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Abstract. Spacelike constant mean curvature (CMC) surfaces in Minkowski

3-space L
3 have an infinite dimensional generalized Weierstrass representation.

This is analogous to that given by Dorfmeister, Pedit and Wu for CMC surfaces in

Euclidean space, replacing the group SU(2) with SU(1, 1). The non-compactness

of the latter group, however, means that the Iwasawa decomposition of the loop

group, used to construct the surfaces, is not global. The construction is described

here, with an emphasis on the difference from the Euclidean case.

1. Introduction

This article expands on the content of a talk given at the X-th International Con-

ference on Geometry, Integrability and Quantization, held in Varna 2008. It dis-

cusses the generalized Weierstrass representation for constant mean curvature sur-

faces in both the Euclidean and in the Minkowski three-space, with attention given

to the difference between these cases. Detailed proofs and further results on the

Minkowski case will appear in a forthcoming article by the authors [2].

2. Constant Mean Curvature Surfaces in Euclidean Three-space

2.1. Minimal Surfaces

Constant mean curvature surfaces are mathematical models for soap films and

other fluid membranes. A special case is a minimal surface, where the mean cur-

vature is zero. Mathematically, the study of minimal surfaces has been greatly

assisted by the well-known Weierstrass representation, which allows one to con-

struct all minimal surfaces from pairs of holomorphic functions via a simple for-

mula. It is based on the fact that the Gauss map of a minimal surface is holomor-
phic, together with the fact that a CMC surface in general is determined by its
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Gauss map. Specifically, the Weierstrass representation for minimal surfaces says

that, if g is meromorphic, f is holomorphic and fg2 is holomorphic, then

⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
Re

z∫
0

f(w)(1−g(w)2)

2
dw

Re
z∫
0

if(w)(1+g(w)2)

2
dw

Re
z∫
0

f(w)g(w)dw

⎤⎥⎥⎥⎥⎥⎥⎦
is a minimal surface in Euclidean three-space. Conversely, all minimal surfaces

are given this way.

2.2. Non-Minimal CMC Surfaces

For non-minimal CMC surfaces, it is no longer true that the Gauss map is holo-

morphic. It is however, harmonic, and harmonic maps into a symmetric space

G/K have a loop group representation, that is, they are represented by certain

maps into ΩG, the group of based loops (maps from the unit circle into G which

map 1 to the identity element). Now ΩG admits a complex structure, and the

maps in question are holomorphic with respect to this structure. This underlies

the generalized Weierstrass representation for CMC surfaces, which was given by

Dorfmeister, Pedit and Wu [3]. The practical difference between this representa-

tion and that of minimal surfaces described above, is that one needs to perform a

loop group decomposition (the Iwasawa decomposition) on the holomorphic data

before one can obtain the surface from a simple formula. The Iwasawa decom-

position can, in general, be carried out quickly and to arbitrary precision, using

numerical methods.

2.3. The DPW Method

The method of Dorfmeister-Pedit-Wu (DPW), gives a holomorphic representation

for general harmonic maps from a Riemann surface into a compact symmetric

space. In essence, it is based on a more general simple principle, which was also

used by Krichever [4], to produce solutions of the sine-Gordon equation from

pairs of arbitrary curves. The basic idea, which will be described here, was studied

in general in [1], and could be called the KDPW method, after Krichever-DPW.

If GC is a complex semisimple Lie group, ΛGC denotes the group of maps γ :
S

1 → GC, which are of an appropriate smoothness class. A smooth map F :
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M → ΛGC, can be thought of as a one-parameter family of maps, Fλ : M → GC,

where λ ∈ S
1. A fundamental object in the study of submanifolds of symmetric

spaces, is the Maurer-Cartan form, F−1

λ dFλ, which takes values in the Lie algebra

gC. If a and b are (extended) integers, say that F is of connection order (a, b) when

the Maurer-Cartan form has dependence on λ which is a Laurent polynomial as

follows

F−1

λ dFλ =

b∑
a

aiλ
i.

Basic Principle: The KDPW Method constructs all connection order (a, b) maps,

a < 0 < b, from pairs of (a,−1) and (1, b) maps.

