = − ∂S
∂q0

, pT =
∂S

∂qT
, 0 =

∂S

∂u
.

Remark 2. For general Hamiltonian systems, the set Λ would not be the char-
acteristic relation C, since the final time t = T is fixed. Anyway, this set Λ is
actually Lagrangian (maximal isotropic) with respect to the symplectic 2-form ω̄.

In particular, for geodesic-like Hamiltonian H =
1
2
g−1
ij (q)pipj , Λ coincides (by

choosing T = 1) precisely with the Characteristic Relation C, see Corollary 3.



6 Franco Cardin and Antonio Marigonda

The above requested boundness of the second derivatives ofH is a hard task to
verify whenever the Hamiltonian function is not compactly supported, or defini-
tively quadratic. InR2n this difficulty arises especially by concerning with geodesic
problems (in the Riemannian or Semi-Riemannian case), for which

H =
1
2
g−1(q)(p, p), ∇2H =


1

2
∂2gij(q)
∂ql∂qm pipj

1
2
∂gij(q)
∂ql pi

1
2
∂gij(q)
∂ql pi gij(q)




so that we cannot assume any ‘a priori’ boundness onp’s, especially in the Semi-
Riemannian case (in the Riemannian one, which is ap-convex case, energy con-
servation does help us to it.)

In order to remove this difficulty and to avoid extreme sorts of pathology, we
will restrict inside a fixed (large) compact sub-setK ⊂ Rn together with the
request offinite cardinality of the sets of geodesics linking the pairs(q0, q1) ∈
K × K. This property – see(∗∗) below – seems to be reasonably enjoyed by
Riemannian [Semi-Riemannian] metric tensors which are suitably asymptotic to
Euclidean [Minkowskian] metrics. We do not delve further into this matter.

Warning: We are going to deal with

i) Riemanniang = gR, sgn(gR) = (1, ..., 1), and
ii) Semi-Riemanniang = gSR, sgn(gSR) = (−1, 1, ..., 1) manifolds topologi-

cally equivalent toRn with trivial atlas (one chart is sufficient).

Anyway, the Euclidean metric (and norm) many times used below could be re-
placed by minor changes

i) just by the Riemannian metric, and
ii) in the Semi-Riemannian case, by the following Riemannian metric [15, 17]

ĝR := gSR + 2u⊗ u

whereu is a time-like vector field,〈gSR u, u〉 ≡ −1, giving the time-
orientation to(Rn, gSR).

We are ready to state the following

Corollary 3. (World Function) LetH : T ∗Rn → R,H =
1
2
g−1(q)(p, p), be the

C2 Hamiltonian function of a Riemannian or Semi-Riemannian system. Consider
the set of geodesics (for T = 1)

G(q0, q1) =
{
γ(·) = (q(·), p(·)) ∈ H1([0, 1],R2n);

q(0) = q0, q(1) = q1, γ̇ = J∇H(γ)
}
.
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For a fixed (arbitrarily large) compact K of Rn, we suppose that

#G(q0, q1) < +∞ ∀(q0, q1) ∈ K ×K. (∗∗)
Then the above setΛ in (∗), restricted to T ∗K×T ∗K, is preciselythe expected La-
grangian submanifold denoting the Characteristic Relation C of the Hamiltonian
system H and the related generating function S

K×K × Rk � (q0, q1, u) �→ S(q0, q1, u) ∈ R

represents the required generalized global World Function.

Remark 4. Alternatively, the hypothesis (∗∗) may be replaced by the following
one. There exists a compact set G ⊂ H1 such that

G(q0, q1) ⊂ G ∀(q0, q1) ∈ K ×K. (∗∗)′

Indeed H1 ↪→ C0 (by Sobolev embedding) so G is bounded and we have an a
priori bound on every point of each geodesic joining pairs of points of K.

Finally, we have

Corollary 5. (Hamilton Principal Function) Let S(q0, q1, u) be a generalized

World Function related to the Hamiltonian H : T ∗Rn → R, H =
1
2
g−1(q)(p, p),

for a Riemannian or Semi-Riemannian metric g and (q0, q1) ∈ K × K, where K
is a compact set of Rn. Then the function

S(q0, q1, u) = 2
√
|eS(q0, q1, u)|

is a (generalized) global Hamilton Principal Function for the Hamilton-Jacobi
equationH = e.

