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BOUNDS AND CONJECTURES FOR ADDITIVE DIVISOR SUMS

Nathan Ng, Mark Thom

In memory of Kevin Henriot

Abstract: Additive divisor sums play a prominent role in the theory of the moments of the
Riemann zeta function. There is a long history of determining sharp asymptotic formula for
the shifted convolution sum of the ordinary divisor function. In recent years, it has emerged
that a sharp asymptotic formula for the shifted convolution sum of the triple divisor function
would be useful in evaluating the sixth moment of the Riemann zeta function. In this article, we
study Dk,`(x, h) =

∑
n6x τk(n)τ`(n+h) where τk and τ` are the k-th and `-th divisor functions.

The main result is a lower bound of the correct order of magnitude for Dk,`(x, h), uniform in
h. In addition, the conjectural asymptotic formula for Dk,`(x, h) is studied. Using an argument
of Ivić [25], [26] and Conrey-Gonek [8] the leading term in the conjectural asymptotic formula
is simplified. In addition, a probabilistic method is presented which gives the same leading
term. Finally, we show that these two methods give the same answer as in a recent probabilistic
argument of Terry Tao [41].

Keywords: divisor functions, additive divisor sums.

1. Introduction and main theorem

Many important problems in analytic number theory concern sums of the form∑
n6x

f(n)g(n+ h) (1.1)

where h ∈ N and f and g are arithmetic functions. For instance, the twin prime
conjecture would follow from an asymptotic evaluation of (1.1) with f = g = Λ,
the von Mangoldt function. If f = g = λ, the Liouville function, this is a special
case of the sum that occurs in Chowla’s conjecture. In this article, we focus on
(1.1) with f = τk and g = τ`, the k-th and `-th divisor functions where k, ` ∈ N.
For n ∈ N, the k-th divisor function is defined by

τk(n) = #{(n1, . . . , nk) ∈ Nk | n1 · · ·nk = n}.

2010 Mathematics Subject Classification: primary: 11M41; secondary: 11N37, 11N56,
11N99, 11S40



98 Nathan Ng, Mark Thom

Equivalently, τk(n) is the coefficient of n−s in the Dirichlet series of ζ(s)k, where
ζ(s) is the Riemann zeta function. Our main focus is the correlation sum

Dk,`(x, h) :=
∑
n6x

τk(n)τ`(n+ h) with h ∈ N. (1.2)

For k = `, we shall use the abbreviated notation

Dk(x, h) := Dk,k(x, h) :=
∑
n6x

τk(n)τk(n+ h) with h ∈ N. (1.3)

This last sum has been extensively studied. For k = 1, this sum is trivial. For
k = 2, there is a rich theory connecting this sum to the spectral theory of au-
tomorphic forms. However, for k > 2, this sum is mysterious and there are few
results. Nevertheless, there is the following conjecture:

Conjecture 1.1 (Additive Divisor Conjecture: simplified version). Let
ε > 0 and k, ` > 2. For 1 6 h 6 x1−ε, we have

Dk,`(x, h) ∼ ck,`(h)

(k − 1)!(`− 1)!
x(log x)k+`−2 (1.4)

as x→∞, for a certain real valued constant ck,`(h) given by (1.5) and (1.8) below.

In this article we provide several expressions for ck,`(h). The value for ck,`(h)
can be computed using the work of Ivić [25] and of Conrey-Gonek [8]. Both of
these papers use the δ-method (circle method) to give a formula for Dk(x, h).
In addition, we present a heuristic probabilistic method in section 4 to give an
alternate calculation of ck,`(h). These two methods lead to

ck,`(h) = Ck,`fk,`(h), (1.5)

where
Ck,` :=

∏
p

((
1− 1

p

)k−1

+
(

1− 1

p

)`−1

−
(

1− 1

p

)k+`−2)
, (1.6)

and fk,`(·) is a multiplicative function defined on prime powers pα by

fk,`(p
α) :=

1 +
∑α
i=1(τk(pi)τ`(p

i)− τk(pi−1)τ`(p
i−1))p−i

+
∑∞
i=α+1(τk(pα)τ`−1(pi) + τ`(p

α)τk−1(pi))p−i

(1− 1
p )−(k−1) + (1− 1

p )−(`−1) − 1
. (1.7)

