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ON THE IWASAWA AINVARIANT OF THE CYCLOTOMIC
Z2-EXTENSION OF Q(4/p) II

TAKASHI FUKUDA, KEIICHI KOMATSU

Abstract: In the preceding papers, we studied the Iwasawa A-invariant of the cyclotomic Za-

(r)
0

extension of Q(/p) for an odd prime number p using certain units and the invariants ng * and na.

In the present paper, we develop new criteria for Greenberg conjecture using nér) and na.
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1. Introduction

We start with reviewing Iwasawa invariants and Greenberg conjecture. Let k be
a finite algebraic number field, ¢ a prime number and

k=kyCkiCkyC - Cky

the cyclotomic Zg-extension of k with G(k,/k) = Z/¢"Z. Let £~ be the highest
power of ¢ dividing the class number of k,,. Then Iwasawa [8, 9] proved that there
exist rational integers pe(k) > 0, A¢(k) > 0 and v¢(k) which realize the equality

en = pe(k)0" + Ae(k)n + ve(k)

for all sufficiently large n. Greenberg conjecture, which is still open, predicts that
both ue(k) and A¢(k) vanish for any totally real number field k£ and for any prime
number /.

It is most fundamental to study Greenberg conjecture when k is a real quadratic
field and ¢ = 2. In this situation, us(k) is known to be zero by Ferrero-
-Washington [1]. So we are interested in Az(k). It is especially important to
consider Az(k) for k = Q(,/p) with prime number p. In the preceding paper [4],
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we gave a sufficient condition for A\2(Q(y/p)) = 0 based on a property of units in
ky, and verified that A2(Q(,/p)) = 0 for all prime number p less than 10000. In the
paper [3] following [4], one of the authors introduced the invariants nér) and ng,
which are analogous to those defined in [5], and verified that X\2(Q(,/p)) = 0 for
all prime number p satisfying 10000 < p < 20000 except p = 13841.

In this paper, we develop new criteria for A\2(Q(\/p)) = 0 using nér) and na,
which are deeply based on the structure of the unit group of k,, and show numer-
ically Aa(k) = 0 faster than known criteria.

2. Main Results

Let k = Q(y/p) be a real quadratic field with prime number p. If p # 1 (mod 16),
then it is known that Aa(k) = 0 by [10]. So we assume hereafter that p = 1
(mod 16).

We briefly recall the definitions of nér) and ny. Let k. be the r-th layer of the
cyclotomic Zs-extension of k, E,. the unit group of k,., A, the 2-part of the ideal
class group of k, and 2°" the order of A,. Let p and p’ be the prime ideals of k
lying over 2 and p, (resp. p,) the prime ideal of k, lying over p (resp. p’). We
define the subgroup D, of A, by D, = (cl(p,)) N A.. Namely D, = (cl(pi*)),
where hy, is the class number of k. For an element € of Ey which is not a root of
unity, we define m. to be the maximal integer satisfying €2 =1 (mod p™=*!) and
put

ng =min{m, | € By, e A+ 1}.

We note that ny is the maximal integer satisfying €3 = 1 (mod p™2*1), where &g
is the fundamental unit of k. Let d be the order of D, and fix an element 8 of k,
such that

il _ (B).

Then we define mg. to be the maximal integer satisfying Ny, (8%¢?) = 1
(mod p™#=*t1) for an element ¢ in E, and put

n? =min{ms. | e € E,}.

We also put ng = n(()o). We note that ng < ng and n(()r) >r—+2forallr > 0. Then
our main results are stated in the following form.

Theorem 2.1. Assume that ey = 1 and ea = 2. If ng < ng, then A2(k) = 0.

Theorem 2.2. Assume that ey =1 and ex = 2. If ngr_l) = néT) for somer > 1,
then A2(k) = 0.

Theorems 2.1 and 2.2 have the advantage of proving A2(k) = 0 numerically
faster than Theorem 2.1 in [3]. We show numerical data for k = Q(,/p) with



On the Iwasawa A-invariant of the cyclotomic Zsa-extension of Q(y/p) II 169

prime number p satisfying p = 1 (mod 16) and 2?=1/* = 1 (mod p). In [3],
we showed a table for 10000 < p < 20000 and verified that Ay(k) = 0 except
p = 13841. We now show data for 20000 < p < 100000.