Remark 6. Given the above generalized World Function S = S(q0, q1, u), if we
are able to remove the auxiliary parameters by means of the stationarization

∂S

∂u
(q0, q1, u) = 0

we find the classical World Function again. In general, we cannot remove them
and this fact is due to the lack of transversality of Λ with respect the fibers of
π : T ∗(Rn × Rn) → Rn × Rn, which tells us that there are more geodesics
connecting q0 and q1.



8 Franco Cardin and Antonio Marigonda

More precisely, it can happen that for the above relation∂S/∂u = 0

1. there is no solution: we have no geodesics connectingq0 andq1
2. we findh functionally independent solutionsuα= ũα(q0, q1),α∈{1, ..., h},

i.e. we haveh geodesics connectingq0 andq1.

If the pointsq0 andq1 are close enough, we always have onlyone geodesic con-
necting them,u = ũ(q0 q1), so we restore the classical local World Function
Ω(q0, q1) := S(q0, q1, ũ(q0, q1)), but the firstconjugate point to q0 along the pro-
lungation of this geodesic (towards the future) signals the end of this condition of
transversality.

Remark 7. Let us consider the Geometric Cauchy Problem inK, for the Hamilton-
Jacobi equation

H ◦ dS = e

for initial data σ : Σn−1 → R on the hypersurface j : Σn−1 ↪→ K ⊂ Rn which
can be represented by the following initial Lagrangian submanifold

Λ0 = {(q, p) ; 〈p, T j(χ) v〉 = 〈dσ, v〉, q = j(χ), ∀v ∈ TχΣn−1, ∀χ ∈ Σn−1}.

It is solved – see [8] for details – by the Lagrangian manifold Λ globally described
by the following generating function Ŝ with auxiliary parameters (u, χ)

Ŝ(q, u, χ) = S(q̃(χ), q, u) + σ(χ).

The global Hamilton Principal Function S(q0, q1, u) can be interpreted as a sort
of Geometric Green Kernel for Hamilton-Jacobi problem.

3. Proofs

Proof of the Theorem 1. Let us considerq0, qT ∈ Rn. We define the following
set of curves (Hs ≡W s,2)

Γ =
{
γ(·) = (q(·), p(·)) ∈ H1([0, T ],R2n) ; q(0) = q0, q(T ) = qT

}
.

An element ofΓ is a curve inT ∗Rn whose canonical projection onRn is a curve
connectingq0 andqT . A curveΓ � γ : [0, T ]→ R2n solves the Hamiltonian sys-
tem if the equatioṅγ = J∇H(γ) is satisfied for almost everyt ∈ [0, T ]. Actually,
by Sobolev embedding theorem, these curves areC0. Givenφ ∈ L2([0, T ],R2n),
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for every fixedN ∈ N, we consider two projection maps (which are Lipschitz
with unitary norm)

PNφ(s) :=
∑
|k|≤N

φke
i 2πk

T
s, QNφ(s) := φ(s)− PNφ(s)

L2 = PNL
2 ⊕QNL

2, u ∈ PNL
2, v ∈ QNL

2.

The subspacesPNL2 andQNL
2 are orthogonal with respect to the scalar product

of L2. Furthermore, we define the map

h : Rn × Rn × L2 −→ Γ (q0, qT , φ(·)) �−→ (q(t), p(t)) = h(q0, qT , φ(·))(t)
where 


q(t) := q0 +

t

T
(qT − q0) +

t∫
0

(
φq(s)− 1

T

T∫
0

φq(τ)dτ
)
ds

p(t) :=
1
T

T∫
φq(τ)dτ +

t∫
0

φp(s) ds.

Essentially,q(·) is a variation of the straight line connectingq0 andqT . This is a
bijective map, and indeed, by computing its inverse, we find



q0 = q(0)
qT = q(T )

φq(t)− 1
T

T∫
0

φq(τ)dτ = q̇(t)− 1
T
(qT − q0)

φp(t) = ṗ(t)

and the indeterminacy of the mean value ofφq, i.e. φk=0
q :=

1
T

T∫
0

φq(τ)dτ , is

fully removed
p(0) = φk=0

q .