We also provide several other expressions for fk,`(pα) and hence ck,`(h) (see (1.27),
(1.28), and (4.6) below). Another expression for ck,`(h) has been given by Terry
Tao. In a blogpost of Aug. 31, 2016, Tao provided a different heuristic probabilistic
argument that gives

ck,`(h) =
∏
p

Sk,`,h(p) (1.8)
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where

Sk,`,h(p) =
(

1− 1

p

)k+`−2 ∑
j>0:pj |h

1

pj
Pk,`,p(j), (1.9)

Pk,`,p(j) =

k∑
k′=2

∑̀
`′=2

(
k − k′ + j − 1

k − k′

)(
`− `′ + j − 1

`− `′

)
×
(( p

p− 1

)k′−1

+
( p

p− 1

)`′−1

− 1
)

(1.10)

and the conventions
(−1

0

)
= 1 and

(
m−1
m

)
= 0 for m > 1 are used here. This

expression can be further simplified to

Pk,`,p(j) =

(
k + j − 2

j

) `−2∑
i=0

(
i+ j − 1

i

)( p

p− 1

)`−i−1

+

(
`+ j − 2

j

) k−2∑
i=0

(
i+ j − 1

i

)( p

p− 1

)k−i−1

−
(
k + j − 2

j

)(
`+ j − 2

j

)
.

(1.11)

Although it is not obvious, we shall show in section 4 that the expressions for
ck,`(h) given by (1.5) and (1.8) are equal. It is not clear what is the simplest or
most natural form for ck,`(h). Currently, (1.8) with (1.9) and (1.11) appears to be
the simplest known expression for ck,`(h).

The above conjecture simplifies conjectures of Ivić [25] and Conrey-Gonek [8],
though in the above formulation we allow h to be as large as x1−ε instead of x

1
2 .

The case h = 1 reduces to∑
n6x

τk(n)τ`(n+ 1) ∼ Ck,`
(k − 1)!(`− 1)!

x(log x)k+`−2.

The conjectures of [25] and [8] may be written in the form

Dk,`(x, h) = x
(
α0(h)(log x)k+`−2 +

k+`−2∑
i=1

αi(h)(log x)k+`−2−i
)

+ o(x) (1.12)

for certain coefficients αi(h) where h is allowed to vary with x. Ivić [25] gave
formulae for the αi(h) in terms of certain singular series. On the other hand,
Conrey and Gonek gave a formula for the derivative of the above main term in
terms of a complicated double complex integral. This will be discussed in further
detail in section two where we show that α0(h) = Ck,`fk,`(h)/(k − 1)!(`− 1)!.
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The main result in this article is a uniform lower bound for Dk,`(x, h).

Theorem 1.2. For k, ` > 3, there exists Bk,` > 0 such that for

h 6 exp(Bk,`(log x log log x)
min(k,`)−1

min(k,`)−1.99 ),

we have
1

2k+`−2

Ck,`fk,`(h)

(k − 1)!(`− 1)!
x(log x)k+`−2

(
1 +Ok,`

( log log h

log x

))
6 Dk,`(x, h)

as x→∞.

Recently, Kevin Henriot informed us that S. Daniel [10] showed that

Dk,`(x, h)�k,`

∏
p|h

(
1 +

(k − 1)(`− 1)

p

)
x(log x)k+`−2, for h 6 xC , (1.13)

for any C > 0. Note that since

fk,`(p
α) = 1 +

(k − 1)(`− 1)

p
+Ok,`(p

−2) (1.14)

(1.13) implies

Dk,`(x, h)�k,` fk,`(h)x(log x)k+`−2, for h 6 xC , (1.15)

for any C > 0. Unfortunately, this result was never published. However, Henriot
has shown us a proof [22] based on [20] and [21]. In [20] he establishes bounds for∑

x<n6x+y

τk1(|Q1(n)|)τk2(|Q2(n)|) · · · τkJ (|QJ(n)|) (1.16)

where Qj are polynomials with integer coefficients. More generally he bounds∑
x<n6x+y

f1(|Q1(n)|)f2(|Q2(n)|) · · · fJ(|QJ(n)|) (1.17)

where the fi belong to a general class of multiplicative functions. Such expressions
were originally considered by Nair and Tenenbaum [35]. However, their bounds for
(1.17) were not uniform in the coefficients of the Qj . This problem was addressed
by Daniel [10] and Henriot [20]. Recently Klurman [28] has obtained some inter-
esting results for (1.17) in the case that the images of the multiplicative functions
fi lie in the unit disc.

