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PERIODICITY OF COMPLEMENTING MULTISETS

ZELJKA LJUJIC

Abstract: Let A be a finite multiset of integers. If B be a multiset such that A and B are
t-complementing multisets of integers, then B is periodic. We obtain the Biro-type upper bound
for the smallest such period of B: Let € > 0. We assume that diam(A) > no(e) and that
> acawa(a) < (diam(A) 4 1)¢, where c is any constant such that ¢ < 100log2 — 2. Then B is
periodic with period

log k < (diam(A) + 1)3 7.
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1. Introduction

Let A and B be subsets of integers. The sumset A + B is the set of all integers of
the form a+b, where a € A and b € B. If every integer has a unique representation
as the sum of an element of A and an element of B, then we write A® B = Z and
we say that A and B are complementing sets of integers.

Let A be a finite set of integers. One of the classical problems is to decide
whether there exists an infinite set B such that A @ B = Z.

We say that a set B C Z is periodic if there exists k € Z~¢ such that B+ {k} =
B. In that case, we say that k is a period of B. An early result of D.J. Newman
[4] states the following:

Theorem 1 (D.J. Newman [4]). Let A be a nonempty finite set of integers and
let diam(A) = max (A) — min (A). If there exists a set B such that A® B = Z,
then B is periodic with period

k< 2diam(A) ]

From here, one can ask a natural question: What is the best upper bound
for the period in terms of diam(A)? I1.Z. Ruzsa, [in Tijdeman [5], Appendix],
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translated the problem into a problem of divisibility of certain integer polynomials
and proved

log k < +/diam(A) log(diam(A)).

M. Koloutzakis [2],using the same method, obtained a slightly weaker bound.
A. Biro [1], improved the Ruzsa’s result on the divisibility of integer polynomials
and obtained the following bound.

Theorem 2 (A. Biro [1]). For every € > 0 there exists an integer ng with
the following property: Let A and B be sets of integers such that A is finite and
A® B =17. Then, if diam(A) = ng, there exists a period k of B such that
log k < diam(A)3+te.

The problem of complementing sets of integers was generalized to linear forms

by M.B. Nathanson [3] as follows: we consider two linear forms
(X1, ... xp) = urxy + -+ + upxy
and
p(xlw .. 7$hay) = w(mla s ,l‘h) +Uy7
with nonzero integer coefficients w1, ..., up,v. Let A = (41,..., Ay) be an h-tuple
of nonempty finite sets of integers and B a set of integers. We introduce the sets
P(A) = {uras + - +upap : a; € A;}
and
p(A, B) = {uia1 + -+~ +upap +vb:a; € A;,b € B}.
We denote diam(y)(A)) = max(y)(A)) — min(y(A)).
For every integer n, we define the representation function associated to
Rff)(n) = card({(a1,...,ap) € Ay X - X Ap : ¥(a1,...,ap,) =n}),
and the representation function associated to p by
Rff’)B(n) = card({(a1,...,an,b) € Ay X -+ x Ap X B: p(ay,...,ap,b) =n}).

We say that A and B are complementing sets of integers with respect to the linear
form p if p(A, B) = Z and REf?B (n) =1, for all integers n. Similarly, A and B are
t-complementing sets of integers with respect to p if p(A, B) = Z and R%’)B (n) =t,
for all integers n.

Theorem 3 (M.B. Nathanson [3]). Let h > 1 and let

p(x1,.. o, xh,y) =9(x,. .., 28) + 0y

be a linear form with nonzero integer coefficients uy, ..., up,v. Let A= (A1,...,Ap)
be an h-tuple of nonempty finite sets of integers. If A and B are t-complementing
sets of integers with respect to p, then B is periodic with period

diam(yp(A))
k<2 m
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Here, we consider the complementing multisets of integers. More precisely, let
S be a multiset of integers. For each integer n, we denote by ws(n) € Zxo the
weight of n in S, which is the number of occurrences of n in S. Let A be a finite
multiset of integers and let B be a multiset of integers. For every integer n, we
define the representation function associated to the multisets A and B as

RA7B(n) = Z wA(a)wB(b).
n=a-+b
acA, beB
Let t € Z~og. We say that A and B are t-complementing multisets of integers if
A+ B =1Zand Rs g(n)=t, for all n € Z. In that case, we write A&, B = Z.

