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IRREDUCIBILITY OF GENERALIZED HERMITE-LAGUERRE
POLYNOMIALS

SHANTA LAISHRAM, TARLOK N. SHOREY

Abstract: For a rational ¢ = u + § with u,a,d € Z with u > 0,1 < a < d, ged(a,d) = 1, the
generalized Hermite-Laguerre polynomials G4 (z) are defined by

Gy(z) = anz™ + an—1(a+ (n — 1 +u)d)az" "1 4.

n—1 n—1
+ay (H(a+(i+u)d)> T+ ag <H(a+(i+u)d)>

i=1 i=0

where ag, a1, - ,an are arbitrary integers. We prove some irreducibility results of G4(x) when
q € {%, %} and extend some of the earlier irreducibility results when ¢ of the form u + % We
also prove a new improved lower bound for greatest prime factor of product of consecutive terms
of an arithmetic progression whose common difference is 2 and 3.
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1. Introduction
Let n and 1 < a < d be positive integers with ged(o,d) = 1. Any positive
rational ¢ is of the form ¢ = u + § where u is a non-negative integer. For integers

g, @1, ", 0n, let

G(x) = Gy(z) = anz™ + an_1(a+ (n— 1 +u)d)z" ' + -

+ay ]__[1(a+(i+u)d) x + ag H}(aJr(iJru)d)

This is an extension of Hermite polynomials and generalized Laguerre polynomi-
als. Therefore we call G(z) the generalized Hermite-Laguerre polynomial. For an
integer v > 1, we denote by P(v) the the greatest prime factor of v and we put
P(1) = 1. We prove

2010 Mathematics Subject Classification: primary: 11A41, 11B25, 11N05, 11N13,
11C08, 11705



52 Shanta Laishram, Tarlok N. Shorey

Theorem 1. Let P(apa,) < 3 and suppose 2 1 apay, if degree of Gz (x) is 43.
Then G and G2 are irreducible except possibly when 1+3(n—1) and 2+3(n—1)
is a power of 2, respectively where it can be a product of a linear factor times
a polynomial of degree n — 1.

Theorem 2. Let 1 <k <n, 0 <u <k and apa, € {£2" : ¢t > 0,t € Z}. Then
Gu+l does not have a factor of degree k except possibly when k € {1,n—1},u > 1.

Schur [Sch29] proved that G ( ) with a,, = £1 and ap = %1 are irreducible
and this implies the 1rreduc1b1hty of Hs, where H,, is the m—th Hermite polyno-
mial. Schur [Sch73] also established that Hermite polynomials Ha, 11 are x times
an irreducible polynomial by showing that G's (x?) with a,, = 1 and ag = &1 is
irreducible expect for some explicitly given ﬁriitely many values of n where it can
have a quadratic factor. Further Allen and Filaseta [AIFi04] showed that G (z2)
with a1 = £1 and 0 < |a,| < 2n — 1 is irreducible. Finch and Saradha [FiSal0]
showed that G,,; 1 with 0 < u < 13 have no factor of degree k € [2,n—2] except for
an explicitly given finite set of values of u where it may have a factor of degree 2.

From now onwards, we always assume d € {2,3}. A new ingredient in the
proofs of Theorems 1 and 2 is the following result which we shall prove in Section 3.

Theorem 3. Let k > 2 and d = 2,3. Let m be a positive integer such that d{m
and m > dk. Then

3.5k if d =2 and m < 2.5k
Pm(m+d)---(m+d(k—1))) > <4k  if d=2 and m > 2.5k (1)
3k ifd=3

unless (m,k) € {(5,2),(7,2),(25,2), (243,2), (9,4), (13,5), (17, 6), (15,7), (21,8),
(19,9)} when d =2 and (m,k) = (125,2) when d = 3.

If d = 2,3 and m > dk, this is an improvement of [LaSh06a].

