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HAHN SPACES IN FRÉCHET SPACES
AND APPLICATIONS TO REAL SEQUENCE SPACES

Lothar Komp, Johann Boos

Dedicated to Lech Drewnowski on
the occasion of his 70th birthday

Abstract: In a joint paper with Grahame Bennett and Toivo Leiger (cf. [3]) the second author
introduced for real sequence spaces the Hahn property and the notion of Hahn spaces. The aim
of this paper is to extend these notions and a series of results in [3] to subspaces of Fréchet
spaces by replacing the space ω of all real sequences and the set χ of all sequences of 0’s and 1’s
by any Fréchet space H and a suitable subset χ of H, respectively. Applications of the general
considerations to the original case of Hahn spaces of real sequences are also a main subject matter
of the paper.
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1. Introduction

Let χ denote the set of all sequences of 0’s and 1’s. In [3] Bennett, Boos and
Leiger asked for any sequence space E to what extent the linear span χ(E) of
χ ∩ E determines E. Mainly, they dealt with the most interesting formulation of
this problem: Does

χ(E) ⊂ F =⇒ E ⊂ F

hold whenever F is an arbitrary FK-space? In this case they defined E to be
a Hahn space (have the Hahn property). They stated that the Hahn property, in
a sense, is completely understood, at least for FK-spaces:

Theorem 1.1 ([4, Theorem 1] and [3, Theorem 1.1]). Let E be an FK-space.
Then the following conditions are equivalent:

(i) E is a Hahn space.
(ii) χ(E) is dense and barrelled in E.
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The authors explained on page 76: ‘The problem with Theorem 1.1 is that
its hypotheses are difficult to check. The density of χ(E) in E is obvious in the
corollary, but it may be far less transparent in other cases (bs+ c , for example1).
The real difficulty, however, lies in checking that χ(E) is barrelled in E . This
is a non–trivial task even when E = `∞ .’ So if we develop methods to detect
Hahn spaces E which are FK-spaces, then we can conclude to barrelledness (and
density) of χ(E). For instance, by [3, Theorem 3.4] (cf. 1.2(d)) the FK-space bs+c
is obviously a Hahn space, so that χ(bs+ c) is dense and barrelled by 1.1.

We recall some results on Hahn spaces given in [3] and which motivate the
research aiming at in this paper.

Proposition 1.2 (cf. [3]).

(a) `∞ is a Hahn space.
(b) If E is a Hahn space, then E ⊂ `∞ and χ(E) is dense in (E, ‖ ‖∞).
(c) Let E be an FK-space containing ϕ, the set of all finite sequences. If E has

the Hahn property, then E is non–separable.
(d) If E is a sequence space satisfying2 bs+ 〈e〉 ⊂ E ⊂ `∞, then E is a Hahn

space and, in fact, E = bs+ χ(E).

The Hahn spaces (Hahn properties) are studied extensively in various papers
(e.g. [8], [27], [12] and [26]), and a ‘duality’ of the Nikodym property of the set
of all null sets of the density defined by any nonnegative matrix (sequence of
nonnegative matrices) and the Hahn property (HP) of the strong null domain of
it is stated in [9], [10], and [11]. In almost all of these papers results due to Lech
Drewnowski with various coauthors (e. g. [16], [15], [1], and [14]) play an essential
role.

The aim of this paper is to extend the notion of Hahn spaces and results in [3]
(like those in 1.2) to subspaces of Fréchet spaces by replacing the space ω of all
real sequences and the set χ of all sequences of 0’s and 1’s by any Fréchet space H
and a suitable subset χ of H, respectively. Among new and general results these
considerations will give us a better appreciation of the (original) Hahn spaces.

For that we give some notation and preliminaries in Section 2 and prepare the
main results of the paper by basic considerations of F- and FH-spaces in Section 3.
In particular, we introduce the notions of the FH-hull Ê of a subset E in an Fréchet
space H, and — in the same context — of the FH-regularity of E.

Section 4, one of the main parts of the paper, is divided into four subsections.
The first one contains the notion of a Hahn tuple (H,χ) in generalization of the
tuple (ω, χ) where H is an Fréchet space and χ is a suitable subset of H and — for
a fixed Hahn tuple (H,χ) and a linear subspace E of H — the notion of a Hahn
space. In the second subsection we generalize the characterization of a Hahn space
E in Theorem 1.1 to the general situation of a Hahn space where now E is assumed
to be an FH-space. Moreover, further characterizing and typical properties of Hahn
spaces are discussed. In the third subsection, for any Hahn space E, a family of

1bs :=
{

(xk) | supn
∣∣∑n

k=1 xk
∣∣ <∞}

2e := (1, 1, . . .)
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linear subspaces and of linear supspaces of E containing exclusively Hahn spaces
are presented and are called lower χ-zones and upper χ-zones, respectively. In
[3, Theorem 3.4] it has been proved that3 E := bs⊕ 〈e〉 is a Hahn space and that
each sequence space X with E ⊂ X ⊂ `∞(= χ̂) is a Hahn space too. In general,
such Hahn spaces are called big and the fourth subsection is devoted to big Hahn
spaces.

In Section 5 we apply results of Section 4 to the original case of real Hahn
spaces, that is, to Hahn spaces in the case of the Hahn tuple (ω, χ) where χ denotes
especially the set of all sequences of 0’s and 1’s. Thereby, among other results the
main aim is to show that A(`∞) + 〈e〉 is a big Hahn space (cf. Theorem 5.16)
for any χ-regular matrix (cf. Definition 5.11). This result generalizes essentially
[3, Theorem 3.4] (case A := Σ−1) and [12, Theorem 2.6] (more general case A :=
Σ−1
N ) where Σ = (σnk) denotes the summation matrix defined by σnk = 1 if k 6 n

and σnk = 0 otherwise.

2. Notation and preliminaries

We start with a few preliminaries. (Otherwise, we refer to [5], [23], [24], [3], and
[12]). ω denotes the space of all sequences x = (xk) in K, K := R or K := C,
and any linear subspace of ω is called a sequence space. ω endowed with the
topology τω of coordinatewise convergence is an Fréchet space. A locally convex
sequence space (E, τ) is called FK-space if it is an Fréchet space and the inclusion
map i : E −→ ω, x −→ x is continuous; if the topology is even normable, then
(E, τ) is called BK-space. More general, we consider FH-spaces: If (H, τH) is
any given Hausdorff space, then a locally convex space (E, τ) is called FH-space
(relative to H), if it is an Fréchet space included in H and the inclusion map
i : E −→ H, x −→ x is continuous; if the topology is even normable, then (E, τ)
is called BH-space. Note, the topology of FH-spaces is monotone and uniquely
determined. Consequently, it makes sense to use the notions of FH- and FK-
topology.

Familiar examples of FK-spaces are ω (which is not a BK-space), `∞ (bounded
sequences) with the supremum norm ‖ ‖∞, and its closed subspaces c (convergent
sequences) and c0 (null sequences), `p for 1 6 p < ∞ (absolutely p-summable
sequences) with its natural norm, and

bs :=

{
x = (xk) ‖x‖bs := sup

n

∣∣∣∣∣
n∑
k=1

xk

∣∣∣∣∣ <∞
}

(bounded series)

with the norm ‖ ‖bs.
Obviously, FK-spaces (BK-spaces) are special FH-spaces (BH-spaces) if we

choose H := ω. For any given Fréchet space X another examples of FH-spaces
are given by the consideration of ω(X) := XN (set of all sequences in X) and sub-
spaces like `∞(X), c(X), c0(X) etc. (cf. for instance [7] and [20]). If H := F [0, 1]

3If X and Y are linear subspaces of a linear space E with X ∩ Y = {0}, then X ⊕ Y denotes
the algebraic direct sum of X and Y .
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(real functions on [0, 1]), then for example B[0, 1] and C[0, 1] (bounded and contin-
uous real functions on [0, 1], respectively) endowed with the supremum norm are
BH-spaces. Note that F [0, 1] with the topology of pointwise convergence is a lo-
cally convex non-metrizable Hausdorff space, and that C[0, 1] is also an BH-space
if we consider the Banach space H := B[0, 1] endowed with the supremum norm.
Further examples of FH-spaces are presented in [25].

Below we’ll use the following simple properties of FH-spaces.

Proposition 2.1. Let H be an Fréchet space and H̃ be an FH-space relative to H.
Then the following statements hold:

(a) Each FH-space relative to H̃ is an FH-space relative to H.
(b) Let E be a linear subspace of H̃. Then E is an FH-space relative to H̃ if

and only if there exists an FH-space F relative to H with E = F ∩ H̃.

Proof. We omit the obvious proofs. �

3. Fréchet spaces, FH-spaces, and FH-regularity

Bennett and Kalton stated in [4, Proposition 1] the following Proposition for
Fréchet spaces where the proof is only given in the special case of Banach spaces.
In his ‘Diplomarbeit’ the first author proved this result also in the general case of
Fréchet spaces (cf. [19, Satz 2.2.17]).

Proposition 3.1 ([4, Proposition 1]). Let E be an Fréchet space and E0 a dense
linear subspace of E. Then the following statements are equivalent:

(i) E0 is barrelled.
(ii) T (F ) = E holds for every Fréchet space F and each continuous linear map

T : F −→ E with E0 ⊂ T (F ).

Proof. See the proof of [19, Satz 2.2.17] and note [19, Bemerkung 2.2.18]. �

General assumption: In the following, let H be any (fixed) Fréchet
space.

Theorem 3.2. Let E be an Fréchet space and f : E −→ H be linear and contin-
uous. Then f(E) is an FH-space.

