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CONGRUENCE PROPERTIES OF MULTIPLICATIVE
FUNCTIONS ON SUMSETS AND MONOCHROMATIC
SOLUTIONS OF LINEAR EQUATIONS

Christian Elsholtz, David S. Gunderson

Abstract: Letting Ω(n) denote the number of prime factors of n counted with multiplicity,
Rivat, Sárközy and Stewart (1999) proved a result regarding maximal cardinalities of sets A,B ⊂
{1, . . . , N} so that for every a ∈ A and b ∈ B, Ω(a+ b) is even.

This paper extends their work in several directions. The role of λ(n) = (−1)Ω(n) is gen-
eralized to all non-constant completely multiplicative functions f : N → {−1, 1}. Rather than
just Ω being even on A + B, we extend the result to all possible parities of Ω on A, B, and
A + B. Furthermore, we prove that many such pairs (A,B) exist. Results from Ramsey theory
and extremal graph theory are used.

Keywords: arithmetic Ramsey theory, multiplicative functions, extremal graph theory.

1. Introduction

Let Ω(n) denote the number of prime factors of n counted with multiplicity, and
let λ(n) = (−1)Ω(n) be the Liouville function. Patterns in the values of this
sequence have been extensively studied, for example because this function carries
information about primes. This function also has been suggested to be a candidate
for generating very good random sequences. In this paper we study more generally
what type of patterns one would expect for an arbitrary non-constant completely
multiplicative functions f : N→ {−1, 1}.

1.1. Notation

The integers are denoted by Z and the positive integers by N. An interval of
integers is denoted by [a, b] = {x ∈ Z : a 6 x 6 b}. A subset of positive inte-
gers is denoted by a script capital, for example, A ⊂ [1, N ]. For sets A and B,
define A + B = {a + b : a ∈ A, b ∈ B}. For a positive integer n, Ω(n) denotes
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the number of prime factors of n counted with multiplicity. All logarithms are
to the base e. Throughout this paper, c denotes a constant, with its meaning
varying depending on the context. A function f : N → Z is said to be completely
multiplicative if for all positive integers m and n, f(mn) = f(m)f(n).

For functions f and g : N→ N, write f = Θ(g) if both f = O(g) and g = O(f),
i.e., if there exist constants c and C so that for n sufficiently large, cg(n) 6 f(n) 6
Cg(n).

Extending the definition of the binomial coefficient
(
n
k

)
, for a positive real x

and non-negative integer k, let
(
x
k

)
= x(x−1)(x−2)...(x−k+1)

k! .

1.2. Results

Rivat, Sárközy and Stewart [20] showed that large sets of positive integers A,B
could be found so that every element in the sumset A+ B has an even number of
prime factors:

Theorem 1.1 (Rivat, Sarközy, Stewart). There exists a constant c > 1
log 3 so

that for positive integers N and ` with ` < c logN , there exist sets A,B ⊆ [1, N ]
with |A| > N

`3`
and |B| = ` such that for all a ∈ A and b ∈ B, Ω(a+ b) is even.

Observe that Theorem 1.1 implies, e.g., the following: if ` is a constant, then |A|
is of order of magnitudeN , and if ` is about log logN , then |A| ≈ N

(logN)log 3 log logN
.

As |B| = ` increases, |A| decreases, and one can work out that the cardinality of
A and B is about the same when ` = logN−2 log logN+O(1)

log 3 .
However, in order to have a nontrivial result, one can assume that

` 6 logN−log logN+O(1)
log 3 , since otherwise even N

`3`
< 1 is true. For larger `,

the theorem is easily true, for if A = {a} then one can choose the set B =
{b : Ω(a + b) is even} of density 1

2 . Here and in the results below we assume
that |B| = ` < c logN 6 |A| for an appropriate constant c.

Some further results of related interests and methods can be found, for example
in [13] and [7].

Our main results (Theorems 1.2, 1.3 and 1.4 below) generalize Theorem 1.1
in a number of ways, the first of which also contains a slight refinement of the
constants involved:

Theorem 1.2. Let f : N → {−1, 1} be a non-constant completely multiplicative
function. Let p0 be the least prime so that f(p0) = −1, and let `,m ∈ Z+. Let
η ∈ {−1, 1}. If N > p0(2`(m − 1) + 1), there exist A,B ⊂ [1, N ], with ` and m
elements, respectively, and for all a ∈ A, b ∈ B, f(a+ b) = η.

To state the next generalization, some notation is convenient. If f is a non-
constant completely multiplicative function, define

c−f =
1

2

1−
∏

p prime
f(p)=−1

(
1− 2

p+ 1

) ,
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and where c−f = 1
2 if the infinite product diverges, and define c+f = 1 − c−f . Note

that c−f , c
+
f ∈ (0, 1).

Theorem 1.3. Let f : N → {−1, 1} be a non-constant completely multiplicative
function and let (η1, η2, η3) ∈ {−1, 1}3. Define for i = 1, 2

ci =

{
c−f if ηi = −1

c+f if ηi = +1
,

and put c = min{c1, c2}.
For N > N(f) sufficiently large, and ` < c logN , there exists a constant

c′1 = c′1(f) ∈ (0, 1), and there exist A ⊂ [1, N ] and B ⊂ [1, N ], such that

(i) for all a ∈ A, b ∈ B, f(a) = η1, f(b) = η2, and f(a+ b) = η3;
(ii) |B| = `;
(iii) |A| > (c′1)`N .