Theorem 1.2 and (1.15) lead us to propose the following problem.

Problem. Let k, ` > 3. Determine the best explicit constants c1 = c1(k, `) and
c2 = c2(k, `) such that

c1 6
Dk,`(x, h)

ck,`(h)
(k−1)!(`−1)!x(log x)2k−2

6 c2,

uniformly for h 6 x1−ε, as x→∞.
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Theorem 1 yields c1 = 1
2k+`−2 − ε and (1.15) yields c2 = Ok,`(1). Henriot has

suggested that in the case k = ` the proof of (1.13) demonstrates that c2 is doubly
or triply exponential in k.

To finish this section, we give some properties of divisor functions, list our
conventions and notation, and provide an outline of the article.

1.1. Properties of divisor functions

This article makes extensive use of divisor functions and related arithmetic func-
tions. Recall that for k ∈ N, the k-th divisor function satisfies

∞∑
j=0

τk(pj)Xj = (1−X)−k (1.18)

for p prime and |X| < 1. It follows that for p prime and j > 0,

τk(pj) =

(
k + j − 1

j

)
. (1.19)

The divisor functions satisfy the relation

τk−1(pj) = τk(pj)− τk(pj−1) for p prime and k, j > 1. (1.20)

We shall also encounter a multiplicative function σk(·, s) : N → C, where k ∈ N,
s ∈ C. For n ∈ N, it is defined by

σk(n, s) =
( ∞∑
a=1

τk(na)

as

)
ζ(s)−k. (1.21)

By multiplicativity, it follows that

σk(pj , s) =

∑∞
i=0

τk(pj+i)
pis∑∞

i=0
τk(pi)
pis

= (1− p−s)k
∞∑
i=0

τk(pj+i)

pis
(1.22)

for j > 1, and in particular,

σk(p, s)

ps
= 1− (1− p−s)k. (1.23)

Moreover, it was proven in [36] that

σk(pj , s) = τk(pj)Hk,j(p
−s) (1.24)

where
Hk,j(x) := jx−j

∫ x

0

tj−1(1− t)k−1 dt 1 (1.25)

1 In [36], we used the notation Hj,k(x) instead of Hk,j(x).
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for j, k ∈ N. Repeated integration by parts of (1.25) leads to the representation

Hk,j(x) :=

k−1∑
i=0

(
k−1
i

)(
j+i
j

) (1− x)k−1−ixi where k ∈ N, j ∈ Z>0. (1.26)

Note that Hk,j(x) is a degree k − 1 polynomial and Hk,j(0) = 1. Later in the
article, we show that

fk,`(p
α) =

∑α
j=0

(
σk−1(pj ,1)σ`−1(pj ,1)

pj − σk−1(pj+1,1)σ`−1(pj+1,1)
pj+2

)
(1− 1

p )k−1 + (1− 1
p )`−1 − (1− 1

p )k+`−2
. (1.27)

By (1.26) we also have

fk,`(p
α) =

∑α
j=0

(
τk−1(pj)τ`−1(pj)Hk−1,j(p

−1)H`−1,j(p
−1)

pj

− τk−1(pj+1)τ`−1(pj+1)Hk−1,j+1(p−1)H`−1,j+1(p−1)
pj+2

)
(1− 1

p )k−1 + (1− 1
p )`−1 − (1− 1

p )k+`−2
. (1.28)

At several points in this article we make use of these representations.