In Section 4, we shall combine Theorem 3 with the irreducibility criterion
from [ShTil0](see Lemma 4.1) to derive Theorems 1 and 2. This criterion come
from Newton polygons. If p is a prime and m is a nonzero integer, we define
v(m) = v,(m) to be the nonnegative integer such that p*(™)|m and p*"™+! { m.
We define v(0) = +oc. Consider f(z) =377, ajz? € Zlz] with aga, # 0 and let
p be a prime. Let S be the following set of points in the extended plane:

S = {(07 V(an))v (17 V(an—l))v (2’ V(an—Q))’ B (TL -1, V(al))a (TL, I/(ao))}

Consider the lower edges along the convex hull of these points. The left-most
endpoint is (0,v(ay)) and the right-most endpoint is (n,v(ag)). The endpoints of
each edge belong to S, and the slopes of the edges increase from left to right. When
referring to the edges of a Newton polygon, we shall not allow two different edges
to have the same slope. The polygonal path formed by these edges is called the
Newton polygon of f(x) with respect to the prime p. For the proof of Theorems 1
and 2, we use [ShTil0, Lemma 10.1] whose proof depends on Newton polygons.
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2. Preliminaries for Theorem 3

Let m and k be positive integers with m > kd and ged(m,d) = 1. We write
A(m,d, k) =m(m+d)---(m+ (k—1)d).

For positive integers v, u and 1 <1 < p with ged(l, u) = 1, we write

rr) = 3 L ww) =7 1,1)

PV
p=l(mod pn)

O(v,ml)= > logp.

PV
p=l(mod pn)

Let p; . denote the ith prime congruent to { modulo p. Let 6,(¢,1) = piy1,p1 —
P and W, (i, 1) = (pi s Pit1,)- Let Mo = 1.92367 x 1010.
We recall some well-known estimates on prime number theory.

Lemma 2.1. We have

v 1.2762
i <
(i) m(v) < Togv (1+ Tog v > for v>1
3.965
(i) v(1 - —5—) < 6(r) < 1.00008v for v > 1
log” v

(ifi) v27k e FkFe 71 < kl < 21k e FkFesE for k> 1

(iv) ord,(k!) = f)%’l’ - 10%(()];;1) for k> 1 and p < k.

The estimates (i), (ii) are due to Dusart [Dus98, p.14|, [Dus99]. The estimate
(iii) is [Rob55, Theorem 6]. For a proof of (iv), see [LaSh04b, Lemma 2(i)]. N
The following lemma is due to Ramaré and Rumely [RaRu96, Theorems 1, 2].

Lemma 2.2. Letl € {1,2} . For vy < 1019, we have

oo 51— 0:002238)  for v > 1010 ,
(v,3,1) = z (1 _ 2><1J%158> for 1010 > 1 > 1y (2)

and

¥(140.002238)  for v > 101
0(v,3,1) < v (1 i 2><1.798158) for 100> v > 1y (3)
2 =

V7
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We derive from Lemmas 2.1 and 2.2 the following result.

Corollary 2.3. Let My < m < 131 x 2k if d = 2 and 6450 < m < 10.6 x 3k f
d=3. Then P(A(m,d,k)) = m.

Proof. Let My <m < 131 x2kif d =2 and 6450 < m < 10.6 x 3k if d = 3. Then
k >k, where k; = 7.34 x 107,203 when d = 2, 3, respectively. Let 1 <1 < d and
assume m = [(mod d). We observe that P(A(m,d, k) > m holds if

O(m +d(k —1),d,1) —0(m —1,d,1) = > logp > 0.

m<p<m+(k—1)d
p=l(d)

Now from Lemmas 2.1 and 2.2, we have

O(m —1,d,1) 1.00008 if d =2
o1 < b= 14 2XLT981S8 4 g _ 3
o(d) V6450

and

3.965 :
o et o Tl
m — x1. . N
BN 1= "m . fd=3
Thus P(A(m,d, k) > m holds if
Oa(m +d(k — 1)) > 6m
ie., if
dlk—1
a1y o
m 92

This is true since for k& > ki, we have

01 ~ 0 106 ifd=3

dk(1—1) dk(1-2+ 131.3 ifd=2
(1-4) _ di k1>>(dk){ i
62 62
and m is less than the last expression. Hence the assertion. |
Now we give some results for d = 2. The next result follows from Lemma 2.1 (ii).

