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SCATTERING OF VORTICES IN THE ABELIAN HIGGS MODEL
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Abstract. We study the scattering of vortices in the Abelian (2+1)-dimensional
Higgs model. We show that in the case of the symmetric head-on collision of N
vortices their trajectories are rotated by the angle π/N after the collision.

1. Introduction

In this paper we study the scattering of vortices in the Abelian (2+1)-dimensional
Higgs model. The vortices, we are considering, are solutions of the vortex equa-
tions, arising in the superconductivity theory. They are given by smooth pairs
(A,Φ), consisting of the (electromagnetic) gauge potential A and the (scalar)
Higgs field Φ on C. Such solutions are parameterized (up to gauge equivalence)
by the zeros of the Higgs field Φ, so the moduli space of N vortices can be
identified with C

N . The dynamics of vortices in C is governed by the hyper-
bolic Ginzburg–Landau action functional. The dynamics of N vortices may be
described approximately by geodesics of C

N in the metric, determined by the
kinetic energy of the model. Unfortunately, this metric cannot be computed ex-
plicitly. But in a special case of the symmetric scattering of N vortices we can
show, without using the explicit form of the metric, that after their head-on colli-
sion the configuration of vortices looks the same, only rotated by the angle π/N .
In particular, in the case of two vortices, their trajectories are rotated by the an-
gle π/2 after the head-on collision, so we have the right-angle scattering. This
result was already obtained earlier in a number of papers (see [1, 4–6]).

2. Vortex Solutions in the Abelian Higgs Model

The two-dimensional Abelian Higgs model is determined by the following action
functional

V (α,Φ) =
1

2

∫
R2

(
|dαΦ|2 + F 2

12 +
λ

4
(|Φ|2 − 1)2

)
dxdy (1)
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where dα = d + α, α = −iA1dx − iA2dy is a gauge potential with smooth
real-valued coefficients A1, A2 on R

2, Φ = Φ1 + iΦ2 is the Higgs field, given
by a smooth complex-valued function on R

2, λ > 0 is a constant. We denote by
F12 := ∂1A2 − ∂2A1 the gauge field, generated by (A1, A2), and set ∂1 := ∂x,
∂2 := ∂y .

The action functional V is invariant under gauge transformations of the type

α �−→ α̃ = α− idχ , Φ �−→ Φ̃ = eiχΦ (2)

where χ is a smooth real-valued function on R
2.

Integrating by parts, we can rewrite the action functional V in the Bogomolny
form

V =
1

2

∫
R2

{(
(∂1Φ1 + A1Φ2)∓ (∂2Φ2 −A2Φ1)

)2
+
(
(∂2Φ1+A2Φ2)± (∂1Φ2−A1Φ1)

)2
+
(
F12 ±

1

2
(|Φ|2−1)

)2}
dxdy

± 1

2

∫
R2

F12dxdy +
λ− 1

4

∫
R2

(|Φ|2 − 1)2dxdy.

(3)

Hereafter, we consider only the critical case λ = 1 (cf. [2]). Then the right hand

side is the sum of non-negative terms and the topological term
1

2

∫
R2

F12dxdy,

which is proportional to the topological charge or the vortex number N of the
field (α,Φ). This is the integer number that equals (cf. [2])

1

2π

∫
R2

F12dxdy = N (4)

if the following conditions are satisfied: F12 ∈ L1(R2), |Φ| → 1 for r :=√
x2 + y2 → ∞ and |dαΦ| ≤ C/r1+δ . Evidently, N does not change under

gauge transformations.

Fix a vortex number N and assume that N ≥ 0. Then the Bogomolny formula
implies that V (α,Φ) ≥ πN and the minimal value of V (equal to πN ) is attained
on solutions of the system of equations⎧⎪⎨

⎪⎩
∂1Φ1 + A1Φ2 = ∂2Φ2 −A2Φ1

∂2Φ1 + A2Φ2 = −∂1Φ2 + A1Φ1

F12 = −1

2
(|Φ|2 − 1)

(5)
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called the vortex equations. These equations are invariant under gauge transfor-
mations.