Example 2.3. In the range 20000 < p < 100000, there are 73 k’s which satisfy
e1 =1, ea =2 and ng < ng. For these k’s, we have \2(k) = 0 from Theorem 2.1.

Example 2.4. In the range 20000 < p < 100000, there are 45 k’s which satisfy

e1 =1, eg = 2 and ng = ny. For these k’s we verified that the equality n(()r_l) =

n((f) holds with some r < 7. Hence we conclude that Az(k) = 0 for these 45 k’s
from Theorem 2.2. We show two typical examples.

Let k = Q(v/20353). Then e; = 1, e = 2, ng = ny = 6 and n{") = 6.
Hence we can conclude Ay(k) = 0 with calculation in k;. Theorem 2.1 in [3]| needs
calculation in k4.

Let k = Q(+v/61297). Then e; =1, e = 2, ng = n2 = 4 and n(()G) = néﬂ = 10.
Hence we can conclude Az(k) = 0 with calculation in k7. Theorem 2.1 in [3] needs
calculation in kg.

The proofs of Theorems 2.1 and 2.2 depend essentially on the structure of F,..
We start with explaining properties of E,. which are needed for our proof.

3. Cyclotomic Units

We study the relation between class numbers and cyclotomic units in the interme-
diate fields of the cyclotomic Zy-extension of k = Q(,/p). Let ¢, = exp(2m/—1/n)
and a;, = (on+2 + <2_711+2- Then Q,, = Q(«v,) is a cyclic extension of Q of degree 2™
and ky, = kQ,,. Let Qoo = U2 Qn, koo = US2 okpn and G (koo /Qu) = (7). We fix
the topological generator v of G(ks /k) induced by (an+2 + C;}H > s + C27L5+2~
Let C}, be the unit group of Q,, and F,, the unit group of k,,. We define the cyclo-
tomic unit group S, of k,, according to [11]. Let T;, be the subgroup of k) gener-
ated by —1 and { Ng(c,,)/knn0(cn) (1 =) | mya € Z, m > 1, m fa}. Then S, is
defined to be E,,NT,,. An easy argument shows that T}, is equal to the subgroup of
k) generated by —1 and { Ng(c,.)/kn.na(cm)(1=C) | mya € Z, m > 1, (a,m) = 1}.
We are able to describe generators of S,, explicitly. Let p be the fundamental unit
of k = ko and hy, the class number of k. Then [11, Theorem 4.1 and Theorem 5.1]
implies So = ( —1, p?"* ). Next let ¢, = 1 + a,. It is straightforward to see that

Ng, /0, 1(cn) =—Cho1 (n21) (3.1)

and ¢, is contained in C,. We use the equality

p = (14 Goner + (o) Cami2Cotia (14 Gonv + (5l
(14 Gontz + Coura) (1 + Colia +C22202)

(onir 1- C;nsw _ No(egnia)/@a (1 = Conta)
Gz 1= Cola NagGuear/en (1 Gonie)

1—
1—
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to see that c2 € S,,. Finally we let

&n = NQ(Cnra,) /hn (1 = Cant2Gp).

Then &, is an integer of k,, satisfying Ny, o(§n) = 1 and clearly contained in S,,.
We define an element 7, of Q((an+2,) by

= T (G — 60
reH

where H is the subgroup of (Z/pZ)* with index 2. Since the product running over
x € H is the norm from Q({an+2(p) to k((an+2), 1y is contained in k((gn+2).

Lemma 3.1. One hasn, € E,, and &, = n2.

