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PERIODICITY OF COMPLEMENTING MULTISETS

Željka Ljujić

Abstract: Let A be a finite multiset of integers. If B be a multiset such that A and B are
t-complementing multisets of integers, then B is periodic. We obtain the Biro-type upper bound
for the smallest such period of B: Let ε > 0. We assume that diam(A) > n0(ε) and that∑

a∈A wA(a) 6 (diam(A) + 1)c, where c is any constant such that c < 100 log 2− 2. Then B is
periodic with period

log k 6 (diam(A) + 1)
1
3
+ε.
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1. Introduction

Let A and B be subsets of integers. The sumset A+B is the set of all integers of
the form a+b, where a ∈ A and b ∈ B. If every integer has a unique representation
as the sum of an element of A and an element of B, then we write A⊕B = Z and
we say that A and B are complementing sets of integers.

Let A be a finite set of integers. One of the classical problems is to decide
whether there exists an infinite set B such that A⊕B = Z.

We say that a set B ⊂ Z is periodic if there exists k ∈ Z>0 such that B+{k} =
B. In that case, we say that k is a period of B. An early result of D.J. Newman
[4] states the following:

Theorem 1 (D.J. Newman [4]). Let A be a nonempty finite set of integers and
let diam(A) = max (A) − min (A). If there exists a set B such that A ⊕ B = Z,
then B is periodic with period

k 6 2diam(A).

From here, one can ask a natural question: What is the best upper bound
for the period in terms of diam(A)? I.Z. Ruzsa, [in Tijdeman [5], Appendix],
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translated the problem into a problem of divisibility of certain integer polynomials
and proved

log k ≪
√

diam(A) log(diam(A)).

M. Koloutzakis [2],using the same method, obtained a slightly weaker bound.
A. Biro [1], improved the Ruzsa’s result on the divisibility of integer polynomials
and obtained the following bound.

Theorem 2 (A. Biro [1]). For every ε > 0 there exists an integer n0 with
the following property: Let A and B be sets of integers such that A is finite and
A⊕B = Z. Then, if diam(A) > n0, there exists a period k of B such that

log k 6 diam(A)
1
3+ϵ.

The problem of complementing sets of integers was generalized to linear forms
by M.B. Nathanson [3] as follows: we consider two linear forms

ψ(x1, . . . , xh) = u1x1 + · · ·+ uhxh

and
ρ(x1, . . . , xh, y) = ψ(x1, . . . , xh) + vy,

with nonzero integer coefficients u1, . . . , uh, v. Let A = (A1, . . . , Ah) be an h-tuple
of nonempty finite sets of integers and B a set of integers. We introduce the sets

ψ(A) = {u1a1 + · · ·+ uhah : ai ∈ Ai}

and
ρ(A, B) = {u1a1 + · · ·+ uhah + vb : ai ∈ Ai, b ∈ B}.

We denote diam(ψ(A)) = max(ψ(A))−min(ψ(A)).
For every integer n, we define the representation function associated to ψ

R
(ψ)
A (n) = card({(a1, . . . , ah) ∈ A1 × · · · ×Ah : ψ(a1, . . . , ah, ) = n}),

and the representation function associated to ρ by

R
(ρ)
A,B(n) = card({(a1, . . . , ah, b) ∈ A1 × · · · ×Ah ×B : ρ(a1, . . . , ah, b) = n}).

We say that A and B are complementing sets of integers with respect to the linear
form ρ if ρ(A, B) = Z and R(ρ)

A,B(n) = 1, for all integers n. Similarly, A and B are

t-complementing sets of integers with respect to ρ if ρ(A, B) = Z and R(ρ)
A,B(n) = t,

for all integers n.

Theorem 3 (M.B. Nathanson [3]). Let h > 1 and let

ρ(x1, . . . , xh, y) = ψ(x1, . . . , xh) + vy

be a linear form with nonzero integer coefficients u1, . . . , uh, v. Let A = (A1, . . . , Ah)
be an h-tuple of nonempty finite sets of integers. If A and B are t-complementing
sets of integers with respect to ρ, then B is periodic with period

k 6 2
diam(ψ(A))

|v| .
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Here, we consider the complementing multisets of integers. More precisely, let
S be a multiset of integers. For each integer n, we denote by wS(n) ∈ Z>0 the
weight of n in S, which is the number of occurrences of n in S. Let A be a finite
multiset of integers and let B be a multiset of integers. For every integer n, we
define the representation function associated to the multisets A and B as

RA,B(n) =
∑

n=a+b
a∈A, b∈B

wA(a)wB(b).