We say that a multiset B is periodic if there exists k € Zsg such that
wp(n + k) = wp(n), for all n € Z. Any such k is called a period of a multi-
set B. More generally, we say that a multiset of integers B is eventually periodic
if there exist k € Z~o and ng € Z such that if n > ng, then wg(n + k) = wg(n).
In that case, k is an eventual period of B.

Similarly, a representation function R4 p is eventually periodic if there exist
m € Zso and ng € Z such that if n > ny we have Ry g(n +m) = Ra p(n).
An integer m is called an eventual period of R4 p.

Note that in the case t = 1 the multisets A and B are an ordinary sets and the
problem of complementing multisets becomes the classical problem of complement-
ing sets of integers. In the case of complementing sets with respect to linear forms,
we can consider (. A) as a multiset A’. More precisely, if r = uja; + - -+ upap €
Y(A), we define wy(a)(r) = Rff)(r). Then, if there exists a set B such that
A and B are t-complementing sets of integers with respect to p, we have that
A’ @y B’ =7, where B’ = vB and B is periodic with period % if and only if B’ is
periodic with period vk.

In this paper we prove the following equivalent of Theorem 1 [D.J. Newman
[4]] in the case of multisets:

Theorem 4. Let A be a nonempty finite multiset of integers. Let diam(A) =
max (A) — min (A). If there exists a multiset B such that A ®; B = Z, then B is
periodic with period

k< (t + 1)diam(A)'

Moreover, we follow Ruzsa’s idea and translate the problem into the problem
of the divisibility of integer polynomials. We extend the main theorem in [1] to fit
our purpose and we obtain the following theorem.

Theorem 5. For everye > 0 there exists an integer ng with the following property:
Let A be a finite multiset of integers such that |A] > 1. Suppose that B is an
eventually periodic infinite multiset of integers with eventual period k, and that
the representation function Ra p is eventually periodic with eventual period m. If
n = diam(A) +m = ng and )., wa(a) < n, where ¢ < 100log2 — 2, then there
exists an eventual period k of B such that

logk < n3te,
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As an immediate corollary, we obtain a new upper bound of the period of
t-complementing multisets of integers.

Theorem 6. For every e > 0 there exists an integer ng with the following property:
Let A be a nonempty finite multiset of integers and let diam(A) = max (A) —
min (A). We assume that diam(A) = ng and that ), , wa(a) < (diam(A) +1)°,
where ¢ < 100log2—2. If B is a multiset such that A®; B = 7Z, then B is periodic
with period

logk < (diam(A) + 1)5+¢.

The last theorem can be restated in terms of complementing sets of integers
with respect to linear forms.

Theorem 7. For everye > 0 there exists an integer ng with the following property:
Let h > 1 and let

p(x1, .., xn,y) =9(x,. .., 2R) + 0y

be a linear form with nonzero integer coefficients uy, ..., up,v. Let A= (A1,...,Ap)
be an h-tuple of nonempty finite sets of integers and let diam(y(A)) = max(¢p(A))—
min(y(A)). We assume that diam((A)) = ng and that H?:l |A;] < n°, where
¢ < 100log2 — 2. If B is a set such that A and B are t-complementing sets of
integers with respect to p, then B 1is pertodic with period

log k < (diam((A)) + 1)57¢.

2. Preliminaries

We start by introducing some notation. Let n € Z<y.

If p is a prime number such that p”|n, but p"*! { n, for some r € Z>1, we write
p" I n

The set of all primitive n-th roots of unity will be denoted by wu,. Then
¢(x) = |pn| denotes Euler’s function and @, (z) = [[.¢, (z — &) denotes the n-th
cyclotomic polynomial. The number of divisors of n will be denoted by 7(n) and
the number of distinct prime divisors of n by w(n). We denote the M6bius function
by p(n). _

If f(z) = Y aix® € Z[z], then [|f(x)] = D |ai]- It is easy to see that if
f1, f2 € Zfa], then | f(2) fo(@)l < 2@ £

As usual, log will denote the natural logarithm.