Corollary 2.4. Letd =2,k > 1 and 2k < m < 4k. Then

3.5k if m < 2.5k

P(A(m, d, k) > .
ak  if m > 2.5k

unless (m, k) € {(5,2), (7,2),(9,4), (13,5), (17,6), (15,7), (21,8), (19,9)}.
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Proof. We observe that the set {m,m+2,...,m+ 2(k — 1)} contains all primes
between 3.5k and 4k if m < 2.5k and all primes between 4k and 4.5k if 2.5k <
m < 4k. Therefore (4) holds if

0(4k) > 0(3.5k) and 6(4.5k) > 0(4k).

Let (r,s) = (3.5,4) or (4,4.5). Then from Lemma 2.1, we see that 6(sk) > 0(rk)
if

sk(1 — ?"fi) > 1.00008 x 7k
log”(sk)
or
s —1.00008r s 3.965
1.000087 1.00008r log? (sk)
or

b lex 3.965s
s P\ Vs =1.00008r )
This is true for £ > 88. Thus k < 87. For 10 < k < 87, we check that there is
always a prime in the intervals (3.5k,4k) and (4k,4.5k) and hence (4) follows in

this case. For 2 < k < 9, the assertion follows by computing P(A(m,2,k)) for
each 2k <m < 4k. |

The following result concerns Grimm’s Conjecture, [LaSh06b, Theorem 1].

Lemma 2.5. Let m < My and l be such that m +1,m + 2,--- ;m + 1 are all
composite numbers. Then there are distinct primes P; such that Pi|(m + i) for
each 1 <i <.

As a consequence, we have

Corollary 2.6. Let 4k < m < My. Then either P(A(m,2,k)) > 4k or
P(A(ma2ak)) = Prk+1-

Proof. If m+2iis prime for some i with 0 < i < k, then the assertion holds clearly
since P(A(m,2,k)) > m+ 2i > 4k. Thus we suppose that m + 2¢ is composite for
all 0 < 7 < k. Since m is odd, we obtain that m+2i+1 with 0 < i < k are all even

and hence composite. Therefore m,m+1,m+2,---,m+ 2k — 1 are all composite
and hence, by Lemma 2.5, there are distinct primes P; with P;j|(m —1475) for each
1 < 7 < 2k. Therefore w(A(m,2,k)) > k implying P(A(m,2,k)) = pr+1- |

Corollary 2.7. Let d = 2 and 4k < m < My. Then P(A(m,2,k)) > 4k for
k = 30.

Proof. By Corollary 2.6, we may assume that P(A(m,2,k)) > pry+1. By Lemma
2.1, we get prr1 = klogk which is > 4k for k > 60. For 30 < k < 60, we check
that ppy1 > 4k. Hence the assertion follows. |
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The following result follows from [Leh64, Tables ITA, TITA].

Lemma 2.8. Let d =2, m > 4k and 2 < k < 37,k # 35. Then P(A(m,2,k)) >
4k.

Proof. The case k = 2 is immediate from [Leh64, Table ITA|. Let k£ > 3 and
m > 4k. For m and 1 < ¢ < k such that m + 2i = N with N given in [Leh64,
Tables ITA, IITA], we check that P(A(m,2,k)) > 4k. Hence assume that m + 2¢
with 1 < ¢ < k is different from those N given in [Leh64, Tables ITA, TITA].

For every prime 31 < p < 4k, we delete a term in {m,m—+2,--- ,m+2(k—1)}
divisible by p. Let i; < i3 < ... <14; be such that m + 2i; is in the remaining set
where | > k — (w(4k) — w(31)). From [Leh64, Tables ITA, IITA], we observe that
ij41—1; = 3implying k—1 > 4;—41 > 3(I—1) > 3(k—m(4k)+10). However we find
that the inequality k — 1 > 3(k — w(4k) + 10) is not valid except when k = 28, 29.
Hence the assertion of the Lemma is valid except possibly for k = 28, 29.

Therefore we may assume that k£ = 28,29. Further we suppose that [ =
k — (m(4k) — m(31)) = 10 otherwise 3(I — 1) > 30 > k — 1, a contradiction. Thus
we have either 419 — 41 = 27 implying i1 = 0,441 =1; +3=3jfor 1 <j <9 or
i1 =141 =i+3=3j+1for 1 <j<9oriyp—1i =28 implying

3 if1<y
i1 :0, ij+1 Z{ J ! J for some 1 = 1.

