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PROVIDES A UNIFIED THEORY OF RESONANCE AND DECAY
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Abstract. Combining the ideas of causality and the phenomenology of reso-

nances and decaying states, we modify standard quantum theory by changing one

of its axioms. The first step was taken decades ago when Dirac kets were given a

mathematical meaning as functionals on a Schwartz space, which led to a Gel’fand

triplet in which observables were represented by an algebra of continuous opera-

tors. The second step, motivated by the analytic continuation to complex energies

for the S-matrix and the two Lippmann-Schwinger kets, distinguishes between pre-

pared in-states-vectors and detected out-vectors. This leads to the pair of Gel’fand

triplets realized by Hardy functions of the upper (for prepared states) and lower (for

detected observables) complex energy plane. Replacing the Hilbert space axiom of

quantum mechanics by the Hardy space axiom, one obtains a mathematically con-

sistent theory that unifies resonance and decay phenomena and that has a causal,

asymmetric time evolution.

1. Introduction

Time asymmetry is the most prevalent feature of our world. In physics it has not

been ignored, but it has been neglected. In quantum physics, it has been unjustly

neglected. One usually considers situations that are too idealized, and one inves-

tigates problems for which the directedness of time and for which irreversibility

do not play a prominent role. An example is classical mechanics, where one deals

mostly with conservative forces and treats friction as an addendum.

Quantum mechanics falls into roughly two categories.

I. Spectra and structure of micro-physical systems in stationary states.

It uses the Hilbert space boundary condition for the dynamical equation

(Schrödinger or Heisenberg). As a consequence, the dynamical evolution is

described by the reversible unitary group evolution.
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II. Dynamically evolving states, resonance and decay phenomena.

The time symmetric unitary group does not adequately describe their dy-

namical evolution. Within the constraints of the Hilbert space axiom, “there

does not exist. . .a rigorous theory to which” the Weisskopf-Wigner meth-

ods used for these phenomena “can be considered as approximations.” [11]

2. Standard Quantum Mechanics Theory is Time Symmetric

In the early development of the foundations of quantum theory, the mathematics

available and provided by von Neumann’s Hilbert space axiom [19] led to a time

symmetric evolution, φ(t) = U †(t)φ(0), given by the unitary group, U †(t) =
e−iHt/� for −∞ < t < +∞.

In the foundations of quantum mechanics one distinguishes between states and

observables [12]. States are described by density operators, ρ, or by vectors, φ, for

pure states. Observables are described by operators,A(= A†), Λ, or by vectors, ψ,

if Λ = |ψ〉〈ψ|. The state ρ (for instance the in-state ρ = |φ+〉〈φ+| of a scattering

experiment) is prepared by a preparation apparatus (accelerator). The observable

A (for instance the out-observable A = |ψ−〉〈ψ−| of a scattering experiment) is

registered or detected by a registration apparatus (detector). The time evolution is

given by the dynamical equations: the Schrödinger equation for the states φ+

i�
d

dt
φ+(t) = Hφ+(t) (2.1)

or the Heisenberg equation for the observables ψ− or Λ

i�
d

dt
ψ−(t) = −Hψ−(t), i�

d

dt
Λ(t) = [Λ(t), H]. (2.2)

To solve these dynamical differential equations, one needs boundary conditions,

for which von Neumann provided the Hilbert space axiom

set of states {φ+} = set of observables {ψ−} = H = Hilbert space. (2.3)

Solving (2.1) and (2.2) under the boundary conditions (2.3), one obtains as the

general solutions (Stone-von Neumann theorem) [17]

φ+(t) = e−iHt/�φ+(0), −∞ < t <∞ (2.4)

for states |φ+(t)〉〈φ+(t)|, and

ψ−(t) = eiHt/�ψ−(0), Λ(t) = eiht/�Λe−iHt/�, −∞ < t <∞ (2.5)
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for observables |ψ−(t)〉〈ψ−(t)| or Λ(t). This is the time symmetric evolution

given by the group

U †(t) = e−iH†t/�, −∞ < t <∞ (2.6)

with the group product

U †(t1)U
†(t2) = U †(t1 + t2). (2.7)

For every evolution U †(t) there exists the inverse

U †−1(t) = U †(−t) (2.8)

so that the evolution is reversible for the state (2.4) or for the observable (2.5).

In quantum mechanics, the experimentally observed quantities are the probabili-

ties to measure the observable Λ in the state ρ: Pρ(Λ(t)). They are calculated in

theory as the Born probabilities [3]

Pρ(t)(Λ0) ≡ Tr(Λ0ρ(t)) (2.9)

in the Schrödinger picture, or for the special case Λ0 = |ψ−
0 〉〈ψ

−
0 | and ρ(t) =

|φ+(t)〉〈φ+(t)|

Pφ+(t)(ψ
−
0 ) = |〈ψ−

0 |φ
+(t)〉|2. (2.10)

In the Heisenberg picture the Born probabilities are

Pρ0
(Λ(t)) ≡ Tr(Λ(t)ρ0) (2.11)

or for the special case Λ(t) = |ψ−(t)〉〈ψ−(t)| and ρ0 = |φ+
0 〉〈φ

+
0 |

Pφ+

0

(ψ−(t)) = |〈ψ−(t)|φ+
0 〉|

2. (2.12)

Here φ+
0 (ρ0) is the state prepared at a particular time t0(= 0). The Born prob-

abilities are measured experimentally as ratios of large (sometimes not so large)

numbers of detector counts.