1.2. Conventions and notation

In this article we shall use the convention that ε denotes an arbitrarily small
positive constant which may vary from line to line. Given two functions f(x) and
g(x), we shall interchangeably use the notation f(x) = O(g(x)), f(x)� g(x), and
g(x)� f(x) to mean there existsM > 0 such that |f(x)| 6M |g(x)| for sufficiently
large x. If we write f(x) = Ok,`(g(x)), f(x) �k,` g(x), or f(x) �k,` g(x), then
we mean that the corresponding constants depend on k and `. The letter p will
always be used to denote a prime number. For a complex valued, differentiable
function F : C2 → C and i1, i2 ∈ Z>0 we write

F (i1,i2)(s1, s2) :=
∂i1

∂si11

∂i2

∂si22
F (s1, s2) (1.29)

where ∂i

∂si denotes the i-th partial derivative with respect to s.
Given a, b ∈ Z, we let (a, b) denote the greatest common divisor of a and b and
[a, b] denotes the least common multiple of a and b.

1.3. Organization of the article

The article is organized as follows. In section 2 the conjectural asymptotic for-
mula for Dk,`(x, h) is studied based on the work of Ivić [25] and Conrey-Gonek [8].
We show that the leading term in the asymptotic formula for Dk,`(x, h) is

ck,`(h)
(k−1)!(`−1)!x(log x)k+`−2. In section 3, the lower bound in Theorem 1.2 is proven.
In section 4, a simple probabilistic method is used to rederive the main term of
Dk,`(x, h) which agrees with the calculation in section 2. In addition, we show
that our constant for ck,`(h) (1.5) agrees with Tao’s (1.8). Finally, we discuss
open problems related to additive divisor sums and avenues for future research.
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2. A brief history of additive divisor sums and a conjectural formula
for Dk,`(x, h)

2.1. A history of additive divisor sums

Questions concerning sums of the form Dk,`(x, h) are called additive divisor prob-
lems. These functions are of interest due to the well-known connection between
Dk(x, h) and the 2k-th moments of the Riemann zeta function, defined by

Ik(T ) =

∫ T

0

|ζ( 1
2 + it)|2kdt for k > 0.

In 1926, Ingham [23] discovered that D2(x, h) is intimately related to the fourth
moment, I2(T ). He succeeded in proving that

I2(T ) ∼ T

2π2
(log T )4

and an important part of his argument made use of the inequality

D2(x, h)� σ−1(h)x(log x)2

for h 6 x, where σ−1(h) =
∑
d|h d

−1. In [24] he improved this to

D2(x, h) ∼ 6

π2
σ−1(h)x log2 x. (2.1)

In 1931, Estermann [16] proved an estimate of the shape

D2(x, h) = x
( 6

π2
σ−1(h) log2 x+ α1(h) log x+ α2(h)

)
+O(xθ+ε) (2.2)

with θ = 11
12 and α1(h) and α2(h) are certain arithmetic functions. Estermann’s

work relates D2(x, h) to a formula involving special exponential sums known as
Kloosterman sums. For q a natural number and u, v integers, the Kloosterman
sum S(u, v; q) is defined by

S(u, v; q) :=

q∑
a=1

(a,q)=1
aā≡1(mod q)

e
(ua+ vā

q

)
.

These sums exhibit considerable cancellation and they arise in many contexts in
analytic number theory. Estermann derived the non-trivial bound S(u, v; q) �
q

3
4 +ε(u, q)

1
4 and this led to the error term in (2.2). A famous result due to Weil is

the bound: |S(u, v; q)| 6 τ2(q)(q, u, v)1/2q1/2τ(q). Much later, Heath-Brown [19]
made use of Weil’s bound to obtain (2.2) with θ = 5

6 . From this he deduced that
there exists a degree four polynomial Q4 such that

I2(T ) = TQ4(log T ) +O(TΘ+ε), (2.3)
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where Θ = 5
6 is valid. The next advance was due to Deshouillers and Iwaniec [12],

who proved that (2.2) is valid with θ = 2
3 , in the case h = 1. In their work,

they related D2(x; 1) to averages of Kloosterman sums and then made use of
Kuznetsov’s formula. This is a formula which relates sums of Kloosterman sums to
the coefficients of Maass wave forms and holomorphic modular forms. Motohashi
extended this method and obtained (2.2) with θ = 2

3 , uniformly for h 6 x
20
27 . He

proved

D2(x, h) =
6

π2

∫ x
h

0

q2(t, h) dt+ E2(x, h) (2.4)

where

q2(t, h) = σ(h) log(t) log(t+ 1)