<r

3j4+1 ifr<j<9

Let X = m—+2i; —6. Note that X is odd since m is odd. Also X > 4k+1—-6 > 107.
We have either

P((X +6)--- (X +54)(X +60)) < 31 (5)
or there is some r > 1 for which
P(X+6)- - (X+6r)(X+6(r+1)+2)---(X+60+2)) <3l (6)

Note that (5) is the only possibility when k& = 28. Now we consider (5). Sup-
pose 3|X. Then putting Y = %, we get P((Y +2)--- (Y + 18)(Y + 20)) < 31
which implies Y 4+ 2 < 20 by Corollary 2.4 and Lemma 2.8 with £k = 10. Since
X +6 >m > 113, we get a contradiction. Hence we may assume that 31 X. Then
34 (X +6)--- (X +54)(X +60). After deleting terms X + 67 divisible by primes
11 < p < 31, we are left with three terms divisible by primes 5 and 7 and hence
m < X 4+ 6 < 35 which is again a contradiction. Therefore (5) is not possible.
Now we consider (6) which is possible only when k = 29. Since X +6 =m >
4k = 116, we have X > 110. Suppose r = 1,9. Then we have P((X + 12 +
2) - (X +54+2)(X +60+2) <31ifr =1 and P((X +6)-- (X + 54)) < 31
if r = 9. Putting Y = X + 8 in the first case and Y = X in the latter, we
get P((Y +6)---(Y 4+ 54)) < 31. Suppose 3|Y. Then putting Z = ¥, we get
P((Z +2)---(Z 4 18)) < 31 which implies Z + 2 < 18 by Corollary 2.4 and
Lemma 2.8 with £ = 9. Since Z +2 > % > %, we get a contradiction. Hence
we may assume that 31Y. Then 31 (Y +6)--- (Y + 54). After deleting terms
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Y + 67 divisible by primes 11 < p < 31, we are left with two terms divisible by
primes 5 and 7 only. Let Y + 6i = 5% 7% and Y + 65 = 5% 7% where b < 1 < by
and ap < 1 < a;. Since |i — j| < 8, the equality 6(i — j) = 54 7% — 5927%2 implies
59 — 7% = 46,412,418, 424, +36, £48. By taking modulo 6, we get (—1)® =
modulo 6 implying a is even. Taking modulo 8 again, we get either

biseven, 5% —7" = (5% —73)(5% 4+ 73) = +24, +48
giving
5% =25,7° =49 (7)
or
b is odd, 5% — 70 = —6,18.

Let 5 — 7 = —6. Considering modulo 5, we get 2° = 1 implying 4|b, a contra-
diction. Let 5% — 7% = 18. By considering modulo 7 and modulo 9 and since a is
even, we get 3|(a — 2) and 3|(b— 1) implying (55 )3 + 35(—717%1)3 = 90. Solving
the Thue equation 3 + 35y = 90 gives x = 5,y = —1 or 25 — 7 = 18 is the only
solution. Hence 6-3 =25—7 =X +6i — (X + 65). Also the solution (7) implies
—6-4=25—-49= X +6i — (X + 65). Thus X < 25 which is not possible.
Assume now that 2 < r < 8. Then P((X +6)(X +12)(X +56)(X +62)) < 31.
Suppose 3|X (X +2). Putting Y = 23 if 3|X and ¥ = ££5 if 3|(X +2), we get
either P(Y (Y +2)(3Y +50)(6Y+56)) < 31 or P(Y (Y +2)(3Y —50)(3Y —44)) < 31.
In particular P(Y(Y +2)) < 31. For Y = N — 2 given by [Leh64, Table ITA]
such that P(Y (Y +2)) < 31 , we check that P((3Y + 50)(3Y + 56)) > 31 and
P((3Y —50)(3Y —44)) > 31 except when Y € {55,145,297,1573}. This gives m =
X + 6 = 3Y — 50 and then we further check that P(A(m,2,k)) > 116. Hence we
suppose 31 X (X +2). Then 3t (X +6)--- (X+6r)(X+6(r+1)+2)--- (X+60+2).
If a prime power p® divides two terms of the product, then p®|(X +67), p®|(X + 67)
or p*|(X +65+2), p*|(X +6i+2) or p*|(X +67), p*|(X +6i+2) for some 4, j. Hence
p®|6(i—j) or p*|6(i—j)+2. Since 1 < j < i < 10, we get p* € {5,7,11,13,19,25}.
After deleting terms divisible by primes 5 < p < 31 to their highest powers, we
are left with two terms such that their product divides 25-7-11-13-19 and hence
X+6<+25-7-11-13- 19 or X +6 < 689. We check that P((X +6)(X+12)(X +
56)(X + 62)) > 31 for 110 < X < 683 except when X € {113,379}. Further we
check that P(A(m,2,k)) > 116 for m = X + 6. Hence the result. |