The following three lemmas are Lemma 1, Lemma 2 and Lemma 3 from [1].

Lemma 8. Let f(z) € Clx] be a nonzero polynomial such that x% — 1|f(z), for
some d € Zsg. Let n = deg f(z) let g(z) = LEL . Then

zd—1

lg(@)|| < nllf(2)]-
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Lemma 9. Let € > 0 and let f(z) € Clx] be a nonzero polynomial such that
deg f(x) < n, where n = ng(e). Let m be a positive integer satisfying @, (z)|f(x),

and let g(x) = (If:ﬁ), Then

lg(@)|l < e[| (@)]]-

Lemma 10. Let € > 0 and let K be a real number such that K > Koy(e). Set
C =10°log K. Then

K
ch(r) < K1+6.
r=1
The following lemma is a generalization of Lemma 4 in [1].

Lemma 11. Let f(z) € Z[x] be such that f(1) # 0 and || f(z)|| < n°, where
n = deg(f(x)) and ¢ is any constant such that ¢ < 100log2 — 1. Suppose that
®4(z)V|f(x), for some d € Z~o. Then there exists an integer ng > 1 such that
n = ng implies V < (100 log n)w(d).

Proof. Let p be a prime number dividing d. We write d = p"d;, where r > 1 and
(p,d1) = 1. T U is any integer satisfying 0 < U < V, we obtain

®q(2)" Y| (),

where f(Y) () denotes the U-th derivative of f(x). The products ngwl Dy (&)VY

and erwl FU)(€) belong to the ring of integers of the number field Q(&4,), where
&4, denotes the di-th primitive root of unity. On the other hand, they are fixed
by all the automorphism in Gal(Q(&4,)/Q), so they belong to Q. We obtain that

HgG#dl q)d(é-)v_U7 ngﬂdl f(U)(f) S Z, and
V-U

IT @ I % ®.

§€pa, £€HA,

We denote N = [[e,,,, FO(€). We have that |fU(€)| < || (2)|| < oY) f(z)] <

nV*¢, so we obtain
NI < (). )

On the other hand,

H ®q(8) = H H (&1 — &am).
§€1ay £1,62€1ay NEHPT
The & = & part of the right-hand side is

eIl a-m= 1 er@e¢=p*" ] ¢

§€pa;  MEHpT §€md, §€pdy
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Hence,
(p?@)V=UIN,
Hence, if N # 0, we have (p¥'~V)?(41) < |N|. Using (1), we obtain

pV—U < ,nU+c.

Now, let us assume that V' > 100logn. Let U be such that 0 < U < m.
We have

1 . v ) v , v
2V(1710010gn) < 2V_U < pV_U < nU+° < nI00logn n¢ = eT00n° < e(°+1)m7

SO
1
ev(li 100log n ) log 2 g e(c+1)lvﬁ

has to be satisfied. This is equivalent to

log 2

+c¢>100log2 — 1.
logn

But ¢ < 100log2 — 1, so there exists ng such that if n > ngy the last inequality
doesn’t hold, hence N = 0. This implies that if n > ng and V' > 100 logn, we have
HﬁG#dl f(U)(f) =0,forall 0 <U < m. Hence if n > ng and V' > 100logn,
we have

g, ()7 f (@),

|4
forallOSUgm

Let d = pi* ---p,*, where p; are distinct prime numbers and r; > 0 for all 7.
We repeat the step above k = w(d) times. We obtain that if V' > (100logn)« (%),
then f(1) =0, a contradiction. [ |

We present the proof of the generalization of the main theorem in [1]. Through-
out the proof we will follow Biro’s argument.

Theorem 12. For every e > 0 there exists an integer ng with the following prop-
erty: Let q(x) € Z[x]. Assume that there is a polynomial f(x) € Z[x] such that
f(1) # 0 and there exists a positive integer m such that q(x) divides (™ —1) f(z).
Let us denote by n the degree of polynomial (z™ —1) f(x) and assume that n > ny.
If || f(2)|| € nc, where ¢ is any constant such that ¢ < 100log2—2 and there exists
a positive integer k such that q(z) divides [(z* — 1), for some integer 1, then for
the smallest such k we have
logk < nt/3te

Proof. Let g(z) | [(z* — 1), for some &’,1 € Z. Then

g(x) =1 I] ®alx),

deD
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where ' € Z such that I'|l and D is a set of some divisors of k. If we set
k =lem{d | d € D}, we will obtain

g(x) [ 1(a* = 1).