Proof. We write w = (yn+2 and ¢ = (. Note that [[, . (¥ = Ngcy/x(C) is a real
p-th root of unity, hence is equal to 1. The complex conjugate of 7, is

w— (= 1/4Hw_ - _w—(p 1)/4H°‘)C (C* —w™ 1)
xeH r€H
— yP=1)/4 H — (%) =,
xeH

implying n,, € k(w) "R = k,,. Next we have

€n = Ni(w) /b No@w,¢)/k(w) (1 — wC)

= Ni(w)/kn ( [Ta- ow))

xeH
=[J0-w-w'¢)
rxEH
= [ ww™ ¢ —wh
rxEH
=7 JJw " =¢)2=n u
rxEH

The straightforward calculation shows

Nk’n/kn—l(nn) =Nn-1 (n2>1) (3.2)

because the assumption p = 1 (mod 16) leads to 2 + pZ € H. Now we get three
cyclotomic units p?*, ¢2 and 72. In order to prove that conjugates of these units
generate S, we need the following lemmas.

Lemma 3.2. Let e, f and m be positive integers with (m,2p) = 1. Then, for any
non-negative integer n, we have

kn, N Q(CQ") =k, N @(<2C7<m)’ (33)
kn N Q(Cp) = kn N @(Cpfagm)7 (34>
kn N Q(Cer) - kn N @(Cerfagm)' (35)
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Proof. We put K = Q((z¢ps) and K’ = Q({x) and show (3.5). The remaining
assertions are proved similarly. Since k, K N K’ = Q, we have

knKK': K'| = [knK : ky KN K'] = [k, K : Q)
= [k, K : K|[K : Q] = [kp : kn N K][K : Q)

and

ko KK K') = ko KK : KK'|[KK': K'] = [ky, - ko N KK'][K : Q).
Hence we have [k, : k, N K] = [k, : k, N KK'], which implies k, N K =k, N KK’
by k, N K C k, N KK'. The equality k, N Q(C2¢p) = kpn N Q(Caeppr) is a direct

consequence of [Q((aepr) : Q(C2ep)] = pf=t u

Lemma 3.3. Let ¢ be a prime number and m a positive integer prime to £. For
a positive integer e, we have

No(eoem)/@Cpeas, V(1= Ceelm) = 1= Chelly (€22), (3.6)
-G
No(com)/0(em) (1 = CeGm) = 7= n (3.7)

Proof. We prove when ¢ is an odd prime number. The case ¢ = 2 is proved in
a similar manner. Since

X =G = 11 (X —¢2)
o€G(Q(Ceerm)/QUCpe—1,,))

is the minimal polynomial of (e over Q((pe—1,,), we have
Gt = Cle = No(eeem)/@(¢Cpe-r,) G = Cee)

= No(Crem)/QCpet,)om (1= CeeCim)
= G No(epem) /0(Cpe1,,) (1 = CeeGom),

from which (3.6) follows. Similarly we have (3.7) from the minimal polynomial
N | S
X-1 ¢
UEG(Q(CZWL)/Q(CWL))

of ¢y over Q(¢pm)- [ |

Proposition 3.4. The cyclotomic unit group S, is generated by

(=1, yu{d jo<i<2" =2 u{n® |0<i<2" —2}.
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Proof. For a positive integer m, let

Thm = { Nam) /knnacn) (1 — Gn) [ a € Z, (a,m) =1}

We define T?, to be the subgroup of k generated by
{—1} U T’I{L,p U T’r/L,Q"L+2 U T’r/L,2"+2P'
Let S], be the subgroup of S, generated by the set stated in the proposition.
Then S), = E, NT), and T, C T,,. Let m be any positive integer and a € Z with
(a,m) = 1. Then we factorize m and apply Lemmas 3.2 and 3.3 repeatedly for

NQ(¢m)/knnQ(cr) (1 =C5 ). Finally we use the relations (3.1) and (3.2) and conclude
that T,, C T),. This completes the proof. |

We start with the subgroup
2" —2 2" —2
E’:L:<_1apvcnvc;yu"'7c;y7, 77]7“77:;""777;1 >
of E, and enlarge E! by finding square roots contained in E,. Owing to the
relations (3.1) and (3.2), E/, is written also as

2n71_1 277.71_1
[ 2 JoL. oL 2 Yo y
En _< 17p7617771;02702377277727 ,Cn,Cn, acn ,77n,77m 77777, >

We define E)/ to be the subgroup of E,, containing E, such that (E, : E!) is
prime to 2 and (E” : E.) is 2-power. Since (E,, : S,) = 22" ~1h; and hy, is odd,
Proposition 3.4 and [11, Theorem 4.1 and Theorem 5.1] leads us to the following
proposition, on which our proof deeply depends.

