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SMALL FRACTIONAL PARTS OF POLYNOMIALS
ROGER BAKER

Abstract: Let kK > 6. Using the recent result of Bourgain, Demeter, and Guth [5] on the
Vinogradov mean value, we obtain new bounds for small fractional parts of polynomials cn* +
-+ + a1n and additive forms B1n’f +-e 4 Bsn’;. Our results improve earlier theorems of Danicic
(1957), Cook (1972), Baker (1982, 2000), Vaughan and Wooley (2000), and Wooley (2013).
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1. Introduction

Let J, (V) be the Vinogradov mean value,

Js x(N) = /
[0,1)F

Here s and k are natural numbers. Recently Wooley [12] (for & = 3) and Bour-
gain, Demeter, and Guth [5] (for k& > 4) have established the main conjecture for
Js 1 (N), namely

N 2s
e(xknk + -4 an)| dry...dzg.
=1

n

Joh(N) g o NoT& o N2s—h(kH1D)/24e (1.1)

Here ¢ is an arbitrary positive number. In the present note we combine (1.1) with
techniques from two earlier publications [3, 4] to obtain new bounds of the form

: k — ke _ :
S N~HE k=28,9,...
L min | flagnt - gl < (=890 00
(with arbitrary real numbers aq, ..., ag, B1,..., s here and below);
min _[lagn® + ayn|| g N7PETE (k=6,7,...) (i)
1<ng<N

min ||Binf 4 - 4 Benk| « NTOskTE (k=6,7,...,s>1). (i)
0<n1 s SN
(n1,...,n5)#0

2010 Mathematics Subject Classification: primary: 11J54



132 Roger Baker

Theorem 1. Let k > 8. Then (i) holds with py = 1/2k(k —1).

Theorem 2.

(a) Let k > 6. Then (ii) holds with p, = 1/k(k —1).
(b) Let k > 6. For a certain positive absolute constant B, (ii) holds with p, =
1/k(2logk + Bloglogk).

Theorem 3.
(a) Let k> 6, 1<s<k(k—1). Then (iii) holds with o1 = s/k(k —1).
(b) Let
F(J,s,k)

i (5 n (2h—2)(s—k)+4k—4 s—h+J+1
- h h(s—k)+4h—4 J

J’ J+1<hgsm
Then (iii) holds for k > 6, s > k(k — 1) with
osk = F(k(k—1),s,k).

In particular,

min 181m8 + - - - + Ben®|| < N73/30+2(1 < 5 < 56).

0sng,..oms<
(n1,...,n5)#0

We note here the existing results in each case. Let K = 2F~1,

(i) This is known with pp = 1/K (2 < k < 8) (Baker [1]) and ug = 1/4k(k—2)
for k > 9 (Wooley [11]).

(ii) Only the special case a1 = 0 has been considered separately from (i). Here
the result is known with ps = 4/7 (Zaharescu [14]); pr = 1/K (3 < k <
6) (Danicic [7]), while there are the values p; = 1/57.23, ps = 1/69.66,
po = 1/82.08, p1o = 1/94.62, p11 = 1/107.27, ..., pao = 1/222.16, given by
Vaughan and Wooley [9], which are better than the present method gives
(in the monomial case) for k > 11. There is an absolute positive constant
C such that, for k£ > 6,

migN ”ank” e N—l/k(log k+C loglog k) (12)

1<n<
(Wooley [10]).
(iii) This is known with o5 = s/K for k > 2,1 < s < K (Cook [6]), and
osp=F(K,s,k) (k>4,s>K)
(Baker [4]). For k = 2,3 and s > K, see Baker [1, 4]; for example,
032 = 9/8 and 05,3 = 5/4

We refer the reader to Heath-Brown [8], Wooley [10], and Vaughan and
Wooley [9] for results of the kind: for irrational «, we have

Tk

||omk|| <n~

for infinitely many k. For example, one may take 7, = 1/9.028k for every k [10].
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2. Bounds for Weyl sums

We suppose throughout (as we may) that ¢ is sufficiently small and N is sufficiently
large in terms of k, £; we write n = 2.

Theorem 4. Let k > 3 and € > 0. Suppose that the Weyl sum

N
gr(a; N) := Z e(aknk +- 4 an)
n=1

satisfies
lgr(a; N)| > A > N1-1/2k(=1)+e, (2.1)
Then there exist integers q, ai,...,ar such that
1< g< NI (NATHE (2.2)
and
lgaj —aj S NTIHE(NATHY (1<) <k). (2.3)
If ag_1 = -+ = ag = 0, then the same conclusion holds with the weaker lower
bound.
lgk(as N)| > A > N1~V e (2.4)

in place of (2.1).