Our aim is to give an upper bound for k.
On the other hand,

deg(q(x)) = > _ ¢(d (2)

deD

Let M be an integer and L any real number satisfying

1
ns <M<2n% L > 2n.

In order to estimate k, we will estimate the products of prime factors of k.

Case 1. Let p be a prime such that p” || k, for some r > 1 and p” > L. Then
p"|d, for some d € D. Moreover, every such p” divides a different d € D, since
otherwise we would have

2

1., S L

P )(5p

old) > 67 )os) > (5p7) (57}

2

which would contradict (2). We obtain

S Ly < Y eh) < Yol <n

p" ||k "k p" ||k deD
p">L p =L p">L

Moreover, for every such p” we have p” < 2n, and the number of such prime powers
is at most 27”, SO

H p" < (2n) 2 (3)

Pk
p">L

Case 2. Let p be a prime such that p” || k, for some r > 1 and p” < M.
<]l (4)
Pk prSM

p'<M

Case 3. Let p be a prime such that p" || k, for some r > 2 and M < p" < L.
Similarly as in the previous case, we obtain

[ < I »<e=vr (5)

p" ||k pr<L,r>2
M<p"<L,r>2
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Case 4. Let p be a prime such that p || k and M < p < L. We need to estimate

II »

pllk
M<p<L

Every such p divides a d € D, but a given d € D is divisible by at most two such
primes, since otherwise we would have

o(d) = ¢(p1)d(p2)d(p3) = (pr — 1)(p2 — 1)(ps — 1) > M? > n,

which would contradict (2). Similarly, if d € D is divisible by two such primes, we
have ¢(d) > M?, so the number of primes p || k with M < p < L for which there
is another such prime p’ and a d € D with p, p’|d, is at most 2" . Whence,

2n_
Il p<i*]]»
pllk peEP
M<p<L

where P C {p || k| M < p < L} is such that each d € D is divisible by at most
one p € P.

We obtain that for every p € P thereis a d, € D such that p|d, and if p1,ps € P
are two distict primes then d,,, # dp,. By (2), >_,cp ¢(dp) < 1.

On the other hand, if p € P, then p || k, whence p || d, and

¢(dp) = (p—1)¢ (if) > c3(e)M <ij’)ls.

Let K be a real number. Then, if p € P and %P > K we will have ¢(d,) >

c3(€)M K=<, so the number of such primes is at most Hence

n
cz(e)MKt—="

[I»<e@ww= ] ». (6)
peEP pEP’
whereP’:{p€P|1§i)—p<K}.
We partition P’ into subsets

U 7.

1I<r<K

where P, = {p € P’ | 7 B — .
We fix an r such that 1 <r < K. Let V. > 0 be the largest integer with the
property
@ ()" | (2™ — 1) f(x)

and let
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By Lemma 9, we have
9@l < ¥ @™ = VS < 20V

Let

v= ] 9(9-

§Enr

Then v € Z, v # 0 and |v| < ||g||¢(7').
On the other hand, [[,cp, ®pr(2)[g(z) and g(z)|(z™ — 1) f(z), so

169

11 ®pr(2)[(2™ — 1) f(2). Moreover, (®,(z),[[,ep, Ppr(2)) =1 and we obtain

pEP, T PT

[T @ (@) | g(a).

pEPr

Hence,

IT (I @r(e)) 1w

PEPr L€,
For every p € P,, we have (p,r) =1, so

[Ier©= 11 T1I&-&n.