Pρ0
(Λ(t)) = Pρ(t)(Λ0) ≈

N(t)

Ntotal
· (2.13)

The time evolution of the quantum mechanical probabilities under the standard

Hilbert space axiom (2.3) is therefore given by

Pρ(t)(Λ0) = Tr(U †(t)ρ(0)U(t)Λ0) = Tr(ρ(0)U(t)Λ0U
†(t)) (2.14)
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or for the special case

Pφ+(t)(ψ
−
0 ) = |〈ψ−

0 |φ
+(t)〉|2 = |〈ψ−

0 |e
−iHt/�φ+

0 〉|
2

= |〈eiHt/�ψ−
0 |φ

+
0 〉|

2 = |〈ψ−(t)|φ+
0 〉|

2

= Pφ+

0

(ψ−(t)), −∞ < t < +∞

(2.15)

where φ+
0 is the state at a particular time, t0 = 0, at which the state is prepared.

If the Hilbert space axiom, and consequently the unitary group time evolution,

holds, then the Born probabilities to detect the observable |ψ〉〈ψ| are predicted

for all values of time: −∞ < t < ∞. If t0 = 0 is the time at which the state φ+
0

is prepared, then according to (2.4) the Born probability as a function of time can

evolve forward with the state, evolving as φ+
0 −→ U †(t)φ+

0 = φ+(t), t > 0. It

can also evolve backward with the state, φ+
0 −→ (U †(t))−1φ+

0 = U †(−t)φ+
0 =

φ+(−t). A reversible evolution for probabilities, whether they are classical or

quantal probabilities, seems odd. But this is what the Hilbert space axiom (2.3) of

standard quantum mechanics predicts.

As long as time evolution is not an issue, the standard axioms of quantum me-

chanics, of which there are about six [3], work fine, especially if one also uses

Dirac kets and the continuous basis vector expansion.

This is Category I quantum mechanics, which describes the structures and spectra

of micro-physical systems in stationary states

ρ(t) ≡ U †(t) ρU(t) = ρ. (2.16)

This applies to the ground states of atoms, molecules, nuclei, and hadrons, but it

is also used for singly excited states when they are treated like stable states. One

calculates the energy spectra, the charge distribution, the multipole moments, etc.,

of atoms and molecules and infers from this their structure. The non-zero electric

and magnetic moments imply transition and decay rates, R, and finite lifetime,

but one does not study the time evolution of these transitions. Instead one gives

the initial transition probability per unit time (the decay rate at a time t = 0)

and uses it as a measure of the intensity for the transition. Transition rates are

calculated at a time t = 0. Scattering cross sections are expressed in terms of

initial transition rates (Born probabilities per unit time at a mysterious time t = 0)

though the scattering process may continue for a long time as measured by the

clock of the experimenter. For Category I problems at times t = 0, the standard

axioms of quantum mechanics suffice because, for them, time evolution is not an

issue. One uses mostly the algebraic properties of the Hilbert space and not its

topological properties (definition of convergence).
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Category II quantum mechanics deals with scattering and decay phenomena, con-

tinuous energy spectra for resonance scattering, and non-trivial time evolution

for decay. If one wants to use continuous energy eigenstates, then this requires

already more than the conventional axioms of quantum mechanics are able to ac-

commodate. This has been handled by use of the Dirac kets |E〉, which – if they

have been defined at all [18] – are defined as functionals on the Schwartz space.

With this definition, the energy wave functions ψ(E) = 〈E|ψ〉 do not make up the

whole Hilbert space of (Lebesgue) square integrable functions, but only the sub-

space of infinitely differentiable, rapidly decreasing functions, i.e., the Schwartz

space functions.

The introduction of Dirac kets augments the conventional axiomatic framework

of quantum mechanics based on the Hilbert space axiom (2.3) and leads to the

Gel’fand triplet Φ ⊂ H ⊂ Φ×, where Φ is the abstract Schwartz space. The

Gel’fand triplet based on the Schwartz space, however, is not sufficient to obtain

a theory that includes scattering and decay. The reason is that the dynamical

(Schrödinger or Heisenberg) equations, when defined as differential equations in

the Schwartz space, also integrate to a continuous group evolution much like (2.4)

and (2.6).

In contrast, resonances and decaying states have been intuitively associated with

an asymmetric, “irreversible” time evolution [13]. Thus, they require a time asym-

metric theory, and in the absence of such a mathematical theory, their description

can only be approximate [11] and must contain contradictions.

3. Resonances and Decay

Experiments show that all spontaneously decaying quantum systems obey the ex-

ponential decay law P(t) ∼ e−t/τ . This exponential law can be considered as one
of the best established laws of nature [15]. Therefore one expects that there are

plenty of state vectors, φG(t), for which one can calculate the Born probabilities

for any observable |ψ〉〈ψ|

PφG(t)(ψ) = |〈ψ|φG(t)〉|2 (3.1)

and the decay rate

RφG(t)(ψ) =
dPφG(t)(ψ)

dt
=

d

dt
|〈ψ|φG(t)〉|2. (3.2)

A decaying state, φG, is characterized by its energy ED and the value of its life-
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time τ . Its lifetime is measured by a fit of the decay rate to the exponential law

R(t) ≈
ΔN(ti)

NtotalΔti
∝ e−

t

τ . (3.3)

A decaying state φG is characterized by the values (ED, τ ) and the other quantum

numbers, angular momentum j, etc., as well: (ED, τ ),j,j3,η. There are many

examples for a wide range of values of (ED, τ ). If, however, one accepts the

Hilbert space axiom and is thereby restricted to states represented by vectors in

the Hilbert space, then there is no state having exponential decay. This is the

consequence of a mathematical theorem [10].

