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ON SIDON SETS WHICH ARE ASYMPTOTIC BASES
OF ORDER 4

SANDOR Z. Kiss, ESzZTER ROzZGONYI, CSABA SANDOR

Abstract: Let h > 2 be an integer. We say that a set A of positive integers is an asymptotic
basis of order h if every large enough positive integer can be represented as the sum of h terms
from A. A set of positive integers A is called a Sidon set if all the sums a+b with a,b € A, a < b
are distinct. In this paper we prove the existence of Sidon set A which is an asymptotic basis of
order 4 by using probabilistic methods.
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1. Introduction

Let N denote the set of nonnegative integers. Let A = {a1,a2,...} (a1 < a2 <...)
be an infinite sequence of positive integers. For h > 2 integer let Rj,(A,n) denote
the number of solutions of the equation

a;, +a;,+--+a;, =n, a;, € A,...,a;, €A, a;, <a, <... <ayy, (1)

where n € N. A (finite or infinite) set A of positive integers is said to be a Sidon
set if all the sums a + b with a,b € A, a < b are distinct. In other words A is
a Sidon set if for every n positive integer Ro(A,n) < 1. We say a set A C N is
an asymptotic basis of order h, if every large enough positive integer n can be
represented as the sum of h terms from A, i.e., if there exists a positive integer
ng such that R,(A,n) > 0 for n > ng. In [3] and [4] P. Erd6s, A. Sarkozy and
V.T. Sés asked if there exists a Sidon set which is an asymptotic basis of order 3.
The problem was also appears in [10] (with a typo in it: order 2 is written instead
of order 3). It is easy to see [5] that a Sidon set cannot be an asymptotic basis
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of order 2. A few years ago J. M. Deshouillers and A. Plagne in [2] constructed
a Sidon set which is an asymptotic basis of order at most 7. In [8] S. Kiss proved
the existence of a Sidon set which is an asymptotic basis of order 5. In this paper
we will improve this result by proving that there exists an asymptotic basis of
order 4 which is a Sidon set by using probabilistic methods.

Theorem 1. There exists an asymptotic basis of order 4 which is a Sidon set.

Note that at the same time Javier Cilleruelo [1] has proved a slightly stronger
result namely the existence of a Sidon set which is an asymptotic basis of order 3+-¢.
He obtained his result independently from our work by using other probabilistic
methods. Before we prove the above theorem, we give a short survey of the
probabilistic method we are working with.

2. Probabilistic tools

The proof of Theorem 1 is based on the probabilistic method due to Erd&és and
Rényi. There is an excellent summary of this method in the Halberstam - Roth
book [6]. We use the notation and terminology of this book. First we give a survey
of the probabilistic tools and notations which we use in the proof of Theorem 1.
Let Q denote the set of strictly increasing sequences of positive integers. In this
paper we denote the probability of an event E by P(E) and the expectation of
a random variable £ by E(¢).

Lemma 1. Let 01,605,603, ... be real numbers satisfying
0<, <1  (n=12,..).

Then there exists a probability space (0, X, P) with the following two properties:

(i) For every n € N, the event £™ = {A: A€ Q,n € A} is measurable, and
P(EM) = 0,.
(ii) The events EV, £ ... are independent.

See Theorem 13. in [6], p. 142. We denote the characteristic function of the
event £ by t(a,n) OF We can say the the boolean variable (4 ,,) means that:

1, if ned
t(,A,n):tn:

0, if n¢ A
Furthermore, for some A = {aj,as, ...} € Q we denote the number of solutions
of aj, +a;, +...+a;, =nwitha;,,...,a;, € A, 1 <a; <a;,...<a; <nby

rr(A,n).
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Let
rn(A,n) = Y tdantda - Hdan) (2)

(ail 1 Qig ey aih,)
1<ai, <...<aq, <n
ai1+ai2+...+a,~h=n
Let 7} (A,n) denote the number of those representations of n in the form (1) in
which there are at least two equal terms. Thus we have

Ry(A,n) =rp(A,n) +r; (A, n). 3)