Theorem 1.4. Let f, ηi and ci be as in the previous theorem. Let v be the least
integer such that

(i) f(n1) = f(n1 + 1) = 1,
(ii) f(n2) = 1, f(n2 + 1) = −1,
(iii) f(n3) = −1, f(n3 + 1) = 1

have a solution with ni 6 v. Let

m := |{j 6 N : f(j) = η1}| = (1 + o(1))c1N,

n := |{j 6 N : f(j) = η2}| = (1 + o(1))c2N,

(compare Lemma 3.4). Moreover, let

C3 =
1

138, 000(v + 1)3
N2.

Then the number of such pairs (A,B) with s = |A| and t = |B| and f(a+ b) = η3

is at least (
m

s

)( n

(ms )

(
C3/n
s

)
t

)
(1)

Moreover, assuming that s and t are both o(N3/4), then the expression above
can be simplified to:

1

(138, 000(v + 1)3c1c2)st

(
m

s

)(
n

t

)
.

Here the actual value of the constant 138, 000(v+1)3 can be somewhat improved
upon. The emphasis here is, that the constant depends on f in a “reasonable”,
say polynomial, way. Below we will discuss several approaches, where for example
a straightforward application of Szemerédi-type results would not allow to specify
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the constants in the same way. In the present form these constants show that the
size and number of the “good” sets essentially depend on the size of the smallest
prime with f(p) = −1, and (via c−f ) on the frequency of these primes.

The last expression means that in the case of a fixed s and t a positive pro-
portion of all choices of s out of m elements of and t out of n elements have the
requested property.

The proofs of Theorem 1.2 and of Theorems 1.3 and 1.4 are concluded in
Sections 5 and 8, respectively.

To see that Theorem 1.2 generalizes Theorem 1.1, first note that the Liouville
λ-function defined by λ(n) = (−1)Ω(n) is indeed one example of a non-constant
completely multiplicative function, and so Theorem 1.1 is included in the case
f = λ, where f(a + b) = η3 = 1 = (−1)Ω(a+b) since every Ω(a + b) is even.
Note also that in Theorems 1.3 and 1.4, the sets of integers A,B ⊆ [1, N ] can in
addition have the values of the function at each a and b prescribed. In Ramsey-
theoretic terms, not just the sums are monochromatic, but also all the a’s are
of a prescribed colour and all the b’s are of a prescribed colour, and for every
possible colour pattern, sets A,B exist that witness that pattern. Also, rather
than producing one pair A,B, many such pairs are guaranteed in Theorem 1.4.

Theorem 1.3 implies the following corollaries on triples (a, a+b
2 , b) in arithmetic

progression:

Corollary 1.5. Let f : N → {−1, 1} be a non-constant completely multiplicative
function and let (η1, η2, η3) ∈ {−1, 1}3. There exists N0 = N0(f) so that for every
N > N0, there exists a positive constant c2 = c2(f) and there exist A′,B′ ⊂ [1, 2N ]
such that

(i) for all a ∈ A′, b ∈ B′, f(a) = η1, f(b) = η2, and f(a+b
2 ) = η3;

(ii) |B′| = `;
(iii) |A′| > c`2N .

Proof. Let A and B be guaranteed by Theorem 1.3, and double all elements:
A′ = {2a : a ∈ A} and B′ = {2b : b ∈ B}. Then f(a′) = f(2a) = f(2)f(a),
f(b′) = f(2b) = f(2)f(b), and f(a

′+b′

2 ) = f( 2a+2b
2 ) = f(a+ b). Since Theorem 1.3

allows all possible sign combinations one also gets all possible sign combinations
with A′ and B′. In analogy to Theorem 1.3 there are many such copies. �

Theorem 1.3, applied in the range when A and B have about the same cardi-
nality, i.e., with ` of order of magnitude logN , gives:

Corollary 1.6. Let f be a non-constant multiplicative function and let (η1, η2, η3) ∈
{−1, 1}3. For any positive constant c3 < 1

| log c−| , and for sufficiently large N , there
exist A and B such that |A| = |B| > c3 logN and for all a ∈ A, b ∈ B, f(a) = η1,
f(b) = η2, and f(a+ b) = η3.

In the course of proving the results above, we also prove the following theorem,
which may be of independent interest since it appears to be the first such result
with explicit constants:
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Theorem 1.7. Let a, b, c be nonzero integers with a+b+c = 0. LetW = W (a, b, c)
denote the least integer such that for any 2-colouring χ : [1,W ] → {red, blue},
there exists a monochromatic solution of ax + by + cz = 0 in positive integers
x, y, z, i.e., χ(x) = χ(y) = χ(z). Then W (a, b, c) 6 32 max{|a|, |b|, |c|} + 1. For
N sufficiently large there are at least N2

4W 3 > N2

138,000|b|3 monochromatic solutions
of ax+ by + cz = 0, with x, y, z 6 N .

The remainder of this paper is organized as follows. Section 2 is about com-
pletely multiplicative functions; this section contains no new results but establishes
motivation and perspective. In Section 3, methods from analytic number theory
are used to find hypotheses under which a completely multiplicative function f
takes the values +1 and −1 each about half the time. Notation for bipartite
graphs is given in Section 4. A result by Thomason on bipartite Ramsey numbers
is used to prove Theorem 1.2 in Section 5. In Section 6, some arithmetic Ramsey
theory is reviewed that is needed to yield Θ(N2) many triples x1, x2, x3 ∈ [1, N ]
with x1 + x2 = x3 and f(xi) = ηi as required.

