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SMALL FRACTIONAL PARTS OF POLYNOMIALS

Roger Baker

Abstract: Let k > 6. Using the recent result of Bourgain, Demeter, and Guth [5] on the
Vinogradov mean value, we obtain new bounds for small fractional parts of polynomials αknk +
· · ·+α1n and additive forms β1nk1 + · · ·+βsnks . Our results improve earlier theorems of Danicic
(1957), Cook (1972), Baker (1982, 2000), Vaughan and Wooley (2000), and Wooley (2013).
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1. Introduction

Let Js,k(N) be the Vinogradov mean value,

Js,k(N) :=

∫
[0,1)k

∣∣∣∣∣
N∑
n=1

e(xkn
k + · · ·+ x1n)

∣∣∣∣∣
2s

dx1 . . . dxk.

Here s and k are natural numbers. Recently Wooley [12] (for k = 3) and Bour-
gain, Demeter, and Guth [5] (for k > 4) have established the main conjecture for
Js,k(N), namely

Js,k(N)�k,ε N
s+ε +N2s−k(k+1)/2+ε. (1.1)

Here ε is an arbitrary positive number. In the present note we combine (1.1) with
techniques from two earlier publications [3, 4] to obtain new bounds of the form

min
16n6N

‖αknk + · · ·+ α1n‖ �k,ε N
−µk+ε (k = 8, 9, . . .) (i)

(with arbitrary real numbers α1, . . . , αk, β1, . . . , βs here and below);

min
16n6N

‖αknk + α1n‖ �k,ε N
−ρk+ε (k = 6, 7, . . .) (ii)

min
06n1,...,ns6N
(n1,...,ns) 6=0

‖β1n
k
1 + · · ·+ βsn

k
s‖ � N−σs,k+ε (k = 6, 7, . . . , s > 1). (iii)
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Theorem 1. Let k > 8. Then (i) holds with µk = 1/2k(k − 1).

Theorem 2.
(a) Let k > 6. Then (ii) holds with ρk = 1/k(k − 1).
(b) Let k > 6. For a certain positive absolute constant B, (ii) holds with ρk =

1/k(2 log k +B log log k).

Theorem 3.
(a) Let k > 6, 1 6 s 6 k(k − 1). Then (iii) holds with σs,k = s/k(k − 1).
(b) Let

F (J, s, k)

= min

(
s

J
, max
J+16h6s

min

(
(2h− 2)(s− k) + 4k − 4

h(s− k) + 4h− 4
,
s− h+ J + 1

J

))
Then (iii) holds for k > 6, s > k(k − 1) with

σs,k = F (k(k − 1), s, k).

In particular,

min
06n1,...,ns6N
(n1,...,ns)6=0

‖β1n
6
1 + · · ·+ βsn

6
s‖ � N−s/30+ε(1 6 s 6 56).

We note here the existing results in each case. Let K = 2k−1.
(i) This is known with µk = 1/K (2 6 k 6 8) (Baker [1]) and µk = 1/4k(k−2)

for k > 9 (Wooley [11]).
(ii) Only the special case α1 = 0 has been considered separately from (i). Here

the result is known with ρ2 = 4/7 (Zaharescu [14]); ρk = 1/K (3 6 k 6
6) (Danicic [7]), while there are the values ρ7 = 1/57.23, ρ8 = 1/69.66,
ρ9 = 1/82.08, ρ10 = 1/94.62, ρ11 = 1/107.27, . . . , ρ20 = 1/222.16, given by
Vaughan and Wooley [9], which are better than the present method gives
(in the monomial case) for k > 11. There is an absolute positive constant
C such that, for k > 6,

min
16n6N

‖αnk‖ �k,ε N
−1/k(log k+C log log k) (1.2)

(Wooley [10]).
(iii) This is known with σs,k = s/K for k > 2, 1 6 s 6 K (Cook [6]), and

σs,k = F (K, s, k) (k > 4, s > K)

(Baker [4]). For k = 2, 3 and s > K, see Baker [1, 4]; for example,
σ3,2 = 9/8 and σ5,3 = 5/4.