It is easy to see from (2) that r, (A, n) is the sum of random variables. However,
for h > 2 these variables are not independent because the same #( 4 ,,) may appear
in many terms. To overcome this problem we need deeper probabilistic tools.
Our proof is based on a method of J. H. Kim and V. H. Vu. We give a short
survey of this method. Interested reader can find more details in [7], [11], [12],
[13]. Assume that ty,ts,...,t, are independent binary (i.e., all ¢;’s are in {0,1})
random variables. Consider a polynomial Y = Y'(¢1,...t,) in t1,to,...,t, with
degree k (where the degree of this polynomial equals the maximum of the sum
of the exponents of the monomials). We say a polynomial Y is totally positive
if it can be written in the form Y = ). e;I';, where the e;’s are positive and
I'; is a product of some ¢;’s. Furthermore, Y is regular if all of its coefficients
are between zero and one. We also say Y is simplified, if all of its monomials
are square-free (i.e. do not contain any factor of ¢?), and homogeneous if all
the monomials have the same degree. Thus for instance a boolean polynomial is
automatically regular and simplified, though not necessarily homogeneous. Given
any multi-index a = (o,...,a,) € N, we define the partial derivative 0%(Y")

of YV as 5\ 9\
oY) = (atl) <atn) Y(t1,...tn),

and denote the order of « as |a| = a3 + -+ + a,. For any order d > 0, we denote
Eq(Y) = max,:|q|=qE (02Y"). Thus for instance Eo(Y) = E(Y) and E4(Y) = 0if d
exceeds the degree of Y. We also define E54(Y) = maxg>qEq (V). The following
result is due to Kim and Vu.

Lemma 2 (J.H. Kim and V.H. Vu). Let k > 1 and Y = Y (t1,...,t,) be
a totally positive polynomial of n independent boolean variables ty,...,t,. Then
there exists a constant Cy > 0 depending only on k (which is the degree of the
polynomial) such that

P ('Y - E(Y)| 2 Ck;Ak_% E)o(Y)E21(Y)> = Ok (6_%+(k_1) logn)

for all A > 0.

See [7] for the proof. Informally this theorem asserts that when the derivatives
of Y are smaller on average than Y itself, and the degree of Y is small, then Y is
concentrated around its mean.
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Finally we need the Borel - Cantelli lemma;:

Lemma 3 (Borel-Cantelli). Let X1, Xo,... be a sequence of events in a proba-
bility space. If

—+oo
Y P(X;) < o0,
j=1

then with probability 1, at most a finite number of the events X; can occur.

See in [6], p. 135.

3. Proof of Theorem 1

Define the sequence 6,, in Lemma 1 by

0,=n"7, (4)

e

that is P({A: A€ Q,ne A}) =n~7, for n € N. For a given set A € Q let the
set B be the following

B={b:be A 3dd,d",d" e A:b+ad =d" +d",d,d" a" <b}. (5)

Thus A\ B is a Sidon set. We will prove that A\ B is an asymptotic basis of
order 4 with probability 1. This means that there exists integer Ny such that with
probability 1, r4(A\ B,n) > 0 for n > Ny. Since

ra(AN\ Byn) = ry(A,n) — (ra(A,n) —re(A\ B,n)),

if we get a lower bound for 74(A,n) and an upper bound for (r4(A,n)—
r4(A\ B,n)) then we will have a lower bound for r4(A\ B,n). So formally we will
show that there are positive constants C; and Nj such that with probability 1,

rq(A,n) > Cln%, n > Ny, (6)
and there are positive constants Co and N5 such that with probability 1,
ra(A,n) —ra(A\ B,n) < Cy (logn)®®,  n > Ny. (7)

In order to prove (6) and (7) we use Lemma 2.
We need the following Lemma (see in [9], p. 134., Lemma 5.3). For the sake
of completeness we sketch the proof.

Lemma 4. Let N > 3, o, > —1. Then

N1
Z n*(N —n)? =0, (N*TAHL)

n=1
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Proof.
N-1
n®(N —n)? = n®(N —n)? + Z n®(N —n)?
n=1 1<n< F<n<N

In the first step we prove (6) by using Lemma 2. To do this, we need the
following Lemma.

Lemma 5. Assume that all of the variables y;’s are different and the t,,’s are
random boolean variables.

1. For every nonzero integer ay and for every integer m
E g ty, | =04, (1).
Y1
aiyi=m
2. For every nonzero integers a1, as and for every integer m

E Z tyltyz = Oﬂl,az (1) .

(y1,y2)
ai1yi+azyz=m

3. For every monzero integers aj,as,as and for every integer m

E Z by tystys | = Oa1702,03 (1) .

(Y1,92,Y3)
ai1yitazyz2tazys=m
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Proof.

5
m) T _ if m +
| Y | ={(B) =0wm i ez
m 0 it gzt
aiyi=m al

(2) We distinguish two different cases.

