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THE SUM OF DIGITS OF POLYNOMIAL VALUES
IN ARITHMETIC PROGRESSIONS

Thomas Stoll

Abstract: Let q,m > 2 be integers with (m, q − 1) = 1. Denote by sq(n) the sum of digits of
n in the q-ary digital expansion. Further let p(x) ∈ Z[x] be a polynomial of degree h > 3 with
p(N) ⊂ N. We show that there exist C = C(q,m, p) > 0 and N0 = N0(q,m, p) > 1, such that for
all g ∈ Z and all N > N0,

#{0 6 n < N : sq(p(n)) ≡ g mod m} > CN4/(3h+1).

This is an improvement over the general lower bound given by Dartyge and Tenenbaum (2006),
which is CN2/h!.
Keywords: sum of digits, polynomials, Gelfond’s problem.

1. Introduction

Let q,m > 2 be integers and denote by sq(n) the sum of digits of n in the q-ary
digital expansion of integers. In 1967/68, Gelfond [1] proved that for nonnegative
integers a1, a0 with a1 ̸= 0, the sequence (sq(a1n+ a0))n∈N is well distributed in
arithmetic progressions mod m, provided (m, q − 1) = 1. At the end of his paper,
he posed the problem of finding the distribution of sq in arithmetic progressions
where the argument is restricted to values of polynomials of degree > 2. Recently,
Mauduit and Rivat [8] answered Gelfond’s question in the case of squares.

Theorem 1.1 (Mauduit & Rivat (2009)). For any q,m > 2 there exists
σq,m > 0 such that for any g ∈ Z, as N → ∞,

#
{
0 6 n < N : sq(n

2) ≡ g mod m
}
=
N

m
Q(g, d) +Oq,m

(
N1−σq,m

)
,

where d = (m, q − 1) and

Q(g, d) = #
{
0 6 n < d : n2 ≡ g mod d

}
.
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The proof can be adapted to values of general quadratic polynomial instead
of squares. We refer the reader to [7] and [8] for detailed references and further
historical remarks. The case of polynomials of higher degree remains elusive so far.
The Fourier-analytic approach, as put forward in [7] and [8], seems not to yield
results of the above strength. In a recent paper, Drmota, Mauduit and Rivat [4]
applied the Fourier-analytic method to show that well distribution in arithmetic
progressions is obtained whenever q is sufficiently large.

In the sequel, and unless otherwise stated, we write

p(x) = ahx
h + · · ·+ a0

for an arbitrary, but fixed polynomial p(x) ∈ Z[x] of degree h > 3 with p(N) ⊂ N.

Theorem 1.2 (Drmota, Mauduit & Rivat (2011)). Let

q > exp
(
67h3(log h)2

)
be a sufficiently large prime number and suppose (ah, q) = 1. Then there exists
σq,m > 0 such that for any g ∈ Z, as N → ∞,

# {0 6 n < N : sq(p(n)) ≡ g mod m} =
N

m
Q⋆(g, d) +Oq,m,p

(
N1−σq,m

)
,

where d = (m, q − 1) and

Q⋆(g, d) = # {0 6 n < d : p(n) ≡ g mod d} .

It seems impossible to even find a single “nice” polynomial of degree 3, say,
that allows to conclude for well distribution in arithmetic progressions for small
bases, let alone that the binary case q = 2 is an emblematic case. Another line of
attack to Gelfond’s problem is to find lower bounds that are valid for all q > 2.
Dartyge and Tenenbaum [3] provided such a general lower bound by a method of
descent on the degree of the polynomial and the estimations obtained in [2].

Theorem 1.3 (Dartyge & Tenenbaum (2006)). Let q,m > 2 with (m, q−1) =
1. Then there exist C = C(q,m, p) > 0 and N0 = N0(q,m, p) > 1, such that for
all g ∈ Z and all N > N0,

# {0 6 n < N : sq(p(n)) ≡ g mod m} > CN2/h!.

The aim of the present work is to improve this lower bound for all h > 3. More
importantly, we get a substantial improvement of the bound as a function of h.
The main result is as follows.1

1Gelfond’s work and Theorem 1.1 give precise answers for linear and quadratic polynomials,
so we do not include the cases h = 1, 2 in our statement though our approach works without
change.
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Theorem 1.4. Let q,m > 2 with (m, q−1) = 1.Then there exist C = C(q,m, p)> 0
and N0 = N0(q,m, p) > 1, such that for all g ∈ Z and all N > N0,

# {0 6 n < N : sq(p(n)) ≡ g mod m} > CN4/(3h+1).

Moreover, for monomials p(x) = xh, h > 3, we can take

N0 = q3(2h+m)
(
2hq2 (6q)

h
)3h+1

,

C =
(
16hq5 (6q)

h · q(24h+12m)/(3h+1)
)−1

.