Proof. We consider the canonical partition of f illustrated by

(E, τE)
f //

π

��

(H, τH)

(E/Kern(f), τE/Kern(f))
f∗ // (f(E), τf(E))

i

OO

Obviously, the quotient space E/Kern(f) is an Fréchet space since Kern(f) is
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a closed subspace in (E, τE).With the canonical isomorphism f∗ : E/Kern(f) −→
f(E) we transfer the F-topology of E/Kern(f) to f(E) so that (f(E), τf(E)) is
an F-space. It is even an FH-space since the inclusion map i : (f(E), τf(E)) −→
(H, τH) is continuous as we can easily verify: Let U be a zero neighbourhood
in (H, τH). Then f−1(U) is a zero neighbourhood in E since f is continuous.
Because the continuous onto maps f∗ and π are open by the open mapping the-
orem, (f∗ ◦ π)

(
f−1(U)

)
= f

(
f−1(U)

)
= U ∩ F (E) is a zero neighbourhood in

(f(E), τf(E)) contained in U . �

The following Theorem is presented in [5, 7.3.10] for the case of FK-spaces.
Applying 3.2 we get a compact proof in the more general case of FH-spaces.

Theorem 3.3. Each finite sum of FH-spaces is an FH-space too.

Proof. Let E1, E2, . . . , En be FH-spaces (for a common space H). Then E :=∏n
i=1Ei (with the product topology) is an Fréchet space. For each i ∈ {1, 2, . . . , n}

let πi : E −→ Ei be the projection and ϕi : Ei −→ H the inclusion map. Then
s :=

∑n
i=1 ϕi ◦πi : E −→ H is linear and continuous. Thus, s(E) =

∑n
i=1Ei is an

FH-space by 3.2. �

Lemma 3.4. Let E and F be FH-spaces and E0 be a subspace of E ∩ F endowed
with the topology induced by E. If E0 is barrelled, then the inclusion maps iE :
E0 −→ E and iF : E0 −→ F are continuous.

Proof. Obviously, iE is continuous. Now, let (xn) be a sequence in E0 converging
to an x ∈ E0 such that (iF (xn)) = (xn) converges in F to an y ∈ F . Since E and
F are FH-spaces we get x = y, that is, iF is closed. Then iF is continuous by the
assumptions on E0 and [22, Chap. VI, Theorem 6]. �

Likewise, the following Theorem is a generalization of [4, Theorem 1]. In that
paper it was stated for FK-spaces and proved in the special case of BK-spaces.
Here we consider more generally FH-spaces.

Theorem 3.5. Let E be an FH-space and E0 be a dense subset of E. Then the
following statements are equivalent:

(i) E0 equipped with the topology induced by E is barrelled.
(ii) E0 ⊂ F implies E ⊂ F for every FH-space F .
(iii) E0 ⊂ F ⊂ E implies E = F for every FH-space F .

Proof. Adapt the proof of [4, Theorem 1] and apply Lemma 3.4 and Theorem 3.2
in the proof of (i)⇒(ii) and (iii)⇒(i), respectively. �

In the remaining part we introduce some notions which will prove to be useful
for the handling of the generalized version of Hahn spaces.

Definition and Remarks 3.6. Let H be an Fréchet space and E be any subset
of H. Then Ê = HÊ denotes the intersection of all FH-spaces containing E, and we
call it FH-hull of E (relative to H). Obviously Ê is a well-defined linear subspace
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of H, and, in general, it is not an FH-space (cf. 3.9). However, if this is the case,
then E is called FH-regular. Furthermore, E is called FH-closed, if Ê = E. In the
standard case H = ω we use correspondingly the notions of FK-hull, FK-regular
and FK-closed.

In general, we supply Ê =
⋂
{F | E ⊂ F and F is an FH-space} with the

projective topology τÊ (of the intersection) and consider E with τÊ |E . If E is FH-
regular, then Ê equipped with τÊ is an FH-space and the subspace E is metrizable
(but not necessarily complete).

Proposition 3.7. If H is an Fréchet space and E,F ⊂ H, then the following
statements are true:

(i) E ⊂ Ê = 〈̂E〉 =
̂̂
E < H.

(ii) E ⊂ F ⇒ Ê ⊂ F̂ .
(iii) E is FH-regular ⇐⇒ There exists a minimal FH-space containing E.
(iv) E is an FH-space ⇐⇒ E is FH-regular and FH-closed.
(v) E is barrelled =⇒ E is FH-regular.

Proof. We omit the simple proofs of (i) - (iv). For a proof of (v) notice that E is
a dense, barrelled subspace of the FH-space E (topological closure in H) and use
Theorem 3.5. �

Theorem 3.8. Let (Ei)i∈I be a family of subspaces of H. Then:

(i)
⋂̂
i∈I Ei ⊂

⋂
i∈I Êi.

(ii) If each Ei, i ∈ I, is FH-closed, then
⋂
i∈I Ei is also FH-closed.

(iii)
∑
i∈I Êi ⊂

∑̂
i∈I Ei.

Proof. Let E :=
⋂
i∈I Ei and F :=

∑
i∈I Ei. (i): Apply 3.7 (ii) to E ⊂ Ei.

(ii): Since Ei, i ∈ I, are FH-closed we get Ê ⊂ E by (i). Because E ⊂ Ê holds
by 3.7 (i) the FH-closedness of E follows.

(iii): Obviously, Ei ⊂ F , thus Êi ⊂ F̂ for all i ∈ I by 3.7 (ii). Therefore∑
i∈I Êi ⊂ F̂ . �

Examples 3.9.

(a) It is well-known that the set ϕ of all finite sequences is a subspace of ω but
not an FK-space, and that ϕ is the intersection of all FK-spaces containing
it. Therefore ϕ is FK-closed but not FK-regular.

(b) G. Bennett and N. J. Kalton proved in [4, Corollary of Theorem 1], that
each FK-space including m0 := 〈χ〉 contains even the strictly bigger
space `∞. Thus m0 is not an FK-space, so that m0 is FK-regular, but not
FK-closed. Obviously, the FK-regularity of m0 implies also that of χ
(cf. 3.7 (i)).
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4. Generalized Hahn spaces

In the definition of the ‘classical’ Hahn spaces in [3] the space H = ω and the set
χ of all sequences of 0’s and 1’s play a decisive role: We have χ̂ = `∞ and `∞ is
an FH-space. As a consequence of the definition of χ̂, the space 〈χ〉 is dense in
`∞. The aim of this section is to consider subspaces of suitable Fréchet spaces H
and subsets χ of H which enable the study of generalized Hahn spaces.

4.1. Definition of generalized Hahn spaces and preliminary remarks

Definition 4.1. A tuple4 (H,χ) is called a Hahn tuple, if H is an Fréchet space
and χ is an FH-regular subset of H.

Remarks 4.2. Let (H,χ) be a Hahn tuple.

(a) χ̂ is the smallest FH-space that contains χ by the FH-regularity of χ. By
this way 〈χ〉 equipped with the topology induced by the FH-topology of χ̂
is a metrizable locally convex space and is dense in the FH-space χ̂.

(b) If H = ω and χ is the set of all sequences of 0’s and 1’s, then χ̂ = `∞, χ̂ is
FK-regular and (H,χ) is a Hahn tuple.

General Assumptions: In the following we consider an arbitrarily fixed Hahn
tuple (H,χ).

Definition 4.3. For any subspace E of H the linear hull χ(E) := 〈χ∩E〉 of χ∩E
is called the χ-part of E. Moreover, if χ(E) = E, then E is called χ-based.

Remarks 4.4. For subspaces E,F of H the following statements hold: χ(E) ⊂ E,
χ(χ(E)) = χ(E), and E ⊂ F implies χ(E) ⊂ χ(F ). If E is χ-based, then E ⊂ 〈χ〉.
Furthermore, χ(E) is the maximal χ-based subspace in E.

Analogously to the case H = ω in [3] we define the notion of a Hahn space.

Definition and Remarks 4.5. Let (H,χ) be a Hahn tuple. Then a linear
subspace E of H is a Hahn space (has the Hahn property) (relative to (H,χ)), if
χ(E) ⊂ F implies E ⊂ F for every FH-space F .

Clearly, this definition contains that of the ‘original’ Hahn spaces in [3]: Con-
sider the Hahn tuple (ω, χ) where χ is the set of all sequences of 0’s and 1’s. In
this special case χ is a discrete set.

In general, each χ-based space is obviously a Hahn space.

Remark 4.6. If we consider subsets χ and ψ of H satisfying χ(E) = ψ(E), for
instance, if K · χ = K · ψ, then E is a Hahn space relative to (H,χ) if and only if
it is a Hahn space relative to (H,ψ).

4Note, we use here also the notation χ since it plays a similar role in this general context as
the set of all sequences of 0’s and 1’s in the special case of sequence spaces.
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Example 4.7. In the cases K ·χ = H or χ ⊂ {0} the Hahn space theory is trivial:
In the first case for each subspace E of H we have χ(E) = E, and therefore E is
a Hahn space. In the second case we have χ(E) = {0} which is an FH-space and
implies therefore that {0} is the only Hahn space.

Now, we are considering Hahn spaces relative to ‘compatible’ Hahn tuples.

Theorem 4.8. If (H,χ) and
(
H̃, χ̃

)
are Hahn tuples with H̃ ⊂ H and χ̃ ⊂ χ,

then the following statements hold:

(a) Each Hahn space relative to
(
H̃, χ̃

)
is also a Hahn space relative to (H,χ).

(b) If χ̃ = χ ∩ H̃, then the Hahn spaces relative to
(
H̃, χ̃

)
are exactly those

relative to (H,χ), which are included in H̃.
(c) If χ = χ̃, then both Hahn tuples have the same Hahn spaces included in

H̃ ⊂ H. In particular, (H,χ) and (χ̂, χ) have the same Hahn spaces in χ̂.

Proof. (a) Let E be a Hahn space relative to (H̃, χ̃) and let F be an FH-space
relative to H such that χ∩E ⊂ F . By 2.1(b) the space F̃ := F ∩H̃ is an FH-space
relative to H̃. Because of

E ∩ χ̃ ⊂ E ∩ χ =
(
E ∩ H̃

)
∩ χ = (E ∩ χ) ∩ H̃ ⊂ F ∩ H̃ = F̃

we get E ⊂ F̃ ⊂ F since E is a Hahn space relative to (H̃, χ̃). Therefore E is also
a Hahn space relative to (H,χ).