For the theoretical description of resonance scattering and decay one uses contin-

uous energy eigenvalues, 0 ≤ E <∞, and even eigenvectors of the Hamiltonian,

H , with complex energy eigenvalues. Such tools are not well defined for quantum

mechanical entities represented by Hilbert space vectors.

A resonance is characterized by its energyER and a definite value of its Lorentzian

width Γ in the scattering amplitude. The scattering amplitude with angular mo-

mentum j is

aj(E) =
rη

E − (ER − iΓ2 )
+B(E) = aBW

j (E) +B(E). (3.4)

The slowly varying functionB(E) is the background, which changes from process

to process. The function aBW
j (E) is a Breit-Wigner amplitude of the resonance,

and it is the same for every process in which this resonance appears. The width Γ
and the resonance energy ER are measured by a fit of the cross section data to

σj(E) ∼ |aj(E)|2. (3.5)

Many people think that resonances and decaying states are the same physical en-

tities

resonances = decaying states

and that, at least for non relativistic quantum theory, the width and the inverse

lifetime are the same, except for the factor of �

�

Γ
= τ ≡

1

R
· (3.6)

The ≡ in (3.6) is an identity if the exponential law holds.

Within the framework of standard quantum theory under the Hilbert space bound-

ary conditions (2.3) for the dynamical equations (2.1) and (2.2), one cannot obtain

a theory that unifies resonance scattering and decay and that predicts (3.6).
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The closest one can get to the relation (3.6) is the Weisskopf-Wigner (WW) ap-

proximation [20]. Using Weisskopf-Wigner methods, the probability of measur-

ing a prepared resonance state φ(t) with Breit-Wigner width Γ is [21]

Pφ(t)(ψ) ∼ e−Γt/� +
Γ

ER
× (additional terms(t)). (3.7)

Thus one may be inclined to give the impression that, in the limit Γ
ER

→ 0, the

exponential law for the probability rate (3.2) follows and then to compare this

with (3.3) to relate the lifetime, τ , to the width, Γ. However, “. . . there does not

exist. . . a rigorous theory to which these various [WW] methods can be considered

as approximations” [11].

To obtain a theory that unifies Breit-Wigner resonance scattering (3.4) with ex-

ponential decay (3.3), one needs a state vector φG with the energy distribution

aBW
j (E) of (3.4) and with exactly exponential time evolution

Tr(|ψ〉〈ψ|φG(t)〉〈φG(t)|) = PφG(t)(ψ) ∝ e
−Γt

� (3.8)

for all decay products |ψ〉〈ψ|. Such a vector does not exist in the Hilbert space.

The simplest way to derive an exactly exponential decay probability is to postulate

a state vector φG, which has the properties

HφG =

(
ER − i

�R

2

)
φG and φG(t) = e

−iHt

� φG. (3.9)

Then the decay probability of φG(t) into any observable |ψ〉〈ψ| is

PφG(t) = |〈ψ|φG(t)〉|2 = |〈ψ|e
−iHt

� |φG〉|2

= |〈ψ|φG〉e−i(ER−i�R/2)t/�|2 = |〈ψ|φG〉|2e−Rt. (3.10)

The vector φG is called a Gamow vector [7], and it is not found in standard, Hilbert

space quantum mechanics because

1. It would have to be a vector with a complex eigenvalue for a selfadjoint

Hamiltonian H and thus could at best be a generalized vector like the Dirac

kets: φG ∼ |ER − i�R
2 〉.

2. As a consequence of (2.4), the time extends for all solutions of the Schrödinger

equation over −∞ < t <∞. Thus the exponential in (3.10) would diverge

and lead to the “exponential catastrophe.”
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To obtain a Gamow vector, one would require a theory that admits complex energy

eigenvalues zR = (ER − i�R
2 ), which fulfill the relation �R = Γ where Γ is

measured by (3.5), and that has asymmetric time evolution, t0 ≤ t <∞. That this

can indeed be accomplished by a consistent mathematical theory will be explained

in Section 5.

4. Time Asymmetry

Because time asymmetry emerged as a consequence of the mathematical condi-

tions needed to construct a theory that unifies resonance scattering and decay [1],

we want to discuss in this section the evidence for time asymmetry in quantum

physics. We shall see that instead of starting from the idea of a unified quantum

theory of resonance and decay phenomena and arriving at time asymmetry, one

could as well have started from the idea of time asymmetric quantum theory and

conjectured a consistent theory that unifies resonances and decay phenomena.

Time asymmetry and “Arrows of Time” are well known from classical physics.

The best known arrow of time is the Thermodynamic Arrow of Time, by which

the entropy, S, in an isolated (classical) system increases, dS
dt > 0, until it reaches

equilibrium, dS
dt = 0. Peierls [16] explains this irreversibility as a consequence of

time asymmetric boundary conditions implied by Boltzmann’s Stosszahl Ansatz

for the time symmetric equations of classical mechanics.

The Radiation Arrow of Time is a well known consequence of a time asymmetric

boundary condition. The Maxwell’s equations, like all local laws of physics, are

symmetric in time. But boundary conditions (the Sommerfeld radiation condi-

tions) exclude the strictly incoming fields, Aμ
in = 0, and select only the retarded

fields of the other particles in the region

Aμ(x) = Aμ
ret(x) +Aμ

in(x) = Aμ
ret(x).