Let t ∈ Z>0. We say that A and B are t-complementing multisets of integers if
A+B = Z and RA,B(n) = t, for all n ∈ Z. In that case, we write A⊕t B = Z.

We say that a multiset B is periodic if there exists k ∈ Z>0 such that
wB(n + k) = wB(n), for all n ∈ Z. Any such k is called a period of a multi-
set B. More generally, we say that a multiset of integers B is eventually periodic
if there exist k ∈ Z>0 and n0 ∈ Z such that if n > n0, then wB(n + k) = wB(n).
In that case, k is an eventual period of B.

Similarly, a representation function RA,B is eventually periodic if there exist
m ∈ Z>0 and n0 ∈ Z such that if n > n0 we have RA,B(n + m) = RA,B(n).
An integer m is called an eventual period of RA,B .

Note that in the case t = 1 the multisets A and B are an ordinary sets and the
problem of complementing multisets becomes the classical problem of complement-
ing sets of integers. In the case of complementing sets with respect to linear forms,
we can consider ψ(A) as a multiset A′. More precisely, if r = u1a1 + · · ·+ uhah ∈
ψ(A), we define wψ(A)(r) = R

(ψ)
A (r). Then, if there exists a set B such that

A and B are t-complementing sets of integers with respect to ρ, we have that
A′ ⊕t B′ = Z, where B′ = vB and B is periodic with period k if and only if B′ is
periodic with period vk.

In this paper we prove the following equivalent of Theorem 1 [D.J. Newman
[4]] in the case of multisets:

Theorem 4. Let A be a nonempty finite multiset of integers. Let diam(A) =
max (A) −min (A). If there exists a multiset B such that A ⊕t B = Z, then B is
periodic with period

k 6 (t+ 1)diam(A).

Moreover, we follow Ruzsa’s idea and translate the problem into the problem
of the divisibility of integer polynomials. We extend the main theorem in [1] to fit
our purpose and we obtain the following theorem.

Theorem 5. For every ε > 0 there exists an integer n0 with the following property:
Let A be a finite multiset of integers such that |A| > 1. Suppose that B is an
eventually periodic infinite multiset of integers with eventual period k, and that
the representation function RA,B is eventually periodic with eventual period m. If
n = diam(A)+m > n0 and

∑
a∈A wA(a) 6 nc, where c < 100 log 2− 2, then there

exists an eventual period k of B such that

log k 6 n
1
3+ε.
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As an immediate corollary, we obtain a new upper bound of the period of
t-complementing multisets of integers.

Theorem 6. For every ε > 0 there exists an integer n0 with the following property:
Let A be a nonempty finite multiset of integers and let diam(A) = max (A) −
min (A). We assume that diam(A) > n0 and that

∑
a∈A wA(a) 6 (diam(A) + 1)c,

where c < 100 log 2−2. If B is a multiset such that A⊕tB = Z, then B is periodic
with period

log k 6 (diam(A) + 1)
1
3+ε.

The last theorem can be restated in terms of complementing sets of integers
with respect to linear forms.

Theorem 7. For every ε > 0 there exists an integer n0 with the following property:
Let h > 1 and let

ρ(x1, . . . , xh, y) = ψ(x1, . . . , xh) + vy

be a linear form with nonzero integer coefficients u1, . . . , uh, v. Let A = (A1, . . . , Ah)
be an h-tuple of nonempty finite sets of integers and let diam(ψ(A)) = max(ψ(A))−
min(ψ(A)). We assume that diam(ψ(A)) > n0 and that

∏h
i=1 |Ai| 6 nc, where

c < 100 log 2 − 2. If B is a set such that A and B are t-complementing sets of
integers with respect to ρ, then B is periodic with period

log k 6 (diam(ψ(A)) + 1)
1
3+ε.