(b) Let E ⊂ H̃ be a Hahn space relative to (H,χ) and F be an FH-space
relative to H̃ with χ̃ ∩ E ⊂ F . Then

E ∩ χ =
(
E ∩ H̃

)
∩ χ = E ∩

(
χ ∩ H̃

)
= E ∩ χ̃ ⊂ F.

Thus E ⊂ F since E is a Hahn space relative to (H,χ) and F is also an FH-space
relative to H by 2.1(a). Therefore E is a Hahn space relative to

(
H̃, χ̃

)
. The

inverse implication holds by (a).
(c) By the assumption we get χ ∩ H̃ = χ̃ ∩ H̃ = χ̃, so that the statement is

proved by applying (a) and (b). �

The next result contains a tool for the generation of Hahn tuples and related
Hahn spaces by the consideration of continuous linear operators between Fréchet
spaces and known Hahn tuples and related Hahn spaces.

Theorem 4.9. Let H and H̃ be Fréchet spaces and A : H −→ H̃ be a continuous
linear operator. Then the following statements hold:

(a) If T ⊂ H, then A
(
H
T̂
)
⊂ H̃

Â(T ).

(b) If T is FH-regular in H, then A(T ) is FH-regular in H̃.
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(c) Let (H,χ) be a Hahn tuple. Then for each Hahn space E relative to (H,χ)

the space A(E) is a Hahn space relative to
(
H̃, A(χ)

)
.

Proof. (a) Let F be an FH-space relative to H̃ with A(T ) ⊂ F . Then T ⊂
A−1(F ). Thereby A−1(F ) is an FH-space relative to H by [6, Proposition 1.1] (cf.
[19, 3.2.4] for a detailed proof). This implies HT̂ ⊂ A−1(F ), thus A

(
HT̂
)
⊂ F .

(b) If, in addition, HT̂ is an FH-space relative to H, then A
(
HT̂
)
is an FH-

space relative to H̃ by 3.2. Since A(T ) ⊂ A
(
HT̂
)

we get H̃Â(T ) ⊂ A
(
HT̂
)
.

Together with (a) this implies that A
(
HT̂
)

= H̃Â(T ). In particular, A(T ) is

FH-regular in H̃.
(c) By (b),

(
H̃, A(χ)

)
is a Hahn tuple because (H,χ) is. Now, let F be an FH

space relative to H̃ with A(χ) ∩ A(E) ⊂ F . Then A(χ ∩ E) ⊂ A(χ) ∩ A(E) ⊂ F ,
thus χ ∩ E ⊂ A−1(F ). Because A−1(F ) is an FH-space relative to H (cf. [6,
Proposition 1.1] , [19, 3.2.4]) and E is assumed to be a Hahn space relative to
(H,χ) we obtain E ⊂ A−1(F ), thus A(E) ⊂ F . Altogether, A(E) is a Hahn space
relative to (H̃, A(χ)). �

For a further discussion of examples of Hahn tuples and related Hahn spaces
see Section 6.

Definition and Remark 4.10. For any n ∈ N, n > 0, χn denotes the set of all
members of 〈χ〉 that may be represented by a finite linear combination of at most
n members in χ. Moreover we set χ0 := ∅. Note that χn, n ∈ N, is in general no
linear space.

Theorem 4.11. Let m,n ∈ N be arbitrarily given. Then:

(i) K · χn = χn.
(ii) χm + χn ⊂ χm+n.
(iii) 〈χ〉 =

⋃
n∈N χn.

Proof. We omit the easy proofs. �

By means of the sets χn, n ∈ N, additional topological and algebraic conditions
on χ may be formulated, which are obviously satisfied in the case of the set χ of
all sequences of 0’s and 1’s.

Theorem 4.12. Let χ be chosen such that for all n ∈ N the following conditions
are fulfilled:

(i) χn is a closed subset of 〈χ〉 where 〈χ〉 carries the topology induced by the
FH-topology of χ̂.

(ii) χn contains exclusively finite dimensional subspaces.
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Then, for every FH-space E ⊂ χ̂, the space χ(E), provided with the topology
induced by the FH-topology of E, is a Baire space if and only if χ(E) is finite
dimensional.

Proof. Let n ∈ N be arbitrarily given. At first, let E and χ(E) as well as 〈χ〉 and
χn be topologized with the topology induced by the FH-topology of χ̂. Because
of (i) and χ(E) ⊂ 〈χ〉 the set χ(E) ∩ χn is closed in χ(E). Moreover, the FH-
topology of E is stronger than the topology induced by the FH-topology of χ̂ by
the monotony of FH-topologies. The same is obviously true for the corresponding
topology on χ(E). Therefore, χ(E) ∩ χn is closed in the subspace χ(E) of the
FH-space E.

Moreover, we have χ(E) =
⋃
n∈N (χ(E) ∩ χn) because of χ(E) ⊂ 〈χ〉 and

4.11(iii).
Now, we assume that χ(E) is a Baire space. Then there exists an n ∈ N such

that χ(E) ∩ χn has an interior point a in χ(E). Consequently, χ(E) ∩ χn − a is
a zero neighbourhood in χ(E). By that and 4.11(ii) we get

χ(E) ∩ χn − a ⊂ χ(E) ∩ χn + χ(E) ∩ χn ⊂ χ(E) ∩ (χn + χn) ⊂ χ(E) ∩ χm

for m := 2n. Therefore χ(E)∩χm is a zero neighbourhood in χ(E). In particular,
χ(E) ∩ χm is absorbing. Thus there exists for every b ∈ χ(E) a positive λ ∈ R
with λb ∈ χ(E) ∩ χm. Because of 4.11(i) and since χ(E) is a linear space, b ∈
χ(E) ∩ χm ⊂ χm holds. Altogether χ(E) ⊂ χm is proved, so that χ(E) is finite
dimensional by the assumption (ii).

Conversely, a finite dimensional subspace of a separated space is always an
Fréchet space, thus a Baire space. �

4.2. Characterization of Hahn spaces

First of all we generalize the characterization of the original Hahn FK-spaces
(cf. Theorem 1.1) to the general case of Hahn spaces.

Theorem 4.13 (for H := ω cf. [4, Theorem 1] and [3, Theorem 1.1]). If
E is any FH-space, then the following statements are equivalent:

(i) E is a Hahn space.
(ii) χ(E) is dense and barrelled in E.

Proof. (i)⇒(ii): Since E is an FH-space, the closure χ(E) of χ(E) in E is also an
FH-space. Because χ(E) ⊂ χ(E) ⊂ E and E is a Hahn space we get E ⊂ χ(E),
thus E = χ(E) and χ(E) is dense in E.

Let E0 := χ(E) and F be any FH-space with E0 ⊂ F . Then E ⊂ F by the
Hahn property of E. Thus statement 3.5(ii) and therefore 3.5(i) is satisfied, that
is, χ(E) is barrelled in E.

(ii)⇒(i): Apply 3.5(i)⇒(ii) to E0 := χ(E). �

Note, in the proof of Theorem 4.13 we did not use the FH-regularity. However,
the importance of this property became obvious, for instance, in the proof of
Theorem 4.12 and will reveal itself in 4.17.
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Remark 4.14. If H := ω and χ is the set of all sequences of 0’s and 1’s, then
Theorem 1.1 is a special case of Theorem 4.13. Moreover, the conditions (i) and
(ii) in 4.12 are satisfied (as we’ll state in Theorem 5.1). Therefore, with suit-
able conditions on χ, the consideration of (general) Hahn spaces is useful for the
identification of barrelled spaces which are not necessarily Baire spaces.

Theorem 4.15. If E is any linear subspace of H, then the following statements
are equivalent:

(i) E is a Hahn space.

(ii) E ⊂ χ̂(E).

(iii) Ê = χ̂(E).

Proof. (i)⇒(ii): Assume x ∈ E \ χ̂(E). Then there exists an FH-space F with
χ(E) ⊂ F and x /∈ F . Then E is not a Hahn space.

(ii)⇒(iii): This implication is an immediate consequence of 3.7(i) and (ii).
(iii)⇒(i): Let F be an FH-space with χ(E) ⊂ F . By the definition of the

FH-hull and (iii) we may conclude E ⊂ Ê = χ̂(E) ⊂ F̂ = F . Consequently, E is
a Hahn space. �

Proposition 4.16 (cf. [3, Cor. 1.2, Proposition 2.2 ] for H := ω). χ̂
is a Hahn space and each Hahn space is contained in χ̂. Furthermore, χ̂ is an
FH-space and < χ > is a dense, barrelled subspace of χ̂.

Proof. Obviously, ̂̂χ = χ̂ = 〈̂χ〉 = χ̂(χ̂) by 3.7(i), thus χ̂ is a Hahn space by 4.15.
Now, let E be an arbitrary Hahn space. Because χ(E) = 〈χ ∩ E〉 ⊂ 〈χ〉 we get
also E ⊂ χ̂(E) ⊂ 〈̂χ〉 = χ̂ by 4.15 and 3.7(ii). The remaining statements follow by
the FH-regularity of χ and 4.13. �

Remark 4.17. As we mentioned above, we did not use the FH-regularity of χ
in the proof of Theorem 4.13. However by the assumption of FH-regularity the
above theorem guarantees the existence of a Hahn space which is also an FH-space.
If in addition 〈χ〉 has infinite dimension, then there exists the chance to deduce
nontrivial results.

For example, if we drop the FH-regularity of χ in the definition of a Hahn space
(cf. 4.5) and set5 χ :=

{
ek | k ∈ N

}
and H := ω. Then χ̂ = ϕ is not an FH-space,

that is, χ is not FH-regular, and by 4.16 each Hahn space is a subspace of ϕ. In
particular, each Hahn space has countable dimension and is finite dimensional, if
it is even an FH-space. However in the last case barrelledness is trivial.