Where this principle has been used, it simplifies the data: for the case of the

sine-Gordon equation, the (a,−1) and (1, b) maps are just arbitrary functions of

one variable. For the case of harmonic maps, there is just an (a,−1) map (the

other one is related to it by an involution), and this is an essentially arbitrary

holomorphic map.

To describe one direction of the procedure, we need the Birkhoff decomposition
[5], which says that

B± := Λ±GC · Λ∓GC

is open and dense in the identity component of ΛGC. Here Λ±GC consists of

loops which extend holomorphically to the unit disc D and its complement Ĉ \ D

respectively. Thus loops in γ ∈ B± can be factorized γ = γ± γ∓, where γ± have

power series expansions in λ±1.

Assume now that F takes values in the open set B± ∩ B∓. If F is of order (a, b),
a < 0 < b, decompose

F = F+G− = F−G+.

Then F+ is of order (1, b) and F− is of order (a,−1). We check this for F+

F−1
+ dF+ = G−(F−1dF )G−1

− + G−dG−1
−

= G−(
b∑
a

aiλ
i)G−1

− + G−dG−1
−

= c0 + ... + cbλ
b.

We used the power series expansions of the group elements to deduce the final

line. It is possible to normalize the Birkhoff decomposition so that c0 is zero, and

then F+ is of order (1, b).
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Conversely, given order (1, b) and (a,−1) maps, F+ and F−, we can construct an

order (a, b) map F . To show the converse, there are two cases, as discussed in [1],

and the case which is relevant to this article involves an Iwasawa decomposition,

which will be mentioned again below.

After a normalization, both directions are unique, and one obtains a correspon-

dence as follows:

F
order (1, b)

←→

{
F+

F−

}
order (1, b)
order (a,−1)

(1)

2.4. A Loop Group Representation of Harmonic Maps into Compact
Symmetric Spaces

Here we outline results of [3]. The ideas which led to the loop group formulation

here are due to many people, and references can be found in [2].

Let G/K be a compact symmetric space, K = Gσ, the fixed point subgroup of

an involution σ. On ΛGC, define an involution σ̂

(σ̂γ)(λ) := σ(γ(−λ)).

Consider the subgroup of G-valued loops which are fixed by this involution,

ΛGσ̂ ⊂ ΛGC

σ̂ ⊂ ΛGC. The “twisting” given by taking elements which are fixed

by σ̂ means that information about the symmetric space G/K is encoded in the

twisted subgroup ΛGσ̂.

Let Ω be a simply connected domain in C.

Suppose: F : Ω → ΛGσ̂ is a connection order (−1, 1) map.

Apply the DPW correspondence (1): F ←→ {F+, F−}. In this case, it turns out

that F+ is determined by F−, so (1) can be simplified to:

F ←→ F−. (2)

Now fix λ ∈ S1, then Fλ : Ω → G.

Fact: The projection of F , to G/K, is a harmonic map Ω → G/K if and only if
F− is holomorphic in z

order (−1, 1)
frame for harmonic map

F ←→ F−
order (−1,−1)

holomorphic
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2.5. “Weierstrass Representation” for CMC H �= 0 Surfaces

We have just seen that producing the loop group “frames” F for harmonic maps

into G/K amounts to producing a holomorphic connection order (−1,−1) map

into ΛGC. The recipe is roughly as follows:

1. Given a(z), b(z) arbitrary holomorphic functions, a non-vanishing. The

latter condition assures regularity of the surface. Set

α =

(
0 a(z)

b(z) 0

)
λ−1dz. (3)

2. Since the one-form depends only on one complex variable, it is automat-

ically integrable, and there exists (on a simply connected domain) a map

F− : Ω → ΛG, such that α = F−1
− dF−. Additionally, F− is holomorphic

and, by definition, is of connection order (−1,−1).

3. Apply KDPW correspondence (2) to get F , a frame for a harmonic map.

4. A CMC surface is obtained from F by a simple formula, the Sym-Bobenko
formula (see (6) below).

In fact, all CMC surfaces in R
3 are obtained this way.

2.6. The Iwasawa Decomposition

For the ← direction of the DPW correspondence (1) one needs the Iwasawa split-
ting

ΛGC = ΛG · Λ+GC.

