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THE SUM OF DIGITS OF POLYNOMIAL VALUES
IN ARITHMETIC PROGRESSIONS

THOMAS STOLL

Abstract: Let ¢g,m > 2 be integers with (m,g — 1) = 1. Denote by sq(n) the sum of digits of
n in the g-ary digital expansion. Further let p(z) € Z[z] be a polynomial of degree h > 3 with
p(N) C N. We show that there exist C' = C(q, m,p) > 0 and Ng = No(g, m,p) > 1, such that for
all g € Z and all N > N,

#{0<n < N :s4(p(n)) =g mod m} > CN*/(3ht1),

This is an improvement over the general lower bound given by Dartyge and Tenenbaum (2006),
which is CN?/h,
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1. Introduction

Let g,m > 2 be integers and denote by s4(n) the sum of digits of n in the g-ary
digital expansion of integers. In 1967/68, Gelfond [1] proved that for nonnegative
integers a1, ap with a; # 0, the sequence (sq(a1n + ao))neN is well distributed in
arithmetic progressions mod m, provided (m,q— 1) = 1. At the end of his paper,
he posed the problem of finding the distribution of s, in arithmetic progressions
where the argument is restricted to values of polynomials of degree > 2. Recently,
Mauduit and Rivat [8] answered Gelfond’s question in the case of squares.

Theorem 1.1 (Mauduit & Rivat (2009)). For any q,m > 2 there exists
ogq.m > 0 such that for any g € Z, as N — oo,

#{0<n<N: s4(n®) =gmodm} = % Q(g,d) + Oy (N1770m) |

where d = (m,q — 1) and
Q(g»d):#{0§n<d: RZEngdd}.
m”ch was supported by the Agence Nationale de la Recherche, grant ANR-10-BLAN
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The proof can be adapted to values of general quadratic polynomial instead
of squares. We refer the reader to [7] and [8] for detailed references and further
historical remarks. The case of polynomials of higher degree remains elusive so far.
The Fourier-analytic approach, as put forward in [7] and [8], seems not to yield
results of the above strength. In a recent paper, Drmota, Mauduit and Rivat [4]
applied the Fourier-analytic method to show that well distribution in arithmetic
progressions is obtained whenever ¢ is sufficiently large.

In the sequel, and unless otherwise stated, we write

p(z) = apz + -+ ag
for an arbitrary, but fixed polynomial p(x) € Z[z] of degree h > 3 with p(N) C N.
Theorem 1.2 (Drmota, Mauduit & Rivat (2011)). Let

q > exp (67h3(10g h)Q)

be a sufficiently large prime number and suppose (ap,q) = 1. Then there exists
ogq.m > 0 such that for any g € Z, as N — oo,

N
#{0<n < N 5g(p(n)) = g mod m} = — Q*(g,d) + Ogmp (N'777),
where d = (m,q — 1) and
Q*(g,d) =#{0<n<d:p(n)=gmodd}.

It seems impossible to even find a single “nice” polynomial of degree 3, say,
that allows to conclude for well distribution in arithmetic progressions for small
bases, let alone that the binary case ¢ = 2 is an emblematic case. Another line of
attack to Gelfond’s problem is to find lower bounds that are valid for all ¢ > 2.
Dartyge and Tenenbaum [3] provided such a general lower bound by a method of
descent on the degree of the polynomial and the estimations obtained in [2].

Theorem 1.3 (Dartyge & Tenenbaum (2006)). Let g, m > 2 with (m,q—1) =
1. Then there exist C = C(q, m,p) > 0 and Ny = Ny(q,m,p) > 1, such that for
all g € Z and all N > Ny,

#{0<n < N :s,(p(n)) =gmodm} >CNM

The aim of the present work is to improve this lower bound for all h > 3. More
importantly, we get a substantial improvement of the bound as a function of h.
The main result is as follows.!