Theorem 4.18. If E is any Hahn space, then each linear subspace X of H with
E ⊂ X ⊂ Ê is also a Hahn space. In particular, Ê is a Hahn space if E is a Hahn
space.

5ek := (0, . . . , 0, 1, 0, . . .) with the ‘1’ in the kth position.
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Proof. Let F be an FH-space with χ(X) ⊂ F . Then χ(E) ⊂ F since E ⊂ X,
thus E ⊂ F by the Hahn property of E. Therefore X ⊂ Ê ⊂ F . Altogether, X is
a Hahn space. �

Proposition 4.19 (vgl. [3, Proposition 2.1]). If (Ei)i∈I is a family of Hahn
spaces (relative to (H,χ)) and E :=

∑
i∈I Ei, then E is a Hahn space too. (Note,

if (Ei)i∈I is totally ordered, then E =
⋃
i∈I Ei.)

Proof. Let F be an FH-space and χ(E) ⊂ F . Obviously, we have χ(Ei) ⊂ χ(E) ⊂
F for all i ∈ I. Thus Ei ⊂ F for each i ∈ I because Ei, i ∈ I, are Hahn spaces.
Consequently E ⊂ F , that is, E is a Hahn space. �

Definition 4.20. For any linear subspace E of H we use the notation Eh for the
sum of all Hahn spaces contained in E and call it the Hahn kernel of E. Note, Eh
is well-defined since χ(E) is a Hahn space contained in E.

Proposition 4.21. For subspaces E and F of H the following statements hold:

(i) Eh is the uniquely determined maximal Hahn space contained in E.
(ii) χ(E) ⊂ Eh ⊂ E.
(iii) E ⊂ F ⇒ Eh ⊂ Fh.
(iv) (Eh)h = Eh.
(v) E is a Hahn space if and only if Eh = E.

Proof. The proofs are straightforward and left to the reader. �

4.3. χ-zones

If one knows a Hahn space E, then there are two simple ways to derive further
examples for Hahn spaces. The first one provides subspaces and the second one
supspaces of E.

Definition 4.22. Let E be a subspace of H. Then, by definition, the lower χ-zone
of E is the set of all subspaces X of H with χ(E) ⊂ X ⊂ E, and the upper χ-zone
of E is the set of all subspaces X of H with E ⊂ X ⊂ E + K · χ. (Note, that
E + K · χ is not a linear space in general.)

Proposition 4.23. If E and X are subspaces of H, then the following statements
are equivalent:

(i) X is a member of the lower χ-zone of E.
(ii) X ⊂ E and χ(X) = χ(E).

Proof. (i)⇒(ii): If χ(E) ⊂ X ⊂ E, then χ(E) = χ(χ(E)) ⊂ χ(X) ⊂ χ(E) by 4.4,
thus χ(X) = χ(E).

(ii)⇒(i): The statement (ii) implies obviously χ(E) = χ(X) ⊂ X ⊂ E. �
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Theorem 4.24. Let E and X be linear subspaces of H with E ⊂ X. Then the
following statements are equivalent:

(i) X is a member of the upper χ-zone of E, that is X ⊂ E + K · χ.
(ii) F = E + χ(F ) holds for every subspace F with E ⊂ F ⊂ X.
(iii) For any subspace F with E ⊂ F ⊂ X there exists a χ-based subspace Y of

X such that F = E ⊕ Y .

Proof. (i)⇒(ii): Let E ⊂ F < X. Then E+χ(F ) ⊂ F . Since F ⊂ X ⊂ E+K ·χ
for all x ∈ F there exist an a ∈ E, a t ∈ χ and a λ ∈ K with x = a + λt. In
particular, λt ∈ F . If λ = 0, then x ∈ E ⊂ E + χ(F ). If λ 6= 0, then t ∈ F ,
therefore t ∈ χ(F ), thus x ∈ E + χ(F ). Altogether, F = E + χ(F ) holds.

(ii)⇒(iii): Let F with E ⊂ F < X be given and

M :=
{
G ⊂ F ∩ χ E ∩ 〈G〉 = {0}

}
.

Obviously, M 6= ∅ because ∅ ∈ M. Let (Gi)i∈I be a linearly ordered family of
members ofM and G :=

⋃
i∈I Gi. In particular,

〈G〉 =
∑
i∈I
〈Gi〉 =

⋃
i∈I
〈Gi〉.

Then E ∩ 〈G〉 = {0} since E ∩ 〈Gi〉 = {0} (i ∈ I). Therefore G ∈ M and,
consequently,M contains a maximal member by Zorn’s Lemma.

Let G be a maximal member ofM. First of all, E∩〈G〉 = {0} by the definition
of M. Let t ∈ F ∩ χ be arbitrarily chosen. If t /∈ G, then G̃ := G + {t} is
a strict superset of G and, since G is maximal in M, G̃ /∈ M which implies
E∩〈G̃〉 6= {0}. Thus there exists an a ∈ E with a 6= 0 and a ∈ 〈G̃〉. Consequently,
there exist x ∈ 〈G〉 and λ ∈ K with a = x + λt. We have λ 6= 0, otherwise
a = x ∈ E ∩ 〈G〉 = {0} in contradiction to a 6= 0. That implies t ∈ E + 〈G〉.
If t ∈ G, then t ∈ E + 〈G〉 as well. Because the drawn conclusion holds for all
members of F ∩χ, it is also true for all members in 〈F ∩χ〉, thus χ(F ) ⊂ E + 〈G〉
is proven.

Moreover, F = E + χ(F ) is assumed by (ii). Therefore

F = E + χ(F ) ⊂ E + E + 〈G〉 = E + 〈G〉.

Since both E and 〈G〉 are contained in F we get altogether F = E+〈G〉. Obviously
Y := 〈G〉 is a χ-based subspace with E ∩ Y = {0}, thus F = E ⊕ Y .

(iii)⇒(i): Let x ∈ X be arbitrarily given. If x is already contained in E, then
also in E+K ·χ. Now we assume x /∈ E and put F := E+〈x〉. By the assumptions
there exists a χ-based subspace Y of X with F = E⊕Y . Necessarily, Y ∩χ 6= {0}
otherwise, since Y is χ-based, Y = {0} which would imply F = E, thus x ∈ E in
contradiction to the assumption. Let t ∈ Y ∩ χ with t 6= 0 be arbitrarily chosen.
Naturally t ∈ E+Y = E+〈x〉. Thus there exist a ∈ E and λ ∈ K with t = a +λx.
We have necessarily λ 6= 0 since otherwise t ∈ E in contradiction to t 6= 0 and
E ∩ Y = {0}. Therefore, x ∈ E + K · χ, thus X is a member of the upper χ-zone
of E. �
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Theorem 4.25. Each element in the lower and the upper χ-zone of a Hahn space
E is also a Hahn space.

Proof. IfX is a member of the lower χ-zone of a Hahn space E, then χ(X) = χ(E)
by 4.23. Now, let F be an FH-space with χ(X) ⊂ F . Then χ(E) ⊂ F , and thus,
since E is a Hahn space, E ⊂ F is satisfied. This implies X ⊂ F because of
X ⊂ E, that is, X is also a Hahn space. On the other hand, if X is an element
of the upper χ-zone of a Hahn space E, then X = E + χ(X) by 4.24. Thereby
both E and χ(X), which is χ-based, are Hahn spaces. Therefore, by 4.19, X is
also a Hahn space. �

In particular, if E is a Hahn space, then E ∩ 〈χ〉 is a Hahn space too, because
E∩〈χ〉 has the same χ-part than E and is therefore a member of the lower χ-zone
of E.

4.4. Big Hahn spaces

It has been proved in [3, Theorem 3.4] that bs⊕〈e〉 is a Hahn space and that each
sequence space X with bs⊕ 〈e〉 ⊂ X ⊂ `∞(= χ̂) is a Hahn space too. This result
motivates the following definition.

Definition 4.26. A Hahn space E is called big, if each subspace X of H with
E ⊂ X ⊂ χ̂ is also a Hahn space.

Example 4.27.

(a) If E is a subspace of χ̂ with χ ⊂ E, then E is obviously a big Hahn space.
(b) E = bs⊕ 〈e〉 is a big Hahn space by [3, Theorem 3.4]6

We give sufficient and necessary conditions for the property to be a big Hahn
space.

Theorem 4.28. Let E be a Hahn space.

(a) If χ̂ is a member of the upper χ-zone of E, then E is a big Hahn space.
(b) If, in addition, E is an FH-space, then E is a big Hahn space if and only if

χ̂ = E + K · χ.

Proof. (a) Let χ̂ be a member of the upper χ-zone of E. Then χ̂ ⊂ E + K · χ.
Moreover, since E is a Hahn space, we have E ⊂ χ̂ by 4.16 and consequently
χ̂ = E + K · χ because K · χ ⊂ χ̂ holds. Now, let X be a subspace of H with
E ⊂ X ⊂ χ̂. Then X is also a member of the upper χ-zone of the Hahn space E
and therefore a Hahn space by 4.25. Thus E is a big Hahn space.

(b) Let E be an FH-space with the Hahn property.
⇐: This implication is already proved in part (a).
⇒: We assume that E is a big Hahn space, implying E + K · χ ⊂ χ̂, and that

there exists an x ∈ χ̂ with x /∈ E + K · χ. We consider the subspace X := E + 〈x〉
of χ̂. The spaces E and X have the same χ-part [For all t ∈ X ∩ χ there exist an

6Naturally, we consider here the case with H := ω and χ := {(xk) ∈ ω |xk ∈ {0, 1}}.



Hahn spaces in Fréchet spaces and applications to real sequence spaces 373

a ∈ E and λ ∈ K such that t = a +λx. Because λ 6= 0 would imply x ∈ E+K ·χ,
we get λ = 0 and therefore t ∈ E.]. Moreover, since E is a big Hahn space, X is
a Hahn space which implies, because E is a Hahn space and χ(X) = χ(E) ⊂ E,
that X ⊂ E and thus x ∈ E in contradiction to the assumption. Altogether,
χ̂ = E + K · χ is proved. �

5. Hahn spaces of real sequences relative to (ω, χ)

In this section we consider exclusively spaces of real sequences, that is, subspaces
of ω, and χ is the set of all sequences of 0’s and 1’s.