Introduce the complex coordinate z = x+iy on the plane. The following existence
and uniqueness theorem is proved in [2].

Theorem 1. (Taubes) Suppose that N ≥ 0 and Z1, Z2, . . . , ZN are arbitrary
(not necessarily distinct) points on the complex plane. Then there exists a solu-
tion (A1, A2,Φ) of the vortex equations such that the zeroes of Φ coincide with
Z1, . . . , ZN and

Φ(z, z̄) ∼ cj(z − Zj)
nj (6)

in a neighborhood of each Zj . Here nj is the multiplicity of Zj in the collection
{Z1, . . . , ZN}, cj is a nonzero constant.

For this solution |dαΦ| ≤ C(1 − |Φ|) for some C > 0 and for any δ > 0 there
exists a number C(δ) > 0 such that 1− |Φ| ≤ C(δ)e−(1−δ)|z| .

The vortex number of this solution is equal to N and the solution with the indi-
cated properties is uniquely defined up to gauge equivalence.

The solution, whose existence is asserted in the above Theorem, is called the N -
vortex solution.

The moduli space of N -vortex solutions, denoted by MN , is the set of classes of
N -vortex solutions up to gauge equivalence. Using the Taubes theorem, we can
identify it with the N th symmetric power SN

C, i.e., with the set of unordered
collections of N complex numbers (equal to zeroes of Φ). This symmetric power
may be identified with C

N by assigning to any collection {Z1, . . . , ZN} the monic
polynomial p(z) with zeroes at Z1, . . . , ZN

p(z) = (z−Z1)(z−Z2) . . . (z−ZN ) = zN +S1z
N−1+· · ·+SN−1z+SN . (7)

3. The Tangent Bundle of MN and Kinetic Energy Metric on MN

The tangent space to MN at any point coincides with C
N . However, follow-

ing [7], we can give a more detailed description of the tangent bundle of MN .
This description of TMN will be used in the definition of a special kinetic energy
metric onMN .

Given arbitrary points {Z1, . . . , ZN} ∈ MN , we choose a particular N -vortex
solution (A1, A2,Φ), associated with {Z1, . . . , ZN} by the Taubes theorem, by
fixing the gauge in the following way:

Φ(z) = (z − Z1)(z − Z2) . . . (z − ZN )f(z) with f(z) > 0 . (8)
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We consider now the linearized vortex equations (at the solution (A1, A2,Φ)),
having the form⎧⎨

⎩
∂1ϕ1 + a1Φ2 + A1ϕ2 − ∂2ϕ2 + a2Φ1 + A2ϕ1 = 0
∂2ϕ1 + a2Φ2 + A2ϕ2 + ∂1ϕ2 − a1Φ1 −A1ϕ1 = 0

∂1a2 − ∂2a1 + Φ1ϕ1 + Φ2ϕ2 = 0
(9)

where (a1, a2, ϕ) is the perturbation, ϕ = ϕ1 +iϕ2. These equations are invariant
under the infinitesimal gauge transformations, given by

a1 �−→ ã1 = a1 + ∂1χ, a2 �−→ ã2 = a2 + ∂2χ, ϕ �−→ ϕ̃ = ϕ + iχΦ (10)

where χ is a real-valued function.

Consider the space of solutions (a1, a2, ϕ1, ϕ2) of the linearized vortex equations,
belonging to the Sobolev space (H1(R2; R))4. Note that the infinitesimal gauge
transformations with χ ∈ H2(R2) preserve this space. Following [7], we fix
the infinitesimal gauge by imposing on the solutions (a1, a2, ϕ1, ϕ2) of linearized
vortex equations the following orthogonality condition

∂1a1 + ∂2a2 + ϕ1Φ2 − ϕ2Φ1 = 0 . (11)

It means that (a1, a2, ϕ1, ϕ2) is L2-orthogonal to additive infinitesimal gauge
transformation terms (∂1χ, ∂2χ,−χΦ2, χΦ1) for any χ ∈ H2(R2; R).