Proposition 3.5. We have |A,| = (E/! : E}) forn > 1.

Proposition 3.5 has a straightforward application. Namely, Conjecture 4.1 in [3]
immediately follows from Proposition 3.5 and a,. in the table of [3] actually satisfies
the equality |A,| = 2.

We need to study Ny, x(E;) later on. It is clear that Ny /i(cn) = —1
from (3.1). We note that 7,, has a similar property. Though the following lemma
may be well known, we give a proof here for the completeness.

Lemma 3.6. Let m be a positive integer which has at least two prime divisors
and p, any primitive m-th root of unity in C. Let £ be a prime divisor of m and
My the decomposition field of € with respect to Q(()/Q. Then we have

Noemy/m, (1 = Cm) = 1.

Proof. Let m = ¢¢d with (¢,d) = 1. Then (,, = (44 for appropriate £°-th root
of unity (e and appropriate d-th root of unity (4. First we have, by repeating use
of Lemma 3.3,

¢
Nam)/aea) I = Gm) = Nom) /o) (1 = GeeCa) = 37— s
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where ( = Cﬁﬁfl. Since every prime ideal of Q((;) lying over ¢ is totally ramified in
Q(¢m), My is contained in Q(¢y) and G(Q(¢4)/Mp) corresponds to the subgroup
of (Z/dZ)* generated by ¢+ dZ. Let f be the order of £ + dZ. Then we have

1— 4
Nan) /e (1= Gn) = Naea /v (ﬁ)

:1_C€ 1_<€2 1_<Zf

1_(.1_@.....@:1, [

Since the prime number 2 splits in k/Q, we see Ny /(1n)* = N, j1(&n) = 1.
We summarize properties of ¢, and 7, in the following lemma.

Lemma 3.7. One has Ny, /i(cn) = —1 and Ny, /() = £ 1.
We need one more lemma to prove Theorems 2.1 and 2.2.

Lemma 3.8. Let € be an element of E,, with ¢ ¢ E2. Then we have ¢ ¢ E2 .

Proof. Suppose that there exists a unit v of E,; with ¢ = v?. Since k,,1 =

kn (V2 + ), we have v~ 1(2+ay,) € k2, which is a contradiction because (2+ay,)
is a prime ideal of k,,. |

4. Structure of Unit Group

In [10], Ozaki and Taya showed (k) = 0 if 2(P=1D/4 = —1 (mod p). From now
on, we assume 2(P~1/4 =1 (mod p) and describe E! explicitly. We define the
subgroup V,, of E, by

on—1 2
—(E" v Y -1 v Y
‘/7,,—<En_1U{Cn7Cn7-~',Cn sTns My =0 5 1y

n—

g
12
Then Lemma 3.7 implies
Niw/e(Va) = (=1, Ni,_ e(Er_1)?). (4.1)

We know Ny, /() = £ 1 by Lemma 3.7 and get now Ny, /1 (1,) explicitly by the
assumption 2P~/ =1 (mod p).

Lemma 4.1. One has Ny, /,,(m) =1 and 01 € Q(v/2p).

Proof. Let g be a primitive root modulo p. Then we have

) (p—1)/2 N L, muz
m= Il G -G -¢ )= [ ¢ +v-1)
=1 =1
(p—1)/2

= [ a+v=1)=20"9"=1 (mod ¢, —1),
i=1

which shows 7" = Ni,/k(m) = 1 because Ny, /r(m) = £ 1. We see now that
m € Q(v/2p) follows from Ny, /g, (m) = 1. -
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The following lemma enables us to restrict the form of an element of V,, whose
square root lies in E!.