This holds if G is compact. F is obtained from F− via an Iwasawa factorization

F− = FG+.

More generally, for the ← direction, the holomorphic map F− can be of order

(−1, b) where b ≥ −1, so we could have allowed higher order terms in our initial

data (3) given in the above recipe for CMC surfaces.
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3. CMC Surfaces in Minkowski Three-space

Now we consider the case of spacelike CMC surfaces in Minkowski three-space,

L
3, which is studied in [2]. The construction is analogous to CMC surfaces in R

3,

replacing the group SU(2) with the non-compact real form SU(1, 1).

Main difference: SU(1, 1) non-compact implies that the Iwasawa decomposition

is not global.

In fact we show that the Iwasawa splitting is defined on an open dense set (the

“big cell”), and that the surfaces have singularities when the holomorphic data

encounters this boundary.

3.1. The Loop Group Construction

We use the Pauli matrices: σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
.

Let GC be the special linear group SL(2, C), and define the twisted loop group

ΛGC

σ̂ as in Section 2.4, where σ = Adσ3
. Now the real form SU1,1 is the fixed

point subgroup with respect to the involution

τ(x) = Adσ3
(xt)−1. (4)

For our application, however, it turns out that it is convenient to set

G := {x ∈ SL(2, C) ; τ(x) = ±x}

and we consider maps into the subgroup

ΛGσ̂ := {x ∈ ΛG ; σ̂(x) = x} ⊂ ΛGC.

Note that, defining (if u is a scalar function of λ) u∗(λ) := u(λ̄−1), elements of

this subgroup are of the form

(
a b
b∗ a∗

)
or

(
a b

−b∗ −a∗

)
depending on whether

τ(x) = x or τ(x) = −x respectively.

3.1.1. SU(1, 1) Iwasawa Decomposition

To describe the decomposition precisely, we define the special loops

ωm =

(
1 0

λ−m 1

)
, m – odd, ωm =

(
1 λ1−m

0 1

)
, m – even.
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Theorem 1. (SU(1, 1) Iwasawa decomposition [2])

ΛGC

σ̂ is a disjoint union

ΛGC

σ̂ = B1,1 �
⊔

n∈Z+

Pn

where we define the

big cell: B1,1 :=ΛGσ̂ · Λ+GC

σ̂

n’th small cell: Pn :=ΛSU(1, 1)σ̂ · ωn · Λ+GC

σ̂ .

• B1,1, is an open dense subset of ΛGC

σ̂ .

• Any φ ∈ B1,1 can be expressed as

φ = FB, F ∈ ΛGσ̂, B ∈ Λ+GC

σ̂ (5)

where F is unique up to right multiplication by Gσ := ΛGσ̂ ∩ G.

• The map π : B1,1 → ΛGσ̂/Gσ̂ given by φ �→ [F ], derived from (5), is a
real analytic projection.

3.1.2. The Generalized Weierstrass Representation

For λ0 ∈ S
1, the Sym-Bobenko formula is given by

fλ0 = −
1

2H
S(F )

∣∣∣
λ=λ0

, S(F ) := F iσ3F
−1 + 2iλ∂λF · F−1. (6)

We can now state the generalized Weierstrass representation for CMC surfaces in

L
3, which differs from that of the Euclidean case only in that we must restrict to

the open set which maps into the big cell B1,1

Theorem 2. (Holomorphic representation for spacelike CMC surfaces in L
3 [2])

Let

ξ =
∞∑

i=−1

Aiλ
idz ∈ Lie(ΛGC

σ̂ ) ⊗ Ω1(Σ)

be a holomorphic one-form over a simply-connected Riemann surface Σ, with

a−1 �= 0
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on Σ, where A−1 =
(

0 a
−1

b
−1 0

)
. Let φ : Σ → ΛGC

σ̂ be a solution of

φ−1dφ = ξ.

On Σ◦ := φ−1(B1,1) one has the SU(1, 1)-Iwasawa splitting

φ = FB, F ∈ ΛGσ̂, B ∈ Λ+GC

σ̂ . (7)

Then for any λ0 ∈ S
1, the map fλ0 := f̂λ0 : Σ◦ → L

3, given by the Sym-

Bobenko formula (6), is a conformal CMC H immersion, and is independent of

the choice of F in (7).