Radiation must be emitted by a source before it can be detected by a receiver.

There does not seem to be an empirical reason to forbid time asymmetric boundary

conditions for the dynamical equations (Schrödinger or Heisenberg equations) of

quantum mechanics. Still, the widespread opinion is that a theory of irreversible,

time asymmetric evolution for isolated quantum systems is an impossibility. Sev-

eral physicists, however, have considered time asymmetry or irreversibility of the

time evolution for quantum systems.

Peierls and his school [9] emphasized the importance of the initial conditions

and boundary conditions. Instead of the axiom (2.3), they chose purely outgoing
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boundary conditions for the solutions of the Schrödinger equation. In their view,

irreversibility is a consequence of the choice of boundary condition. They may

not have realized that time asymmetry, t0 ≤ t < ∞, together with the dynamical

equations can lead to a semigroup time evolution.

In scattering theory (not quite Hilbert space quantum mechanics), one often uses

the retarded propagator, or Green’s function [14]

G+(t) =

{
e−iHt for t ≥ 0

0 for t < 0
(4.1)

which describes the time asymmetric evolution of the prepared in-state vector,

φ(t) = G+(t− t0)φ(t0), t ≥ t0. (4.2)

In Hilbert space, such semigroup solutions of the Schrödinger equation do not

exist.

Lee [13c] called this time asymmetry the “impossibility of constructing time-

reversed quantum solutions for a micro-physical system” (decaying systems). His

arguments immediately extend to scattering experiments:

It is easy to prepare two uncorrelated, incoming beams that scatter into strongly

correlated, outgoing spherical waves, as done in a typical scattering experiment. It

is experimentally hopeless to prepare a state consisting of two strongly correlated,

spherical waves (with fixed relative phase) in such a way that after the scattering,

two uncorrelated plane waves emerge. The latter would be the time reverse of the

setup for a physical scattering experiment.

Ludwig [12] noticed that, in experiments with quantum systems, one could not

time-translate the trigger of a detector to a time before the preparation apparatus

(accelerator) had been turned on. In other words, the preparation of a state at

t0 = 0 must precede the registration of an observable in that state at a later time

t > t0. Therefore, time translations form a semigroup. This semigroup for time

translation of the apparatuses ought to be transcribed into a semigroup evolution

of the state (defined by the preparation apparatus) relative to the observable (de-

fined by the registration apparatus). Knowing that under the Hilbert space axiom

(2.3) the time evolution is represented by the unitary group, however, Ludwig ex-

trapolated this semigroup to all times −∞ < t <∞, hence the group (2.6)-(2.8).

Gell-Mann and Hartle [8] introduced an arrow of time in the quantum mechanics

of cosmology. To avoid inconsistencies for the probabilities of histories, they re-

quired a time ordering for the projection operators in a history and in the initial

states. This time ordering “may not be attributed to the thermodynamic arrow of
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an external measuring apparatus or larger universe,” but it “would be a fundamen-

tal quantum mechanical distinction between the past and the future.”

They introduced the semigroup operator by decree (citing Feynman): The state,

ρ, of our universe, considered as a quantum physical system, evolves

ρ(t) = e−iH(t−t0)ρ(t0)e
iH(t−t0), only for t ≥ t0 ≡ tbig bang. (4.3)

Quantum mechanical probability for the observable Pα1
= |ψα1

〉〈ψα1
|

Pρ(Pα1
(t1)) = Tr(Pα1

(t1)ρ(t0)) = Tr(eiHt1Pα1
e−iHt1ρ(t0))

= Tr(Pα1
ρ(t1))

(4.4)

can exist for t1 ≥ tbig bang. The time evolution operator was written in the form

U(t) = eiHt|t∈R+
, for tbig bang ≤ t <∞ (4.5)

with tbig bang = 0 chosen as the beginning of time. The experimental evidence for

this time asymmetry is the Big Bang, at which time our universe was supposedly

a quantum system. The mathematical meaning of the operators U and H in (4.5)

needs to be defined.

The idea that time asymmetry requires different boundary conditions for the set

of vectors φ used for states and the set of vectors ψ used for observables, thereby

mathematically distinguishing states from observables, is contained in the famous

article of Feynman [5]: “We choose a particular time t = t0 and divide the region

. . .into

a) a region R′ . . . such that t′ < t0, and. . .

b) a region R′′ . . . such that t′′ > t0.”

“The state at t′ is defined completely by the preparation [prepared in-state φ+] . . .
Likewise the state characteristic of the experiment [registered observable ψ−] can

be defined by ψ(t′′) . . . at time t′′ > t0.” “[T]he chance that the system prepared

in state φ(t′) at time t′ will be found after t′′ to be in a state ψ(t′′) is the square of

the transition amplitude” (ψ(t′′), φ). (The symbols here are chosen to agree with

those used on the proceeding pages; the words are from [5]. Feynman clearly dis-

tinguishes between prepared states and “states characteristic of the experiment.”

In place of the latter we use the word “observables.”)

The square of the transition amplitudes are the Born probabilities, (2.9)-(2.12),

and, according to Feynman’s quote above, these Born probabilities can be defined
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for t′′ > t0 only. Thus, Born probabilities do not exist for t < t0, in contradiction

with (2.15).