Case 1: Assume, that a; > 0, ag > 0, thus m > 0. (Since y1, yo, a1, as are
nonnegative, therefore m can not be negative, at this case.) Thus applying
Lemma 4 we get

o

ar -
— a1
E Z tyltyQ al,az( yl )
Y

a2
(y1,92) 1=1
ai1yitazyz=m

— _s _3 s _
Oa1,a2 Z(alyl) 7(m_a1y1) Y a1,a2 Y 7

S

o

y=1

a17a2

«I\w
—

a17a2 (1

Case 2: Now assume that a1 > 0, ao < 0 and m > 0. (If m is negative,
then consider the equation —aqy; — asy2 = m.) We apply Lemma 4 again.

\z\m

5
—agy2\ 7
E Z ty1ty2 = 111,112 (Z y2 ( a1 > )

(y1,y2) y2=1
airyitazyz=m

_ 10
= al,az <Zy 7> a17a2(1)'

y=1

The other cases can be deduced from the aboves. So we leave the details to
the reader. (The case a; < 0, as > 0, either m > 0 or m < 0 is almost the
same like Case 2, we have to change the role of a; and as. The case a; < 0,
az < 0, thus m < 0 is almost the same like Case 1, we have to get —a; and
—as instead of a; and as.)
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(3) We distinguish three different cases.
Case 1: Assume, that a; > 0, as > 0, ag > 0 thus m > 0. (Since y1, Y2, ¥s,
ai, as, ag are nonnegative, therefore m can not be negative, at this case.)
Thus applying Lemma 4 we get

E Z tyl ty2 tys

(y1,y2,y3)
ai1yitazyz+azys=m

m= “1111

ar _5
-5 -5 (m—aiy1 —agy2\ 7
“Onnn | St 3w (M)

y2=1

m— al Y1

- Oal,a2¢a3 Z yl i Z a2y2)_

y1=1 y2=1

_5
7

<o

(m —a1y1 — a2y2)

§ _3 _
= Oal1a2-,a3 E (I - CLlyl) = Oa11a21a‘3 (m

y1=1

= Oa1,a2>a3 (1)

=

)

Case 2: Now assume that a; > 0, as > 0, ag < 0 and m > 0. Thus applying
Lemma 4 again we get

(y1,Y2,¥3)
ai1yi1tazyztazys=m

o

= Oal ,a2,a3

o 5 A ~5 (m—asys —a1y1\
7 T —_— 7
St 3 (me )

(m —asys —a1y1)”

\l\OU

\
)
S]
=
0
N
)

w
Y e —~
(e

<
@
o
Nkl
[
<
[wo
—~
Q
=
<
=
N
|
o
o

) s L o
= 0111,(127(13 Z Y3 Y (m - a3y3) 7) == a1 ,a2,a3 <Zy >
y=1
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Case 3: Now assume that a; > 0, as > 0, a3 < 0 and m < 0. By Lemma 4
we get

(y1,Y2,Y3)
a1y1tazyz2+azys=m

m—QSyS -
s 5 ‘1 5 -7
-0 -5 -2 (M —azys —a
— Yai,az,a3 E Ys Y1 a—
; 2
w241 =l
m—agys
o0 aq
_% _5 7%
= 001,02#13 Ys E (alyl) 7 (m — a3ys3 — alyl)
ya=|3% y1=1
oo oo
,% _3 8
= Oa1>a2,a3 E Ys (m - a3y3) 7 = Oal,a27a3 g y 7
ys=|z% ] y=1

= Oal,a2,a3 (1) .

The other cases can be deduced from the aboves again. We leave the details
to the reader. (The case a; > 0, as < 0, ag < 0, either m > 0 or m < 0 is
almost the same as Case 2: and as Case 3. The case a; <0, as <0, a3 <0
thus m < 0 is almost the same as Case 1. In both we have to get —a1, —as
and —ag instead of a1, as and as.) [ |

Now we are ready to prove (6). In view of (2) define Y by

Y = T4(A7 n) = Z tﬂﬂltﬂiztwatmr

(z1,%2,73,24)
Iz < <xg
r1tr2tx3tra=n

We want to use Lemma 2. To do this we have to estimate the expectation of the

variable Y and its partial derivatives. Let & = (aq,...,a,) be a multi-index. In
the first step we prove that for « = 0

E (02Y) = E(Y) = O(n7), (8)

and for a # 0

E(92Y) = O(1). (9)
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Let a = 0. By using Lemma 4 we have

E(02Y)=E(Y)=E > toytaotaste,
(131 3332753375”4)

1<z < <xy
T1t+xotr3tTa=n

n—3 n—xr;—2 n—xry—xro—1
_5 _3 _s _5
=0 E 7 g xy " g za T(n—x1 — 29 —x3)" 7

r1=1 zro=1 r3=1
n—3 n—wry—2
_3 _3 _3
=0 E x, " E Ty T(n—x1 —x2)" 7
ml:l 12:1
n—3 _
-2 _1 1
=0 E x, T(n—x1)" 7 :6(n7),
r1=1

which shows (8).