2. Preliminaries

We start by introducing some notation. Let n ∈ Z>0.
If p is a prime number such that pr|n, but pr+1 - n, for some r ∈ Z>1, we write

pr ∥ n.
The set of all primitive n-th roots of unity will be denoted by µn. Then

ϕ(x) = |µn| denotes Euler’s function and Φn(x) =
∏
ξ∈µn(x− ξ) denotes the n-th

cyclotomic polynomial. The number of divisors of n will be denoted by τ(n) and
the number of distinct prime divisors of n by ω(n). We denote the Möbius function
by µ(n).

If f(x) =
∑
aix

i ∈ Z[x], then ∥f(x)∥ =
∑
|ai|. It is easy to see that if

f1, f2 ∈ Z[x], then ∥f1(x)f2(x)∥ 6 ∥f1(x)∥∥f2(x)∥.
As usual, log will denote the natural logarithm.
The following three lemmas are Lemma 1, Lemma 2 and Lemma 3 from [1].

Lemma 8. Let f(x) ∈ C[x] be a nonzero polynomial such that xd − 1|f(x), for
some d ∈ Z>0. Let n = deg f(x) let g(x) = f(x)

xd−1
. Then

∥g(x)∥ 6 n∥f(x)∥.
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Lemma 9. Let ε > 0 and let f(x) ∈ C[x] be a nonzero polynomial such that
deg f(x) 6 n, where n > n0(ε). Let m be a positive integer satisfying Φm(x)|f(x),
and let g(x) = f(x)

Φm(x) . Then

∥g(x)∥ 6 en
ε

∥f(x)∥.

Lemma 10. Let ε > 0 and let K be a real number such that K > K0(ε). Set
C = 105 logK. Then

K∑
r=1

Cω(r) 6 K1+ϵ.

The following lemma is a generalization of Lemma 4 in [1].

Lemma 11. Let f(x) ∈ Z[x] be such that f(1) ̸= 0 and ∥f(x)∥ 6 nc, where
n = deg(f(x)) and c is any constant such that c < 100 log 2 − 1. Suppose that
Φd(x)

V |f(x), for some d ∈ Z>0. Then there exists an integer n0 > 1 such that
n > n0 implies V 6 (100 log n)ω(d).

Proof. Let p be a prime number dividing d. We write d = prd1, where r > 1 and
(p, d1) = 1. If U is any integer satisfying 0 6 U 6 V , we obtain

Φd(x)
V−U |f (U)(x),

where f (U)(x) denotes the U -th derivative of f(x). The products
∏
ξ∈µd1

Φd(ξ)
V−U

and
∏
ξ∈µd1

f (U)(ξ) belong to the ring of integers of the number field Q(ξd1), where
ξd1 denotes the d1-th primitive root of unity. On the other hand, they are fixed
by all the automorphism in Gal(Q(ξd1)/Q), so they belong to Q. We obtain that∏
ξ∈µd1

Φd(ξ)
V−U ,

∏
ξ∈µd1

f (U)(ξ) ∈ Z, and ∏
ξ∈µd1

Φd(ξ)

V−U ∣∣∣∣ ∏
ξ∈µd1

f (U)(ξ).

We denote N =
∏
ξ∈µd1

f (U)(ξ). We have that |fU (ξ)| 6 ∥f (U)(x)∥ 6 nU∥f(x)∥ 6
nU+c, so we obtain

|N | 6 (nU+c)ϕ(d1). (1)

On the other hand, ∏
ξ∈µd1

Φd(ξ) =
∏

ξ1,ξ2∈µd1

∏
η∈µpr

(ξ1 − ξ2η).

The ξ1 = ξ2 part of the right-hand side is∏
ξ∈µd1

ξ
∏
η∈µpr

(1− η) =
∏
ξ∈µd1

Φpr (1)ξ = pϕ(d1)
∏
ξ∈µd1

ξ.
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Hence,
(pϕ(d1))V−U |N.

Hence, if N ̸= 0, we have (pV−U )ϕ(d1) 6 |N |. Using (1), we obtain

pV−U 6 nU+c.

Now, let us assume that V > 100 log n. Let U be such that 0 6 U 6 V
100 logn .

We have

2V (1− 1
100 logn ) 6 2V−U 6 pV−U 6 nU+c 6 n

V
100 lognnc = e

V
100nc 6 e(c+1) V100 ,

so
eV (1− 1

100 logn ) log 2 6 e(c+1) V100

has to be satisfied. This is equivalent to

log 2

logn
+ c > 100 log 2− 1.