The probability to measure the observable ψ(t′′) in the state φ can be observed

only at t′′ > t0, because

A state must be prepared before an observable can be measured in it. (4.6)

This statement, which is an expression of causality, is the quantum mechanical

arrow of time. It states that if t0(= 0) is the time at which the state ρ has been

prepared, then the probability Pρ(Λ(t)) is measured as the ratio of detector counts
N(t)
Ntotal

Pρ(Λ(t)) ≈
N(t)

Ntotal
, for t ≥ t0 only. (4.7)

At times t < t0 no counts can be registered: N(t) = 0 for t < t0. Nothing can be

observed in a state ρ = |φ〉〈φ| before that state has been prepared. Therefore

Pρ(Λ(t)) = Tr(|ψ(t)〉〈ψ(t)|φ〉〈φ|) = |〈ψ(t)|φ〉|2

= Tr(|U(t)ψ〉〈U(t)ψ|φ〉〈φ|)

= |〈U(t)ψ|φ〉|2 = |〈eiHtψ|φ〉|2

= |〈ψ|U×(t)φ〉|2 = |〈ψ|e−iH×tφ〉|2, t ≥ t0 = 0.

(4.8)

Thus the evolution operator, U×(t) = e−iH×t/� for a state ρ or |φ〉〈φ|, and its

adjoint (with H ⊂ H = H† ⊂ H×), the evolution operator U(t) = eiHt/� for

observables Λ or |ψ〉〈ψ|, do not have any physical counterpart for t < t0 = 0.

The operator A× is the conjugate of an operator A. It is an extension of the

Hilbert space adjoint operator A† of A, the closure of A. This will be discussed

in Section 5.

As a consequence of the quantum mechanical arrow of time, (4.6)-(4.8), we con-

clude:

In the Schrödinger picture, the time evolved state

φ(t) = e−iH×t/�φ is physically defined only for t > t0 = 0. (4.9)

In the Heisenberg picture, the time translated observable

ψ(t) = eiHt/�ψ is physically defined only for t > t0 = 0. (4.10)

The time evolution is asymmetric, 0 ≤ t <∞, and is given by the semigroup

U×(t) = e−iH×t/� with 0 ≤ t <∞, for the states φ or ρ (4.11)
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and by the semigroup

U(t) = eiHt/� with 0 ≤ t <∞, for the observables ψ,Λ, or A. (4.12)

Being a semigroup means that the product of two elements exists

U×(t1)U
×(t2) = U×(t1 + t2) (4.13)

but the inverse, U×−1(t), of an element, U×(t), t > 0, does not exist.

The vectors φ(t) andψ(t) cannot be in one-to-one correspondence with the Hilbert

space vectors of (2.4) and (2.5). And U(t), U×(t), H , and H× are not the self-

adjoint H = H† and unitary operators U and U † = U−1 of Section 2. They are

new operators in new spaces that need to be mathematically defined. The simi-

larity in the notation indicates that there is a relation between these operators and

spaces and the operators and vectors in Hilbert space. But these new entities must

first be mathematically defined before they can be employed to represent causal

semigroups.

5. A Time Asymmetric Theory Relating Resonances and Decaying
States

In Section 3 and Section 4 we have discussed the shortcomings of standard quan-

tum mechanics based on the Hilbert space axiom (2.3). In Section 3 we explained

that it cannot describe exponential decay and that it cannot describe resonance

scattering. In Section 4 we introduced some of the Arrows of Time and discussed

the quantum mechanical arrow of time in detail. We explained that time asymme-

try for quantum systems is a manifestation of causality, which standard quantum

mechanics based on (2.3) cannot possess. In this section we describe the steps

to construct a causal theory that unifies resonance and decay phenomena. The

change will affect only the dynamical evolution, which in standard quantum the-

ory is given by the Hilbert space axiom. Most of the fundamental axioms of

quantum theory will be retained. For Category I applications nothing will change.

The conjecture and construction of causal quantum theory is done in two steps.

The first step in this direction was already taken by most physicists when they

started using the Dirac kets. The second step will demonstrate that the Gamow

vectors (3.9) are the same kind of mathematical entities as the Dirac kets, except

that they live in different spaces. We will show that there are many definitions

of generalized vectors other than Dirac kets, including those corresponding to the

Lippmann-Schwinger equation and those associated with regular and higher order

resonance poles.
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Step 1: Using vectors that are not in the Hilbert space, similar to the Gamow

vectors (3.9), is not without precedent. In the Hilbert space there are no Dirac

kets |E〉 with the property

H|E〉 = E|E〉, for 0 = E0 ≤ E <∞. (5.1)

These Dirac kets had to be given a mathematical meaning as continuous antilinear

functionals on a dense subspace Φ ⊂ H

〈Hψ|E〉 ≡〈ψ|H×|E〉 = E〈ψ|E〉

for all ψ ∈ Φ (but not all ψ ∈ H).
(5.2)

The continuous, antilinear functionals F ∈ Φ× on the space Φ, F (φ) ≡ 〈φ|F 〉,
form together with the antilinear functionals h ∈ H× on H, after identification

H = H× (Fréchet-Riesz theorem), a Gel’fand triplet of linear topological spaces

[2]

Φ ⊂ H = H× ⊂ Φ×. (5.3)

The Dirac kets are |E〉 ∈ Φ×.