The remaining results in this section deal with the case d = 3. The first one is
a computational result.

Lemma 2.9. Letl € {1,2}. If p; 3, < 6450, then d3(i,1) < 60.
As a consequence, we obtain

Corollary 2.10. Let d = 3 and 3k < m < 6450 with gcd(m,3) = 1. Then (1)
holds unless (m, k) = (125, 2).
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Proof. For k < 20, it follows by direct computation. For k > 20, (1) follows as
3(k—1) > 60 and, by Lemma 2.9, the set {m+3i : 0 < ¢ < k} contains a prime. W

We shall also need the following result of Nagell [Nag58](see [Ca099]) on dio-
phantine equations.

Lemma 2.11. Let a,b,c € {2,3,5} and a <b. Then the solutions of
a®+ b =c* in integers >0, y >0, z>0
are given by
(a®,b¥,c*) € {(2,3,5), (2%,3%,5%),(2,5%,3%),
(2%,5,3%),(3,5,2%),(3%,5,2%), (3,5 27)}.
As a corollary, we have
Corollary 2.12. Let X > 80,31 X and 1 <i < 7. Then the solutions of
P(X(X +3i)=5 and 2| X (X + 37)
are given by
(i, X) € {(1,125), (2, 250), (4, 500), (5,625)}.

Proof. Let 1 < ¢ < 7. We observe that 2|X,2|(X + 3¢) only if X and i are
both even and 5|X,5|(X + 3i) only if ¢ = 5. Let the positive integers r, s and
§ =orda (i) € {0,1,2} be given by

X=2% X+3i=25" or X=205% X+43i=2"" ifi#£5 (8)
and

X=5% X43i=5x2" o X=5x2", X+3i=5"% ifi=5,

(9)
where r +2>r+6 > 7 and s > 2 since X > 80. Hence we have
- s X+ 3t X _ 1
2 -5 == (20rd2(i) . jords (i) B 9ordz (i) . 5ord5(i)) =+3 X 9ords (i) . Fords (i) ©
(10)

Let i € {1,2,4,5}. Then 2" — 5° = +3. By Lemma 2.11, we have 2" = 27,
5% = 5% and 27— 5% = 3 implying X = 207d2(1).53+0rds(0) gnd X 435 = 27+9.50rds (0),
These give the solutions stated in the Corollary.

Let i € {3,6}. Then 2" — 5% = £9 = 432, Since min(2",5%) > 16, we observe
from Lemma 2.11 that there is no solution.

Let 4 = 7. Then 2" — 5% = +21. Let s be even. Since 2" > 16, taking modulo
8, we find that —1 = +21( modulo 8) which is not possible. Hence s is odd.
Then 2" — 5° = 2" + 2° = 0 modulo 7. Since 2",2° = 1,2,4 modulo 7, we get
a contradiction. |
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3. Proof of Theorem 3
Let D = 4,3 according as d = 2, 3, respectively. Let v = 7. Assume that
P(A(m,d,k)) = P(m(m+d)---(m+ (k—1)d) < Dk. (11)
Then
w(A(m,d, k)) < ©(Dk) — 1. (12)

For every prime p < Dk dividing A, we delete a term m + 4,d such that ord,(m +
ipd) is maximal. Note that p|(m + zd) for at most one ¢ if p > k. Then we are left
with a set T with 1 +¢:=|T| > k — n(Dk) + 1 := 1+ ¢,. Let tc > 0 which we
assume in this section to ensure that 7' is non-empty. We arrange the elements of
Tasm+igd <m+iyd<---<m+i;d<. <m+id Let

to k—m(DEk)
Pi=[[(m+i,d) >d7POF T (vk +1). (13)
v=0 =0

We now apply [LaSh04b, Lemma 2.1, (14)] to get
m < (k‘ _ 1)!d—ordd(k—1)!.