Now we consider the Hamilton-Helmholtz Action Functional

A : Rn × Rn × L2 → R

A[q0, qT , φ] =

T∫
0

(p · q̇ −H)|γ=h(q0,qT ,φ) dt

Gateaux derivative
DA

Dφ
[q0, qT , φ]δφ with δφ ∈ L2(= TφL

2) is defined by

DA

Dφ
[q0, qT , φ]δφ =

dA
dλ
(q0, qT , φ+ λ δφ)

∣∣∣
λ=0

.
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We have that

DA

Dφ
[q0, qT , φ]δφ =

T∫
0

[(
q̇ − ∂H

∂p

)
δp −

(
ṗ+

∂H

∂q

)
δq

]
ds+ p · δq

∣∣∣∣∣∣
T

0

where the variationsδq andδp are deduced directly from the above definition of
h, i.e.

δq =
d
dλ

q(·, q0, qT , φ+ λδφ)
∣∣∣
λ=0

=

t∫
0


δφq(s)− 1

T

T∫
0

δφq(τ)dτ


ds

δp =
d
dλ

p(·, q0, qT , φ+ λδφ)
∣∣∣
λ=0

= δφk=0
q +

t∫
0

δφp(s) ds.

Notice thatδq(0) = δq(T ) = 0. We obtain also

DA

Dφ
[q0, qT , φ]δφ =

T∫
0

[ (
q̇ − ∂H

∂p

)
δφk=0

q +

t∫
0

δφp(s) ds




−
(
ṗ+

∂H

∂q

)


t∫
0


δφq(s)− 1

T

T∫
0

δφq(τ)dτ


ds


]

dt.

So the curveγ(·) = (q(·), p(·)) solves the Hamiltonian equations if and only if
DA

Dφ
[q0, qT , φ]δφ = 0 for everyδφ ∈ L2. Along solutions we have

∂A

∂q0
=

T∫
0

[(
q̇ − ∂H

∂p

)
∂p

∂q0
−

(
ṗ+

∂H

∂q

)
∂q

∂q0

]
ds+ p · ∂q

∂q0

∣∣T
0
= −p(0)

∂A

∂qT
=

T∫
0

[(
q̇ − ∂H

∂p

)
∂p

∂qT
−

(
ṗ+

∂H

∂q

)
∂q

∂qT

]
ds+ p · ∂q

∂qT

∣∣T
0
= p(T ).

This shows that the Action Functional may be regarded as aformal global gener-
ating function with infinite parameters (inL2). Now we will prove the following
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Lemma 8. Under above hypothesis on H , for fixed (q0, qT ) ∈ Rn × Rn and
u ∈ PNL

2, we consider further the following map ĥN

ĥN : QNL
2 −→ QNL

2 v �−→ ĥN (v) := QNJ∇H(hN (q0, qT , u+ v)).

It is a contraction map for large enough N .

Proof. We recall thatQN id[0,T ](t) =
∑

|k|>N

iT
2πk

ei2πkt/T , 〈f(·), g(·)〉L2([0,T ]) :=

T∫
0

f(t)ḡ(t)
dt
T

, and||w(·)||2L2([0,T ]) := 〈w(·), w(·)〉L2([0,T ]). Writing briefly

g(v) := hN (q0, qT , u+ v)

andv := v2 − v1, for v1, v2 ∈ QNL
2, we get by direct computations

‖g(v1)− g(v2)‖L2 ≤ ∥∥



t∫
0

(vq2 − vq1)(s) ds,

t∫
0

(vp2 − vp1)(s) ds


∥∥

L2

=
∥∥

t∫
0

v(s) ds
∥∥
L2 ≤

∥∥ ∑
|k|>N

T

i2πk
vke

i2πkt/T −
∑
|k|>N

T

i2πk
vk

∥∥
L2

≤ T

2πN
‖v‖L2 +

∥∥ ∑
|k|>N

iT
2πk

vk
∥∥
L2≤

T

2πN
‖v‖L2+‖QN Id[0,T ]‖L2‖v‖L2

≤ T

2πN
‖v‖L2 +

T

2π

√
2
N
‖v‖L2 =

T

2πN
(1 +

√
2N)‖v‖L2 ,

‖h(q0,qT , u+ v2)− h(q0, qT , u+ v1)‖L2 ≤ T

2πN
(1 +

√
2N )‖v2 − v1‖L2 .

Finally, we can estimate:

‖QNJ∇H(h(q0, qT , u+ v2))−QNJ∇H(h(q0, qT , u+ v1))‖L2

≤ sup
R2n

|∇2H|‖g(v1)− g(v2)‖L2 ≤ CT

2πN
(1 +

√
2N )‖v2 − v1‖L2 .

ForN large enough, we have

CT

2πN
(1 +

√
2N ) =: α < 1.