But c < 100 log 2 − 1, so there exists n0 such that if n > n0 the last inequality
doesn’t hold, hence N = 0. This implies that if n > n0 and V > 100 log n, we have∏
ξ∈µd1

f (U)(ξ) = 0, for all 0 6 U 6 V
100 logn . Hence if n > n0 and V > 100 log n,

we have
Φd1(x)

U+1|f(x),

for all 0 6 U 6 V
100 logn .

Let d = pr11 · · · p
rk
k , where pi are distinct prime numbers and ri > 0 for all i.

We repeat the step above k = ω(d) times. We obtain that if V > (100 log n)ω(d),
then f(1) = 0, a contradiction. �

We present the proof of the generalization of the main theorem in [1]. Through-
out the proof we will follow Biro’s argument.

Theorem 12. For every ε > 0 there exists an integer n0 with the following prop-
erty: Let q(x) ∈ Z[x]. Assume that there is a polynomial f(x) ∈ Z[x] such that
f(1) ̸= 0 and there exists a positive integer m such that q(x) divides (xm−1)f(x).
Let us denote by n the degree of polynomial (xm−1)f(x) and assume that n > n0.
If ∥f(x)∥ 6 nc, where c is any constant such that c < 100 log 2−2 and there exists
a positive integer k such that q(x) divides l(xk − 1), for some integer l, then for
the smallest such k we have

log k 6 n1/3+ε

Proof. Let q(x) | l(xk′ − 1), for some k′, l ∈ Z. Then

q(x) = l′
∏
d∈D

Φd(x),
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where l′ ∈ Z such that l′|l and D is a set of some divisors of k′. If we set
k = lcm{d | d ∈ D}, we will obtain

q(x) | l(xk − 1).

Our aim is to give an upper bound for k.
On the other hand,

deg(q(x)) =
∑
d∈D

ϕ(d) 6 n. (2)

Let M be an integer and L any real number satisfying

n
1
3 < M <

1

2
n

1
2 , L > 2n

1
2 .

In order to estimate k, we will estimate the products of prime factors of k.
Case 1. Let p be a prime such that pr ∥ k, for some r > 1 and pr > L. Then

pr|d, for some d ∈ D. Moreover, every such pr divides a different d ∈ D, since
otherwise we would have

ϕ(d) > ϕ(pr11 )ϕ(pr22 ) > (
1

2
pr11 )(

1

2
pr22 ) > L2

4
> n,

which would contradict (2). We obtain

1

2

∑
pr∥k
pr>L

L 6 1

2

∑
pr∥k
pr>L

pr 6
∑
pr∥k
pr>L

ϕ(pr) 6
∑
d∈D

ϕ(d) 6 n.

Moreover, for every such pr we have pr 6 2n, and the number of such prime powers
is at most 2n

L , so ∏
pr∥k
pr>L

pr 6 (2n)
2n
L . (3)

Case 2. Let p be a prime such that pr ∥ k, for some r > 1 and pr 6M .∏
pr∥k
pr6M

pr 6
∏
pr6M

pr 6 ec1M . (4)

Case 3. Let p be a prime such that pr ∥ k, for some r > 2 and M < pr < L.
Similarly as in the previous case, we obtain∏

pr∥k
M<pr<L,r>2

pr 6
∏

pr<L,r>2

pr 6 ec2
√
L. (5)
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Case 4. Let p be a prime such that p ∥ k and M < p < L. We need to estimate∏
p∥k

M<p<L

p.

Every such p divides a d ∈ D, but a given d ∈ D is divisible by at most two such
primes, since otherwise we would have

ϕ(d) > ϕ(p1)ϕ(p2)ϕ(p3) > (p1 − 1)(p2 − 1)(p3 − 1) >M3 > n,

which would contradict (2). Similarly, if d ∈ D is divisible by two such primes, we
have ϕ(d) > M2, so the number of primes p ∥ k with M < p < L for which there
is another such prime p′ and a d ∈ D with p, p′|d, is at most 2n

M2 . Whence,∏
p∥k

M<p<L

p 6 L
2n
M2

∏
p∈P

p,

where P ⊆ {p ∥ k | M < p < L} is such that each d ∈ D is divisible by at most
one p ∈ P.

We obtain that for every p ∈ P there is a dp ∈ D such that p|dp and if p1, p2 ∈ P
are two distict primes then dp1 ̸= dp2 . By (2),

∑
p∈P ϕ(dp) 6 n.