Now assume that o = («1,...,a,) # 0. If there exists an index 4 such that
a; = 2or |a = >" ,a = 5, then 92Y = 0. It means that in this case
E(02Y) = 0. So we may assume that for every index ¢, a; < 1 and |o| < 4.
Let 1 < lo < -+- < Iy, for which o, = ... = q, = 1,1 < w < 4. If
1<K <...<Kamw <4, 55 €N, then {1,2,3,4}\{k1,..., K10} ={r1,.. .. 70},
where r; < -+- < 1y and z,, = l1,...,2,, = l,. It means that the variables
Zpyy- .-, Tp, occur in the partial derivative of Y and the variables zy,,...,Zu,_,,
do not. Thus

E(82Y) = > E > ton, - ta, .

(K1, sha—w) (TrqsesTry_yy)
1<k <. <Kg—w <4 Z;%;iu zp, =n- 1
Since w > 1, thus 4 — w < 3. Since the number of the tuples (k1,...,K4—y) 1S

bounded, by Lemma 5 part (2) we get that the expectation is

E(82Y) = > 0(1) = 0(1),
(K1yeees Ka—w)

1<Kk1< . <Ka— <4

which proves (9).
From (8) and (9) we get that

Eo(Y) = maxgsoEq (V) = E(Y) = O(n7),
and

E)l(Y) = maxd/>1Ed/(Y) = O(].)
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Now apply Lemma 2 with A = 20logn and k = 4. We get that

P (Iv B0 > Cu0togn)** BB 1)) =0 (). (10

Thus by (10) and Lemma 3 we get that if n is large enough, with probability 1,

Y =E(Y)+0 ((log n)3%, /]E>0(Y)E>1(Y)> =E(Y)+0 (nﬁaog n)3-5) =0(n7),

which means, that (6) holds.

In the next step we will prove (7), which shows us that the number of those
representations in which there is at least one element from the set B is not too
big. Using the definition of the representation functions and the definitions of the
sets A and B we get

ra(A,n) —ry(A\ B,n) = > tasta,tayta (11)

(ai,aj,ax,ar)
a;<aj<ap<ap
a;taj+ag+ar=n
Ime{i,j,k,l},3ay,ay,a.€A
Aoy, Aoy, Az <Ay,
am+tay=ay+az

To make the analytic calculations easier we estimate (11) and we have that

1
ra(A;n) —ra(A\B,n) = o2 > tata,tata,
(ai,aj,ax,ar)
ai,aj,ar,a;€A are distinct
a;tajtag+a=n
Ime{i,j,k,l},3ay,a,,a. €A
Aoy, Aoy, Az <Ay,
Amtay=ay+a,

T 24 2 taita;tayta (12)

(ai,aj,ak,ar)
aj,aj,ar,a;€A are distinct
a;tajtax+a=n
Jay,ay,a€A
Ay Q0,02 <ag
atay=ay+a;

1
5 > tasta;taptatayto,ta.

N

(ai,a;,ak,a1,0y,0y,a0z)
Q,05,0k,0],0y ,04,0, €A are distinct
a;taj;tagta;=n
Aoy, Ay ,0z <]
ajtay=ay+az

Using the variables x;-s we can write this in the following form

ra(A,n) —rg(A\ B,n) < Z toy oo tan. (13)

(z1,%2,23,T4,25,T6,T7)
r1tratx3tre=n
r1,T2,r3,r4 are distinct
TatTs=x6+T7
T5,T6,T7<T4
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So this estimation means, that always x4 will be the element in the 4-tuple
(21, x2, x3, x4) which hurts the Sidon property. It is easy to see that in the product
ty, ..ty the t;, variables are not necessarily independent. So we need to trans-
form (13). For any 7-tuple (z1, xa, x3, 24, Ts5, Tg, x7) with condition x5, x4, v7 < x4

let {x1,2z2,23} N {xs, 26,27} = {®iy,..., @i}, where 1 < i3 < -+ < iy < 3.
Let {x5, 26,27} \ {Tiy,-- @i} = {Zhy,---,Th, }, where 5 < hy < -+ < hy <7
and u < 3 —s. Then for every fixed s-tuple (i1,...,45) there exist s + u tuple
(diyy---ydi  bhyy- .., bp, ) such that we can write the condition x4+x5—2g—27 =0

in the following form:

T4 + dilxil + ...+ disxis + bhla:hl + ...+ bhuxhu =0, (14)
where x4, 2i,,...,%i,,Tn,,...,2p, are different. In (14) d;; # 0,5 = 1,...,s,
b, #0,j = 1,...,u, there is only one positive coefficients, which is equal to 1 and

the sum of the negative coefficients is equal to —2. Since t¥ = ¢,, if kK > 1 then
tyy ooty = tmltxztmt“tmhl N P

Thus (13) is equal to the following

2 2

(#15008s) (diq seeesdigsbhyseeesbhy,)
1<i1<...<is<3 only one term is positive and=1
the sum of the negative terms is—2

X Z toy - tostay, - -ta,, -

(11,902,963#34713111 ,»--,fﬂhu)
r1t+xotr3+Ta=n
Ta+di i+ Fdi Tig+bpy Thy +-o -+ b0y Th,, =0
. -/
x¢j<x4,3=17---78;3¢h7, <z4,j=1,...,u

T1,2,T3,T4,Thy .-, Th,, are distinct

Let the inner sum be

Ydil7~--»dis7bh17---7bhu = E 2T ti‘4t1‘h1 s twhu'

(T1,%2,23,%4,Thy s Thy, )
r1t+x2tr3+Ta=n
Tatdi T+ A digTig+bpy Thy +..+bny, Th,, =0

. -/
2y <z4,j:1,...,s;mhj, <z4,7'=1,...,u

T1,22,%3,T4,Thy .-, Th,, are distinct

Since the number of the variables Ydil7~~»7di5>bh17---7bhu is bounded, it is enough
to show that for every s 4+ u tuple (d;,,...,d;,,bpn,,...,bn,) with probability 1,

Ya,, \odis oy ety = O ((log n)6'5) . (15)
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Let’s fix an s+u tuple (d;,,...,d;,,bpy, ..., bp, ). We will use Lemma 2. So we have
to estimate both the expectation of Ydil,...,dis,bhl,...,bhu and its partial derivatives.
First we will show that for every a = (ay, ..., ),

E (agydilwugdis 7bh,1w~7bh“) = 0(1) (16)

holds.

Let @« = (a1,...,,). If there exists an index ¢ such that a; > 2 or |a| =
Z?Zl «; = 5+u, then 82Ydi17__,,dis by seensbny, = 0 So we may assume that for every
index i, o; < 1 and |o| < 44+wu. Let’'sfix a = (a1,...,a,) and let 8 = (B1,...,Bn),
¥ =(1,.--,7), where 3; € N, v; € N and o = 3 + 7. Here 3 shows the partial
derivatives of the variables T1,%2,x3, x4 and 7y shows the derivatives of the variables

ZThyy- .-, Th,. S0 We can write the partial derivatives of Ydil1"'7d77q7bh17~--7bhu in the
following form
4 _ § : 2 :
a Ydil s'~~7dis 7bh/1 7~“5bh“ -
(87 (z1,%2,23,T4)
B+y=a ZTitz2tr3tTa=n
= — T x1,T2,T3,T4are distinct
x (08, ... ts,) > Nty oty

(fh,ly---yﬂﬂhu)
Tatdiy Tiq+.. .t digTig+bpy Thy +...+bpy, Th,, =0
Ti; <I4,j:17~~»75§zh,j/ <w4,§'=1,...,u

T1,22,L3,L4,Lhq - -1 Lhy, AL distinct

Since the number of pairs (3,7) is bounded, it is enough to show that for every
fixed pair (8,7), where 0< ; < 1,0 <7 < 1, B + |1l = Sy (B + %) < 4+,

E 2

(z1,22,23,24)
T1+T2t+T3+Ta=n
z1,T2,r3,r4are distinct

x (0Bty, .. ty,) > My, - ta,, | | =0
(ThyseThy)
T4+diy Tig +...tdi Tig+bpy Thy +...Fbh Th, =0
Ti; <za,j=lo.siwn, <za,j=1,..u

T1,%2,%3,%4,Thy .-, Th,, are distinct

(17)
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holds. Let’s fix now a pair (3, v). We will show that for every 4-tuple (z1, z2, 23, 4)