We introduce now a linearized vortex operator D(A,Φ)(a1, a2, ϕ1, ϕ2), defined by
the left-hand sides of linearized vortex equations and of the orthogonality condi-
tion. It is a bounded linear operator, mapping (H 1)4 → (L2)4. The kernel of
D(A,Φ) has the (real) dimension 2N (cf. [7]).

We shall identify kerD(A,Φ) with the tangent space of MN at the point, deter-
mined (according to the Taubes theorem) by the collection {Z1, . . . , ZN} of ze-
roes of Φ. To do that, consider the symmetric functions S1, . . . , SN of zeroes of Φ
(equal to the coefficients of the monic polynomial with zeroes at {Z1, . . . , ZN}),
as coordinates on MN . Fixing the gauge by condition (8), we can consider the
components A1, A2, Φ of vortex solutions as functions of the complex parame-
ters S1, . . . , SN . We obtain solutions of the linearized equations by differentiating
these functions with respect to the parameters.

For any j = 1, . . . ,N we write Sj in the form Sj = Sj,1+iSj,2. We would like to
define the kinetic energy metric on MN in terms of the L2-norms of derivatives
of (A1, A2,Φ1,Φ2) with respect to Sj,k-variables with j = 1, . . . ,N , k = 1, 2.
Unfortunately, these derivatives may be not square integrable. But we can replace
(A1, A2,Φ1,Φ2) by suitable gauge equivalent functions, whose derivatives are
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already L2-integrable. In other words, we can find gauge factors χj,k such that
the functions

nj,k =
( ∂A1

∂Sj,k
+∂1χj,k,

∂A2

∂Sj,k
+∂2χj,k,

∂Φ1

∂Sj,k
−χj,kΦ2,

∂Φ2

∂Sj,k
+χj,kΦ1

)
(12)

belong to (H1)4 and satisfy the orthogonality condition. We prove also that
(S1, . . . , SN ) �→ nj,k(S1, . . . , SN ) are smooth maps C

N → (L2)4 with values
in (H1)4. The vectors nj,k with j = 1, . . . , n, k = 1, 2 belong to kerD(A,Φ)

and are linearly independent. Hence, they form a basis in kerD(A,Φ)). Using this
basis, we can identify T(A,Φ)MN with kerD(A,Φ).

We can define now the kinetic energy metric g on MN with the help of L2-
scalar product. For any v1, v2 ∈ T(A,Φ)MN = kerD(A,Φ) ⊂ (H1)4 we set
g(v1, v2) := (v1, v2)(L2)4 . Since the basis vectors nj,k depend smoothly on
S1, . . . , SN (in the sense defined above), the coefficients of the metric, equal to
gj,k;l,m = (nj,k, nl,m)(L2)4 , are smooth functions of S1, . . . , SN . Note that the
metric is invariant under simultaneous translations, rotations and complex conju-
gation of all positions of vortices.

To establish that all the objects above are well-defined, we should prove the fol-
lowing theorem.

Theorem 2. Let A1, A2, Φ are the components of vortex solutions. Then

1. A1, A2, Φ depend smoothly on S1, . . . , SN in the sense that for any fixed z0

the function Φ(z0;S1, . . . , SN ) is a smooth function of S1, . . . , SN and the
same for A1, A2.

2. We can choose χj,k such that the nj,k, defined by the formula (12), belong
to (H1)4 and satisfy the orthogonality condition.

3. The maps (S1, . . . , SN ) are smooth maps of C
N to (L2)4 with values in

(H1)4.
4. The vectors nj,k for j = 1, . . . ,N and k = 1, 2 are linearly independent.

Some remarks on the proof of this theorem will be given in Section 5.

4. Dynamical Problem

The dynamical (2+1)-dimensional Higgs model is given by the action functional

S(A,Φ) =
1

2

t2∫
t1

dt

∫
R2

{(
|(∂0 − iA0)Φ|2 + F 2

01 + F 2
02

)

−
(
|(∂1−iA1)Φ|2+|(∂2−iA2)Φ|2+F 2

12+
1

4
(|Φ|2−1)2

)}
dxdy .