On the other hand, if p ∈ P, then p ∥ k, whence p ∥ dp and

ϕ(dp) = (p− 1)ϕ

(
dp
p

)
> c3(ε)M

(
dp
p

)1−ε

.

Let K be a real number. Then, if p ∈ P and dp
p > K we will have ϕ(dp) >

c3(ϵ)MK1−ϵ, so the number of such primes is at most n
c3(ε)MK1−ε . Hence∏

p∈P

p 6 Lc4(ϵ)
n

MK1−ϵ
∏
p∈P′

p, (6)

where P ′ = {p ∈ P | 1 6 dp
p < K}.

We partition P ′ into subsets

P ′ =
∪

16r<K
Pr,

where Pr = {p ∈ P ′ | dpp = r}.
We fix an r such that 1 6 r < K. Let Vr > 0 be the largest integer with the

property
Φr(x)

Vr | (xm − 1)f(x)

and let
g(x) =

(xm − 1)f(x)

Φr(x)Vr
.
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By Lemma 9, we have

∥g(x)∥ 6 eVrn
ε

∥(xm − 1)f(x)∥ 6 2nceVrn
ε

.

Let
ν =

∏
ξ∈µr

g(ξ).

Then ν ∈ Z, ν ̸= 0 and |ν| 6 ∥g∥ϕ(r).
On the other hand,

∏
p∈Pr Φpr(x)|q(x) and q(x)|(xm − 1)f(x), so∏

p∈Pr Φpr(x)|(x
m − 1)f(x). Moreover, (Φr(x),

∏
p∈Pr Φpr(x)) = 1 and we obtain∏

p∈Pr

Φpr(x) | g(x).

Hence, ∏
p∈Pr

(
∏
ξ∈µr

Φpr(ξ)) | ν.

For every p ∈ Pr, we have (p, r) = 1, so∏
ξ∈µr

Φpr(ξ) =
∏

ξ1,ξ2∈µr

∏
η∈µp

(ξ1 − ξ2η).

Setting ξ1 = ξ2, we obtain that the right-hand side is divisible by pϕ(r). It follows
that ∏

p∈Pr

pϕ(r) | ν,

and ∏
p∈Pr

pϕ(r) 6 |ν| 6 ∥g(x)∥ϕ(r).

Consequently, ∏
p∈Pr

p 6 ∥g(x)∥ 6 2nceVrn
ε

.

This implies that if n is sufficiently large, we have

|Pr| 6 c5(Vr + 1)nϵ,

so ∏
p∈P′

p 6 Lc5n
ϵ∑

16r<K(Vr+1). (7)
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Combining (3), (4), (5), (6) and (7), we obtain that if n is sufficiently large,
then

log k 6 2n

L
log(2n) + c1M + c2

√
L+ c4(ε)

n

MK1−ε logL

+ c5n
ϵ
∑

16r<K
(Vr + 1) logL

6 2n

L
log(2n) + c1M + c2

√
L

+ c6(ϵ)(logL)(Kn)
ϵ

 n

M2
+

n

MK
+

∑
16r<K

(Vr + 1)


The L part is optimized by taking L = n

2
3 . Next, we estimate Vr + 1, using

Lemma 11. Let

h(x) =
(xm − 1)f(x)

x− 1
.

Then h(x) ∈ Z[x] is a nonzero polynomial such that h(1) ̸= 0. Also, we have
deg(h(x)) 6 n and ∥h(x)∥ 6 m∥f(x)∥ 6 nc+1, where c < 100 log 2 − 2. Now,
if r > 1, we have Φr(x)

Vr | h(x) and by Lemma 11, Vr 6 (100 log n)ω(r), for
sufficiently large n. We obtain

Vr + 1 6 (200 log n)ω(r) for r > 1 and V1 + 1 = 2.

Assuming a weak estimate K > n
1

100 and using Lemma 10, we finally have

log k 6 c7(ϵ)(Kn)
2ϵ(n

1
3 +M +

n

M2
+

n

MK
+K).