Y _
E S Dty o ta, | =00). (1)
(Thy s rThy)
Tg+di i+ A di i +bpy Thy +. o+ b0y, Th, =0
Iij<$4,j:17...,8;$hj,<$47j/:1>~-7u

T1,02,T3,T4,Thy 5.+, Th,, are distinct
Let [y =w, v, =...=v, =1, 1 <li <...<l, <n. Let {g1,...,90} C
{h1,...hy}and {j1,.. , ju—w} ={P1,- .. hu} \ {01, -, Gw}. These sets shows us
that the variables g, , ..., x4, occurs in the partial derivative of Yy, | . d.. bn,,....bn,
and the variables z;,,...,z;, ., do not. Thus we have
E > My, -t

(Thy s sThy)
Ty+di i+ A di i +bpy Thy +-o -+ b0y, Th,, =0
Ti; <I4,j:17---75;$hj, <z4,j'=1,...,u

T1,2,%3,%4,Thy .-, Th,, are distinct

= 2. 2

e —
15 Ju—
{jl,...,g'ifw}]cq{ffi),‘..,hu} (@g1500s2gy )= (e w)

x E Z tay, o te, |,

(wjl“"’a:jufw)
Z;‘;lw bjgTig=—Ta—di Tiy —...—d;i Ty —EZ=1 bgyTgq
where 7(ly,...,l,) denotes the permutations of (I1,...,1,).
Since the number of the u — w tuples (j1,. .., ju—w) and the permutations are

bounded and since u — w < 3, thus from Lemma 4 we get that this expectationis
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bounded i.e.,

E > tay, oo ta, | =O(1).  (19)

(mjl ""’Iju—w)

w—w _ L _sw
D=1 bigTig=—Ta—diy iy~ di @ig =301 bgyTgy

So from (19) we get that the left hand side of the equation (17) is equal to the
following

Z E (82, ...ts,)

(53179027903,14)
T1+T2+T3+T4=n
z1,x2,r3,r4are distinct

x E Z My, . ta,,

(@hy )
Tatdi Tiy +. .+ digTig+bny Thy +...+bhy Th,, =0
Ti; <€D47j:17-~,8;$hj, <w4,j'=1,...,u

T1,%2,T3,T4,Thy ;- Th, are distinct

-0 > E (0%, ... ts,)

(z1,%2,23,T4)
T1+T2+T3+T4=n
T1,r2,r3,r4are distinct

By (9) we get that if  # 0 then this term is equal to O(1). So we may assume
that 8 = 0. This means, that we have to prove that

(z1,%2,23,T4)
T1t+x2tr3tra=n
T1,T2,r3,r4are distinct

x S Dty -t | | =000 (20)
(ThysesThy)
Tat+di Tiy+...+di Tig+bpy Thy +... b Th, =0
@iy <wa,j=l,..si@n, <za,j'=1,.u

T1,%2,23,T4,Thy ;.- Th,, are distinct
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If1<iyp <...<is<3thenlet {1,2,3}\ {i1,...is} = {f1,.-., fa—s}. Thus
(20) is equivalent to the following

E > Mty - to, toste,, - -tay,

(Tiq e sTig sTA TRy 5oy Thy, )
Tatdiy Ty A digTig+bpy Thy +..-+bny, Th,, =0
. -/
xij <:v4,j:1,...,s;mhj, <z4,7'=1,...,u

Ty seesTig ,Ta,Thy 5---,Thy are distinet

X > toy, ooty

(ryts )

wf1+...+xf375:nfa:il7...7%5 —xy
Tiq e Tig s Ta,Tfq 5T fo_  are distinct
— Y
= E (E (0%ts,, .. to, tostey, - tay,
(Tiq e @i g sTA TRy 5ee ey TRy, )

Tatdi Ty .. FdigTig+bpy Thy +..-+bny, Th,, =0
@iy <wa,j=1,...852n <my,j'=1,..u

Ty seesTig ,Ta,Thy 5---,Thy are distinet

x E Z tag -ty | |- (21)

(g10esTps_,)
Ty +...+xf375 ==L~ —Tig T4
Tiq o1 Tig T4, T fq 5000, T f5_  are distinet

By using Lemma 5 we have

E > tag, - tay, | =O(1).