(13)
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Here Φ(t, x, y) is a smooth complex-valued function, Aj(t, x, y) are smooth real-
valued functions (j = 0, 1, 2); Fjk := ∂jAk − ∂kAj and we have used the nota-
tion ∂0 = ∂t, ∂1 = ∂x, and ∂2 = ∂y .

The action functional can be represented in the standard form

S =

∫
(T − V )dt (14)

where the potential energy V is given by the formula (1) and the kinetic energy T
is equal to

T =
1

2

∫
R2

(
|(∂0 − iA0)Φ|2 + F 2

01 + F 2
02

)
dxdy . (15)

We would like to describe the moduli space of solutions of the corresponding
dynamical problem

δS(A,Φ) = 0 . (16)

But, in contrast with vortices (which are the static solutions of our dynamical
problem), we have little hope to obtain an explicit description of this moduli space.
However, following an idea, proposed in [7] and [3], we can consider geodesics
on MN in the kinetic energy metric as a good approximation to the trajectories
of N slowly moving vortices. We use this approximation in order to describe the
scattering of N vortices after their symmetric head-on collision.

Unfortunately, there is no explicit formula for the kinetic energy metric. We use
instead the invariance of this metric under rotations and complex conjugation to
deduce a qualitative description of the scattering. Namely, we prove that the tra-
jectories of vortices are rotated by the angle π/N after the collision. In particular,
the head-on collision of two vortices results in the rotation of their trajectories by
the angle π/2, so in this case we have the right-angle scattering. This latter result
was already obtained in a number of papers (see [6] and also [1, 4, 5]).

To obtain our result on scattering, we consider a geodesic onMN passing through
the origin S1 = · · · = SN = 0 with the tangent vector �v = (0, 0, . . . , 0, (−1)N+1)
at this point. (The sign (−1)N in the formula for �v is due to the equality SN =
(−Z1)(−Z2) . . . (−ZN ) = (−1)NZ1Z2 . . . ZN .) Suppose that our geodesic is
parameterized by: S1 = S1(s), . . . , SN = SN (s). (Here s is a natural parameter
on the geodesic.) Let the origin correspond to s = 0. The rotation of all zeroes
by the angle 2π/N (that is, Z ′

k = e2πi/NZk) does not change the vector �v and
the complex conjugation (Z ′

k = Z̄k) does not change it too. Since the metric is
invariant under these transformations, our geodesics is mapped to a geodesic with
the same tangent vector, and since the metric is smooth, our geodesic must be
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mapped to itself. Hence Sk(s) = e2πik/NSk(s) and Sk(s) = Sk(s) and therefore
S1(s) = · · · = SN−1(s) = 0, SN (s) is real. Denote (−1)NSN (s) by λ(s). It is
evident that λ(0) = 0 and λ(s) decreases and changes its sign from the positive
to negative, when s passes the origin.

In terms of the original coordinates (Z1, . . . , ZN ) our geodesic (which is smooth
in symmetric coordinates) corresponds to the following motion of N vortices. For
λ(s) > 0 (i.e., s < 0) we have N trajectories, described by

s �−→
(

N
√

λ(s), N
√

λ(s)e2πi/N , . . . , N
√

λ(s)e2πi(N−1)/N
)

(17)

while for λ(s) < 0 (i.e., s > 0) we have N trajectories, rotated by the angle π/N

s �−→
(

N
√
|λ(s)|eπi/N , N

√
|λ(s)|e3πi/N , . . . , N

√
|λ(s)|e(2N−1)πi/N

)
. (18)

In other words, our geodesic describes the scattering process of the following type.
Before the collision N vortices are moving to the origin along the rays: arg z = 0,
arg z = 2π/N ,. . . , arg z = 2(N − 1)π/N . Then they collide at the origin and
after that move away along the rays arg z = π/N ,. . . , arg z = (2(N−1)+1)π/N .