Some required extremal graph theory is given in Section 7, where an explicit
version of a result by Kövari, Sós, and Turán is given. Finally, in Section 8, the
proofs of Theorems 1.3 and 1.4 is assembled, where a bipartite graph is defined,
where edges correspond to the triples mentioned above, and this graph is shown
to have sufficiently many edges to yield our result. The proof of Corollary 1.6 is
also in Section 8.

2. Completely multiplicative functions

One reason why the function Ω is of interest is that the Liouville λ-function defined
by λ(n) = (−1)Ω(n) behaves in many aspects like a random sequence. Many
authors have investigated those patterns that occur in the values of λ. For example,
Chowla [4] conjectured that for any fixed k and any pattern (η1, . . . , ηk) ∈ {−1, 1}k
there are infinitely many n such that for 1 6 i 6 k, λ(n+ i) = ηi. Conditionally,
assuming Schinzel’s Hypothesis H (which generalizes the twin prime conjecture;
see [23]), Cassaigne, Ferenczi, Mauduit, Rivat and Sárközy [3] proved this any
fixed k. Unconditionally, Hildebrand [15] proved this for k = 3, but it seems very
difficult to extend Hildebrand’s result to k = 4, as problems related to the “parity
problem” in sieve theory appear to come in.

As a partial result in this direction Buttkewitz and Elsholtz [2] proved for
a completely multiplicative function f : N → {−1, 1}, with at least two primes
p1, p2 such that f(p1) = f(p2) = −1, and assuming that f 6= f±, where

f±(n) =

{
(±1)k, if n = 3km, m ≡ 1 mod 3

−(±1)k, if n = 3km, m ≡ 2 mod 3,

that each of the 16 possible sign patterns (±1,±1,±1,±1) occurs as values
along arithmetic progressions of size k = 4, namely as (f(n), f(n + d), f(n + 2d),
f(n+ 3d)), infinitely often.
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For a completely multiplicative function f : N→ {−1, 1} with f(2) = −1 and
for positive integers k and d, Cassaigne, Ferenczi, Mauduit, Rivat and Sárközy [3]
proved ∣∣∣∣∣∣

∑
n6N

f(n)f(n+ d) · · · f(n+ 2kd)

∣∣∣∣∣∣ 6 (1− ck)N +O(logN),

where

ck =

{
(1− 2

3(2k+1) ) if d is even,
(1− 2

3(k+1) ) if d is odd,

and the O-constant depends on k and d only.
Harman, Pintz and Wolke [14] proved that the sequence 〈λ(n)〉 contains many

sign changes, but Graham and Hensley [12] proved that there are not too many:
for all ε > 0 and all N > Nε,

−1

3
+O(

logN

N
) <

1

N

∑
n6N

λ(n)λ(n+ 1) < 1− 1

(logN)7+ε
.

Croot [5] showed for a completely multiplicative function f : N → {−1, 1}, if∑
n6N f(n) = o(N), then the sequence 〈f(n)〉 contains at least cN

exp(7(log logN)
√

logN)
sign changes.

Added in proof: Very recently Matomäki, Radziwiłł [17] and these authors
jointly with Tao [18] proved several breakthrough results which for example in-
cludes the following (Corollary 2 of [17]): For every completely multiplicative
function f : N → [−1, 1] such that f(n) < 0 for some n, and for every integer
h > 1, there exists δ(h) > 0 such that 1

N |
∑
n6N f(n)f(n + h)| 6 1 − δ(h) for all

sufficiently large N , which means in particular that there is a positive proportion
of sign changes.

3. Pseudorandom properties of completely multiplicative functions

The sequence 〈λ(n)〉 takes the value +1 asymptotically half the time (and so also
the value −1 half the time) and behaves in some respects like a random sequence.
In this section (Lemma 3.3) conditions on completely multiplicative functions f
are examined so that the sequence 〈f(n)〉 also takes the value +1 half the time,
and determine the density of the +1 or −1 values in the other cases.

For f : N → {1,−1}, define S+(f) = {n ∈ N : f(n) = 1} and S−(f) =
{n ∈ N : f(n) = −1}. When it causes no confusion, these two sets are referred to
as simply S+ and S− respectively. A set S of positive integers has upper density d,
if lim supN→∞

S∩[1,N ]
N = d. An elementary but critical observation is:

Lemma 3.1. Let f : N → {1,−1} be a non-constant completely multiplicative
function. Then both sets S+(f) and S−(f) have positive upper density.
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Proof. Let p0 denote the least integer (indeed a prime) with f(p0) = −1. At
least one of the sets S+ or S− must have positive upper density; say S+ has upper
density at least α. Then the map g : S+ → S− defined by g(n) = p0n shows that
S− has upper density at least α

p0
. Similarly, if S− has positive upper density it

follows that S+ has positive upper density. �

The densities of S+(f) and S−(f) are completely determined by the values of
f on prime numbers and can be stated explicitly. (For related results, even with
error terms see [6].) To prove the main lemma (Lemma 3.4) of this section about
the densities of S+ and S−, two results are needed, a theorem by Wirsing [29] (see
also, e.g., [25, p. 336]) and a lemma about “balanced” S+ and S−.