(xfl ""’:Ef3—s)
Tpy Ty =N—Tj) —...—Tijg — T4
TiqseesTig T4, T fq 500y T 5 are distinet

It follows that (21) is equal to

5
O|E]| 00X E tmh A tzis t-mt-”ﬂhl - tmhu
(Tiq oo Tig LA, TRy 5o Ty )
Ta+di Tig +. A di Tig+bpy Thy +-o+bny Th,, =0
Ti; <I47j:1»-~75§lhj, <za,j'=1,...,u

Ty e sTig yTa,Thy se--,Thy are distinct
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Let vy =(yi,-.com), N =w, vy, =...=n, =1L, 1< <...<l, <n If
{v1,... 0} CT{h1,..., hy}, thenlet {e1,... 40} = {hl,...,hu}\{vl,...,vw}.
Thus we have

E | 02 Z tay, - to, tostay, - ta,,

(TigseTig,Ta,Thy 5 Thy, )
Ta+di Tig+.Fdi Tig+bpy Thy +.o+bhy Th,, =0
. -/
Ti; <I47J:1;~-75§$hj/<$4y] =1,...,u

-y > )

Jene hi,...,h ™
{v1,...v0 }C{h1 w} (IUU ey )= (115 s L)

xE > tag, o tay tagtay, o, ,

w—w
(Tiq sesTig T4, Ty - Tey )
Tatdiy Tig +.. o+ digTig+bpy Thy +-.+bny, Th,, =0
T <m4,j:1,...,s;mhj, <z4,j'=1,...,u

Ty seesTig »Ta,Thy 5e-,Thy are distinct

where 7(ly,...,l,) denotes the permutations of (I1,...,1,).
Since s + u + 1 is the number of the variables in the equation x4 + d;, z;, +
A di,xi, + by, xn, + ...+ by, 2n, = 0, it is clear, that s +« + 1 is equal to 3
ord. Sos+u+1l—w<3,exceptifstu+l=4andw=0. If s+u+1—w<3
then we may use Lemma 4 again, which implies (20). So we can only show the
case s +u+ 1 =4 and w = 0, which is equivalent to v = 0. To do this, it remains
to prove the following Lemma. B

Lemma 6. The following expectation are bounded.

1. E (E (z1,22,23,24) Loy taylasta, (Z (z5,26,27) tmstwatm)) = 0(1)

r1txatx3tra=n ratrs=x6+T7

2.E (53179027903,14) txltﬂc*ztﬂfstﬂm < JE 7£v6) tﬂfstﬂ%)) = O(l)

fr:1+xz+zs+x4 n T4+T3=T5+T6

(zs5,76) tm5tm6>> = O(]-)

304 +xs=z3+T6

w
=

(z1,02,33,4) taoitestestes
zl+x2 +z3+za=n

( (r1,22,23,24) loytaylogta, Z

IS
&=

tz,>
r14+xo+x3+xa=n 964-&-365 x2+xr S

b E (@1,2,23,74) tmlta:zta:gtﬂl Zz4+fc5—zz+zs tz5)> N O(l)

9:1 +x2txstxra=n

(z1,22,23,24) oy tl‘ztﬂvstlzL) O

r1 +xotx3t+Ta=n
Tataxz=x2+T1
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Proof.

(1) Using the definition of the variables ¢;’s get that the order of this expectation
is

n 5 MTT1 5 n—xry—xro—1 s ;
O(Zz172x27 Z g T(n—x —x9 —w3)" 7
r1=1 xro=1 r3=1
xa—1 5 Ta+x5—1 5 i
dowst Y v (watas— 906)_;) - (23)
r5=1 reg=1
Applying Lemma 4 to the last sum it follows that (23) is equivalent to the
following
n 5 MTT1 5 n—xry—xe—1 5
O(le_7z:cz7 Z :c;7(nfx17ng:c3)*%
r1=1 ro=1 r3=1
xga—1 s 5
Z x5 7 (24 +x5)_7> . (24)
x5=1
Since

razl 3 s Tl 1
Z g (x4 +a5)"7 =0 <x27 Z T 7) =0 <x27>

r5=1 r5=1
:O((nfxl 71‘271‘3)7%),

it follows that (24) is equal to

n 5 n—xri s n—xry—ro—1 s
0] E x 7 E Ty T g Xy T (n— 1 — 29 —3)"

o

CEl:l 12:1 13:1

=0 <Z 2T Yy (n—a —xz)_¢>
131:1 I2:1

=0 <Z xlg(n—xl)_$> =0(1). (25)
131:1

(2) Using again the definition of the variables t;’s this expression is equivalent
with the following

n n—xi n—x1—xro—1 s

_s _ _3
Zw172x2 Z zy T (n—21 — 22 —x3)"

x1:1 x2:1 CE3:1

o
~yjon

xq4tx3—1

S ag T (watas—as)7 7. (26)

r5=1
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Since

r4t+x3—1

Z x;g(u taz—a5) 7 =0 <(I4 + x3)7%) =0 (x2%> =0 <x2%>

r5=1

(0] ((n — T — Ty — xg)f%) )

it follows that (26) is equal to

n n—ry n—xry—xro—1
_s s _s B
o E 7 E Ty " g z3 (N — 21 — 0 — x3) .