E€pr §1,62€ 1 NEHp

Setting &, = &3, we obtain that the right-hand side is divisible by p®("). It follows

that
1 »* |,
PEPr
and
[T »* < vl < llg(@)|*.
PEPr
Consequently,

1 » < lg(@)] < 20"
peEP,

This implies that if n is sufficiently large, we have
Pr| < e5(Ve + 1)n5,

SO

H P < L05n€ Zl<r<K(Vf'+1)'
pEP’
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Combining (3), (4), (5), (6) and (7), we obtain that if n is sufficiently large,
then

2
logk < fn log(2n) + et M + coV'L + cy(e) log L

n
MEK1-<
+esnt Y (Ve+1)logL

1I<r<K

2
g fn 10g(2n) + ClM + CQ\/Z

n n
+ co(e) (log L)(Kn)* | 5755 + 577+ > (Vi+1)
1I<r<K

The L part is optimized by taking L = n3. Next, we estimate V. + 1, using
Lemma 11. Let
(@™ —1)f(z)

rz—1

h(z) =

Then h(z) € Z[z] is a nonzero polynomial such that h(1) # 0. Also, we have
deg(h(z)) < n and ||h(z)| < m|f(z)]] < n°t!, where ¢ < 100log2 — 2. Now,
if » > 1, we have ®,.(x)"" | h(z) and by Lemma 11, V,, < (100logn)~("), for
sufficiently large n. We obtain

Vi +1 < (2001og n)“™ forr>1and Vi +1=2.
Assuming a weak estimate K > nTo and using Lemma 10, we finally have

logh < er(e)(Kn)* (n + M+ 0o+~ + K).

This is nearly optimized in K by K = (%)%, and the remaining expression is
nearly optimized in M with M = n3. We fix the parameters

and obtain

for sufficiently large n. |

3. Multisets and periodicity

In this section we prove Theorem 4 and Theorem 5. Let A be a finite multiset of
integers and let B be a multiset such that A @; B = Z. We denote o = min(A).
We define a multiset A’ = A—a={a—a|ac A}, with wa (a — ) = wa(a) for
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alla € A. If n € Z, we have

Rar p(n) = > wa(a Ywp(b)
n=a’+b
a'=a—acA’ beB

= Z wa(a)wp(b) = Ra,p(n + ).
n+a=a-+b
a€A,beEB

Thus, A’ ®; B = Z. Hence, we may assume without loss of generality that
min(A4) = 0 and max(A) = d, where d = diam(A).

Let |A| = 1. Then if A = {a} and A ®; B = Z, we obtain that B = Z and
wp(n) = o a)7 for all n € Z. Hence, the multiset B is periodic with period k =1

and the Theorem is immediately true. Thus, we may assume that |A| > 1 and
d>1.
We have

t=Rap(n) = Z wa(a)wp(n —a)

a€A

— Z wa(a)wp(n —a) + wa(0)wg(n),

acA\{0}

for all n € Z. Thus,

wa(Q)wp(n) =t — Z wa(a)wp(n — a). (8)

acA\{0}

We have that n —d <n—a<n-—1,for all a € A\ {0}. Moreover,

wa(d)wg(n —d) =t — Z wa(a)wg(n — a), 9)
acA\{d}

andn—d+1<n—a<mn,forall a € A\ {d}. Hence, if we know the value of
wp for any d consecutive integers, using (8) and (9) we can compute wg(n) for all
integers n.
We consider the d-tuple (wp(i),wp(i +1),...,wp(i+d — 1)), for some i € Z.
Since
t=Rap(n+a) ZwA a)wp(n —a) = wa(0)wp(n),
acA

we obtain that wg(n) < t, for all n € Z. Hence,

(wg(@),ws(i+1),...,wg(i+d—1)) € {0,1,...,t}*.
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By pigeonhole principle, there exist integers 0 < i < j < (¢ + 1)¢ such that
(wp(@),wp(i+1),...,wp(i+d—1)) = (wp(j),ws(+1),...,wp(j+d—1)).

Let k= j—i. Then1 < k < (t+1)% and wg(n) = wg(n+k), forn =i,...,i+d—1.
By (8) and (9), we obtain wg(n) = wg(n + k), for all n € Z. This proves the
Theorem 4.

Proof of the Theorem 5. As before, we may assume without loss of generality
that min(A) = 0 and max(A) = d, where d = diam(A). Moreover, let 5 € B. We
define the mutiset B’ = B — = {b— | b € B} with wp/(b— 8) = wp(b), for all
b € B. Then, 0 € B’ and B’ is eventually periodic with eventual period & if and
only if B is eventually periodic with eventual period k. If n € Z, we have

Rap(n) = Z wa(a)wp ()
n=a-+b’
a€A,b'=b—BEB’

= Y wala)wp(b) = Rap(n+p).

n+pB=a+b
acA,beB

It follows that the representation function R4 ps is eventually periodic with
eventual period m if and only if R4 p is eventually periodic with eventual period
m. Thus, we may assume without loss of generality that 0 € B.