Theorem 3.2 (Wirsing). Let g be a real multiplicative function with values in
the real interval [−1, 1]. Then

lim
N→∞

1

N

∑
n6N

g(n) =
∏

p prime

(
1− 1

p

) ∞∑
ν=0

g(pν)

pν
,

where the infinite product is to be taken as zero when it is divergent.

Lemma 3.3. Let f : N → {1,−1} be a completely multiplicative function. The
following three conditions are equivalent.∑

p prime
f(p)=−1

1

p
diverges. (2)

∑
n6N

f(n) = o(N). (3)

∑
n6N
f(n)=1

1 ∼
∑
n6N

f(n)=−1

1 ∼ 1

2
N. (4)

Proof of Lemma 3.3. (2) ⇔ (3): If f(p) = 1, then(
1− 1

p

) ∞∑
ν=0

f(pν)

pν
=
p− 1

p

∞∑
ν=0

1

pν
= 1.

If f(p) = −1, then(
1− 1

p

) ∞∑
ν=0

f(pν)

pν
=
p− 1

p
· 1

1 + 1
p

= 1− 2

p+ 1
.

So ∏
p prime

(
1− 1

p

) ∞∑
ν=0

f(pν)

pν
=

∏
p prime
f(p)=−1

(
1− 2

p+ 1

)
,
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which tends to 0 if and only if
∑

p prime
f(p)=−1

1

p
diverges. By Wirsing’s theorem (The-

orem 3.2), this is equivalent to
∑
n6N f(n) = o(N).

(3) ⇒ (4): Since one of ∑
n6N
f(n)=1

1 or
∑
n6N

f(n)=−1

1

must be at least 1
2N , (3) implies that both must be asymptotically 1

2N .

(4) ⇒ (3): If ∑
n6N
f(n)=1

1 ∼ 1

2
N and

∑
n6N

f(n)=−1

1 ∼ 1

2
N,

then ∑
n6N

f(n) =
∑
n6N
f(n)=1

1−
∑
n6N

f(n)=−1

1 = o(N). �

Lemma 3.4. Let f : N → {1,−1} be a non-constant completely multiplicative
function, and put

c =
∏

p prime
f(p)=−1

(
1− 2

p+ 1

)
,

where the infinite product is to be taken as zero when it is divergent. The density
of S+ is

c+ := lim
N→∞

1

N

∑
n6N

f(n)=+1

1 =
1 + c

2
,

and the density of S− is

c− := lim
N→∞

1

N

∑
n6N

f(n)=−1

1 =
1− c

2
.

Proof. From the proof of Lemma 3.3, it follows that the mean value of the function
f is

lim
n→N

1

N

∑
n6N

f(n) = c =
∏

p prime
f(p)=−1

(
1− 2

p+ 1

)
.

With c+ + c− = 1 and c+ − c− = c the lemma follows. �

Note that the case of Lemma 3.4 where c+ = c− = 1
2 , (i.e., where c = 0), is

dealt with in Lemma 3.3 and is of independent interest. This case sheds light on
Croot’s condition on f cited above, and it is the most important case for the study
of pseudorandom numbers.
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4. Bipartite graphs

To prove Theorems 1.2 and 1.3, bipartite graphs are used. For a set X and positive
integer s, let [X]s = {S ⊆ X : |S| = s}. A graphG is a pair (V,E) = (V (G), E(G)),
where V is a set and E ⊆ [V ]2. An element of V is called a vertex, and an element
of E is called an edge. (Note, that under this definition, a graph has no loops nor
multiple edges.) A graph G is called bipartite if there is a partition of the vertices
V = V1 ∪ V2 so that all edges contain a vertex from each of V1 and V2, that is,
E(G) ⊆ {{x, y} : x ∈ V1, y ∈ V2}. The sets V1 and V2 are called partite sets, and
such a graph is often then denoted G = (V1 ∪ V2, E).

The graph Ka,b is the bipartite graph (V1∪V2, E), where |V1| = a, |V2| = b, and
E(G) = {{x, y} : x ∈ V1, y ∈ V2}. Note that under this definition, Ka,b = Kb,a.

If one needs to consider the partition V1 ∪ V2 as an ordered partition, call
such a bipartite graph oriented, and denote such a graph with an arrow above;
for example,

−−→
Ka,b is the complete bipartite graph whose first partite set with

|V1| = a vertices may be considered on the left. For two oriented bipartite graphs
−→
G = (V1 ∪ V2, E) and

−→
H = (W1 ∪W2, F ),

−→
H is a subgraph of

−→
G if and only if

W1 ⊆ V1, W2 ⊆ V2, and F ⊆ E.

5. Proof of Theorem 1.2

The proof relies on a result of Thomason [26] on bipartite Ramsey numbers. In
some cases the bound is sharp.

Theorem 5.1. Let b(s, t) denote the smallest integer r such that every colouring of
Kr,r with red and blue contains a red

−−→
Ks,t or a blue

−−→
Kt,s. Then b(s, t) 6 2s(t−1)+1

holds.

Proof of Theorem 1.2: Let f be a non-constant completely multiplicative func-
tion with p0 the least prime so that f(p0) = −1. Fix ` ∈ Z+, and η ∈ {−1, 1}.
Let N > p0(2`(m− 1) + 1).