We refer the reader to Heath-Brown [8], Wooley [10], and Vaughan and
Wooley [9] for results of the kind: for irrational α, we have

‖αnk‖ < n−τk

for infinitely many k. For example, one may take τk = 1/9.028k for every k [10].
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2. Bounds for Weyl sums

We suppose throughout (as we may) that ε is sufficiently small and N is sufficiently
large in terms of k, ε; we write η = ε2.

Theorem 4. Let k > 3 and ε > 0. Suppose that the Weyl sum

gk(α;N) :=

N∑
n=1

e(αkn
k + · · ·+ α1n)

satisfies
|gk(α;N)| > A > N1−1/2k(k−1)+ε. (2.1)

Then there exist integers q, a1, . . . , ak such that

1 6 q 6 Nε(NA−1)k (2.2)

and
|q αj − aj | 6 N−j+ε(NA−1)k (1 6 j 6 k). (2.3)

If αk−1 = · · · = α2 = 0, then the same conclusion holds with the weaker lower
bound.

|gk(α;N)| > A > N1−1/k(k−1)+ε (2.4)

in place of (2.1).

Proof. We initially proceed exactly as in the proof of [3, Theorem 4.3] with θ
replaced by 0 and ` replaced by (k − 1)/2. This is permissible since we have

Js,k−1(N)� Ns+ε

with s = k(k− 1)/2, in place of the bound for Js,k−1(N) used in [3]. We find that
for j = 2, . . . , k there are coprime pairs of integers qj , bj with

1 6 qj � (NA−1)k(k−1)(logN)C , |qαj − bj | 6 N−j+ε(NA−1)k(k−1)

where we shall use C for an unspecified positive constant depending on k. Let q0

be the l.c.m of q2, . . . , qk. We now follow the argument of [3, pp. 41–42] to obtain

q0 � (logN)C(NA−1)k(k−1). (2.5)

It follows that, with aj = q0bj/qj , we have

|q0αj − αj | 6 N−j+2ε(NA−1)2k(k−1) (j = 2, . . . , k). (2.6)

We now appeal to Lemma 4.6 of [3], which we restate here for clarity as
Lemma 1.
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Lemma 1. Suppose that there are integers r, v2, . . . , vk such that
gcd(r, v2, . . . , vk) = 1,

|qjr − vj | 6 N1−j/4k4 (j = 2, . . . , k), (2.7)

and that
|gk(α;N)| > H > r1−1/kNε. (2.8)

There is a natural number t 6 2k2 such that

tr 6 (NH−1)kNε, (2.9)

t|αjr − vj | 6 (NH−1)kN−j+ε (j = 2, . . . , k) (2.10)

‖tr α1‖ 6 (NH−1)N−1+ε. (2.11)

We now apply the lemma with A = H, r = q0d
−1, vj = ajd

−1 where d =
gcd(q0, a2, . . . , ak). From (2.5) and (2.6),

|αjr − vj | 6 N−j+2ε(NA−1)2k(k−1) 6 N−j+1(4k4)−1

since
(NA−1)2k(k−1) 6 N1−12ε

and r 6 N1−5ε,

Ar−1+1/kN−2ε > N1−1/k(k−1)−1+1/k−Cε � 1.

The inequalities (2.9)–(2.11) now yield the first assertion of the theorem with
q = tr. For the second assertion, since α2, . . . , αk−1 are 0, we may take r = qk,
vk = bk, v2 = · · · = vk−1 = 0, H = A in the application of Lemma 1. (The
inequality (2.4) suffices in the earlier part of the argument.) We know that

|rαk − ak| 6 N−k+ε(NA−1)k(k−1)

rather than the weaker bound (2.6). We may now complete the proof in the same
way as before. �

3. Proof of Theorems 1, 2, and 3

Proof of Theorem 1. Suppose there is no solution of

1 6 n 6 N, ‖αknk + · · ·+ α1n‖ 6 N−1/J+ε (3.1)

where J denotes 2k(k − 1). By [3, Theorem 2.2] we have

M∑
m=1

|gk(mα;N)| > N/6,
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where M = [N1/J−ε]. There is an integer m, 1 6 m 6M such that

|gk(mα;N)| > A = N/6M.