1Gelfond’s work and Theorem 1.1 give precise answers for linear and quadratic polynomials,
so we do not include the cases h = 1,2 in our statement though our approach works without
change.
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Theorem 1.4. Let q,m > 2 with (m,q—1) = 1. Then there exist C = C(q, m,p)>0
and No = Ny(gq,m,p) > 1, such that for all g € Z and all N = Ny,

#{0<n <N :s4(p(n)) =gmodm} > C N4/ Bh+1).

h

Moreover, for monomials p(x) =z, h > 3, we can take

3h+1
Ny = ¢3@h+m) (2hq2 (661)h) :

—1
o (16hq5 (Gq)h ) q(24h+12m)/(3h+1)) '

The proof is inspired from the constructions used in [5] and [6] that were helpful
in the proof of a conjecture of Stolarsky [9] concerning the pointwise distribution
of s4(p(n)) versus sq(n). As a drawback of the method of proof, however, it seems
impossible to completely eliminate the dependency on h in the lower bound.

2. Proof of Theorem 1.4

Consider the polynomial

t(z) = maa® + moz?

—myix + my, (2.1)
where the parameters mg, m1, mso, mg are positive real numbers that will be chosen
later on in a suitable way. For all integers [ > 1 we write

3l
Ty(z) = t(z)' =) e (2.2)
=0

to denote its I-th power. (For the sake of simplicity we omit to mark the depen-
dency on [ of the coefficients ¢;.) The following technical result is the key in the
proof of Theorem 1.4. It shows that, within a certain degree of uniformity in the
parameters my;, all coefficients but one of T;(z) are positive.

Lemma 2.1. For all integers q > 2, 1 > 1 and mg, my, ma, mg € RT with
1 < mg, ma,m3 < q, 0<m <l_1(6q)_l
we have that ¢; > 0 fori=0,2,3,...,3l and ¢; <0 fori=1. Moreover, for all i,
lei| < (49)". (2:3)

Proof. The coefficients of T;(z) in (2.2) are clearly bounded above in absolute
value by the corresponding coefficients of the polynomial (¢z® + qz? + gz + ¢)'.
Since the sum of all coefficients of this polynomial is (4¢)! and all coefficients are
positive, each individual coefficient is bounded by (4¢)!. This proves (2.3). We now

show the first part. To begin with, observe that co = m} > 0 and ¢; = —lmym} !
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which is negative for all m; > 0. Suppose now that 2 < ¢ < 3l and consider the
coefficient of z* in

Ty(z) = (max® + maz® + mo)' + (), (2.4)

where

31-2

= Z ( > mlsc J (m;:,:z:g + m2z2 + mo)l_j = Z djxj.
j=1

Jj=1

First, consider the first summand in (2.4). Since mg, ma, mg > 1 the coefficient of
2" in the expansion of (mgzx® 4+ max? 4+ mg)! is > 1. Note also that all the powers
22, 23,..., 2% appear in the expansion of this term due to the fact that every i > 2
allows at least one representation as ¢ = 3¢1 + 2i5 with non-negative integers i1, is.
We now want to show that for sufficiently small m; > 0 the coefficient of z? in
the first summand in (2.4) is dominant. To this end, we assume m; < 1 so that
my > mj for 2 < j < I. Using ( ) < 2! and a similar reasoning as above we get
that
;| < 12'mi(3q)' =1(6¢)' m1,  1<j<3l—2.

This means that if m; < [=!(6¢) ! then the powers z2,... 2% in the polynomial

T;(z) indeed have positive coefficients. This finishes the proof. |

To proceed we recall the following splitting formulas for s, which are simple
consequences of the g-additivity of the function s, (see [5] for the proofs).

Proposition 2.2. For1 <b< qk and a,k > 1, we have
Sq(aqlC +0) = sq(a) + Sq(b>7
sq(aqk —b)=sq(a—1)+k(g—1) = s4(b—1).

We now turn to the proof of Theorem 1.4. To clarify the construction we
consider first the simpler case of monomials,

p(x) = ", h>1.

(We here include the cases h = 1 and h = 2 because we will need them to deal with
general polynomials with linear and quadratic terms.) Let w > 1 and multiply ¢(x)
in (2.1) by ¢“~!. Lemma 2.1 then shows that for all integers mq, my, mo, ms with

¢t <mo,ma,ma < ¢, 1< my < ¢%/(hq(69)"), (2.5)

the polynomial Ty (z) = (t(z))" = p(t(x)) has all positive (integral) coefficients
with the only exception of the coefficient of ' which is negative. Let u be an

integer such that
" > 2hg(6q)" (2.6)

and let k € Z be such that
k > hu + 2h. (2.7)
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For all u with (2.6) the interval for m; in (2.5) is non-empty. Furthermore, rela-
tion (2.7) implies by (2.3) that