Consider the (oriented) complete bipartite graph
−→
G on partite sets V1 and

V2 (and all |V1| · |V2| edges). Define the 2-colouring χ : E(G) → {−1, 1} by
χ({i, j}) = f(i + j). Let

−→
H = (X,Y, F ) be the subgraph of

−→
G induced by the

integers smaller than N/p0. Then each partite set, i.e. X and Y , of H has at least
2`(m− 1) + 1 vertices.

By Theorem 5.1, there exists a monochromatic copy of
−−−→
K`,m or

−−−→
Km,` in H. If

the edges of this copy of
−−−→
K`,m or

−−−→
Km,` have colour η then the proof is complete,

withX = A and Y = B, (or vice versa). If the edges of this copy ofKs,t have colour
−η (the wrong colour), then the sets formed by multiplying p0 in the respective
complements of X and Y produce the desired monochromatic subgraph.
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6. Results from arithmetic Ramsey theory

In the early 1950’s, Roth [21, 22] showed that for any ε > 0, for sufficiently large
n, any subset of [1, n] with density ε (i.e., with εn elements) contains a 3-term
arithmetic progression. This was later generalized to arbitrarily long arithmetic
progressions by Szemerédi [24]. In 1959, Varnavides [28] generalized Roth’s result
by showing that for ε > 0, there exists a constant C = C(ε) so that for sufficiently
large N , any subset of [1, N ] with density ε contains at least CN2 many 3-term
arithmetic progressions. Varnavides’ idea was simple: apply Roth’s theorem to
each of the Θ(N2) arithmetic progressions of length n in [1, N ]. The Varnavides
argument also applies with Roth’s theorem replaced by Szemerédi’s theorem on
k-term progressions.

One extension of the Varnavides idea is contained in the following special case
of a powerful result due to Frankl, Graham, and Rödl [9, Thm 2]:

Theorem 6.1 (Frankl, Graham, Rödl). Let a, b, c ∈ Z\{0} satisfy a+b+c = 0.
For all ε > 0, there are constants C = C(ε, a, b, c) > 0 and N0 = N0(ε, a, b, c) so
that for any N > N0, if S ⊆ [1, N ] satisfies |S| > εN , then

ax+ by + cz = 0 (5)

has at least CN2 solutions (x, y, z) in S.

Since the number of solutions to (5) with any two of x, y, z the same is only
linear in N , one can assume that x, y and z are pairwise distinct. With a = c = 1
and b = −2, Theorem 6.1 is the Varnavides result.

In applications, where one is only concerned that the constant C(ε, a, b, c) is
positive, the theorem above is perfectly suitable. But since the constants coming
from the above density result are very tiny, we decided to work out more reasonable
constants. For this we establish bounds for a variant of van der Waerden’s result,
which may be of independent interest.

Instead of using a density result, one can apply the same Varnavides technique
with a Ramsey-type (colouring) result. (This idea is also outlined in [9, bottom of
p. 247].)

Recall van der Waerden’s theorem:

Theorem 6.2 (van der Waerden, [27]). For all positive integers k and r, there
exists an integerW (k; r) such that for all N >W (k; r), if [1, N ] = C1∪C2∪· · ·∪Cr,
then some Ci contains an arithmetic progression of length k.

The required variant below uses only two colours, but for “weighted arithmetic
progressions”, i.e., solutions of the homogeneous linear equation ax+ by+ cz = 0,
where a+ b+ c = 0.

While the constant involved is not the best constant one may achieve, it is (to
the best of our knowledge) the first explicit result of its kind. We tried to achieve
a reasonable constant, while keeping the presentation simple. For any particular
set of parameters (a, b, c) one can certainly work out an improvement.
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Moreover, even in the case of arithmetic progressions, (a = c = 1, b = −2),
the exact constant is not known. At the Erdős conference in Budapest 1999,
Graham offered $100 for the solution of the following open problem (see [19]):
it is expected that there is a positive constant c′ so that for any 2-colouring of
[1, N ] the minimum number f(N) of monochromatic arithmetic progressions of
length 3 is f(N) = (c′ + o(1))N2. It was thought that possibly c′ = 1

16 , coming
from random colourings; however, Parrilo, Robertson and Paracino [19] proved
that the minimum number of monochromatic arithmetic progressions is between
117+o(1)

2192 N2 and 1675+o(1)
32786 N2.

Proof of Theorem 1.7. Without loss of generality, suppose that b < 0 < a 6 c,
so max{|a|, |b|, |c|} = |b|.

Let us assume there is no monochromatic solution (x, y, z) of equation (5).
Observe that for solutions of (5) generally z = −ax−by

c , and if y = x+ tc (say),
then z = −ax−bx−btc

c = x− tb, since a+ b+ c = 0.
Claim: There is a triple (x, y, z) being a solution of equation (5) with χ(x) =

χ(y) 6= χ(z).
Case 1: If χ(x) = χ(x+ c), then we set t = 1, y = x+ c. Since by assumption

there is no monochromatic solution (x, y, z) of equation (5), z = x − b is of the
other colour, which proves the claim.

Case 2: So we can assume that χ(x) 6= χ(x+ c). If χ(x) = χ(x+ 2c), then we
set t = 2, y = x+ 2c. As above z = x− 2b is of the other colour, and we are done.