We have
(NA−1)2k(k−1) �M2k(k−1) � N1−2k(k−1)ε.

By Theorem 4 there is a natural number q = tr such that

q � Nε(NA−1)k �Mk, (3.2)

‖qmαj‖ � (NA−1)kN−j+ε �MkN−j+ε (j = 1, . . . , k). (3.3)

Now let n = qm. Then

n�Mk+1 � N (k+1)/J � N1−ε,

‖njαj‖ 6 nj−1‖nαj‖ �M (k+1)(j−1)+kN−j+ε �M−1N−ε

since M (k+1)j � N (k+1)j/J−(k+1)ε � N j−2ε. It follows that n satisfies (3.1),
which is a contradiction. This completes the proof of Theorem 1. �

Proof of Theorem 2(a). We follow the above proof; this time, J denotes
k(k − 1). The second assertion of Theorem 4 provides an integer q = tr satis-
fying (3.2), and (3.3) for the relevant values j = 1, k. Now we complete the proof
as before. �

Proof of Theorem 2(b). This is a simple consequence of Wooley’s bound (1.2).
Let ν = ν(k) have the property that

min
16n6N

‖αnk‖ �k N
−ν

for N > 1 and real α. Let a = 1
2+ν , b = 1 − a. By Dirichlet’s theorem there is a

natural number ` 6 N b with
‖α1`‖ 6 N−b.

We now choose another natural number m 6 Na with

‖αk`kmk‖ � N−aν = N−ν/(2+ν).

Note that
‖α1`m‖ 6 Na−b = N2a−1.

Since 2a− 1 = − ν
2+ν , we have, with n = `m,

1 6 n 6 N, ‖αknk + α1n‖ � N−ν/(2+ν).

Taking ν = 1/k(log k + C log log k), we obtain

ν

2 + ν
=

1

2k log k + 2C log log k + 1
,

so that Theorem 2(b) holds with a suitable choice of B. �
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Example. If we take k = 20, ν = 1/222.16 from [9], we obtain the value 1/445.32
for ρ20, which is not as good as Theorem 2(a). The proof of Theorem 2(b) is
relatively crude, so it may be possible to do better using ideas from [9], [10].

Proof of Theorem 3(b). We can follow the proof of Theorem 1.8 of [4] (in the
case k > 4) verbatim, replacing K by J := k(k− 1). The role of Lemma 5.2 of [4]
is played by Theorem 4 in conjunction with [3, Lemma 8.6]. �

Proof of Theorem 3(a). Write J = k(k− 1) again. We assume that there is no
solution of

‖β1n
k
1 + · · ·+ βsn

k
s‖ 6 N−s/J+ε (3.4)

with 0 6 n1, . . . , ns 6 N , (n1, . . . , ns) 6= 0. Let

Si(m) =

N∑
n=1

e(mβin
k), L = [Ns/J−ε].

Following [4], Lemma 5.1, we find that there is a set B of natural numbers, B ⊂
[1, L], and there are positive numbers B1 > · · · > Bs such that

Bi < |Si(m)| 6 2Bi (i = 1, . . . , s)

and

B1 . . . Bs |B| � Ns−η.

(This may require a reordering of β1, . . . , βs.) We can now follow the proof of
Lemma 5.4 of [4], with K replaced by J , to obtain the inequality

|B| � LN−1+2kη|B|k/s.

Suppose first that s > k. Then

LN−1+2kη � |B|1−k/s � 1,

contrary to the definition of L.
Suppose now that s 6 k. Then

L
k
s−1 > |B| ks−1 � L−1N1−2kη,

L� N
s
k−2sη.

This is again contrary to the definition of L, and we conclude that there is a
solution of (3.4). �
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