Lemma 4.2. If (E! : V,,) > 1, then there exists an element v of V,, which satisfies

VU & Vi, Vv eE! and — Vultr €V,

Proof. Since E)//V, is a non-trivial G(k,/k)-module, there exists a non-trivial
fixed point. Namely, there exists € = €V, with € € E!/ such that

g#1, 2 =1, Y =,
which means
2 ~y—1
eV, e“ eV, € e V,.

Then v = &2 has a desired property because /v = 4 ¢ € E/ and

2
\/v1+v:,/(51+v) — kT 2 e, =

Now recall that A,, is the 2-part of the ideal class group of k,, and |4, | = 2°".
We describe our main result in the following form, which will be used in §5 to
prove Lemma 5.2.

Theorem 4.3. Assume that e, = e,_1 + 1 for some n > 2. Then the following
assertions hold:

an—1_1
(1) We have E!! = (V,, U{\/vn}), where v, = ety with appropriate
ek .
(2) If ent1 > en, then we have En41 = Cn +1and B | = (Vog1 U{\/Uns1} ),
n_1
where vpp1 = &'\ /un 77n1_~_+17 with appropriate £ € V,,.

Proof. First we note that

(B : En) =2(E; 1 By )
by Proposition 3.5. On the other hand, we have (E/ : E!) = (E! : V,)(V,, : E})
and

(Vo : E) = (B B, Ey) = (B,

n—1 -

LBl NE,) = (El_

n—1 E?”L 1)
by Proposition 3.4. Moreover, we have (E : V) = 2.
(1) There exist v, € V,,, € € E,\Vy, £ € E/_; and z;,y; € {0,1} such that

1 —1
zo+z1( 1+’Y)+"'+$2n—1,1(1+7)2n -t yo+y1(1+v)+~-+y2nf1,1(1+7)2n -t
6 g Cn Mn

and U}L‘*"Y =1 (mod V;?) by Lemma 4.2. From the relations

on—1

n—1
g7 =gkt = (mod V2)
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and

on—1

n—1
147)2 _ 1 _ 2
I+ =c = —c¢p—1 (mod V),
we have

n—1
T4y _ ¢4y wo(1+7)+w1(l+v)2+-~-+12n_1,1(1-&-7)2
v, & ey,

-1
Yo (147)+y1 (14+7) 2+ +Ygn—1_, (147)2"

n

—1
_ wo(1+v)+w1(1+'y)2+~~+w2n_1,2(1+7)2n -1

— “n

n—1
Yo (14+v)+y1 (1+7) 2+ Fygn—1_,(1+7)* 1 1 9
Mn : ? (mOd En—lvn )a

which implies

To=T1=:=Togn-1_g=Yo=Y1 = =Yan-1_2=0
by Propositions 3.4 and 3.5. Hence we have
on—1_1

-1
o 1271*1_1(1""7)2” -t y2n,1_1(1+’y)
Un = ¢Cn Tin

From the congruences
1+ M1+ =1++""" (mod2),
(1+ 7)2%1_1 =1+vy+-+ 72%1_1 (mod 2)

and Lemma 4.1,

175

we have
n—1 n—1 on—1_1
14+2 2 e 14277 =1 yon—1_ (147)
ot = ()T U
= §2(—1)g”2”—171 =1 (mod VnQ),
which implies xgn-1_7; = 0. Since e, = e,_1 + 1, we have ygn—1_; = 1 and

E!' = (V,U{y/vn}). (2) There exists v, 41 € V,41 such that U}LH =1 (mod V2, ,)

with /o1 € B, 1\Vyiy1 by Lemma 4.2. We may write

Un+1 =

—1 —1
,czO+ml(1+w)+--»+x2n_1,1(1+w)2" *lnyo+y1(1+v)+--»+y2n_1,2(1+7)2" -2
n n

Ly met et ()t ahe (1) T gyl (L) ety ()2 T
meZn 1,100 1( ) an_1(147) yot+y1 (1+7) Yon 1 (1+7)

n+1 n+1
with appropriate ¢ € E//_; and z;,y;, 2}, y; € {0,1}. Since (1 + 7)2%1

2%—2 2n—1

27 + (mod 4), we have

on—2

n—2
o = g2 = 2 DT D (mod V).