Case 3: Here we can assume that χ(x) 6= χ(x + c) and χ(x) 6= χ(x + 2c),
so that χ(x + c) = χ(x + 2c). We then study the triple (x + c, y = x + 2c, z =
−a(x+c)−b(x+2c)

c = x− a− 2b), which is a solution of equation (5). Again, as there
is no such monochromatic solution, z is of the other colour and we are done.

To summarize these three cases: One of the triples (x, x + c, x − b), (x, x +
2c, x− 2b), (x+ c, x+ 2c, x− a− 2b) is of the required type, and for later reference
we write this as

(x+ ε1c, x+ ε2c, x− aε1 − bε2),

where εi ∈ {0, 1, 2}. In other words, each interval [x, x + 2|b|] of length 2|b| + 1
contains a pattern of the required type.

There are six different colourings in total, two coming from each of the cases
χ(x) = χ(x + c) 6= χ(x − b), χ(x) = χ(x + 2c) 6= χ(x − 2b) and χ(x + c) =
χ(x + 2c) 6= χ(x − a − 2b). Hence, if there are seven different blocks of length
2|b| + 1, then there must be two blocks with exactly the same colour pattern.
We will now study intervals of length 2|b| + 1 with the difference between these
intervals being a suitable multiple of c. In order to avoid overlap, observe that
2|b|+ 1 = 2(a+ c) + 1 6 5c.

Examine the seven triples

(x+ ε1c+mc, x+ ε2c+mc, x− aε1 − bε2 +mc),



274 Christian Elsholtz, David S. Gunderson

where m ∈ {0, 5, 10, 15, 20, 25, 30}. Assume that for m1 and m2 (say) the colour
pattern of

(x1, y1, z1) = (x+ ε3c+m1c, x+ ε4c+m1c, x− aε3 − bε4 +m1c),

and

(x2, y2, z2) = (x+ ε3c+m2c, x+ ε4c+m2c, x− aε3 − bε4 +m2c)

is the same. The triple

(x1, y2, z
′) = (x+ ε3c+m1c, x+ ε4c+m2c, z

′)

with z′ = x− aε3 − bε4 − am1 − bm2 shows that z′ cannot be of the first colour,
and the triple

(z1, z2, z
′) = (x− aε3 − bε4 +m1c, x− aε3 − bε4 +m2c, z

′)

with the same z′ = x−aε3−bε4−am1−bm2 shows that z′ cannot be of the second
colour, either. This is a contradiction to the assumption there is no monochromatic
solution of equation (5).

Moreover, the total length of the interval size is at most 1 + 2|b| + 30|b| =
32|b|+1, finishing the proof of the first conclusion in the statement of the theorem.

To prove the last statement, let W = W (a, b, c). For 1 6 e < N
2 and N

4W <

f < N
2W , there are (1 + o(1)) N

2

8W arithmetic progressions Ae,f = {e+ ft : 0 6 t <
W}. By definition ofW , each progression Ae,f contains a monochromatic solution
(x, y, z) of ax+ by + cz = 0.

On the other hand, each solution (x, y, z) occurs in at most
(
W
2

)
different

progressions. To see this, let x = e+ ft1, y = e+ ft2, z = e+ ft3. Given x and y,
there are at most

(
W
2

)
different choices of t1 and t2, and then e, f and t3 are also

determined. So, there are at least (1+o(1)) N2

8W(W2 )
= ( 1

4 +o(1)) N
2

W 3 monochromatic

solutions. With W 6 32|b|+ 1, the corollary follows. �

From van der Waerden’s Theorem one can prove the following lemma.

Lemma 6.3. Let f : N → {−1, 1} be a non-constant completely multiplicative
function. Define S+ = {n : f(n) = 1} and S− = {n : f(n) = −1}. For each
positive integer k, there exists Nk and c = c(f, k) so that for any N > Nk, each
of S+ ∩ [1, N ] and S− ∩ [1, N ] contains at least cN2 distinct k-term arithmetic
progressions.

Proof sketch. By van der Waerden’s theorem with r = 2 colours, there is an
arbitrarily long arithmetic progression in (at least) one of the two sets S+ or S−.
Multiplying the arithmetic progression with any t satisfying f(t) = −1 allows
one to swap to the other “colour class”. The method of Varnavides then gives an
N so that at least c′N2 k-term arithmetic progressions in one of the sets S− ∩
[1, N ] or S+ ∩ [1, N ], and after multiplication with t, one also finds c′′N2 many
progressions in the other set. (One can choose t = p0 to be the least prime with
f(p0) = −1.) �
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7. Some extremal graph theory

Let s 6 m and t 6 n be positive integers, and let V1 and V2 be vertex sets with
|V1| = m and |V2| = n. Define z(m,n; s, t) to be the minimum number z so that
any oriented bipartite graph

−→
G = (V1, V2, E) with |E| = z edges contains a copy

of
−−→
Ks,t. The following version of a theorem by Kővári, Sós and Turán [16] is well

known (see, e.g., [1, Thm 10, p. 113]) and follows from standard double counting
arguments, usually using Jensen’s inequality for convex functions (the function
defined by g(x) =

(
x
t

)
is convex; e.g., see [1, p. 112]).

Theorem 7.1. z(m,n, s, t) 6 (t− 1)1/s(m− s+ 1)n1−1/s + (s− 1)n+ 1.

Below is a result that does not only guarantees one Ks,t, but many. This is
proved by techniques similar to those used for Theorem 7.1 and those in [8].