So this map is a contraction. The Banach-Caccioppoli Lemma ensures the exis-
tence of one and only one fixed point for this contraction. We will denote this
fixed point byf(q0, qT , u)

f(q0, qT , u) = QNJ∇H
(
h(q0, qT , u+ f(q0, qT , u))

)
. (3)
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It can be proved that it depends smoothly onq0, qT , u. In fact, the fixed point
functionf solves the equation for the unknownv

G(q0, qT , u, v) := QNJ∇H(h(q0, qT , u+ v)) − v = 0.

The implicit function theorem works, since

∂G
∂v
(q0, qT , u, v) =

∂QN

∂v
J∇H(h(q0, qT , u+ v)) − I.

A bound for the derivatives – in the above r.h.s. is given by the contraction Lips-
chitz constantα ∣∣∣∣∂QN

∂v
J∇H(h(q0, qT , u+ v))

∣∣∣∣ ≤ α < 1

so that ∣∣∣∣∣
[
∂G
∂v
(q0, qT , u, v)

]−1
∣∣∣∣∣ ≤

1
1− α

.

We gain thatf is differentiable with respect tou, q0, qT , e.g.
∣∣∣∣∂f∂u (q0, qT , u, v)

∣∣∣∣
=

∣∣∣∣∣−
[
∂G
∂v
(q0, qT , u, f(q0, qT , u))

]−1 ∂G
∂u
(q0, qT , u, f(q0, qT , u))

∣∣∣∣∣
≤ α

1− α
<∞.

Finally, it is crucial to observe that if we are able to solve thefinite2 equation for

u =
((
ukq

)
|k|≤N ,

(
ukp

)
|k|≤N

)
∈ PNL

2 ≡ Rk(n,N)

ū = PNJ∇H
(
h(q0, qT , u+ f(q0, qT , u))

)
(33)

where

ū :=
(
u−Nq , . . . , u−1

q ,
qT − q0

T
, u1
q , . . . , u

N
q ,

(
ukp

)
|k|≤N

)

then, by adding term by term the above two relations(3) and (33), the curve
γ = h(q0, qT , u + f(q0, qT , u)) solves the Hamiltonian equations, its projection
on Rn starts fromq0 and ends atqT . �

2dim(PNL2([0, T ], R2n)) = 2n(N + 1) := k(n, N)
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Remark 9. The above hypothesis of boundness of the second derivatives of H
could be weakened by an analogous Lipschitz boundness for the Hamiltonian
vector field XH , but in this case the differentiability of the fixed point f , inherited
from the implicit function theorem, does not work anymore.

Lemma 10. The map

S : Rn × Rn × Rk(n,N) → R

(q0, qT , u) �→ S(q0, qT , u) := A[q0, qT , u+ f(q0, qT , u)]

is a global generating function for Λ.

Proof. Putγ = h(q0, qT , u + f(u, q0, qT )) =
(
q(·, u, q0, qT ), p(·, u, q0, qT )

)
, so

that we have

∂S

∂u
=

T∫
0

[(
q̇ − ∂H

∂p

)
∂p

∂u
−

(
ṗ+

∂H

∂q

)
∂q

∂u

]
ds+ p · ∂q

∂u

∣∣T
0

=

T∫
0

(γ̇ − J∇H) · J∇uγ =
T∫

0

(u− PNJ∇H) · J∇uγ

because(3) holds. The boundary term
∂q

∂u

∣∣T
0

vanishes, because

q(0, u, q0, qT ) ≡ q0, q(T, u, q0, qT ) ≡ qT .

Now it is easy to see that if(q0, qT , φ) ∈ Rn × Rn × L2 satisfies

p(0) = − ∂A
∂q0

, p(T ) =
∂A

∂qT
, 0 =

DA

Dφ

then(q0, qT , u) ∈ Rn × Rn × Rk(n,N) with u = PNφ satisfies

p(0) = − ∂S
∂q0

, p(T ) =
∂S

∂qT
, 0 =

∂S

∂u
.