The proof is inspired from the constructions used in [5] and [6] that were helpful
in the proof of a conjecture of Stolarsky [9] concerning the pointwise distribution
of sq(p(n)) versus sq(n). As a drawback of the method of proof, however, it seems
impossible to completely eliminate the dependency on h in the lower bound.

2. Proof of Theorem 1.4

Consider the polynomial

t(x) = m3x
3 +m2x

2 −m1x+m0, (2.1)

where the parameters m0,m1,m2,m3 are positive real numbers that will be chosen
later on in a suitable way. For all integers l > 1 we write

Tl(x) = t(x)l =
3l∑
i=0

cix
i (2.2)

to denote its l-th power. (For the sake of simplicity we omit to mark the depen-
dency on l of the coefficients ci.) The following technical result is the key in the
proof of Theorem 1.4. It shows that, within a certain degree of uniformity in the
parameters mi, all coefficients but one of Tl(x) are positive.

Lemma 2.1. For all integers q > 2, l > 1 and m0,m1,m2,m3 ∈ R+ with

1 6 m0,m2,m3 < q, 0 < m1 < l−1(6q)−l

we have that ci > 0 for i = 0, 2, 3, . . . , 3l and ci < 0 for i = 1. Moreover, for all i,

|ci| 6 (4q)l. (2.3)

Proof. The coefficients of Tl(x) in (2.2) are clearly bounded above in absolute
value by the corresponding coefficients of the polynomial (qx3 + qx2 + qx + q)l.
Since the sum of all coefficients of this polynomial is (4q)l and all coefficients are
positive, each individual coefficient is bounded by (4q)l. This proves (2.3). We now
show the first part. To begin with, observe that c0 = ml

0 > 0 and c1 = −lm1m
l−1
0



236 Thomas Stoll

which is negative for all m1 > 0. Suppose now that 2 6 i 6 3l and consider the
coefficient of xi in

Tl(x) = (m3x
3 +m2x

2 +m0)
l + r(x), (2.4)

where

r(x) =
l∑

j=1

(
l

j

)
(−m1x)

j (
m3x

3 +m2x
2 +m0

)l−j
=

3l−2∑
j=1

djx
j .

First, consider the first summand in (2.4). Since m0,m2,m3 > 1 the coefficient of
xi in the expansion of (m3x

3 +m2x
2 +m0)

l is > 1. Note also that all the powers
x2, x3, . . . , x3l appear in the expansion of this term due to the fact that every i > 2
allows at least one representation as i = 3i1+2i2 with non-negative integers i1, i2.
We now want to show that for sufficiently small m1 > 0 the coefficient of xi in
the first summand in (2.4) is dominant. To this end, we assume m1 < 1 so that
m1 > mj

1 for 2 6 j 6 l. Using
(
l
j

)
< 2l and a similar reasoning as above we get

that
|dj | < l2lm1(3q)

l = l (6q)
l
m1, 1 6 j 6 3l − 2.

This means that if m1 < l−1(6q)−l then the powers x2, . . . , x3l in the polynomial
Tl(x) indeed have positive coefficients. This finishes the proof. �

To proceed we recall the following splitting formulas for sq which are simple
consequences of the q-additivity of the function sq (see [5] for the proofs).

Proposition 2.2. For 1 6 b < qk and a, k > 1, we have

sq(aq
k + b) = sq(a) + sq(b),

sq(aq
k − b) = sq(a− 1) + k(q − 1)− sq(b− 1).

We now turn to the proof of Theorem 1.4. To clarify the construction we
consider first the simpler case of monomials,

p(x) = xh, h > 1.

(We here include the cases h = 1 and h = 2 because we will need them to deal with
general polynomials with linear and quadratic terms.) Let u > 1 and multiply t(x)
in (2.1) by qu−1. Lemma 2.1 then shows that for all integers m0,m1,m2,m3 with

qu−1 6 m0,m2,m3 < qu, 1 6 m1 < qu/(hq(6q)h), (2.5)

the polynomial Th(x) = (t(x))h = p(t(x)) has all positive (integral) coefficients
with the only exception of the coefficient of x1 which is negative. Let u be an
integer such that

qu > 2hq(6q)h (2.6)

and let k ∈ Z be such that
k > hu+ 2h. (2.7)
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For all u with (2.6) the interval for m1 in (2.5) is non-empty. Furthermore, rela-
tion (2.7) implies by (2.3) that

qk > qhu · q2h > (4qu)h > |ci|, for all i = 0, 1, . . . , 3h,

where ci here denotes the coefficient of xi in Th(x). Roughly speaking, the use of
a large power of q (i.e. qk with k that satisfies (2.7)) is motivated by the simple
wish to split the digital structure of the h-power according to Proposition 2.2. By
doing so, we avoid to have to deal with carries when adding terms in the expansion
in base q since the appearing terms will not interfere. We also remark that this is
the point where we get the dependency of h in the lower bound of Theorem 1.4.