Theorem 7.2. Let
−→
G = (V1, V2, E) be an oriented bipartite graph with |V1| = m

and |V2| = n, and let s 6 m and t 6 n. Then G contains at least(
m

s

)( n

(ms )

(|E|/n
s

)
t

)
(6)

copies of
−−→
Ks,t.

Proof. For a set S of vertices, let deg(S) denote the number of vertices adjacent
to every vertex in S. The number of copies of

−−→
Ks,t in G is:

∑
S∈[V1]s

(
deg(S)

t

)
>

(
m

s

)(
avg deg(S)

t

)
(by convexity)

=

(
m

s

)(∑S∈[V1]s deg(S)

(ms )
t

)

=

(
m

s

)( 1

(ms )

∑
x∈V2

(deg(x)
s

)
t

)

>

(
m

s

)( 1

(ms )
n
(avgV2deg(x)

s

)
t

)
(by convexity)

=

(
m

s

)( n

(ms )

(|E|/n
s

)
t

)
. �

Note that only when n

(ms )

(|E|/n
s

)
> t, does Theorem 7.2 guarantee at least one

copy of
−−→
Ks,t.

The following simple lemma is a consequence of Stirling’s formula, which states
as w →∞, if k = o(w3/4), then

(
w
k

)
∼ 1√

2πk

(
ew
k

)k,
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Lemma 7.3. As w →∞, if k = o(w3/4), then for any β ∈ (0, 1),(
βw

k

)
= (1 + o(1))βk

(
w

k

)
.

Using Lemma 7.3 twice helps to approximate the expression in Theorem 7.2 in
certain cases:

Corollary 7.4. Let m,n → ∞, and let s = o(m3/4), t = o(n3/4). For any fixed
β ∈ (0, 1), if

−→
G = (V1, V2, E) is an oriented bipartite graph with |V1| = m, |V2| = n,

and |E| = βmn, the number of copies of
−−→
Ks,t in G is (1 + o(1))βst

(
m
s

)(
n
t

)
.

Proof. Let
−→
G satisfy the hypothesis of the theorem. By Theorem 7.2, the number

of copies of
−−→
Ks,t in G is(

m

s

)( n

(ms )

(|E|/n
s

)
t

)
=

(
m

s

)( n

(ms )

(
βm
s

)
t

)
=

(
m

s

)( n

(ms )
(1 + o(1))βs

(
m
s

)
t

)
=

(
m

s

)(
(1 + o(1))nβs

t

)
= (1 + o(1))βst

(
m

s

)(
n

t

)
. �

So Corollary 7.4 says that a bipartite graph containing a positive fraction of
all possible edges also contains a positive fraction of all possible Ks,t -subgraphs
(when s and t are not too large).

8. Proof of Theorem 1.3

The next simple lemma is a tool that can be used to assist in calculating constants
from Lemma 8.4 (below).

Lemma 8.1. Let f : N → {−1, 1} be a non-constant completely multiplicative
function, and let p0 be the least prime with f(p0) = −1. Then there exists

(a) an integer n 6 9 such that f(n) = f(n+ 1) = 1;
(b) an integer n = p0 − 1 such that f(n) = 1, f(n+ 1) = f(p0) = −1;
(c) an integer n 6 bp0 + 2

√
p0c such that f(n) = −1, f(n+ 1) = 1.

Proof. (a) Since f is completely multiplicative, f(1) = f(4) = f(9) = 1. If
f(2) = 1 or f(5) = 1, we are done. If f(2) = f(5) = −1, then f(10) = 1 and we
are also done.

(b) This follows since p0 is the least prime and therefore the least integer t with
f(t) = −1.
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(c) If p0 = 2, then either n = 2 or n = 3 satisfy the condition, since f(4) = 1.
Otherwise, put n = p0. Here n + 1 is composed of primes with f(p) = 1 so that
f(n+ 1) = 1.

Let t2 denote the least integer square larger than p0. Since f(p0) = −1 and
f(t2) = 1, there must be an n ∈ [p0, t

2 − 1] so that f(n) = −1 and f(n + 1) = 1.
Since

t2 < (
√
p0 + 1)2 = p0 + 2

√
p0 + 1,

then n 6 t2 − 1 < p0 + 2
√
p0. �

Lemma 8.2. For any positive integer v, all integer solutions of the equation

vx1 − (v + 1)x2 + x3 = 0 (7)

are of the form (x1, x2, x3) = (x, x + d, x + (v + 1)d) and each such triple is
a solution.

Proof. Given any solution (x1, x2, x3), define x = x1, d = x2 − x1 and check that
x3 = −vx1 + (v + 1)x2 = −vx+ (v + 1)(x+ d) = x+ (v + 1)d. �

Lemma 8.3. Let f : N → {−1, 1} be a non-constant completely multiplicative
function and let v ∈ Z. For each i ∈ {−1, 1}, there exists a constant c1 = c1(f, v, i)
so that for N sufficiently large, there are at least c1N2 solutions (x1, x2, x3) ∈
[1, N ]3 (with the xi’s distinct) to equation (7) so that f(x1) = f(x2) = f(x3) = i.

So Lemma 8.3 says that both S−(f) and S+(f) contain on the order of N2

solutions (a positive fraction of all solutions) to (7). There are two easy proofs
of Lemma 8.3 (the second of which serves only to show that the density result in
Theorem 6.1 is not really necessary).