5. Remarks on Proof of Theorem 2

Let the vortex solution have the form (8). Denote p(z) := (z −Z1) . . . (z −ZN ),
so that Φ(z) = p(z)f(z). Then for the function w := 2 ln f + ln(1 + |p|2) we
obtain the equation

∆w =
|p|2

1 + |p|2 ew − 1 + ∆ ln(1 + |p|2) . (19)

Let S denote (S1, . . . , SN ). In Chapter 3 of [2] it was proved that for every collec-
tion {Z1, . . . , ZN} we have a unique solution of (19) in Sobolev space H 2(R2).
We denote it by w(S). We shall prove that w(S) depend smoothly on S with the
help of the implicit function theorem.

It is not so hard to prove that the map F : H2(R2)× C
N → L2, given by

F (v;S) = −∆v +
|p(S)|2

1 + |p(S)|2 ev − 1 + ∆ ln(1 + |p(S)|2) (20)

is smooth and in order to apply the implicit function theorem for Banach spaces,
we should show that the linear operator F ′

vh : H2(R2) → L2(R2), namely, F ′
vh =
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−∆h +
|p(S)|2

1 + |p(S)|2 evh , is invertible for v = w(S), i.e., that A : h → −∆h +

|Φ|2h is invertible.

Choose a smooth non-negative function ε, vanishing outside some ball BR =
B(0, R), such that δ ≤ |Φ|2 + ε ≤ 1 for some δ > 0. Then the operator Aε

defined by Aεh = −∆h + (|Φ|2 + ε)h is invertible. Indeed, ‖Aεh‖L2 ≥ γ‖h‖H2

for some γ > 0, because

‖(1 + x2 + y2)ĥ‖L2 ≤ const‖Aεh‖L2 (21)

where ĥ = Fh denotes the Fourier transform.

Now note that Aεh = Ah + εh ⇐⇒ h = A−1
ε Ah + A−1

ε (εh), implying that
A−1

ε Ah = h − A−1
ε (εh) = (Id − Kε)h , where Id is the identity operator and

Kεh = A−1
ε (εh) is a compact operator, since the embedding H 2(BR) ↪→ L2(BR)

is compact. If (Id −Kε)h = 0, then Ah = Aε(Id −Kε)h = 0 and so −∆h +
|Φ|2h = 0. But this implies h = 0, since |Φ| → 1 for |z| → ∞. The Fredholm
theorem implies now that Id − Kε is invertible, and therefore the operator A =
Aε ◦ (Id −Kε) is also invertible.

So we can apply the implicit function theorem and prove that w depends smoothly
on S1, . . . , SN in H2(R2). But the H2-norm majorizes the uniform norm, so w
depends smoothly of S1, . . . , SN also in the sense of Section 3. Since Φ, A1,
A2 can be expressed through w, they also depend smoothly on S1, . . . , SN in the
sense of Section 3.

Let us now determine χj,k. Substituting the expressions (12) into the orthog-
onality condition, we obtain the equation −∆χj,k + |Φ|2χj,k = −|Φ|2 ∂ϑ

∂Sj,k
,

where ϑ = arg Φ. Choose a smooth function ρ(z;S) satisfying the following
conditions: 0 ≤ ρ ≤ 1, ρ(· ;S) is compactly supported, ρ(z;S) ≡ 1 in some
ball containing all zeroes of Φ(z;S), and ρ depends smoothly on S. Then for
vj,k := χj,k + (1− ρ) ∂ϑ

∂Sj,k
we obtain the equation

−∆vj,k + |Φ|2vj,k = −ρ|Φ|2 ∂ϑ

∂Sj,k
−∆

(
(1− ρ)

∂ϑ

∂Sj,k

)
. (22)

The function in the right hand side of this equation is smooth and has a compact
support, so we can apply our result on −∆ + |Φ|2 and then use regularity theory
for elliptic equations to show that vj,k are smooth. We can show that vj,k depend
smoothly on Sk in the H2 norm using the same argument as for w. Finally we
determine χj,k = vj,k − (1− ρ) ∂ϑ

∂Sj,k

.
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