In the first part of this section we mention some special properties of χ, the
set of all sequences of 0’s and 1’s.

Theorem 5.1. For each n ∈ N the set χn is ‖ ‖∞-closed in `∞.

Proof. For the very technical proof we refer to [19, Satz 6.1.8]. �

Theorem 5.2. Let E ⊂ `∞ be any FK-space. Then χ(E) is a Baire space (as
subspace of E) if and only if χ(E) is finite dimensional. In particular, m0 = 〈χ〉 =
χ(`∞) is not a Baire space (relative to ‖ ‖∞). Note, concerning m0, a better result
is that m0 can be covered by a countable family of proper closed hyperplanes (cf.
[21, Proposition 1.3.5]).

Proof. By 4.12 and 5.1 it is sufficient to prove, that χn, n ∈ N, contains exclusively
finite dimensional linear subspaces.

Let n ∈ N be arbitrarily given and F be a linear subspace of χn. The members
of F may accept at most 2n different values. Let a = (ak) be a member of F with
a maximal number ν ∈ N of different values. Then there exist pairwise unequal real
numbers λ1, λ2, . . . , λν and sequences t(1), t(2), . . . , t(ν) of 0’s and 1’s with pairwise
disjoint support sets such that a =

∑ν
i=1 λi t

(i). Then we may choose an ε > 0
such that the ε-neighbourhoods of λ1, λ2, . . . , λν are pairwise disjoint.

For any chosen b ∈ F with b 6= 0 let λ := ε
‖b‖∞ and a∗ := a + λb ∈ F .

Then a∗ accepts also exactly ν different values by the assumptions on a. By
the construction of a∗ = (a∗n) the identity ak = al implies a∗k = a∗l for k, l ∈
N. Therefore a∗ as well as b are finite linear combinations of t(1), t(2), . . . , t(ν).
Altogether F ⊂

〈
{t(1), t(2), . . . , t(ν)}

〉
, and therefore F has at most the dimension

ν 6 2n. �

In the next part of the Section we characterize for any (infinite) matrix A =
(ank) the inclusions A(χ) ⊂ χ and A(ζ) ⊂ ζ where ζ denotes the set of all linear
combinations of sequences of 0’s and 1’s with coefficients in Z. Note that, because
each subset of Z is bounded if and only if it is finite, ζ may be also considered as
the set of all integral bounded sequences.
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Theorem 5.3. For any matrix A the following statements are equivalent:

(i) A(χ) ⊂ χ.
(ii) A ∈ Γ whereby Γ denotes the set of all matrices of 0’s and 1’s such that

each row contains at most one 1.

Proof. (i)⇒(ii): The condition (i) includes that7 χ ⊂ ωA and that Aek ∈ χ for
all k ∈ N, which implies that A is a matrix of 0’s and 1’s. Assume that there exist
k, l, n ∈ N with k 6= l such that the nth row of A accepts the value 1 in the kth and
lth position. We consider t := ek + el and x = (xn) := At. Then certainly t ∈ χ,
but xn /∈ {0, 1}. Thus At /∈ χ contradicting condition (i).

(ii)⇒(i): This is obvious since A contains at most one 1 in each row. �

Theorem 5.4. For any matrix A the following statements are equivalent:

(i) A(ζ) ⊂ ζ.
(ii) A consists of integers and ‖A‖ <∞ (row sum norm).
(iii) A ∈ Z(Γ) where Z(Γ) denotes the set of all finite linear combinations of

members in Γ with integral coefficients.

Proof. (i)⇒(ii): A consists of integers since Aek ∈ ζ for all k ∈ N. Additionally
A(χ) ⊂ A(ζ) ⊂ ζ ⊂ `∞, thus χ ⊂ A−1(`∞). Since A−1(`∞) is an FK-space and
`∞ has the Hahn property we get `∞ ⊂ A−1(`∞), thus A(`∞) ⊂ `∞ which is
equivalent to ‖A‖ <∞ (cf. [5, 2.3.5]).

(ii)⇒(iii): Let A 6= 0 (otherwise (iii) is trivially true). The condition (ii) implies
that the set A := {ank | n, k ∈ N} of all coefficients of A = (ank) is a finite subset
of Z and that supn |{k ∈ N | ank 6= 0}| <∞. Now, if z ∈ A\ {0} is given, then we
define the matrix T = (tnk) ∈ Γ by

tnk :=

{
1, if ank = z and k = min{r ∈ N | anr = z},
0 otherwise

(n, k ∈ N).

Afterwards, if A − zT 6= 0 we may apply the same construction to the matrix
A− zT . Repeating this procedure we get in finite many steps the zero matrix, so
that A ∈ Z(Γ) is proven.

(iii)⇒(i): For all B ∈ Γ the conclusion B(χ) ⊂ χ ⊂ ζ holds by 5.3 which
implies B(ζ) ⊂ ζ. Therefore, if A ∈ Z(Γ), A(ζ) ⊂ ζ is true. �

In [3, Theorem 3.4] it has been shown that bs+ 〈e〉 = Σ−1(`∞) + 〈e〉 is a Hahn
space where Σ is the summation matrix and Σ−1 its inverse matrix. Thereby, this
property was reduced to that of `∞. Moreover, it has been also proved that it is
even a big Hahn space. Now, the aim is to develop conditions so that this result
remains true if we replace Σ−1 by certain matrices A, `∞ by certain sequence
spaces E, and e by suitable, as small as possible sets T of sequences of 0’s and 1’s.

7For any matrix A = (ank) the set ωA :=
{

(xk) ∈ ω |
∑
k ankxk exists for all n ∈ N

}
is called

the application domain of A.
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Definition 5.5. Let E < ω and T ⊂ χ. A matrix A is called χ-preserving on E
with tolerance T , if E ⊂ ωA and A(χ(E)) ⊂ χ(A(E) + 〈T 〉).

Examples 5.6.

(a) By [3, Lemma 3.3] the matrix Σ−1 is χ-preserving on `∞ with tolerance {e}.
(b) Let I be a non-empty subset of N. For simplification, we assume I = N

if I is an infinite set, and I = Nr if I has exactly r (r ∈ N) elements.
Furthermore, let Ni = {nij ∈ N| j ∈ N} (i ∈ I) be infinite ordered sets such
that ⋃

i∈I
Ni = N, Ni ∩Nj = ∅ (i, j ∈ I, i 6= j)

that is, N = (Ni| i ∈ I) is a partition of N (consisting of infinite sets). Then,
generalizing bs and Σ, in [12] the sequence space

bs(N) :=

{
x ∈ ω ‖x‖bs(N) := sup

j
‖(xk)k∈Nj‖bs <∞

}
has been introduced and the matrix ΣN defined by

[ΣNx]n :=

k∑
j=1

xnij if n = nik (n, k ∈ N, i ∈ I).

The inverse matrix of ΣN is denoted by Σ−1
N . Obviously, for every y ∈ ω we

have[
Σ−1
N y

]
n

= ynik − yni,k−1
when n = nik (n, k ∈ N, i ∈ I, yni0 := 0),

thus Σ−1
N (`∞) = bs(N). Note that bs = bs(N) and Σ = ΣN hold in the

special case N = (N).
By [12, Lemma 2.5] the matrix Σ−1

N is χ-preserving on `∞ with tolerance {e}.

Theorem 5.7. Let E be a Hahn space and A be a χ-preserving matrix on E with
tolerance T ⊂ χ. Then A(E) + 〈T 〉 is a Hahn space too.

Proof. Let G := A(E) + 〈T 〉 and F be an FK-space with χ(G) ⊂ F . By the
assumptions we get A(χ(E)) ⊂ χ(A(E)+ 〈T 〉) = χ(G) ⊂ F , thus χ(E) ⊂ A−1(F ).
With F the space A−1(F ) is also an FK-space. Then E ⊂ A−1(F ), thus A(E) ⊂ F ,
follows by the Hahn property of E. In addition, 〈T 〉 = χ(〈T 〉) ⊂ χ(G) ⊂ F .
Altogether G ⊂ F , and thus G is a Hahn space. �

Let A be a given matrix and E a given sequence space. Then it is of mathe-
matical interest to research for subsets T of χ such that T is as small as possible
and A is χ-preserving with tolerance T on E. Note that, on this score, T = ∅ is not
necessary a possible tolerance. The case, that T = ∅ is a tolerance, is characterized
in [19]. The formulation of this result requires two more notations.
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Notation 5.8. Let Γ∗ be the set of all matrices which are a member of Γ or those
which come from a matrix A = (ank) ∈ Γ by extending A by a column (at an
arbitrary position) a∗ with −a∗ ∈ χ and8 Sp(−a∗) ⊃

⋃
k Sp(ank)n.

Moreover, Ψ denotes the set of all matrices A = (ank) such that (ank)k = 0 or
(ank)k = a for a fixed sequence a ∈ `1, ‖a‖1 = 1 (n ∈ N).

Theorem 5.9 ([19, p. 52, end of Section 6.3]). If A is a given real matrix,
then A is χ-preserving on every Hahn space E with tolerance ∅ if and only if
A ∈ (R · Γ∗) ∪ (R ·Ψ).

Proof. This is an immediate corollary of [19, Satz 6.2.8]9. �

In the following we consider the special case of matrices being χ-preserving
motivated by the example bs + 〈e〉: We consider the sequence space E := `∞
and the tolerance T := {e}. For instance, the matrices Σ−1

N , especially Σ−1, are
χ-preserving in that special case (cf. 5.6).

In the next theorem we give a sufficient condition for the matrices being in
demand. Afterwards we’ll give a class of matrices which satisfy that condition.

Theorem 5.10. Let A be a matrix with `∞ ⊂ ωA. Then E := A(`∞) + 〈e〉 is
a Hahn space, if A(ζ) ⊂ ζ and ζ ∩ E ⊂ χ(E) are satisfied.