Now, by c2, |c1| > 1 and the successive use of Proposition 2.2 we get

sq(t(q
k)h) = sq

(
3h∑
i=3

ciq
ik + c2q

2k − |c1|qk + c0

)

= sq

(
3h∑
i=3

ciq
(i−1)k + c2q

k − |c1|

)
+ sq(c0)

= sq

(
3h∑
i=3

ciq
(i−3)k

)
+ sq(c2 − 1) + k(q − 1)− sq(|c1| − 1) + sq(c0)

=

3h∑
i=3

sq(ci) + sq(c2 − 1) + k(q − 1)− sq(|c1| − 1) + sq(c0)

= k(q − 1) +M, (2.8)

where we write

M =

3h∑
i=3

sq(ci) + sq(c2 − 1)− sq(|c1| − 1) + sq(c0).

Note thatM is an integer that depends (in some rather obscure way) on the quanti-
ties m0,m1,m2,m3. Once we fix a quadruple (m0,m1,m2,m3) in the ranges (2.5),
the quantity M does not depend on k and is constant whenever k satisfies (2.7).
We now exploit the appearance of the single summand k(q− 1) in (2.8). Since by
assumption (m, q − 1) = 1, we find that

sq(t(q
k)h), for k = hu+ 2h+ 1, hu+ 2h+ 2, . . . , hu+ 2h+m, (2.9)

runs through a complete set of residues mod m. Hence, in any case, we hit a fixed
arithmetic progression mod m (which might be altered by M) for some k with
hu+ 2h+ 1 6 k 6 hu+ 2h+m.

Summing up, for u with (2.6) and by (2.5) we find at least

(qu − qu−1)3(qu/(hq(6q)h)− 1) > (1− 1/q)
3

2hq (6q)
h
q4u (2.10)
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integers n that in turn by (2.1), (2.5), (2.7) and (2.9) are all smaller than

qu · q3(hu+2h+m) = q3(2h+m) · qu(3h+1)

and satisfy sq(n
h) ≡ g mod m for fixed g and m. By our construction and by

choosing k > hu+ 2h > u all these integers are distinct. We denote

N0 = N0(q,m, p) = q3(2h+m) · qu0(3h+1),

where
u0 =

⌈
logq

(
2hq(6q)h

)⌉
6 logq

(
2hq2(6q)h

)
.

Then for all N > N0 we find u > u0 with

q3(2h+m) · qu(3h+1) 6 N < q3(2h+m) · q(u+1)(3h+1). (2.11)

By (2.10) and (2.11), and using (1− 1/q)3 > 1/8 for q > 2, we find at least

(1− 1/q)
3

2hq (6q)
h
q4u >

(
16hq5 (6q)

h · q(24h+12m)/(3h+1)
)−1

N4/(3h+1)

integers n with 0 6 n < N and sq(nh) ≡ g mod m. We therefore get the statement
of Theorem 1.4 for the case of monomials p(x) = xh with h > 3. The estimates
are also valid for h = 1 and h = 2.

The general case of a polynomial p(x) = ahx
h + · · · + a0 of degree h > 3 (or,

more generally, of degree h > 1) follows easily from what we have already proven.
Without loss of generality we may assume that all coefficients ai, 0 6 i 6 h,
are positive, since otherwise there exists e = e(p) depending only on p such that
p(x + e) has all positive coefficients. Note that a finite translation can be dealt
with choosing C and N0 appropriately in the statement. Since Lemma 2.1 holds
for all l > 1 and all negative coefficients are found at the same power x1, we have
that the polynomial p(t(x)) has again all positive coefficients but one where the
negative coefficient again corresponds to the power x1. It is then sufficient to
suppose that

k > hu+ 2h+ logq max
06i6h

ai

in order to split the digital structure of p(t(qk)). In fact, this implies that

qk >

(
max
06i6h

ai

)
· (4qu)h ,

and exactly the same reasoning as before yields ≫q,p q
4u distinct positive integers

that are ≪q,m,p qu(3h+1) and satisfy sq(p(n)) ≡ g mod m. This completes the
proof of Theorem 1.4.
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