This is nearly optimized in K by K = ( nM )
1
2 , and the remaining expression is

nearly optimized in M with M = n
1
3 . We fix the parameters

K = n
1
3 , ,M = ⌊2n 1

3 ⌋, , L = n
2
3 .

and obtain
log k 6 n

1
3+10ϵ,

for sufficiently large n. �

3. Multisets and periodicity

In this section we prove Theorem 4 and Theorem 5. Let A be a finite multiset of
integers and let B be a multiset such that A ⊕t B = Z. We denote α = min(A).
We define a multiset A′ = A− α = {a− α | a ∈ A}, with wA′(a− α) = wA(a) for
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all a ∈ A. If n ∈ Z, we have

RA′,B(n) =
∑

n=a′+b
a′=a−α∈A′,b∈B

wA′(a′)wB(b)

=
∑

n+α=a+b
a∈A,b∈B

wA(a)wB(b) = RA,B(n+ α).

Thus, A′ ⊕t B = Z. Hence, we may assume without loss of generality that
min(A) = 0 and max(A) = d, where d = diam(A).

Let |A| = 1. Then if A = {a} and A ⊕t B = Z, we obtain that B = Z and
wB(n) =

t
wA(a) , for all n ∈ Z. Hence, the multiset B is periodic with period k = 1

and the Theorem is immediately true. Thus, we may assume that |A| > 1 and
d > 1.

We have

t = RA,B(n) =
∑
a∈A

wA(a)wB(n− a)

=
∑

a∈A\{0}

wA(a)wB(n− a) + wA(0)wB(n),

for all n ∈ Z. Thus,

wA(0)wB(n) = t−
∑

a∈A\{0}

wA(a)wB(n− a). (8)

We have that n− d 6 n− a 6 n− 1, for all a ∈ A \ {0}. Moreover,

wA(d)wB(n− d) = t−
∑

a∈A\{d}

wA(a)wB(n− a), (9)

and n − d + 1 6 n − a 6 n, for all a ∈ A \ {d}. Hence, if we know the value of
wB for any d consecutive integers, using (8) and (9) we can compute wB(n) for all
integers n.

We consider the d-tuple (wB(i), wB(i+ 1), . . . , wB(i+ d− 1)), for some i ∈ Z.
Since

t = RA,B(n+ a) =
∑
a∈A

wA(a)wB(n− a) > wA(0)wB(n),

we obtain that wB(n) 6 t, for all n ∈ Z. Hence,

(wB(i), wB(i+ 1), . . . , wB(i+ d− 1)) ∈ {0, 1, . . . , t}d .
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By pigeonhole principle, there exist integers 0 6 i < j 6 (t+ 1)d such that

(wB(i), wB(i+ 1), . . . , wB(i+ d− 1)) = (wB(j), wB(j + 1), . . . , wB(j + d− 1)).

Let k = j−i. Then 1 6 k 6 (t+1)d and wB(n) = wB(n+k), for n = i, . . . , i+d−1.
By (8) and (9), we obtain wB(n) = wB(n + k), for all n ∈ Z. This proves the
Theorem 4.

Proof of the Theorem 5. As before, we may assume without loss of generality
that min(A) = 0 and max(A) = d, where d = diam(A). Moreover, let β ∈ B. We
define the mutiset B′ = B − β = {b− β | b ∈ B} with wB′(b− β) = wB(b), for all
b ∈ B. Then, 0 ∈ B′ and B′ is eventually periodic with eventual period k if and
only if B is eventually periodic with eventual period k. If n ∈ Z, we have

RA,B′(n) =
∑

n=a+b′

a∈A,b′=b−β∈B′

wA(a)w
′
B(b

′)

=
∑

n+β=a+b
a∈A,b∈B

wA(a)wB(b) = RA,B(n+ β).

It follows that the representation function RA,B′ is eventually periodic with
eventual period m if and only if RA,B is eventually periodic with eventual period
m. Thus, we may assume without loss of generality that 0 ∈ B.

Let

B+ = {b ∈ B | b > 0}.

Note that if b ∈ B+, we have that a+ b > 0, for all a ∈ A. On the other hand, if
b ∈ B \B+, we have a+ b < diam(A), for all a ∈ A. Hence, RA,B+(n) = RA,B(n),
for all n > diam(A) and RA,B+ is eventually periodic with eventual period m.