=1+
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on—2
This means /o, 77 = pat Y (mod E!_,V?) by Lemma 3.8. Hence we
have

n—1
14+~ _ wo(1+7)+w1(1+7)2+--~+w2n71,2(1+7)2L -t
Un-‘,—l = Cp

n—1
Yo (L+7)+91 (147 Fygn—1_s (14> 72 14 14)2" 2y
X 1 (77n (17)* )an—toa

Thn_y xh(L4y)+ay (147) 4 tahn o (147)2"
X Cn

n+1
’ ’ ’ 2 ’ 2" 1
yon _1 Yo(1+7)+y1 (1+7) "+ +yon _o(1+7)
X Mn nn—i—l

1 (mod E571Vn2+1)7
which shows
TO= " =Tgn-1_9g=T() ="+ =Thn_1 =Yy ="""=Ypn_g =10
and yhn_1 = ygn—1_1 =1 by \/Unt1 € EZH and /Un11 & Vpr1. Hence we have

Con1_y (142" T gty (L)t bygn o1 ()2 2 (47"

Ung1 = &Cn” ! T o VO i1 :
Weput V. = (Vay1U{\/Ong1}). ThenV, |, C E; jandV, , C E] isequiv-
alent to e,4+1 > e, + 1. Now we assume e, 1 > e, + 1 and derlve a contradiction.
There exists an element v/, ; in V! satisfying (v}, ,1)'™ =1 (mod (V,,,,)?) and

VUit € B \V,, . Since

n—1 n—1_
14y _ pldry Tan-1_(147)? Yo (147)+y1 (14+7) %+ +ygm -1 _, (147)?
v =¢¢

n+1 n n

14y, (147)2"

X n+1

n—1 n—1_
— £1+vci2n—1_1(1+7)2 Zo(1+v)+y1(1+7)2+~~+y2n—1_2(1+v)2

1+ 2(1+(1+
« 777n77n(+1 149" (mod V4 )
and since v, -] =1 (mod V;2,,), we have /v, = nrlli(11+7) (mod EIVZ),
which means v}, ; € V41 and
(UI )1+’y € <V U{Cn+1777n+1 | Z 6Z}> (42)
Since (vg D £ 1 (mod V,2,,) by e, = en—1 + 1, we have (v], 1)'™ = v,q
(mod V2 ). This contradlcts (4 2). Hence we conclude eny1 =ep+land V) | =
1!
. |
n+1

Corollary 4.4. Assume that e, < ep—1 + 1 for some n > 2. Then we have
em < em_1+ 1 for allm > n.

Proof. Ife, = e,_1, then e,, = e,,_1 for all m > n by [2, Theorem 1]. Otherwise,
€nt1 = €n OT €41 = €, + 1 by (2) of Theorem 4.3. If e,,11 = e, then e, = e;,—1
for all m > n+ 1. Otherwise, €,42 = €p41 OF €,42 = €,4+1 + 1 again by (2) of
Theorem 4.3. Repeating this procedure, we reach the conclusion. |
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5. The Proofs of Theorems 2.1 and 2.2

We assume 2(P~1/4 = 1 (mod p) continuously. In order to prove Theorems 2.1
and 2.2, We need some more lemmas. We first recall that the equality

21”

1Drl = (Eo : N, /x(Er))

(5.1)

is a direct consequence of genus formula (cf. (4) in [3]). Note that E, in the right
hand side of (5.1) may be replaced by E...
The following two lemmas depend on the property of ;.

Lemma 5.1. If |A;| =2, then |Dq| = 1.