3.2. Examples of the Big Cell Boundary Behaviour

3.2.1. Example 1: Hyperboloid of Two Sheets.

We start with the holomorphic one-form

ξ =

(
0 λ−1

0 0

)
dz, Σ = C.

This can be integrated to

φ =

(
1 zλ−1

0 1

)
: Σ → ΛGC

σ̂

which takes values in B1,1 for |z| �= 1. An SU(1, 1)-Iwasawa decomposition is:

φ = F · B, F : Σ \ S
1 → ΛG, B : Σ \ S

1 → Λ+GC

σ̂

F =
1√

ε(1 − |z|2)

(
ε zλ−1

εz̄λ 1

)
B =

1√
ε(1 − |z|2)

(
1 0

−εz̄λ ε(1 − zz̄)

)
, ε = sign(1 − |z|2) .

The Sym-Bobenko formula (6) gives

f̂1(z) =
1

H(x2 + y2 − 1)
· [2y, −2x, (1 + 3x2 + 3y2)/2]

which is a two-sheeted hyperboloid {x2
1+x2

2−(x0−
1

2H
)2 = − 1

H2 }. Note that the

identification of Lorentzian three-space R
2,1 with g = su1,1, with inner product

given by 〈X, Y 〉 = 1

2
trace(XY ), is given by

e1 ↔ σ1, e2 ↔ −σ2, e3 ↔ iσ3.
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Then 〈e1, e1〉 = 〈e2, e2〉 = −〈e3, e3〉 = 1.

We can see directly that we are in a small cell precisely when |z| = 1, because

there we have the explicit factorization of φ ∈ ΛSU(1, 1)σ̂ · ω2 · Λ+GC

σ̂

(
1 zλ−1

0 1

)
=

⎛⎝ p
√

z λ−1q
√

z

λq
1
√

z
p

1
√

z

⎞⎠ · ω2 ·

⎛⎜⎝(p + q)
1
√

z
0

−λq
1
√

z
(p − q)

√
z

⎞⎟⎠
where p2 − q2 = 1 and p, q ∈ R. In other words, φ ∈ P2 for |z| = 1, and we saw

above that φ ∈ B1,1 otherwise. Note: the surface blows up as |z| → 1.

3.2.2. Example 2: Numerical Experiment

ξ = λ−1 ·

(
0 1

100 z 0

)
dz

Numerically, using Nick Schmitt’s program Xlab [6], we do the following

1. Integrate with initial condition φ(0) = ω1, to get φ : Σ → ΛGC

σ̂ .

2. Iwasawa split to get F : Σ → ΛGσ̂.

3. Compute Sym-Bobenko formula to get f 1 : Σ → L
3.

4. Use XLab to view the surface.

By construction, we are in the small cell P1 precisely at z = 0, and at this point

we obtain a singularity (Figure 1) which appears to be what is sometimes called a

Shcherbak surface singularity [7].

Figure 1. The singularity appearing in Example 2.
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3.3. Results on the Big Cell Boundary Behaviour

In [2] we prove that these examples are, in a certain sense, representative when

one encounters the small cells P1 and P2. Specifically

1. The map fλ0 : Σ → L
3 always extends to a well defined (and real analytic)

map at z0 ∈ φ−1(P1), but is not immersed at such a point.

2. The map fλ0 : Σ → L
3 always blows up as z → z0 ∈ φ−1(P2).

The surface is guaranteed to be smooth provided the holomorphic map φ takes

values in the big cell B1,1. Since the higher order small cells Pi, i > 2, have

higher codimension in the loop group, it is reasonable to expect that generic finite

singularities will therefore occur only at P1.

3.4. Applications

It is possible to obtain surfaces with specific geometric properties by choosing the

holomorphic one-form ξ to have a particular special form. One example of an

application of this is a classification of CMC surfaces with rotational symmetry

in Minkowski space, given in [2]. There are eight natural generic families of such

surfaces, and examples from each are shown in Figure 2.

Figure 2. Examples from each of the eight families of surfaces with rota-

tional symmetry in L
3. Images made by XLab [6].
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