Proof. We initially proceed exactly as in the proof of [3, Theorem 4.3] with 6
replaced by 0 and ¢ replaced by (k — 1)/2. This is permissible since we have

Jsk—1(N) < N°*¢

with s = k(k —1)/2, in place of the bound for J ;_1(NN) used in [3]. We find that
for j = 2,...,k there are coprime pairs of integers ¢;, b; with

1< g; < (NA™HD(log N)©, g — bj| < NITE(NA~HkRKE=D

where we shall use C' for an unspecified positive constant depending on k. Let gg
be the l.c.m of go, ..., qx. We now follow the argument of [3, pp. 41-42| to obtain

qo < (log N)C(NA—HkE=D), (2.5)
It follows that, with a; = qob;/q;, we have
lgoo; — aj| <K NTIHE(NATH2RE=D (=9 k). (2.6)

We now appeal to Lemma 4.6 of [3], which we restate here for clarity as
Lemma 1.
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Lemma 1. Suppose that there are integers v, wa,...,vr Such that
ged(ryvg, ... vg) =1,

‘qu —’Uj| < lej/4]g4 (Jj=2,...,k), (2.7)

and that
lgr(c; N)| > H > r1=VENe, (2.8)

There is a natural number t < 2k? such that

tr < (NH HFNE, (2.9)
tlajr —v;| < (NHYFN—IFe (G=2,....k) (2.10)
ltray|| < (NH™H)NHFE, (2.11)

We now apply the lemma with A = H, r = god ™, v = a]—d’1 where d =
ged(qo, ag, - . ., ax). From (2.5) and (2.6),

|ajT_Uj| < N7j+2s(NA71)2k(k71) < N7j+1(4k4)71

since
(NAfl)Qk‘(kfl) < N17128

and r < N17%,

Ap~UHU/E N =28 5 NI-1/k(k—1)=14+1/k—Ce |

The inequalities (2.9)—(2.11) now yield the first assertion of the theorem with
q = tr. For the second assertion, since as,...,ar_1 are 0, we may take r = gy,
vg = by, vg = +-+ = vp_1 = 0, H = A in the application of Lemma 1. (The
inequality (2.4) suffices in the earlier part of the argument.) We know that

lrog, — ag| < N~FHE(NA~HRE=D

rather than the weaker bound (2.6). We may now complete the proof in the same
way as before. |

3. Proof of Theorems 1, 2, and 3
Proof of Theorem 1. Suppose there is no solution of

1<n<N lagn® + - 4+ an| < N~VI+E (3.1)

3

where J denotes 2k(k — 1). By [3, Theorem 2.2] we have

M
> lgr(ma; N)| > N/6,

m=1
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where M = [Nl/‘]_s]. There is an integer m, 1 < m < M such that
lgi(ma; N)| > A= N/6M.

We have
(NA )Zkk 1) < M2k(k 1) <<N1 2k(k— 1)5

By Theorem 4 there is a natural number g = tr such that
g < NS(NA Y <« MF, (3.2)
lgma,|| < (NATHENTITe <« MENTIE (j=1,...,k). (3.3)
Now let n = gm. Then
n < MR« NV o Nl-e
sl < mi= may | & MUFDU=DHEN =+  p-LN =

since MFHDI <« NEHDI/I=(ktl)e o Ni=2¢ Tt follows that n satisfies (3.1),
which is a contradiction. This completes the proof of Theorem 1. |

Proof of Theorem 2(a). We follow the above proof; this time, J denotes
k(k — 1). The second assertion of Theorem 4 provides an integer ¢ = tr satis-
fying (3.2), and (3.3) for the relevant values j = 1, k. Now we complete the proof
as before. |

Proof of Theorem 2(b). This is a simple consequence of Wooley’s bound (1.2).
Let v = v(k) have the property that

min _|lan®|| < N7

1<n<N
for N > 1 and real a. Let a = m’ b =1 — a. By Dirichlet’s theorem there is a
natural number ¢ < N® with
la 0 < NP

We now choose another natural number m < N® with

||ak€kmk|| < N~ — N—l//(2+l/).

Note that
|arfm| < N*b = N2a—1,
Since 2a — 1 = —%Ly, we have, with n = ¢m,
1<n<N, |axn® 4+ ain| < N~v/(F),

Taking v = 1/k(log k + C'log log k), we obtain
v 1
2+v  2klogk+2Cloglogk +1’
so that Theorem 2(b) holds with a suitable choice of B. [ |
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Example. If we take k = 20, v = 1/222.16 from [9], we obtain the value 1/445.32
for pag, which is not as good as Theorem 2(a). The proof of Theorem 2(b) is
relatively crude, so it may be possible to do better using ideas from [9], [10].

Proof of Theorem 3(b). We can follow the proof of Theorem 1.8 of [4] (in the
case k > 4) verbatim, replacing K by J := k(k — 1). The role of Lemma 5.2 of [4]
is played by Theorem 4 in conjunction with [3, Lemma 8.6]. |

Proof of Theorem 3(a). Write J = k(k — 1) again. We assume that there is no
solution of

|Binf + -+ Bonk|| < N3/ T+¢ (3.4)

with 0 < nq1,...,ns <N, (n1,...,n,) # 0. Let

N
Si(m) = Z e(mBink), L =[N3/~
n=1

Following [4], Lemma 5.1, we find that there is a set B of natural numbers, B C
[1, L], and there are positive numbers B; > --- > B, such that

and
By...Bs|B| > N°7".

(This may require a reordering of (i,...,08s.) We can now follow the proof of
Lemma 5.4 of [4], with K replaced by J, to obtain the inequality

|B] < LN~2kn|B|k/s,
Suppose first that s > k. Then
LN~ 5 |BIIRs 1,

contrary to the definition of L.
Suppose now that s < k. Then

Lg—l > |B k1 > L—lNl—an7

L> N&—2m,

This is again contrary to the definition of L, and we conclude that there is a
solution of (3.4). [ |
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