Typical operators for quantum mechanics (like the momentum and position oper-

ators P andQ and the operatorsH for many Hamiltonians) cannot be represented

by continuous (=bounded) operators in H. However, spaces Φ can be constructed

for quantum systems [2] in which the quantum mechanical operators are repre-

sented by an algebra of continuous operators (thus defined on the whole space Φ).

For every continuous operator A on Φ one defines the conjugate operator A× on

the dual space Φ× by

〈Aψ|F 〉 = 〈ψ|A×|F 〉 for all ψ ∈ Φ and F ∈ Φ×. (5.4)

It is an extension of the adjoint operator in Hilbert space. To the triplet of spaces

(5.3) belongs the triplet of (selfadjoint) operators

A ⊂ A = A† ⊂ A× (5.5)

where A is the closure of A in the completion of Φ to H. The operator A that

fulfills A = A† is called essentially selfadjoint. The Dirac kets are then defined

by (5.2), and in analogy to (5.1) can be written in an abbreviated way as

H×|E〉 = E|E〉, |E〉 ∈ Φ×. (5.6)

To make this precise one must define the space Φ and therewith Φ×.
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Most physicists and textbook authors are not concerned with the precise mathe-

matical meaning of Dirac kets. Those who are [18] define these kets as antilin-

ear, continuous functionals on the Schwartz space, choosing for Φ the abstract

Schwartz space.

This means one replaces the Hilbert space axiom (2.3) by the following Schwartz

space axiom

set of states {φ+} = set of observables {ψ−} = Φ ⊂ H ⊂ Φ×. (5.7)

Then for every φ, ψ ∈ Φ the Dirac basis vector expansion

ψ =
∑
j,j3,η

∫
dE |E, j, j3, η〉〈E, j, j3, η|ψ〉 (and same for φ) (5.8)

holds [2]. The j, j3, η, etc, are additional quantum numbers assumed to be dis-

crete. The Dirac kets |E, j, j3, η〉 ≡ |E〉 are generalized eigenvectors of H in the

sense of (5.2)

〈φ|H×|E, j, j3, η〉 ≡ 〈Hφ|E, j, j3, η〉 =E〈φ|E, j, j3, η〉

for all φ, ψ ∈ Φ.
(5.9)

This is also written as

H×|E, j, j3, η〉 = E|E, j, j3, η〉. (5.10)

The coordinates of the basis vector expansion (5.8), or “scalar products”, or bra-

kets 〈E|φ〉 = 〈φ|E〉 = φ(E), are smooth, rapidly decreasing functions of E, i.e.,

the energy wave functions φ(E) are “Schwartz functions” ∈ SR+
. The energy

wave functions φ(E) = 〈E|φ〉 define also a triplet of function spaces

{φ(E)} = {ψ(E)} = SR+
⊂ L2 ⊂ S×. (5.11)

This triplet is algebraically and topologically equivalent to the triplet (5.7) of vec-

tor spaces

{φ} = {ψ} = Φ ⊂ H ⊂ Φ× � |E〉 (5.12)

where Φ× is the space of antilinear, continuous Schwartz space functionals. The

triplet (5.12) is called a Gel’fand Triplet or Rigged Hilbert Space, and the triplet

(5.11) is called the “realization” of the abstract Gel’fand Triplet by the triplet of

Schwartz functions.

There are many different Gel’fand triplets, and they are characterized by the

choice of the vector space Φ or, equivalently, by the space of functions associ-

ated with Φ. In (5.11), the Schwartz function space has been used to characterize
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the triplet. This means that the set of functions allowed in the basis vector expan-

sion (5.8), φ(E) = 〈E|φ〉 = 〈E, j, j3, η|φ〉, has been used to specify the space Φ.

Because the Schwartz functions are smooth, rapidly decreasing functions on the

positive real energy axis, 0 ≤ E < ∞, the Dirac kets |E〉 ∈ Φ× can only have

real, positive energy eigenvalues.

Having no vector in the Hilbert space with exponential time evolution, one could

hope that there are kets φG = |ER − iΓ2 , j, j3, η〉 in some space Φ̃× ⊃ H, and that

these kets fulfill (3.10) for every ψ ∈ Φ̃. It means that, for φG to fulfill the expo-

nential law for the decay probabilities, it needs to be a generalized eigenvector of

the Hamiltonian H× and of the time evolution operator U×(t) = e−iH×t/�, with

the eigenvalues zR and e−izRt/� respectively

〈ψ|H×|φG〉 = zR〈ψ|φ
G〉 for all ψ of a space Φ̃ (5.13)

and

〈ψ|e−iH×t/�|φG〉 = e−izRt/�〈ψ|φG〉 for all ψ of a space Φ̃. (5.14)

Here, zR =
(
ER − i�R

2

)
. But the space Φ̃× cannot be the Schwartz space dual of

(5.7), because in the Schwartz space dual, H× has only real eigenvalues.

To define Gamow vectors as generalized eigenvectors, one must restrict the space

of vectors ψ further and admit in (5.8) only those functions 〈ψ−|E−〉 = 〈−E|ψ−〉
that can be analytically continued into the lower complex plane. This is done by

solving the functional energy eigenvalue equation

〈Hψ−|E−〉 = 〈ψ−|H×|E−〉 = E〈ψ−|E−〉 for all ψ− ∈ Φ+ (5.15)

where we denote by Φ+ the smaller subspace of H that we want to use as the

space of observables: ψ− ∈ Φ+ ⊂ Φ ⊂ H. The space Φ+ of allowed ψ−, and

equivalently the set of allowed energy wave functions 〈−E|ψ−〉 = 〈ψ−|E−〉, are

smaller than the space Φ in (5.7) and the set {ψ(E)} of (5.11), respectively. Con-

sequently the space Φ×
+ is larger than the space Φ× and can have energy eigenkets

with complex energy values.