"> " > (49" > ||,  forall i=0,1,...,3h,

where ¢; here denotes the coefficient of #* in T} (z). Roughly speaking, the use of

a large power of ¢ (i.e. ¢* with k that satisfies (2.7)) is motivated by the simple

wish to split the digital structure of the h-power according to Proposition 2.2. By

doing so, we avoid to have to deal with carries when adding terms in the expansion

in base ¢ since the appearing terms will not interfere. We also remark that this is

the point where we get the dependency of h in the lower bound of Theorem 1.4.
Now, by ca, |c1| = 1 and the successive use of Proposition 2.2 we get

3h
54t = s, <Z ciq™® + cag® — |e1|g* + co>
=3

3h
=54 <Z ciq IR et — |cl|> + 54(co)

=3

3h
=5, <Z ciq@i‘)k) + 5q(ca — 1) + k(g — 1) — s4(Je1] — 1) + 54(co)
3h o

> sglei) + sqlc2 — 1) + k(g — 1) — sq(ler| — 1) + 54(co)

1=3

=k(qg—1)+ M, (2.8)

where we write

3h

M = sq(ei) + sqlea = 1) = sq(ler] = 1) + s4(co).
i=3

Note that M is an integer that depends (in some rather obscure way) on the quanti-
ties mg, m1, ma, mg. Once we fix a quadruple (mg, m1,ms, m3) in the ranges (2.5),
the quantity M does not depend on k and is constant whenever k satisfies (2.7).
We now exploit the appearance of the single summand k(g — 1) in (2.8). Since by
assumption (m,q — 1) = 1, we find that

sq(t(d™)™), for k=hu+2h+1, hu+2h+2, ..., hu+2h+m, (2.9)

runs through a complete set of residues mod m. Hence, in any case, we hit a fixed
arithmetic progression mod m (which might be altered by M) for some k with
hu+2h+1<k<hu+2h+m.

Summing up, for v with (2.6) and by (2.5) we find at least

w _ u—1\3/ u hy _ (1_1/q)3 4du
(6" —q"" )" (¢"/(hq(69)") — 1) > ohg(6q)" " (2.10)
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integers n that in turn by (2.1), (2.5), (2.7) and (2.9) are all smaller than

qu . q3(hu+2h+m) — q3(2h+m) . qu(3h+1)
and satisfy s,(n") = g mod m for fixed g and m. By our construction and by
choosing k > hu + 2h > w all these integers are distinct. We denote

No = No(g,m, p) = ¢*htm) . quoB3h+1),

where
uo = [log, (2hq(69)")] < log, (2hq*(69)") .

Then for all N > Ny we find u > ug with

q3(2h+m) . qu(3h+1) <N< q3(2h+m) . q(u+1)(3h+1)' (211)
By (2.10) and (2.11), and using (1 — 1/q)% > 1/8 for ¢ > 2, we find at least

3
(1-1/q) g > (16hq5 (6q)h ) q(24h+12m)/(3h+1))’1 N4/ (3h+1)
2hq (69)"

integers n with 0 < n < N and sq(nh) = g mod m. We therefore get the statement
of Theorem 1.4 for the case of monomials p(x) = 2" with A > 3. The estimates
are also valid for h =1 and h = 2.

The general case of a polynomial p(z) = apz" + --- + ag of degree h > 3 (or,
more generally, of degree h > 1) follows easily from what we have already proven.
Without loss of generality we may assume that all coefficients a;, 0 < ¢ < h,
are positive, since otherwise there exists e = e(p) depending only on p such that
p(z + e) has all positive coeflicients. Note that a finite translation can be dealt
with choosing C' and Ny appropriately in the statement. Since Lemma 2.1 holds
for all I > 1 and all negative coefficients are found at the same power x', we have
that the polynomial p(¢(x)) has again all positive coefficients but one where the
negative coefficient again corresponds to the power z!'. It is then sufficient to
suppose that

k > hu+ 2h +log, max a;
<i<h

0<i<
in order to split the digital structure of p(t(¢¥)). In fact, this implies that

k ). u\h
q" > (rgaghaz) (4¢")",

0<i<

and exactly the same reasoning as before yields >, , ¢** distinct positive integers
that are <gm,p ¢“Ght1) and satisfy s¢(p(n)) = g mod m. This completes the
proof of Theorem 1.4.
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