Proof. We abbreviate G(k1/Q1) = (7) and G(k1/k) = (7). We also recall that
E{=(-1,p,c1,m ). We define S(a) for non-zero element « in k; by

a o al L”)
o] fa7]" |a7|" Ja| /7

S(e) = (
Then we have
S(p) = (1,—1,1,-1), S(c1) = (1,1,—1, 1), S(n1) = + (1,1,1,1)  (5.2)

by p =1 (mod 16), ¢; = 1 + /2 and Lemma 4.1. From Proposition 3.5 and the
assumption |A;| = 2, we have

Ei, = <_1apa C1, M1, \@ >7

where € = £ p®¢?n7® with x; € {0,1}. The equalities (5.2) imply € = £+ n; and
0 Ny, /k(E1) = (=1, p*), which means |D;| =1 by (5.1). |

Lemma 5.2. Assume that e; =1 and e3 = 2. If |D,| > 1 for some r > 1, then
X2(k) =0.

Proof. We may assume that |D,_;| =1 and |D,| = 2 with r > 2 by Lemma 5.1.
Then we see that

Ny, (Vi) = (=1, Ny, n(El_1)%) = (=1,p% ),
1

Niw(EY) = (1,07 )

from (4.1) and (5.1). We have e, < e,—_; + 1 by Corollary 4.4. If e, = e,_1, then
A2(k) = 0 by [2, Theorem 1|. So we may assume e, = e¢,_1 + 1. Then v, in (1) of
Theorem 4.3 has the property

(—1, Ny, ji(p), Ne, e (Vor ) = (1,07 ).
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By Corollary 4.4, there are two possibilities for e,;1, namely e,+; = e, and
ery1 =€+ 1. If e,11 = e, + 1, then we have

1
Nkr+1/k( r+1) <Nkr+1/k(‘/;+1)7Nkr+1/k(\/vr+1)> = <_1’p2 >

by (2) of Theorem 4.3 and hence |D,41| = 4 by (5.1). Namely, either e,+; = e, or
|D,+1| = 2|D,| holds. Repeating this procedure, we reach n satisfying e, 11 = e,
or |D,,| = 2"272 which means \s(k) = 0 by [6, Theorem 2] or |3, Theorem 2.1]. B

Now we are able to prove Theorems 2.1 and 2.2. For an integer « in k, we
write p¢ || a if « =0 (mod p¢) and a # 0 (mod petl).

Proof of Theorem 2.1. Put r = ng — 1 and assume that |D,| = 1. Then there exist
B € k and S, € k, which satisfy

p/hk:<6)7 pno ||ﬁ_17
P = (8, P || Nesk(Br) —

Then we have 32" = fe, for some ¢, € E, and

Nik(Br)* = B Ny ji(er).

We see that

i +r T no+r T n r
p"o | Ny, ye(Br)* — 1, protT | B — 1, 277 N, ji(er) — 1
from (5.1), so n(()r) + 1 = ng + r by the assumption ng < ne. It means ng = n((f)
r+2 =ng+ 1, which is a contradiction. Hence we have |D,.| > 1 and so Az(k) =
from Lemma 5.2.

oV

Proof of Theorem 2.2. Since n(()s) < n(()s_l) + 1 in general, we may assume that

nér) = nér_l) =mng+r—L

Put s = ng — 2 and assume that |D,s| = 1. Then there exist 3, € k, and
Bris € krrs which satisfy

(r)
e =(B,), P || Ny, k(Br) — 1,

/hk

p7+.s = (BT'JFS)'
Then we have ,BTH = Brérqs for some €, 44 € E 44 and
Nkr+s/k(/8""+5)2s = Nkr/k(ﬁr)Qstr+-e/k(5T+8)-
We see that

() 4 s s no+r+s
pro +s I Nkr/k(ﬁr)Q -1, p 2t |Nk7‘+s/k(gr+s) -1
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from (5.1). Since nér) +s=no+r+s—1<ny+r+s, wesee that

n(
pro || Nkr,»+5/k(/67"+s) —1.

Since p"2 " | Ny . si(e)y,) — 1 for any €], € E,,, and since ng +r + 5 —

n(()r) = ny — 1 > 0, it follows that néﬂrs) = nér) = ng +r — 1, which contradicts
néﬂrs) > r+s+2=mng+r. Hence we have |D, 14| > 1 and so Az2(k) = 0 from
Lemma 5.2. [
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