Complex energy eigenvalues are suggested by the analytic S-matrix and by the

Lippmann-Schwinger equation. In the theory of scattering and decay, one arrived

heuristically at a pair of time asymmetric boundary conditions by choosing in- and

out-plane wave “states” |E+〉 and |E−〉, which are solutions of the Lippmann-

Schwinger equation and are given by

|E±〉 = |E ± iε〉 = |E〉 +
1

E −H ± iε
V |E〉 = Ω±|E〉, ε→ +0. (5.16)
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Here (H − V )|E〉 = E|E〉, and V represents the scattering potential.

Because of the ±iε in the Lippmann-Schwinger kets, the energy wave functions

ψ−(E) = 〈−E, j, j3, η|ψ
−〉 = 〈ψ−|E, j, j3, η−〉 = 〈−E|ψ−〉 (5.17)

φ+(E) = 〈+E, j, j3, η|φ
+〉 = 〈φ+|E, j, j3, η+〉 = 〈+E|φ+〉 (5.18)

are respectively the boundary values of analytic functions in the upper or lower

complex energy semi-plane (for complex energy z = E + iε = E − iε immedi-

ately below the real axis, on the 2nd sheet of the S-matrix).

The Lippmann-Schwinger equation introduces two kinds of wave functions: φ+(E)
for in-states φ+ ←− φin and ψ−(E) for out-states ψ− −→ ψout. The in-states

are the controlled in-states, defined by a preparation apparatus. In the case of

the out-state vectors, it is often unclear whether an uncontrolled out-state vector,

φout, is meant, or whether a controlled out-state vector, ψout, is meant [14]. The

uncontrolled out-state, φout, is the result of the preparation and the scattering dy-

namics, whereas the controlled out-state vector, ψout, is defined entirely by the

registration apparatus, which is built to detect specific properties of the scattering

products. We shall use as ψ− only the controlled out-state vectors. The matrix

element (ψ−, φ+) represents, then, the Born probability amplitude to register the

properties |ψ−〉〈ψ−| in the state described by the in-state vector φ+; these Born

probabilities are the measured quantities.

In analogy to the Dirac expansion (5.8) the |E±〉 are taken as basis systems for the

Dirac basis vector expansion of the out-observables, ψ− ∈ Φ+, and the in-states,

φ+ ∈ Φ−, respectively

Φ+ � ψ− =
∑
j,j3,η

∞∫
0

dE |E, j, j3, η
−〉〈−E, j, j3, η|ψ

−〉 (5.19)

Φ− � φ+ =
∑
j,j3,η

∞∫
0

dE |E, j, j3, η
+〉〈+E, j, j3, η|φ

+〉. (5.20)

The standard texts on scattering theory usually do not contain in depth discussions

of the properties of the functions (5.17) and (5.18) in the basis vector expansions

(5.19) and (5.20). In the Hilbert space theory one must choose them as Lebesgue

square integrable functions, but then the kets |E, j, j3, η
∓〉 make no sense.

Conventionally, one also does not distinguish between the sets of in-states {φ+}
and of out-observables {ψ−}, but instead equates them. Then one perhaps thinks

that these two sets are both Schwartz functions: {ψ−(E)} = {φ+(E)} = SR+
.
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But the physical meaning of the two spaces Φ+ and Φ− differs. The one represents

detected observables, and the other represents prepared states. Therefore, their

mathematical meanings need to differ as well.

Furthermore, the ±iε in (5.16) suggests that the energy wave functions of the pre-

pared state, 〈+E|φ+〉 = φ+(E), are Schwartz functions that can be analytically

continued into the lower complex energy semi-plane, and that the energy wave

functions 〈−E|ψ−〉 = ψ−(E) are functions that can be analytically continued

into the upper complex energy semi-plane (so that the product 〈ψ−|E−〉〈+E|φ+〉
can be continued into the lower complex energy plane).

Guided by the Lippmann-Schwinger equations (5.16), we take a second step away

from the Hilbert space axiom (2.3).

Step 2: We distinguish mathematically between prepared states φ+ and detected

observablesψ−. This we do by postulating that the energy wave functions 〈+E|φ+〉
and 〈−E|ψ−〉 in (5.19) and (5.20) are not only Schwartz functions on the positive

real axis, but also that they can be extended to analytic functions in C− and C+,

respectively. Here C∓ are the lower and upper complex energy semiplanes of the

S-matrix, which are reached by burrowing through the cut of the Riemann surface

along the positive energy axis, 0 ≤ E <∞, into the second Riemann sheet of the

S-matrix (where the resonance poles are located).

This means the energy wave functions (5.17), (5.18) in the basis vector expan-

sions (5.19), (5.20) are not only Schwartz functions on the real energy axis, but

they can also be analytically continued through the cut and into the semiplanes

C− and C+, respectively. Therefore 〈ψ−|E−〉〈+E|φ+〉 is analytic on the semi-

plane C− (second sheet of the S-matrix). This is a restriction on the energy

wave functions, and it will allow analytic continuation of the S-matrix element

(ψ−|φ+) = (ψout|S|φin).