+ (σ(h)(2γ − ζ ′

ζ
(2)− log(h)) + 2σ(1)(h)) log(t(t+ 1))

+ σ(h)
(

(2γ − 2
ζ ′

ζ
(2)− log h)2 − 4

(ζ ′
ζ

)′
(2)
)

+ 4σ(1)(h)(2γ − 2
ζ ′

ζ
(2)− log h) + 4σ(2)(h),

(2.5)

σ(j)(h) :=
∑
d|h d(log d)j , and γ is Euler’s constant and

E2(x, h) = O((x(x+ h))
1
3 +ε + h

9
40 (x(x+ h))

1
4 +ε + h

7
10xε). (2.6)

Related work of Motohashi [34] establishes that Θ = 2
3 is valid in (2.3). Meur-

man [32] showed that

E2(x, h) = O((x(x+ h))
1
3 +ε + (x(x+ h))

1
4xεmin(x

1
4 , h

1
8 +α

2 )), (2.7)

where α is a positive constant which satisfies

|ρj(n)| 6 nα|ρj(1)| (2.8)

where {ρj(n)}∞n=1 are the Fourier coefficients of an orthonormal basis of the space
of non-holomorphic cusp forms for the full modular group.

There are also results forDk,`(x, h). Linnik developed highly original techniques
using ideas from additive number theory and probability theory, most notably the
dispersion method [29] to deal withDk,2(x, h) with k > 2. He proved an asymptotic
formula for Dk,2(x, h), obtaining the leading term with an error term. The error
term was improved by Motohashi [33], who used large sieve methods. Recently,
Topacogullari [44] established a main term with a power savings in the case of
D3,2(x, h). This filled in details of results, stated without proof, by Deshouillers [11]
and Bykovskĭi and Vinogradov [5]. Furthermore, Drappeau [13] has recently pro-
vided a main term with a power savings in the error term for Dk,2(x, h) with
k > 3 and this too has recently been improved by Topacogullari [45]. Despite
these impressive results, no asymptotic formula for Dk,`(x, h) has been proven in
the case both k and ` are greater than two. We now present a conjectural formula
for Dk,`(x, h).
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2.2. A conjectural formula for Dk,`(x, h)

We follow the work of Ivić and Conrey and Gonek to work out the leading term of
the conjectured main term forDk,`(x, h). We shall be concerned with an expression
of the form Dk,`(x, h) = mk,`(x, h) + Ek,`(x, h) where mk,`(x, h) is the “main
term” and Ek,`(x, h) is the “error term.” In [25], [26], and [8], mk,`(x, h) was
studied via Duke, Friedlander, and Iwaniec’s [15] version of the circle method,
known as the δ-method. One of the key ideas of the circle method is to detect
an additive condition via additive characters. Consequently, it is important to
have an asymptotic formula for the exponential sums

∑
n6x τk(n)e(anq ) where

(a, q) = 1 and e(θ) := e2πiθ. Naturally, one must understand the Dirichlet series∑∞
n=1 τk(n)e(anq )n−s. Ivić [26] obtained a meromorphic continuation of this series

by decomposing it in terms of Hurwitz zeta functions. On the other hand, Conrey-
Gonek [8] obtained a meromorphic continuation by expressing e(anq ) in terms of
multiplicative Dirichlet characters. They showed that∑

n6x

τk(n)e
(an
q

)
∼ 1

q

∫ x

0

Pk(t, q)dt (2.9)

where Pk(t, q) is defined by

Pk(t, q) =
1

2πi

∫
C

ζ(s+ 1)kGk(q, s+ 1)
(x
q

)s
ds, (2.10)

C = {z ∈ C | |z| = η} for 0 < η < 1
10 , and for k ∈ N, s ∈ C, Gk(·, s) : N → C is

the multiplicative function defined by 2

Gk(n, s) =
∑
a|n

µ(a)as

φ(a)

∑
b|a

µ(b)

bs
σk

(nb
a
, s
)
. (2.11)