First proof of Lemma 8.3. By Lemma 3.1, both S− and S+ are dense in N ,
and since the coefficients of (7) sum to v− (v+ 1) + 1 = 0, Theorem 6.1 concludes
the proof. �

Second proof of 8.3. By Lemma 6.3 with k = v + 2, there are Θ(N2) many
(v + 2)-term arithmetic progressions in each of S− and S+, and by Lemma 8.2,
every solution to (7) consists of the first two terms and the last term of any such
progression. �

Third proof of Lemma 8.3. Apply Theorem 1.7. �

Lemma 8.4. Let f be a non-constant completely multiplicative function and let
(η1, η2, η3) ∈ {−1, 1}3. There exists a positive integer v (depending only on f and
the ηi’s) and a function gv : (Z+)2 → (Z+)2 so that for each solution (x, x+d, x+
(v + 1)d) to (7), gv(x, d) = (a, b) satisfies

f(a) = η1, f(b) = η2, f(a+ b) = η3. (8)

Furthermore, gv is bijective on integer solutions to (7).



278 Christian Elsholtz, David S. Gunderson

Proof. Consider all eight possible choices of η1, η2, η3. If for some fixed choice of
η1, η2, η3, (a, b, a+ b) is a solution to (8), and f(p) = −1, then

f(pa) = −η1, f(pb) = −η2, f(pa+ pb) = −η3,

which means that solutions to (8) need be found only when (η1, η2, η3) falls under
one of four cases:

(a) (1, 1, 1) or (−1,−1,−1),
(b) (1, 1,−1) or (−1,−1, 1),
(c) (1,−1, 1) or (−1, 1,−1), and
(d) (1,−1,−1) or (−1, 1, 1).

Case (a): Let v be the least integer with f(v) = f(v+1) = 1. For each solution
(x, x+d, x+(v+1)d) ∈ (S+)3 to (7), put a = vx, and b = x+(v+1)d; then a+b =
(v+1)(x+d), f(a) = f(v)f(x) = 1, f(b) = 1, and f(a+b) = f(v+1)f(x+d) = 1.

Case (b): Let v be the least integer with f(v) = 1, f(v + 1) = −1. For each
solution (x, x+ d, x+ (v+ 1)d) ∈ (S+)3 to (7), put a = vx, b = x+ (v+ 1)d; then
a+ b = (v + 1)(x+ d), f(a) = 1, f(b) = 1, and f(a+ b) = f(v + 1)f(x+ d) = −1.

Case (c): Let v be the least integer with f(v) = −1, f(v + 1) = 1. For each
solution (x, x+ d, x+ (v+ 1)d) ∈ (S+)3 to (7), put a = x+ (v+ 1)d, b = vx; then
a+ b = (v + 1)(x+ d), f(a) = 1, f(b) = −1, and f(a+ b) = 1.

Case (d): Interchange a and b from Case (c): Let v be the least integer with
f(v) = −1, f(v+ 1) = 1. For each solution (x, x+ d, x+ (v+ 1)d) ∈ (S+)3 to (7),
put a = vx, b = x + (v + 1)d; then a + b = (v + 1)(x + d), f(a) = −1, f(b) = 1,
and f(a+ b) = 1.

Note that by Lemma 8.1, in all four cases v 6 max(9, p0 + 2
√
p0).

Summarizing, for each fixed v, the function gv that bijectively maps solutions
of (7) to triples (a, b, a+ b) is given by, in cases (a), (b), and (d),

gv((x, d)) = (vx, x+ (v + 1)d, (v + 1)(x+ d)))

or in case (c),

gv((x, d)) = (x+ (v + 1)d, vx, (v + 1)(x+ d)). �

Lemmas 8.3 and 8.4 now immediately give:

Corollary 8.5. If f is a non-constant completely multiplicative function, for each
(η1, η2, η3) ∈ {−1, 1}3, there exists a constant c3 = c3(f, η1, η2, η3) so that for
sufficiently large N there are at least c3N2 solutions to (8).

Here c3 = 1
138,000(v+1)3 is an admissible value, in view of |b| = v + 1 and

Theorem 1.7.
Finally, we come to the proof of the main theorem. Having worked out all the

necessary bits separately, the proof is short.
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Proof of Theorem 1.3. For each of the eight cases (η1, η2, η3) ∈ {−1, 1}3 define
a bipartite graph G = (V1 ∪ V2, E) as follows:

V1 = {i ∈ [1, N ] : f(i) = η1},
V2 = {j ∈ [1, N ] : f(j) = η2},
E = {(i, j) ∈ V1 × V2 : f(i+ j) = η3}.

By Lemma 3.1, in each of the eight cases, |V1| > c1N, |V2| > c2N and by Corollary
8.5, |E| > c3N

2. Note that the constants depend on f , and in particular, on the
size of the least prime p0 with f(p0) = −1.

Sets of integers A,B ⊆ [1, N ] with f(a) = η1, f(b) = η2, and f(a + b) = η3

(for all a ∈ A, b ∈ B), correspond to a complete bipartite subgraph Ks,t of G with
s = |A|, t = |B|. By Corollary 7.4, with |E| > c3

c1c2
|V1| · |V2|, G contains at least

(c4 + o(1))st
(
m
s

)(
n
t

)
copies of Ks,t. So with c4 = c3

c1c2
the theorem follows. �
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