<o

11:1 132:1 213:1

It follows from (25) that this is equal to O(1).
3) Since x5 < x4, thus z3 < T3tEs — n=Zi=%2 Thig expectation is
2 2

.
N
o

e
g
&
o
o
<o

xy T (n— 1 — 29 —23)"

ZD1:1 :E2:1 13:1
26471 5 5
X E Ty (w5 —x3)”7 |, (27)
2125:1
where
I471 5 5 Xg4—I3 5 5
7 —s __ 7 —=
g s (vt a5 —x3)" 7 = g xy " (ra+ x5 —x3) 7
215:1 935:1

xq—1

+ Z 25" (24 + 05 — 73) "

rs=xg4—x3+1

s T4—XT3 5
=0 ((m —x3) 7 Z T 7)

o

Equation (27) is equal to

n—r1—x9

n 5 n—ry 5 2
-2 -2 _s _s
0 g x, 7 E Ty T E (223)"7(n —x1 — @0 — 2w3) " 7
ZD1:1 $2:1 13:1

It follows from (25) that this is equal to O(1).
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(4) Note, that here n = 21 + 2x5 + x5. This expectation is

n—xq n—x]—xg

n 2
_s _s _s s
0 E x, 7 E Ty " g T T (n—x1 —xo—x3)" 7

xr1=1 zo=1 r3=1

X (.’L‘4+$3—.’L’2)_?>, (28)

where

e

5 5
7 7

(xg+a3—22) 7T=M—21 —22—2T2) 7 =(n—x1 —2T2) " 7.

Equation (28) is equal to

n—xq
n

5~ s
0 Zx172x27(n7x172z2)7%

x1=1 xo=1

n—x]—xoy

5

2
x Z T3 (N — 2y — 9 —x3)77

’Eg:l
n—wxj
s &K s 5 5
=0 x, 7 Z Ty T(n—x1 —222) T (Nn—x1 —22) "7
I1:1 972:1
n . nr;ml
-2 5 5
=0 7 Z (229) 7 (n — 21 — 2x9)7 7
931:1 ZE2:1
=0 (Z z; " (n —x1)§> =0 (n*%> =0(1)
x1=1

(5) Tt is clear that the n = x1 +xo+x3+24, T4+x5 = T2+ 23 equation-system is
equivalent with n = x1 + 224 + x5, 4 + x5 = T2 + x3. Thus this expectation
is

n—xq

n -5 r4+xs5—1
_s s s s s
@) E xy 7 E Ty T(n—x1 —2my)”7 g g (Ta+as—x3)77 |,
xlzl 14:1 13:1

O <$4J§i_lx§?(x4 + 5 — 303)_?) =0 ((554 + 555)_%) = O).

13:1
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So (29) is equal to

n—xjy

0 Z 7 Z(2m4)_%(n—x1—2$4)_ =O<Z a?1_7(n—x1)_g>
11:1 I4:1

21:1
=0 (n*%) —0(1).
(6) Tt is clear that the n = 21 + 29 + @3+ 24, 1 + 22 = 3 + 24 equation-system
is equivalent with § = 1 + x2 = x3 + 4. Thus this expectation is

~ilen

(30)

So from (16) we get that

E>o(Ya, ,odis by b, ) = MaXar>0Ea (Ya,, ,.di, bny ..
and

BE1(Yay, oodiy by b, ) = MaXaz1Bar (Ya, di,bny o

In Lemma 2, we have k < 7 and A = 32logn. Thus
iq ey dis Vbhrl"'”bhu - E(Ydll ..... d’i.s1bhr11"'7bhu)|

_1
> Ci(3210g1)" 4 B0 (Va, o by i, )E1(Va

— O (67810gn+(k71)10gn) — 0, ( 1 ) '

i1 @igsOny seeesbhy, ))

n2

(31)
Thus by (16) and Lemma 2 we get that with probability 1,

Ydil yeens@ig Oy seeesbig, = E(Ydil yeees@ig DRy seeybhy, )

_1
+0 ((log n)k2 \/E>O(Yd,-l veondis byt JES1 Yy di i b, ))
= O ((logn)®?) ,

which shows (16), which proves (7). And this completes the proof.
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