Using (2.9), the δ-method leads to

mk,`(x, h) =

∫ x

0

∞∑
q=1

cq(h)

q2
Pk(t, q)P`(t+ h, q)dt (2.12)

where cq(h) =
∑q

a=1
(a,q)=1

e(anq ) is the Ramanujan sum. From the identity log(t+h) =

log t+O(h/t) (see [25]), it follows that

mk,`(x, h) =

∫ x

0

∞∑
q=1

cq(h)

q2
Pk(t, q)P`(t, q)dt+O(htε). (2.13)

We now simplify the integrands in (2.12) and (2.13). We denote them as

qk,`(t, h) :=

∞∑
q=1

cq(h)

q2
Pk(t, q)P`(t+ h, q) (2.14)

2 Conrey and Gonek use the notation Gk(s, n), whereas we use Gk(n, s).
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and

rk,`(t, h) :=

∞∑
q=1

cq(h)

q2
Pk(t, q)P`(t, q). (2.15)

Observe that by (2.12) and (2.13)∫ x

0

qk,`(t, h)dt =

∫ x

0

rk,`(t, h) +O(htε). (2.16)

We first calculate qk,`(t, h). Applying (2.10) twice, it follows that

qk,`(t, h) =
1

(2πi)2

∫
C2

∫
C1

ζk(s1+1)ζ`(s2+1)Dk,`(s1, s2)ts1(t+h)s2ds1ds2, (2.17)

C1 = {s1 ∈ C | |s1| = r1}, C2 = {s2 ∈ C | |s2| = r2}, 0 < r1, r2 <
1
10 , and

Dk,`(s1, s2) =

∞∑
q=1

cq(h)Gk(q, s1 + 1)G`(q, s2 + 1)

q2+s1+s2
. (2.18)

We now apply the residue theorem to the inner integral in (2.17). For each k ∈ N,
there exist constants αj,k with j > 0 such that

ζk(s1 + 1) = s−k1 (α0,k + α1,ks1 + α2,ks
2
1 + · · · ), where α0,k = 1. (2.19)

Furthermore, since

Dk,`(s1, s2) = D(0,0)
k,` (0, s2) +D(1,0)

k,` (0, s2)s1 +
1

2!
D(2,0)
k,` (0, s2)s2

1 + · · · , (2.20)

and

ts1 = 1 + (log t)s1 +
1

2!
(log t)2s2

1 + · · · (2.21)

it follows that

1

2πi

∫
C1

ζk(s1 + 1)Dk,`(s1, s2)ts1ds1 =
∑

i1+i2+i3=k−1
i1,i2,i3>0

αi1,kD
(i2,0)
k,` (0, s2)(log t)i3

i2!i3!
.

Thus

qk,`(t, h) =
∑

i1+i2+i3=k−1
i1,i2,i3>0

αi1,k(log t)i3

i2!i3!

1

2πi

∫
C2

ζ`(s2 + 1)D(i2,0)
k,` (0, s2)(t+ h)s2ds2.

For each value of i2, a similar calculation establishes

1

2πi

∫
C2

ζ`(s2 + 1)D(i2,0)
k,` (0, s2)(t+ h)s2ds2

=
∑

j1+j2+j3=`−1
j1,j2,j3>0

αj1,`D
(i2,j2)
k,` (0, 0)(log(t+ h))j3

j2!j3!
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and hence

qk,`(t, h) =
∑

i1,i2,i3>0
i1+i2+i3=k−1

αi1,k(log t)i3

i2!i3!

∑
j1,j2,j3>0

j1+j2+j3=`−1

αj1,`D
(i2,j2)
k,` (0, 0)(log(t+ h))j3

j2!j3!
.

(2.22)
An analogous computation establishes

rk,`(t, h) =
∑

i1,i2,i3>0
i1+i2+i3=k−1

αi1,k(log t)i3

i2!i3!

∑
j1,j2,j3>0

j1+j2+j3=`−1

αj1,`D
(i2,j2)
k,` (0, 0)(log t)j3

j2!j3!
.