Comparing the upper and lower bounds of 3, we have

FUCDRS Hk P8 (v + i)
(k_ 1)|d ordg(k—1)!

which imply

D) 5 dk+1dordd(k71)!(,Uk)lﬁ»lfﬂ'(Dk)
- (k—1)!

(14)

By using the estimates for ordg((k — 1)!) and (k — 1)! given in Lemma 2.1, we
obtain

(,Udk.)k+1d(k—d)/(d—1)(k _ 1)—1
20— Dr(E2) exp (oo )

_ g7 k k Wk k o[~ 1
A\ 1) e nyzm Ve -1 TP\ T2 — 1)

(vdk)™(PR) >

implying

w(Dk) >

_d_ v?
klog(evd®7) + (k + )log(kL) - ﬁ—k%logﬁ (15)
og(vdk) |
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wd
Again by using the estimates for 7(v) given in Lemma 2.1 and log(vdk) _ 14 lcl)og o

log(Dk) g(Dk)’
we derive

0>tiog 2k 1
2 % oreras 12(k—1)

k( log (evda®) = D log 1.2762 (16)
+ og(ev 7)7 1+log(Dk) 1+10§’;(7Dk) )

Let v be fixed with vd > D. Then expression

4 log u4 1.2762
F =1 1) -D[1 D 1
(k. v) :=log (evd ™ ) ( + log(Dk)>< + log(Dk)>

is an increasing function of k. Let k; := k1(v) be such that F(k,v) > 0 for all
k > k1. Then we observe that the right hand side of (16) is an increasing function
for k > ky. Let ko := ko(v) > k1 be such that the right hand side of (16) is
positive. Then (16) is not valid for all k£ > ko implying (15) and hence (14) are
not valid for all k > kq.

Also for a fixed k, if (16) is not valid at some v = v, then (14) is also not valid
at v = vg. Observe that for a fixed k, if (14) is not valid at some v = vy, then (14)
is also not valid when v > vg.

Therefore for a given v = vy with vod > D, the inequality (14) is not valid for
all k > ko(vg) and v > vg.

3(a). Proof of Theorem 3 for the case d = 3

Let d = 3 and let the assumptions of Theorem 3 be satisfied. Let 2 < k < 11 and
m > 3k. Observe that k — 7(3k) +1 =0 for k¥ < 8 and k — 7(3k) + 1 = 1 for
9< k<11 If T # ¢, then m < 2% x 5 x 7= 280.

By Corollary 2.10, we may assume that 2 < k& < 8, m > 6450 and T = ¢.
Further i, exists for each prime p < 3k, p # 3 and 4, # i, for p # ¢ otherwise
IT| > k—7(Bk)+1+4+1> 0. Also pg 1 (m + id) for any ¢ whenever p,q > k
otherwise T' # ¢. Thus P((m + 3iz)(m + 3i5)) = 5 if k < 8. For k = 8, we
get P((m + 3ia)(m + 3i5)) < 7 with P((m + 3i2)(m + 3i5)) = 7 only if 7|m and
{i2,i5} N {0, 7} # ¢.

Let kK <7 or k =8 with P((m + 3i2)(m + 3i5)) = 5. Let jo =min(is,i5), X =
m + 3jo and i = |is —i5]. Then X > 6450 and this is excluded by Corollary 2.12.