On the other hand, if(q0, qT , u) ∈ Rn × Rn × Rk(n,N) satisfies the previous
statement, then, settingφ = u+ f(q0, qT , u), we have

p(0) = − ∂A
∂q0

, p(T ) =
∂A

∂qT
, 0 =

DA

Dφ
.
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Note that the extremal momentap(0) and p(T ) are determined by the unique
uniform continuous extension ofγ. �
Proof of the Corollary 3. We easily see that3

sup
(q0,q1)∈K×K

sup
γ∈G(q0,q1)

sup
t∈[0,1]

|γ(t)| = c < +∞

that is,q(·) andp(·) are bounded as well and the constantc determines an upper
bound for|∇2H| which is essential in the proof of the above Theorem 1. Indeed,
arguing by contradiction, ifc = +∞, we could define a sequence
{(q(m)

0 , q
(m)
1 )}m∈N ∈ K ×K such that

sup
γ∈G(q

(m)
0 ,q

(m)
1 )

sup
t∈[0,1]

|γ(t)| > m.

By compactness, there exists a sub-sequence{(q(ml)
0 , q

(ml)
1 )}l∈N converging to

(q̄0, q̄1) ∈ K × K. Thus, between̄q0 and q̄1, there exists a finite number of
geodesics̄γα ∈ H1, α = 1, ..., J < +∞, which by Sobolev theorem are continu-
ous, hence

sup
t∈[0,1] α=1,...,J

|γ̄α(t)| = max
t∈[0,1] α=1,...,J

|γ̄α(t)| = c < +∞

which is a contradiction.

If we suppose as in Remark 4 instead of finiteness, that all geodesics joining pairs
of points ofK are contained in a unique compact setG ⊂ H1 – see(∗∗)′ and
according to the Sobolev theorem we have

sup
t∈[0,1] γ∈G

|γ̄(t)| = sup
γ∈G
‖γ‖C0 ≤ c0 sup

γ∈G
‖γ‖H1 ≤ c0 c1 < +∞

wherec0, c1 > 0 are suitable constants.

As announced in the statement, we take definitivelyT = 1. The generating func-
tion S(q0, q1, u) so obtained is precisely the (generalized, with auxiliary parame-
ters) World Function of the geodesic system. This is due to theinvariance of the
solutions of the geodesic equations with respect to the generalaffine transforma-
tions of the evolution parameter

t = a t̄+ b, for every fixeda > 0, b ∈ R.

3By completeness, ifG(q0, q1) = ∅, we meansupγ∈G(q0,q1) supt∈[0,1] |γ(t)| = 0.
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In such a case it is simple to see that(H =
1
2
g−1
ij (q)pipj)

γ(t) = (q(t), p(t)) solves
dγ
dt
(t) = J∇H(γ(t)) if and only if

γ̄(t̄) = (q̄(t̄), p̄(t̄)) := (q(t(t̄)), p(t(t̄))a) solves
dγ̄
dt̄
(t̄) = J∇H(γ̄(t̄)).

Finally, by recalling thatS is obtained by reduction of Hamilton-Helmholtz Ac-
tion FunctionalA, from the invariance (cf. the original formula by Synge in the
Introduction, and recalling also the Legendre transformation)

T

t=T∫
t=0

(p · q̇−H)|γdt = (t̄fin− t̄in)
t̄fin∫
t̄in

(p · q̇−H)|γ̄dt̄, t̄in = − b
a
, t̄fin =

T − b

a

we have that (see Lemma 10)

S(q0, q1, u) =

t=1∫
t=0

(p · q̇ −H)dt
∣∣∣
γ=h(q0,q1,u+f(q0,q1,u))

represents exactly the (generalized, with auxiliary parameters) Synge World Func-
tion. �
Proof of the Corollary 5. From the very definition ofS(q0, q1, u), along the
geodesics, it holds that

S =

1∫
0

(p · q̇ −H)dt
∣∣∣
γ=h(q0,q1,u+f(q0,q1,u))

=

1∫
0

Ldt
∣∣∣
γ=h

=

1∫
0

Hdt
∣∣∣
γ=h

and therefore

S(q0, q1, u) = H(q1,
∂S

∂q1
(q0, q1, u)),

∂S

∂u
(q0, q1, u) = 0.

In particular: sgn(H)=sgn(S). For
∂S
∂u
(q0, q1, u) = 0, we compute

H(q1,
∂S
∂q1

(q0, q1, u)) =
1
2
gij(q1)

|e| ∂S
∂qi1

∂S

∂qj1
|S| = |e| H|H| = |e|sgnH

so finallyH = e. �
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la mécanique (Lyon, 1986), Travaux en Cours, Hermann, Paris,25 (1987)
79–85.

[17] Giannoni F., Masiello A. and Piccione P.,A Morse Theory for Massive Par-
ticles and Photons in General Relativity, JGP35 (2000) 1–34.
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