(2.23)
Formally, (2.23) is obtained from (2.22) by replacing each log(t + h) by log(t).
Observe that (2.23) can be further simplified. Let i = i3 + j3 and note that
0 6 i 6 k + `− 2 so that

rk,`(t, h) =

k+`−2∑
i=0

αi(h)(log x)k+`−2−i (2.24)

where α0(h) =
Dk,`(0,0)

(k−1)!(`−1)! , the term arising from (i1, i2, i3) = (0, 0, k − 1) and
(j1, j2, j3) = (0, 0, ` − 1). We now show that Dk,`(0, 0) = ck,`(h) = Ck,`fk,`(h).
This will be deduced from the following lemma. This lemma will also be used in
our proof of Theorem 1.2.

Lemma 2.1. Let f1, f2 be nonzero multiplicative functions, τ1, τ2 be real numbers,
and h a natural number such that

S(τ1, τ2;h) :=
∑
g|h

1

gτ1

∞∑
d=1

µ(d)f1(gd)f2(gd)

dτ2
(2.25)

is absolutely convergent.
(i) We have

S(τ1, τ2;h) :=
∑
g|h

1

gτ1

∏
(p,g)=1

(
1− f1(p)f2(p)

pτ2

)
×
∏
pα||g

(
f1(pα)f2(pα)− f1(pα+1)f2(pα+1)

pτ2

)
.

(2.26)

(ii) If for every prime p, f1(p)f2(p) 6= pτ2 , then

S(τ1, τ2;h) =
∏
p

(
1− f1(p)f2(p)

pτ2

)
×
∏
pα||h

α∑
j=0

(f1(pj)f2(pj)

pτ1j
− f1(pj+1)f2(pj+1)

pτ1j+τ2

)(
1− f1(p)f2(p)

pτ2

)−1

.

(2.27)
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The proof of this lemma is deferred to the end of the section. Using this lemma,
we shall demonstrate

Dk,`(0, 0) = ck,`(h) = Ck,`fk,`(h). (2.28)

Inserting the identity cq(h) =
∑
d|h,d|q dµ(q/d) in (2.18), exchanging summation,

and making the variable change q → qd leads to

Dk,`(s1, s2) =
∑
d|h

1

d1+s1+s2

∞∑
q=1

µ(q)Gk(qd, s1 + 1)G`(qd, s2 + 1)

q2+s1+s2
.

This is now in the form of the previous lemma. We set s1 = s2 = 0, f1(n) =
Gk(n, 1), f2(n) = G`(n, 1), τ1 = 1, and τ2 = 2, to obtain

Dk,`(0, 0) =
∏
p

E(p, 0)
∏
pα||h

∑α
j=0 E(p, j)

E(p, 0)
, (2.29)

where

E(p, j) :=
Gk(pj , 1)G`(p

j , 1)

pj
− Gk(pj+1, 1)G`(p

j+1, 1)

pj+2
. (2.30)

We now show that Gk(pj , 1) = σk−1(pj , 1). Observe that by [8, p. 592]

Gk(pj , 1) =
(

1− 1

p

)−1

(σk(pj , 1)− σk(pj−1, 1)). (2.31)

Thus by (1.22) and (1.20),

Gk(pj , 1) =
(

1− 1

p

)−1(
1− 1

p

)k ∞∑
i=0

τk(pj+i)− τk(pj−1+i)

pis

=
(

1− 1

p

)k−1 ∞∑
i=0

τk−1(pj+i)

pis
= σk−1(pj , 1),

by definition. Hence,

E(p, j) :=
σk−1(pj , 1)σ`−1(pj , 1)

pj
− σk−1(pj+1, 1)σ`−1(pj+1, 1)

pj+2
. (2.32)

Observe that

E(p, 0) = 1− σk−1(p, 1)σ`−1(p, 1)

p2
= 1− (1− (1− p−1)k−1))(1− (1− p−1)`−1))

= (1− p−1)k−1 + (1− p−1)`−1 − (1− p−1)k+`−2.