Proof. By the assumption `∞ ⊂ ωA we get A(χ) ⊂ A(`∞) ⊂ E. Since A(ζ) ⊂ ζ
and ζ ∩ E ⊂ χ(E) this implies A(χ) = A(χ) ∩ E ⊂ A(ζ) ∩ E ⊂ ζ ∩ E ⊂ χ(E).
Therefore, A is χ-preserving on `∞ with tolerance {e}. Thus, by 5.7, E is a Hahn
space. �

Recall, by 5.4, the condition A(ζ) ⊂ ζ means exactly that A consists of integers
and its row norm is finite.

Definition and Remarks 5.11. A matrix A = (ank) is called χ-regular, if the
following conditions are satisfied:

(i) A is a triangle (normal matrix).
(ii) ∀n ∈ N :

∑n−1
k=0 |ank| 6 |ann|.

(iii) (ann) ∈ `∞.
(iv) ∀n, k ∈ N : ank ∈ Z.

If A is χ-regular and D denotes the diagonal matrix with diagonal (ann), then
‖A−D‖ 6 ‖D‖ <∞, thus ‖A‖ = ‖(A−D)+D‖ 6 2‖D‖ <∞ and10 `∞ ⊂ (`∞)A.
Moreover, A(ζ) ⊂ ζ if A is χ-regular.

The matrices Σ−1
N , in particular Σ−1, are χ-regular. With the following The-

orem we show that [3, Lemma 3.2] and [12, Lemma 2.4] remain true when we
consider more generally χ-regular matrices instead Σ−1

N .

8Sp(x) denotes the support of a sequence x.
9We omit the presentation of the proof of this result because it does not play any role in the

further research of this paper.
10For any matrix A and Y < ω we set YA :=

{
x ∈ ωA | Ax :=

(∑
k ankxk

)
n
∈ Y

}
.
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Theorem 5.12. Let A be a χ-regular matrix and E be a sequence space sat-
isfying A(`∞) ⊂ E. If x is any sequence in E with coefficients exclusively in
{0, 1, 2, . . . , L} for a suitable L ∈ N0, then x ∈ χ(E).

Proof. Let A = (anr), E, x ∈ E, and L be given according to the assumptions.
If L = 0, then obviously x ∈ χ(E). Now, let L > 0 be fixed. Then we construct
inductively the nth coefficient of sequences t(1), t(2), . . . , t(L) in χ and sequences
u(1), u(2), . . . , u(L) ∈ ω with the following properties:

(i) x =
∑L
k=1 t

(k).
(ii) t(k) = Au(k) for k ∈ {1, 2, . . . , L}.
(iii)

∥∥u(k) − u(l)
∥∥
∞ 6 1 for k, l ∈ {1, 2, . . . , L}.

For that we use the notations t(k)
n and u(k)

n (k ∈ {1, 2, . . . , L} and n ∈ N) for the
nth coefficient of t(k) and u(k), respectively. Then (ii) is equivalent to

t(k)
n = annu

(k)
n + v(k)

n where v(k)
n :=

∑
r<n

anr u
(k)
r

(k ∈ {1, 2, . . . , L}, n ∈ N). (5.1)

Note, the integrality together with the normality ofA is here used only to guarantee
|ann| > 1 for all n ∈ N.

Basis of the induction, n = 0: Let a := x0. Then, by the assumption, a ∈ N
with a 6 L. We set

t
(r)
0 :=

{
1, if 1 6 r 6 a,
0 otherwise

(1 6 r 6 L).

Obviously x0 =
∑L
k=1 t

(k)
0 , that is (i) for n = 0. In order that (ii) is true for n = 0

we define u(k)
0 :=

t
(k)
0

a00
for k 6 L. Since |a00| > 1 the condition∣∣∣u(k)

0 − u(l)
0

∣∣∣ 6 ∣∣∣t(k)
0 − t(l)0

∣∣∣ 6 1 (k, l ∈ {1, 2, . . . , L})

holds, that is (iii) for n = 0.
Induction step 0, ..., n−1 → n: Let a := xn. Then again, by the assumption,

a ∈ N with a 6 L. As arranged in (5.1) we have

v(k)
n =

∑
r<n

anr u
(k)
r (k ∈ {1, 2, . . . , L}).

If we have chosen suitable, pairwise different r1, . . . , ra ∈ {1, 2, . . . , L}, then we set

t(r)n :=

{
1, if r ∈ {r1, . . . , ra},
0 otherwise

(1 6 r 6 L)

which guarantees xn =
∑L
k=1 t

(k)
n , that is (i) for n. The selection of pairwise

different r1, . . . , ra ∈ {1, 2, . . . , L} can be done such that for all k, l ∈ {1, 2, . . . , L}
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the condition t(k)
n = 0 and t(l)n = 1 implies v(k)

n 6 v
(l)
n . Having determined t(r)n we

define

u(k)
n :=

t
(k)
n − v(k)

n

ann
(1 6 k 6 L)

so that (ii) holds for n. Now, we are going to prove (iii) for n, that is,∣∣∣u(k)
n − u(l)

n

∣∣∣ 6 1 (k, l ∈ {1, 2, . . . , L}).

For that let k, l ∈ {1, 2, . . . , L} be arbitrarily given. By the induction hypoth-
esis we get from (iii) for n− 1 the estimate∣∣∣v(k)

n − v(l)
n

∣∣∣ =

∣∣∣∣∣∑
r<n

anr(u
(k)
r − u(l)

r )

∣∣∣∣∣ 6∑
r<n

|anr| 6 |ann| . (5.2)

We distinguish three cases:
Case 1, t(k)

n = t
(l)
n : Then∣∣∣u(k)

n − u(l)
n

∣∣∣ 6 ∣∣∣∣∣v(k)
n − v(l)

n

ann

∣∣∣∣∣ 6 1.

Case 2, t(k)
n = 1 and t(l)n = 0: We get∣∣∣u(k)
n − u(l)

n

∣∣∣ =

∣∣∣∣∣ t(k)
n − t(l)n − v(k)

n + v
(l)
n

ann

∣∣∣∣∣ =

∣∣∣∣∣1− v(k)
n + v

(l)
n

ann

∣∣∣∣∣
and v(k)

n − v(l)
n > 0. That leads to the estimates 0 6 v

(k)
n − v(l)

n 6 |ann| by (5.2)
and 0 6 1 6 |ann|, thus to |1 − v(k)

n + v
(l)
n | 6 |ann|. Altogether, we have again

|u(k)
n − u(l)

n | 6 1.
Case 3, t(k)

n = 0 and t(l)n = 1: Exchange the roles of k and l in the second case.
In all, we have constructed t(1), t(2), . . . , t(L) ∈ χ and u(1), u(2), . . . , u(L) ∈ ω

with the desired properties.
In particular, for arbitrary k, l ∈ {1, 2, . . . , L} we have u(k) − u(l) ∈ `∞ and

therefore also t(k) − t(l) ∈ A(`∞) ⊂ E. Summing over l, then

L∑
l=1

(
t(k) − t(l)

)
= Lt(k) − x ∈ E for all k ∈ {1, 2, . . . , L}.

By the assumption x ∈ E and L > 0, we get in the end t(k) ∈ E, thus t(k) ∈ χ∩E
for all k ∈ {1, 2, . . . , L} which implies x ∈ χ(E) by property (i). �

Theorem 5.13. Let A be a χ-regular matrix and E := A(`∞) + 〈e〉. Then:
(i) A(ζ) ⊂ ζ.
(ii) ζ ∩ E ⊂ χ(E).
(iii) E is a Hahn space.
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Proof. (i) is contained in 5.11.
(ii) Let x ∈ ζ ∩ E. Because x ∈ `∞ ∩ ZN there exists an L ∈ N such that the

coefficients of y := x+Le are a subset of {0, 1, 2, . . . , 2L}. Therefore y ∈ χ(E) by
5.12, thus x ∈ χ(E) since e ∈ E.

(iii) is a simple consequence of (i) and (ii) in connection with 5.10. �

Preconsideration 5.14. In the following we aim at a generalization of [3, Propo-
sition 3.1]. There it has been shown that in case of E := A(`∞)+〈e〉 with A = Σ−1

the statement F = E + χ(F ) holds for each sequence space F with E ⊂ F ⊂ `∞.
This is exactly the statement in 4.24 (ii) in the case X = `∞, H = ω and K = R.
By 4.24 this is equivalent to

`∞ ⊂ E + R · χ = A(`∞) + 〈e〉+ R · χ.

For that the condition
[0, 1]N ⊂ A(`∞) + χ

is sufficient because, as we may prove (cf. [19, 4.5.5 (ii)]), `∞ = R · [0, 1]N + 〈e〉.
That implies `∞ ⊂ R · (A(`∞) + χ) + 〈e〉 = A(`∞) + R · χ+ 〈e〉 .

Theorem 5.15. If A is a χ-regular matrix, then [0, 1]N ⊂ A(`∞) + χ.

Proof. Let A = (ank) be χ-regular, x = (xn) ∈ [0, 1]N, and M ∈ R with M > 1
2 .

We are going to construct inductively (over n) sequences t = (tn) ∈ χ and u =
(un) ∈ `∞ with the following properties:

(i) ‖u‖∞ 6M .
(ii) x− t = Au.

Basis of the induction n = 0: By the assumption 0 6 x0 6 1. If x0 > 1
2 ,

then we set t0 := 1 and t0 := 0 otherwise. Then we have |x0 − t0| 6 1
2 6 M .

Additionally, if we put u0 := x0−t0
a00

, then, because |a00| > 1, (i) and (ii) are
satisfied for n = 0.

Induction step 0, ..., n−1→ n: Let tk and uk be already constructed for k < n
in accordance with (i) and (ii). Then

[Au]n = annun + vn where vn :=
∑
k<n

ankuk.