Let k = 8 and P((m + 3iz)(m + 3i5)) = 7. Then 7|m and {ia,i5} N {0,7} #
¢. Hence iz = 0 or 7 and 7 € {is,i5} if iz = 0 and 0 € {ia,i5} if ir = 7.
If 51 m(m + 21), then {is,i7} = {0, 7} and either

m=7Tx2", m+21=7"  or m=7"" m+21=7x2"

implying 2" — 7° = £3. Since 2" > = > 40, we get by taking modulo 8 that
(—1)**! = +£3 which is a contradiction. Thus 5/m(m + 21) implying 2 x 5 x
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7lm(m 4+ 21). By taking the prime factorization, we obtain

m = 29057, m 421 =215M7
with min(ag,a;) =min(bp,b1) = 0, min(cg,¢1) = 1 and further by + b = 1 if
iz € {0,7} and ag + a1 < 2 if i5 € {0,7}. From the identity 221 — 2 = 3, we
obtain one of
(i) 20 —5-7° =43 or
(i) 5-20 — 7 =43 or
(iii) 5* —2°.7¢ =43 or
(iv) 20 .5 —7¢ =43
with ¢ € {1,2}. Further from m > 6450, we obtain ¢ > 3 and
a>9, a>", b >4, b>3 (17)
according as (i), (ii), (iii), (iv) hold, respectively. These equations give rise to a
Thue equation

X34+ AY?* =B (18)
with integers X,Y, A > 0, B > 0 given by
(mocd 3) Equation A B X Y
() 0,1 | 29—-5.7=43 | 5.2¢.7¢ 3.2¢ P
(ii) 0,1 | 5-20-7c=43 | 25.2¢ .7¢ 75 . 20/ 45295 | 4755
(i) | 0,1 |50—20.7¢=+43| 20.5 .7¢ 3.5 5 | 47
(i) | 0,1 |20-50—7c—43|23-0.50 .7¢ | 9355 .3 | 42.5"%" | 175"
v) 2 20 _5.7¢ = +3 175 24’ 525 157 | 125
(vi) 2 5.20 7 =43 35.2¢/ 21 w7 | 10
(i) | 2 | sb_20.7c—43| 23-6.5 .7 | 21.23-0 | +2.7°F | 45°5"
(vii) | 2 |20.5b—7e=x3| 25.50.7 21 75 | 4575

where 0 < a/,b < 3 are such that X,Y are integers and ¢’ = 0,1 according as
¢(mod 3) = 0, 1, respectively. For example, 2¢ — 5 - 7¢ = £3 with ¢ = 0, 1(mod 3)

implies (42 whe- 34+ 5.297¢ (17

c—c’

5)3 = 3.2% where o is such that 3|(a + a’).

This give a Thue equation (18) with A =5-247¢ and B = 3- 2%
By using (17), we see that at least two of

orda(XY) > 2 or

ords(XY) > 1

or

ord7(XY) > 1

(19)

hold except for (vi) and (viii) where ords(XY) > 1, ord7(XY) > 1 in case of (vi)
and ordz(XY) =0, ord7(XY) > 1 in case of (viii). Using the command

T:=Thue(X3 + A); Solutions(T, B);
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in Kash, we compute all the solutions in integers X, Y of the above Thue equations.
We find that none of solutions of Thue equations satisfy (19).

Hence we have k > 12. For the proof of Theorem 3, we may suppose from
Corollaries 2.10 and 2.3 that

m > max(6450,10.6 x 3k). (20)

Let 12 < k < 19. Since tg > 1,2 for 12 < k < 16 and 17 < k < 19, respectively,
we have

m< VP < VAX8x52x 72 x 11 x 13 < 6450 if 12< k<16
m<f/‘ig\3/4><8><16><53><72><11><13><17<6450 if 17 <k <19.

This is not possible by (20).

Thus k& > 20. Then m > 6450 and v > 10.6 by (20) satisfying vod > D = d = 3.
Now we check that ko < 180 for v = 10.6. Therefore (14) is not valid for k£ > 180
and v > 10.6. Thus k < 180. Further we check that (15) is not valid for 20 < k <
180 at v = %50 except when k € {21,25,28,37,38}. Hence (14) is not valid for

<k < 180 When v > 80 except when k € {21,25,28,37,38}. Thus it suffices
to con51der k € {21,25,28,37} where we check that (14) is not valid at v = %3¢
and hence it is not valid for all v > 6;‘:20 Finally we consider k = 38 where we find
that (14) is not valid at v = 590, Thus m < 8000. For [ € {1,2} and p; 5; < 8000,
we find that d5(7, 3,1) < 90 implying the set {m, m+3,...,m+3(38—1)} contains
a prime. Hence the assertion follows since m > 3k. |