Let
Bt ={be B|b>0}.
Note that if b € BT, we have that a +b > 0, for all @ € A. On the other hand, if

be B\ B*, we have a+b < diam(A), for all a € A. Hence, Ry p+(n) = Ra,g(n),
for all n > diam(A) and R4 g+ is eventually periodic with eventual period m.

We consider the generating functions

AMz) = Z wa(a)z® = ZwA(n)w”

a€A n=0

and
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Let ng € Z~q be such that Ry p+(n 4+ m) = R4 p+(n), for all integers n > ny.
Let 49 = [ 22 ] 4 1. Define r; = Ry p+(mig+j) for j =0,1,...,m — 1. We obtain

mig—1 e’}
ZRA B+( Z Ryp+(n)a"+ Y Rap+(n)z
n=mig
mig—1 m—1 oo
Z RAB+ n)x" +ZZRAB+ (mi+ j)x mitd
7=0 2=t
mig—1 m—1 oo
S I BERS 3 o
7=0 i=19o
mig—1 1 m—1 . 4
= Z Ry p+(n)z" — TR Z ™t (10)
n=0 j=0
We define the polynomials
miofl
= Z Ra p+(n)z
n=0
and
m—1 ) )
pa(x) = ryaot,
j=0
Then, using (10), we obtain
1
Mz)y(@) = pi(e) = o p2(2)
@™~ Dpa(2) - pala)
xm—1 ’
and
z™ — 1)p1(z) — pa(x p(x
7(;1:):( m)l() 2():()7
(z™ = 1)A(x) q(z)

where p(z) and ¢(z) are relatively prime polynomials in Z[z] and ¢(z)|(2™—1)A(x).
The multiset BT is eventually periodic, hence there exists n; € Z~ and s € Z~q
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such that wg(n + s) = wg(n), for all n > ny. Hence,

(z° = Dy(z) = (2° = 1) ZwB waB "t — ZwB(n)x
n=0

n=0
nyp—1 [e%e]
= Z wp(n)z" s + Z wp(n)z" T — ng(n)x
n=0 n=ni n=0
ni—1
- Z wp(n)z™ s + Z wp(n 4 s)z"** ng
n=0 n=ni
ni—1
=S wset Y sl ZwB
n=0 n=ni+s
ni—1 ni+s
= Z wp(n)z™s — Z wp(n)z",
n=0 n=0

and (z° — 1)v(x) is a polynomial. Then
(z° = D)p(z)

(@ = 1)(e) = s

is a polynomial, whence ¢(x)|(z® — 1)p(x). Since ged(p(x),gq(x)) = 1, we con-
clude that there exists an integer [ such that ¢(z)[l(x® — 1). We have ||[\(z)| =
Y acawala) and A(1) = > . wa(a) # 0. The conditions of Theorem 12 are
fulfilled. Then there exists a positive integer k such that

q(@)|'(zF — 1) for some integer I’ and log(k) < n3T*.

It remains to prove that %k is an eventual period of B*. We have that
I'(x* — 1)y(x) € Z[x]. This implies that (z* — 1)vy(z) is a polynomial, so

(@" = 1)y(z) = (" -1 ZwB Z gtk ZwB(n)x
n=0 n=0

e ni+k—1
— ng(n)x”+k - Z wp(n)z" — Z wg(n)z"
n=0 n=ni+k n=0
e} [eS) ni+k—1
= ng(n)x”+k - Z wp(n+ k)z"tF — Z wp(n)z"
n=0 n=ni n=0
= > (wp(n) — wp(n + k))a"**
n=niy
ni—1 ni+k—1
+ Z wg(n)z"tk — Z wp(n)x™
n=0 n=0

is a polynomial. Thus, there exist ny € Z~( such that wg(n) = wg(n + k), for all
n > ny. This implies that % is an eventual period of B™. |
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