We aim to verify the existence of an tn ∈ {0, 1} such that |un| 6 M holds for un
uniquely defined by xn − tn = vn + annun (= [Au]n). For that we note that

|vn| 6
∑
k<n

|ank uk| 6M
∑
k<n

|ank| 6M |ann|

by the assumptions for A. Since xn ∈ [0, 1] this provides us

−M |ann| 6 xn − vn 6 1 +M |ann|.

We consider the following two cases:
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Case 1, xn − vn > M |ann|: We set tn := 1. Then

−M |ann| 6M |ann| − 1 < xn − vn − 1 6M |ann|

by 2M |ann| > 1, thus

|annun| = |xn − vn − tn| = |xn − vn − 1| 6M |ann|.

Case 2, xn − vn 6M |ann|: We put tn := 0. Then |annun| 6M |ann|.
In both cases we have |un| 6M , so that (i) and (ii) are satisfied for n.
Altogether, we have constructed sequences t and u with the desired properties.

Because u ∈ `∞ and t ∈ χ, the statement x ∈ A(`∞) + χ is proved. �

Theorem 5.16. If A is a χ-regular matrix, then A(`∞) + 〈e〉 is a big Hahn space.

Proof. A(`∞) + 〈e〉 has the Hahn property by 5.13(iii). Moreover, with 5.15 and
5.14, we get `∞ ⊂ A(`∞) + 〈e〉 + R · χ and, noting A(`∞) ⊂ `∞, even `∞ =
A(`∞) + 〈e〉+ R · χ. Thus A(`∞) + 〈e〉 is a big Hahn space by 4.28. �

Corollary 5.17. Let A = (ank) be a matrix with the following properties:
(i) A is a triangle.
(ii) (ann)n = e.
(iii) For each n ∈ N there exists at most one j ∈ Nn−1 with anj ∈ {−1, 1} and

ank = 0 for k ∈ Nn−1, k 6= j.
Then A(`∞) + 〈e〉 is a big Hahn space.

Consequently, for all partitions N , the spaces bs(N) + 〈e〉 = Σ−1
N (`∞) + 〈e〉, in

particular bs+ 〈e〉, are big Hahn spaces (cf. 5.6).

Proof. Obviously, the matrix A is χ-regular. Therefore A(`∞)+ 〈e〉 is a big Hahn
space by 5.16. �

In a further corollary of Theorem 5.16 we consider convolution products.

Definition 5.18. For all x, y ∈ ω the sequence x ∗ y defined by [x ∗ y]n :=∑n
k=0 xkyn−k is called convolution product. If x ∈ ω and E ⊂ ω, then we set

x ∗ E := {x ∗ y | y ∈ E}.

Corollary 5.19. If p = (pn) ∈ ϕ∩ZN with
∑
n>0 |pn| 6 |p0|, then p ∗ `∞ + 〈e〉 is

a big Hahn space.

Proof. Let Fp = (fnk) be the matrix defined by

fnk :=

{
pn−k for k 6 n,
0 otherwise

(k, n ∈ N).

Then Fp is obviously χ-regular, thus Fp(`∞) + 〈e〉 = p ∗ `∞ + 〈e〉 is a big Hahn
space by Theorem 5.16. �

Example 5.20. In particular, if p = (pn) := e0 − e1 = (1,−1, 0, ...), then Fp is
the inverse of the summation matrix Σ and p ∗ `∞ + 〈e〉 = bs+ 〈e〉 is a big Hahn
space.
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6. Examples of Hahn tuples (H,T ) with T ⊂ H < ω

In this section we discuss examples of Hahn tuples (H,T ) where H is
an FK-space and T is an FH-regular subset of H. Furthermore, χ denotes the
set of all sequences of 0’s and 1’s.

Example 6.1 (finite sets T of sequences of 0’s and 1’s). Let T be a finite subset
of χ. Then 〈T 〉 is a finite dimensional FK-space, that is, 〈T 〉 = ωT̂ , 〈T 〉 is FK-
regular in H := ω and (ω, T ) is a Hahn tuple. Moreover, the Hahn spaces relative
to (ω, T ) are exactly the linear hulls of subsets of T .

Examples 6.2 (iteratively generated Hahn tuples). (a) Let T1 := χ ∩ cC1
=

χ∩cC1
∩`∞ whereby cC1

denotes the set of all C1-summable sequences. The space
`∞∩ cC1

has the Hahn property relative to (ω, χ) because of bs+ 〈e〉 ⊂ `∞∩ cC1
⊂

`∞ (cf. [3, Theorem 3.4]). Moreover, (`∞ ∩ cC1
, ‖ ‖∞) is a BK-space, thus T1 is

FK-regular in ω and, by definition, (ω, T1) is a Hahn tuple.
Now, let P be the set of all periodical sequences. On one hand side we have

P ⊂ `∞∩cC1
and on the other hand P ⊂ 〈χ〉. Altogether, 〈P∩T1〉= 〈P∩cC1

∩χ〉 =
〈P ∩ χ〉 = P . Therefore, P is a Hahn space relative to (ω, T1).

(b) Let ac denote the set of all almost convergent sequences. We set T2 := ac∩χ.
Then (ω, T2) is a Hahn tuple because ac is a Hahn space relative to (ω, χ) since
bs⊕ 〈e〉 ⊂ ac ⊂ `∞ (cf. [3, Theorem 3.4 and (6.5)]) and ac is an FK-space.

Obviously, P ⊂ ac. Consequently, 〈T2 ∩ P 〉 = 〈χ ∩ P 〉 = P implying that P is
a Hahn space relative to (ω, T2). Moreover, `∞ ∩ cC1

is not a Hahn space relative
to (ω, T2) because of T̂2 = ac ( `∞ ∩ cC1 . (However it is a Hahn space relative to
(ω, χ), cf. (a)).

For the next example we need a further notion.

Definition and Remark 6.3. A subset T of χ is called linearly closed, if
〈T 〉 ∩ χ = T . For instance, if E is any sequence space, then T := χ ∩ E is
linearly closed.

Proposition 6.4. If T is a linearly closed strict subset of χ, then 〈χ \ T 〉 = m0.

Proof. For a proof of 〈χ \ T 〉 = m0 it is sufficient to verify T ⊂ 〈χ \ T 〉. Let
t ∈ T be arbitrarily chosen. Then there exist sets A,B ⊂ N with t = χA and
χB ∈ χ \ T , respectively. We set C := A ∩ B. If χC ∈ T , then χB\C ∈ χ \ T
because otherwise χB = χC + χB\C ∈ T since T is linearly closed. Consequently,
χA + χB\C ∈ χ \ T and t = χA is representable as a difference of two members of
χ \ T . On the other hand, if χC ∈ χ \ T , then also χA\C ∈ χ \ T . Consequently,
t = χA\C + χC ∈ 〈χ \ T 〉. Altogether, T ⊂ 〈χ \ T 〉 is proved. �

Examples 6.5 (big sets T of sequences of 0’s and 1’s). (a) We consider again
T1 = χ ∩ cC1

and T3 := χ \ T1. Because χ \ cC1
6= ∅ we have 〈T3〉 = 〈χ \ T1〉 = m0

by 6.4. Therefore T̂3 = `∞ since `∞ contains T3 and is a Hahn space. Thus (ω, T3)
is a Hahn tuple.
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The sequence space `∞ ∩ cC1
is not a Hahn space relative to (ω, T3) because

T3 ∩ cC1
= ∅ and the FK-space c satisfies {0} ( c ( `∞ ∩ cC1

.
(b) Let T4 := χ \ P where P denotes the set of all periodical sequences. Then

T̂4 = m̂0 = `∞ by 6.4 since χ ∩ P is linearly closed and a strict subset of χ.
Moreover (ω, T4, ) is a Hahn tuple. Obviously, P is not a Hahn space relative to
this Hahn tuple.

Now, we are going to prove that

`∞ ∩ cC1
is also a Hahn space relative to the Hahn tuple (ω, T4).

For that, let t = (tn) ∈ P \ {0} with period p ∈ N, p > 1, be given. Because
t 6= 0 there exists an r ∈ N, r < p, with tr = 1. Moreover, let t∗ ∈ χ be the sequence
such that t∗n = 1 if n = r + p · 2k, k ∈ N, and t∗n = 0 otherwise. Obviously, t∗ is
C1-summable to 0. Consequently t, t∗, t− t∗ ∈ χcC1

and t∗, t− t∗ /∈ P . Altogether,
P ∩ χ ⊂ 〈T4 ∩ cC1〉 = 〈T4 ∩ (`∞ ∩ cC1)〉. This implies, that each FK-space F
containing T4∩ (`∞∩ cC1) includes χ∩ cC1 and therefore, since `∞∩ cC1 is a Hahn
space relative to (ω, χ), necessarily `∞ ∩ cC1

⊂ F . Thus `∞ ∩ cC1
is also a Hahn

space relative to (ω, T4).

Examples 6.6 (Hahn tuples (H,T ) with T ⊂ H < ω and T ∩ χ = ∅). As we
know, an index sequence is a strictly increasing sequence in N, and a sequence
x = (xn) ∈ ω is called boundedly increasing if (xn+1 − xn) ∈ `∞. We consider
the set I of all boundedly increasing index sequences. First of all, we verify
that I is FK-regular in ω. For that let t ∈ χ be arbitrarily given and Σ be the
summation operator (matrix). Then both Σe = (n) and Σ(e + t) are strictly
boundedly increasing sequences in N, that is, Σe ∈ I and Σ(e + t) ∈ I, thus
Σt = Σ (e+ t) − Σe ∈ 〈I〉. Altogether, Σ(χ) ⊂ 〈I〉. Conversely, let x ∈ I be
arbitrarily chosen. Then Σ−1x is a bounded sequence in N and therefore a member
of m0 = 〈χ〉. In all, Σ(m0) = 〈I〉. By 4.9(b) the set 〈I〉 = Σ(m0), and therefore
I, is FK-regular because m0 is FK-regular, whereby Σ(`∞) is the FK-hull of I.