This analyticity property of the wave function we generalize and idealize to the

new hypothesis [1]:

φ+(E) = 〈+E|φ+〉 are Schwartz functions that can be analytically

continued into the lower complex plane

〈+E|φ+〉 → 〈+z|φ+〉,

precisely smooth Hardy functions on C− (5.21)

ψ−(E) = 〈−E|ψ−〉 are Schwartz functions that can be analytically

continued into the upper complex plane

〈−E|ψ−〉 → 〈−z|ψ−〉,

precisely smooth Hardy functions on C+. (5.22)
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To conjecture (5.21) and (5.22) for C∓ from the analyticity property suggested

by the ±iε in the Lippmann-Schwinger equation (5.16) (for an ε-strip above and

below the positive real energy axis) would be too farfetched. One needs addi-

tional hints from physical conditions to discover the properties (5.21), (5.22) for

the wave functions. These additional conditions were conjectured from the idea

(i) that exponentially decaying states fulfilling (3.3) exist, and (ii) that resonances

with a Breit-Wigner energy distribution, aBW
j (E) in (3.4), have an independent

significance described by a ket |z−R〉 = |zR, j, j3, η
−〉 with complex energy eigen-

value zR = ER − iΓ2 .

Then one can associate with the pole of the scattering amplitude (3.4) (or the pole

of the j-th partial S-matrix element Sη
j (E) = 2iaη

j (E) for inelastic channels η and

Sj(E) = 1+2iaη
j (E) for the elastic channel η) at complex energy zR = ER− iΓ2 ,

a vector φG
j with a Breit-Wigner energy distribution

aBWi

j =
rη

E − zRi

⇐⇒ φG
j = |zRi

, j, j3, η
−〉
√

2πΓi

=

+∞∫
−∞

dE |E, j, j3, η
−〉

i
√

Γi

2π

E − zRi

·

(5.23)

If there are more poles in the same partial amplitude aj(z), this can be done for

every pole zRi
= ERi

− iΓi/2. The vector |zRi
, j, j3, η

−〉 can be shown to be an

energy eigenket with a discrete, complex eigenvalue (as Gamow wanted)

H×|ERi
− iΓi/2

−〉 = (ERi
− iΓi/2)|ERi

− iΓi/2
−〉, |ERi

− iΓi/2
−〉 ∈ Φ×

+.
(5.24)

One calculates the probability amplitude to find an observable ψ−
η (t) in this gen-

eralized state |ER − iΓ/2−〉 and obtains, under certain conditions on the energy

wave functions 〈ψ−
η |E, j, j3, η

−〉 = 〈ψ−|E−〉, that [1]

〈ψ−
η (t)|φG〉 ∼ 〈eiHt/�ψ−

η |ER − iΓ/2−〉

= 〈ψ−
η |e

−iH×t/�|ER − iΓ/2−〉 (5.25)

= e−iERt/�e−
Γt

2� 〈ψ−
η |ER − iΓ/2−〉 for t ≥ 0.

From this the exponential decay law

PφG(ψη(t)) = |〈ψ−
η (t)|φG〉|2 = e−Γt/�|〈ψ−

η |φ
G〉|2, t ≥ 0 (5.26)

follows.
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The conditions for the above derivations require the properties of Hardy functions

for 〈−E|ψ−〉. The time asymmetry t ≥ 0 in (5.26) follows because 〈eiHt/�ψ−|E−〉
= 〈ψ−|e−iH×t/�|E−〉 = 〈ψ−|E−〉e−iEt/� is a Hardy function if and only if

t ≥ 0. The general time asymmetry (4.9)-(4.13) is a consequence of the Paley-

Wiener theorem for Hardy spaces, in the same way (2.4) and (2.5) are conse-

quences of the Stone-von Neumann theorem for Hilbert spaces.

6. Summary

There is a new axiom for quantum theory. It is the Hardy space axiom

Set of prepared (in-) states de-

fined by the preparation appara-

tus (accelerator)

{φ+} = Φ− ⊂ H ⊂ Φ×
− (6.1)

Set of (out-) observables defined

by the registration apparatus (de-

tector).

{ψ−} = Φ+ ⊂ H ⊂ Φ×
+ (6.2)

The spaces Φ− and Φ+ are given by the sets of vectors in (5.19) and (5.20),

{φ+} and {ψ−}, which are equivalent to the spaces of energy wave functions

{〈+E|φ+〉} = (H2
− ∩ S)|R+

and {〈−E|ψ−〉} = (H2
+ ∩ S)|R+

where H2
∓ are the

Hardy function spaces and S is the Schwartz space [6].

The spaces Φ− and Φ+ are both complete with respect to a topology that is

stronger than the norm-completeness of H, and the Dirac basis vector expansion

(5.19) and (5.20) can be proven as the nuclear spectral theorem for the spaces Φ−

and Φ+.

The Hardy space axiom replaces the Hilbert space axiom (2.3) as the boundary

condition for the solution of the dynamical equation, (2.1) or (2.2), and leads to the

semigroup evolution (4.9)-(4.13). In the relativistic case it replaces the interaction

incorporating Poincaré group by semigroup representations in the forward light

cone, leading to a relativistic theory of resonances and decay fulfilling Einstein

causality [4]. Together with the other axioms, it provides a refinement of quantum

theory by distinguishing between states and observables.

The new axiom incorporates the Category II problems and provides a mathemati-

cally consistent theory unifying resonance and decay. It also overcomes the prob-

lems associated with causality.
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