We consider the generating functions

λ(x) =
∑
a∈A

wA(a)x
a =

∞∑
n=0

wA(n)x
n

and

γ(x) =
∑
b∈B+

wB(b)x
b =

∞∑
n=0

wB(n)x
n.
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Let n0 ∈ Z>0 be such that RA,B+(n +m) = RA,B+(n), for all integers n > n0.
Let i0 = ⌊n0

m ⌋+ 1. Define rj = RA,B+(mi0 + j) for j = 0, 1, . . . ,m− 1. We obtain

λ(x)γ(x) =
∞∑
n=0

RA,B+(n)xn =

mi0−1∑
n=0

RA,B+(n)xn +
∞∑

n=mi0

RA,B+(n)xn

=

mi0−1∑
n=0

RA,B+(n)xn +

m−1∑
j=0

∞∑
i=i0

RA,B+(mi+ j)xmi+j

=

mi0−1∑
n=0

RA,B+(n)xn +
m−1∑
j=0

∞∑
i=i0

rjx
mi+j

=

mi0−1∑
n=0

RA,B+(n)xn − 1

xm − 1

m−1∑
j=0

rjx
mi0+j . (10)

We define the polynomials

p1(x) =

mi0−1∑
n=0

RA,B+(n)xn

and

p2(x) =
m−1∑
j=0

rjx
mi0+j .

Then, using (10), we obtain

λ(x)γ(x) = p1(x)−
1

xm − 1
p2(x)

=
(xm − 1)p1(x)− p2(x)

xm − 1
,

and

γ(x) =
(xm − 1)p1(x)− p2(x)

(xm − 1)λ(x)
=
p(x)

q(x)
,

where p(x) and q(x) are relatively prime polynomials in Z[x] and q(x)|(xm−1)λ(x).
The multiset B+ is eventually periodic, hence there exists n1 ∈ Z>0 and s ∈ Z>0
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such that wB(n+ s) = wB(n), for all n > n1. Hence,

(xs − 1)γ(x) = (xs − 1)
∞∑
n=0

wB(n)x
n =

∞∑
n=0

wB(n)x
n+s −

∞∑
n=0

wB(n)x
n

=

n1−1∑
n=0

wB(n)x
n+s +

∞∑
n=n1

wB(n)x
n+s −

∞∑
n=0

wB(n)x
n

=

n1−1∑
n=0

wB(n)x
n+s +

∞∑
n=n1

wB(n+ s)xn+s −
∞∑
n=0

wB(n)x
n

=

n1−1∑
n=0

wB(n)x
n+s +

∞∑
n=n1+s

wB(n)x
n −

∞∑
n=0

wB(n)x
n

=

n1−1∑
n=0

wB(n)x
n+s −

n1+s∑
n=0

wB(n)x
n,

and (xs − 1)γ(x) is a polynomial. Then

(xs − 1)γ(x) =
(xs − 1)p(x)

q(x)

is a polynomial, whence q(x)|(xs − 1)p(x). Since gcd(p(x), q(x)) = 1, we con-
clude that there exists an integer l such that q(x)|l(xs − 1). We have ∥λ(x)∥ =∑
a∈A wA(a) and λ(1) =

∑
a∈A wA(a) ̸= 0. The conditions of Theorem 12 are

fulfilled. Then there exists a positive integer k such that

q(x)|l′(xk − 1) for some integer l′ and log(k) 6 n
1
3+ϵ.

It remains to prove that k is an eventual period of B+. We have that
l′(xk − 1)γ(x) ∈ Z[x]. This implies that (xk − 1)γ(x) is a polynomial, so

(xk − 1)γ(x) = (xk − 1)

∞∑
n=0

wB(n)x
n =

∞∑
n=0

wB(n)x
n+k −

∞∑
n=0

wB(n)x
n

=

∞∑
n=0

wB(n)x
n+k −

∞∑
n=n1+k

wB(n)x
n −

n1+k−1∑
n=0

wB(n)x
n

=
∞∑
n=0

wB(n)x
n+k −

∞∑
n=n1

wB(n+ k)xn+k −
n1+k−1∑
n=0

wB(n)x
n

=

∞∑
n=n1

(wB(n)− wB(n+ k))xn+k

+

n1−1∑
n=0

wB(n)x
n+k −

n1+k−1∑
n=0

wB(n)x
n

is a polynomial. Thus, there exist n2 ∈ Z>0 such that wB(n) = wB(n+ k), for all
n > n2. This implies that k is an eventual period of B+. �
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