Obviously, I is a subset of the FK-space Σ(`∞). We consider the Hahn tuple
(Σ(`∞), I). Then `∞ is not a Hahn space relative to it, since I ∩ `∞ = ∅.

On the other hand Σ(`∞) is a Hahn space relative to this Hahn tuple, since
Σ(`∞) is the FK-hull of I.

7. Examples of function spaces that are Hahn spaces

Searching for convenient Hahn tuples (H,χ) in the field of real functions on
a nonempty set X, a first natural step is to replace sequences of 0’s and 1’s by
functions of 0’s and 1’s, that is, to consider χ as a set of characteristic functions
χA for suitable subsets A of X. Once χ can be chosen such that 〈χ〉 is a barrelled
subspace of H := B(X), the space of all real bounded functions on X equipped
with the topology of the supremum norm, then (H,χ) is a Hahn tuple due to
3.7(v).

In the following examples, if not explicitly stated otherwise, topologies on
spaces of bounded functions are always considered to be generated by the supre-
mum norm.
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Example 7.1. Let B[0, 1] be the space of real bounded functions on [0, 1] and

χ[0, 1] :=
{
χ[a,b] | 0 6 a 6 b 6 1

}
(⊂ B[0, 1]).

Obviously, 〈χ[0, 1]〉 is the set of all step functions on R restricted to [0, 1], that is,

〈χ[0, 1]〉 = 〈{χI |I is an interval with I ⊂ [0, 1]}〉 .

We prove, that unfortunately 〈χ[0, 1]〉 is not a barrelled subspace of B[0, 1], which
is not really surprising.

For a proof we need some preconsiderations.
Obviously, for every f ∈ 〈χ[0, 1]〉 there exists a unique representation

f =

r∑
k=1

akχAk (7.1)

with r ∈ N, (nonempty and not necessarily closed) intervals A1, A2, . . . , Ar forming
a partition of [0, 1] written in the natural order and numbers a1, a2, . . . , ar ∈ R
such that ai 6= ai+1 (1 6 i < r). Obviously, λf has the representation λf =∑r
k=1 λakχAk . Now, let f, g ∈ 〈χ[0, 1]〉 and f + g have — in the sense of (7.1) —

the representations

f =

r∑
k=1

akχAk , g =

s∑
k=1

bkχBk and f + g =

t∑
k=1

ckχCk . (7.2)

Then we get the values ck and the partition sets Ck as follows: We consider
the partition sets A1 ∩ Bs1 , . . . , A1 ∩ Bs1 , A2 ∩ Bs2 , . . . , A2 ∩ Bs2 , . . . , Ar ∩ Bsr ,
. . . , Ar ∩ Bsr where si := min {ν | Ai ∩Bν 6= ∅ (1 6 ν 6 s)} and si :=
max {ν | Ai ∩Bν 6= ∅ (1 6 ν 6 s)}. Obviously, the chosen sets Ai ∩ Bj and the
accompanying numbers ai + bj are candidates for the Ck’s and ck’s.

Note s1 = 1, sr = s and ai + bj 6= ai + bj+1 if i ∈ Nr and si 6 j < sj . If, for
instance, ai + bsi = ai+1 + bsi+1

, then we may consider the interval (Ai ∩ Bbsi ) ∪
(Ai+1 ∩ Bbsi+1

) as an candidate for a suitable Ck. In this way we get a partition

Ĉk (with natural ordering) with accompanying numbers ĉk (k ∈ Nt̂) such that
f + g =

∑t̂
k=1 ĉkχĈk . Finally, we unite neighboring intervals Ĉk having the same

value ĉk into intervals Cj with value cj = ĉk and get the expected unique partition
C1, . . . , Ct with values c1, . . . , ct.

Using the unique representation in (7.1), we define for any fixed nonempty
interval I ⊂ [0, 1] the function

T := TI : 〈χ[0, 1]〉 −→ R , TI (f) :=
r∑

k=1

ak µ (I ∩Ak) (f ∈ 〈χ[0, 1]〉),

whereby µ(X) denotes the length of an interval X. Let f, g, f + g ∈ 〈χ[0, 1]〉 with
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representations as in (7.2) be given. Then it follows by the above considerations

T (f) + T (g) =

r∑
k=1

ak µ (I ∩Ak) +

s∑
l=1

bl µ (I ∩Bl)

=

r∑
k=1

sk∑
l=sk

(ak + bl) µ (I ∩Ak ∩Bl)

=

t∑
m=1

cm µ (I ∩ Cm) = T (f + g).

Obviously, T (λf) = λT (f) for any λ ∈ R and f ∈ 〈χ[0, 1]〉. Therefore, T is linear.
Moreover, T is continuous by |ak| 6 ‖f‖, k ∈ Nr, and

|T (f)| 6
r∑

k=1

|ak| µ(Ak) 6 ‖f‖
r∑

k=1

µ(Ak) 6 ‖f‖ .

Now, we are prepared to verify that 〈χ[0, 1]〉 is not a barrelled subspace of
B[0, 1]: Let (In) be a sequence of pairwise disjoint closed (non-empty) intervals
contained in [0, 1] such that the length µ(In) of In is positive for infinite many n.
Dividing every In in half, I ln and Irn denote respectively the left and the right half
of In for n ∈ N. For a given real sequence (αn) let (Tn) be the sequence functions
on 〈χ[0, 1]〉 defined for n ∈ N, f ∈ 〈χ[0, 1]〉 with the representation as in (7.1), and
α, β ∈ R by

Tn(f) := αn

r∑
k=1

ak
(
µ(I ln ∩Ak)− µ(Irn ∩Ak)

)
(n ∈ N).

In particular,

Tn(χA) = αn µ(I ln ∩A)− αn µ(Irn ∩A) (χA ∈ χ[0, 1], n ∈ N) .

The functions Tn, n ∈ N, are linear combinations of functions of the type T defined
in (7.1) and are therefore linear and continuous as well.

Any such interval A = [a, b] ⊂ [0, 1] is disjoint to or contains In for almost every
n ∈ N with at most two exceptions: Since the intervals In are pairwise disjoint
there are at most two of them that contain a or b. Therefore (Tn(χA))n ∈ ϕ and
consequently (Tn) converges pointwise to the zero-function on [0, 1], and thus it is
pointwise bounded. However, choosing (αn) such that (|αn|µ(In)) /∈ `∞, (Tn) is
not equicontinuous due to Tn(χIln) = αn

2 µ(In), n ∈ N. By [5, 6.8.4] the subspace
〈χ[0, 1]〉 of B[0, 1] is not barrelled.

Remark 7.2. Let A be a σ-algebra of subsets of a non-empty set I, χ (I,A) :=
{χA | A ∈ A} and m0 (I,A) := 〈χ(I,A)〉. Then m0 (I,A) is a dense, barrelled
subspace of the Banach space `∞(A) of all bounded A-measurable functions on I
(cf. [17, p. 141] and [13]).
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Example 7.3. Let denote B[0, 1] the σ-algebra of all Borel subsets of [0, 1] and
M[0, 1] the space of all bounded Borel-measurable functions on [0, 1]. By the above
statement, m0 ([0, 1],B[0, 1]) is a dense, barrelled subspace ofM[0, 1]. Therefore,
(B[0, 1], χ([0, 1],B[0, 1])) is a Hahn tuple, andM[0, 1] is a respective Hahn space.
The space C[0, 1] of continuous functions on [0, 1] is not a Hahn space relative to
this Hahn tuple: C[0, 1] ∩ χ ([0, 1],B[0, 1]) contains only two functions and these
are contained in the one-dimensional Fréchet space of constant functions on [0, 1]
which does not contain C[0, 1].

Example 7.4. In the case of I := [0, 1] and A := P([0, 1]), the power set of
[0, 1], the barrelledness of m0 ([0, 1],P ([0, 1])) as a (dense) subspace of B[0, 1] was
already observed by Grothendieck [18, p. 145, Exercise 8] (cf. [2, Introduction]).
Therefore, (B[0, 1], χ ([0, 1],P ([0, 1]))) is a Hahn tuple. Unlike B[0, 1], the space
C[0, 1] of continuous functions on [0, 1] is, again, not a Hahn space relative to this
Hahn tuple.

Example 7.5. For every r ∈ N let Pr[0, 1] denote the space of real polyno-
mials on [0, 1] of degree r or less. Consider Fr := {f · χA | f ∈ Pr[0, 1], A ∈
B[0, 1]} ⊂ B[0, 1]. Obviously, m0 ([0, 1],B[0, 1]) = 〈F0〉 ⊂ 〈Fr〉 ⊂ M[0, 1], r ∈ N.
Asm0 ([0, 1],B[0, 1]) is barrelled and dense in 〈Fr〉, 〈Fr〉 is barrelled too ([21, Prop.
4.2.1 (ii)]), r ∈ N. The same holds for 〈F〉 defined by F :=

⋃
r∈N Fr. Therefore,

(B[0, 1],Fr), r ∈ N, and (B[0, 1],F) are Hahn tuples.
Pr[0, 1] is obviously a Hahn space relative to the Hahn tuple (B[0, 1],Fr), r ∈ N,

and P [0, 1] :=
⋃
r∈N Pr[0, 1] is a Hahn space relative to (B[0, 1],F).

The function space C[0, 1] is not a Hahn space for the above Hahn tuples, and
not even for (B[0, 1], 〈F〉): Any f ∈ C[0, 1] ∩ 〈F〉 can be described as a linear
combination of p elements of F with a maximum degree q of the respective poly-
nomials for some p, q ∈ N. There exist at maximum 1

2p(p − 1)q points in [0, 1]
where each two of those polynomials can meet. Therefore, [0, 1] can be divided
up into a finite number of intervals (not just Borel sets) on which f is identical
to a fixed polynomial. Then a similar construction like that in 7.1 can be used to
show that C[0, 1]∩〈F〉 is not barrelled (set Tn(f ·χA) = 0 if f has a degree greater
than 0, n ∈ N). But C[0, 1] is an FH-space and therefore it cannot be a Hahn
space.
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