3(b). Proof of Theorem 3 for d = 2

Let d = 2 and let the assumptions of Theorem 3 be satisfied. The assertion for
Theorem 3 with k£ > 2 and m < 4k follows from Corollary 2.4. Thus m > 4k. For
2 < k <37, k # 35, Lemma 2.8 gives the result. Hence for the proof of Theorem
3, we may suppose that k = 35 or k£ > 38. Further from Corollaries 2.3 and 2.7,
we may assume that

m > max(Mp, 131 x 2k). (21)

Let k = 35,38. Then ty = 1,2 for k = 35, 38, respectively and we have

m<V/P<V27-9-25-5-72-112-132-172-19- 23 - 29 - 31
<10 if k=35

m< YPLV27-92.25.52.73.113.132.172-19-23-29 - 31 - 37
<10%  if k= 38.

This is not possible by (21).
Thus we assume that k& > 39. Let v > 131 and we check that ky < 500 for
v = 131. Therefore (14) is not valid for & > 500 and v > 131. Hence from (21),
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we get k < 500. Further v > 2]\/200 > 107. We check that kg < 70 at v = 107
implying (14) is not valid for & > 70 and v > 107. Thus k < 70. For each

39 < k < 70, we find that (14) is not valid at v = 22 and hence for all v > 2o

This is a contradiction. | |

4. Proof of Theorems 1 and 2

Recall that ¢ = u + § with 1 < o < d. We observe that if G(x) has a factor
of degree k, then it has a cofactor of degree n — k. Hence we may assume from
now on that if G(x) has a factor of degree k, then k < 5. The following result is
[ShTil0, Lemma 10.1].

Lemma 4.1. Let 1 <k < % and
d<2a+2 if (k,u) =(1,0).
If there is a prime p with
plla+(n+u—k)d) - (a+(n+u—1)d), p1tagan.
such that

< (k+u—1d+a+1 ifu>0
PZYlk+ru—Ddvrat2 ifu=0

Then G(x) has no factor of degree k.

Let d = 3. By putting m = a+ 3(n — k) and taking p = P(A(m, 3, k)), we find
from Lemma 4.1 and Theorem 3 that G 1 and G 2 does not have a factor of degree
k > 2 except possibly when k = 2,a = 2,m = 2 + 3(n — 2) = 125. This gives
n = 43 and we use [ShTil0, Lemma 2.13] with p = 2,7 = 2 to show that G% do not
have a factor of degree 2. Further except possibly when m = a+3(n—1) = 2 for
positive integers [, G 1 and G 2 do not have a linear factor. This proves Theorem 1.

Let d = 2. Let k = 1,u = 0. We have P(1 +2(n — 1)) > 3 and hence taking
p=P1l+2n-1))in Lemma 4.1, we find that G'1 does not have a factor of
degree 1. Hence from now on, we may suppose that % > 2and 0 < u < k. For
(m, k) € {((5,2),(7,2),(9,4), (13, 5),(17,6),(15,7),(21,8),(19,9)}, we check that
P(A(m,2,k)) = m. For 0 < u < k, by putting m = 14+ 2(n+u — k), we find from
n > 2k and Theorem 3 that

min(2(k + u),3.5k) if u < 0.5k

P(A(m,2,k)) > 2(k +u) = {min(Q(k +u),4k)  if 0.5k <u <k

except when k = 2, (u,m) € {(1,25),(2,25),(2,243)}. Observe that if p > 2(k+u),
then p > 2(k 4+ u) + 1. Now we take p = P(A(m,2,k)) in Lemma 4.1 to obtain
that G, 1 do not have a factor of degree k with k > 2 except possibly when
k=2u=1n=130or k =2,u=2,n € {12,121}. We use [ShTil0, Lemma 2.13]
with (p,7) = (3,1), (7, 1) to show that G/, ;1 do not have a factor of degree 2 when
(u,n) = (1,13),(2,12) and (u,n) = (2,121), respectively. |
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