(2.33)

Thus, by (2.29), (2.32), and (2.33),

Dk,`(0, 0) = Ck,`
∏
pα||h

∑α
j=0

σk−1(pj ,1)σ`−1(pj ,1)
pj − σk−1(pj+1,1)σ`−1(pj+1,1)

pj+2

(1− p−1)k−1 + (1− p−1)`−1 − (1− p−1)k+`−2
.
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In order to show Dk,`(0, 0) = ck,`(h) it suffices to show the last product equals
fk,`(h). By (1.7) this is equivalent to showing

(
1− 1

p

)−k−`+2 α∑
j=0

(σk−1(pj , 1)σ`−1(pj , 1)Xj − σk−1(pj+1, 1)σ`−1(pj+1, 1)Xj+2)

= 1 +

α∑
i=1

(τk(pi)τ`(p
i)− τk(pi−1)τ`(p

i−1))Xi +

∞∑
i=α+1

(τk(pα)τ`−1(pi)Xi

+ τ`(p
α)τk−1(pi))Xi. (2.34)

where we have simplified notation by setting X = 1
p . We denote this identity as

Lk,`(α) = Rk,`(α). We prove this by induction on α. First, a calculation shows
that

Lk,`(1) = Rk,`(1) = k(1−X)−(`−1) + `(1−X)−(k−1)− (k− 1)(`− 1)X−k− `+ 1.
(2.35)

Assume that Lk,`(α) = Rk,`(α) for α ∈ N. We aim to show that Lk,`(α + 1) =
Rk,`(α+ 1). Observe that

Lk(α+ 1)− Lk(α) =

(
τk(pα+1)τ`(p

α+1)− τk(pα)τ`(p
α)

− τk(pα)τ`−1(pα+1)− τ`(pα)τk−1(pα+1)

)
Xα+1

+ (τk(pα+1)− τk(pα))

∞∑
i=α+2

τ`−1(pi)Xi

+ (τ`(p
α+1)− τ`(pα))

∞∑
i=α+2

τk−1(pi)Xi

=

(
τk(pα+1)τ`(p

α+1)− τk(pα)τ`(p
α)

− τk(pα)τ`−1(pα+1)− τ`(pα)τk−1(pα+1)

)
Xα+1

+ τk−1(pα+1)

∞∑
i=α+2

τ`−1(pi)Xi

+ τ`−1(pα+1)

∞∑
i=α+2

τk−1(pi)Xi.

Next notice that we can simplify the coefficient of Xα+1. Observe that

τk−1(pα+1)τ`−1(pα+1) = τk(pα+1)τ`(p
α+1)− τk(pα)τ`(p

α)

− τk(pα)τ`−1(pα+1)− τ`(pα)τk−1(pα+1).
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Rearranging, this is if and only if

τk(pα+1)τ`(p
α+1) = τk−1(pα+1)τ`−1(pα+1) + τk(pα)τ`(p

α)

+ τk(pα)τ`−1(pα+1) + τ`(p
α)τk−1(pα+1).

Using (1.19) this is(
k + α

α+ 1

)(
`+ α

α+ 1

)
=

(
k − 1 + α

α+ 1

)(
`− 1 + α

α+ 1

)
+

(
k + α− 1

α

)(
`+ α− 1

α

)
+

(
k + α− 1

α

)(
`+ α− 1

α+ 1

)
+

(
k + α− 1

α+ 1

)(
`+ α− 1

α

)
.

However, this last identity follows from two applications of Pascal’s identity. Thus

Lk(α+ 1)− Lk(α) = τk(pα+1)τ`(p
α+1)Xα+1 (2.36)

+

∞∑
i=α+2

(τk−1(pα+1)τ`−1(pi) + τ`−1(pα+1)τk−1(pi))Xi.

We now calculate Rk,`(α+ 1)−Rk,`(α). Observe that

Rk,`(α+ 1)−Rk,`(α)

=
(

1− 1

p

)−k−`+2

Xα+1

×
(
σk−1(pα+1, 1)σ`−1(pα+1, 1)− σk−1(pα+2, 1)σ`−1(pα+2, 1)

p2

)
=
(

1− 1

p

)−k−`+2

Xα+1

×
((
σk−1(pα+1, 1)− σk−1(pα+2, 1)

p

)
σ`−1(pα+1, 1)

+
σk−1(pα+2, 1)

p

(
σ`−1(pα+1, 1)

σ`−1(pα+2, 1)

p

))
.

However,

σk−1(pα+1, 1)− σk−1(pα+2, 1)

p

=
(

1− 1

p

)k−1( ∞∑
i=0

τk−1(pα+1+i)

pi
−
∞∑
i=0

τk−1(pα+2+i)

pi+1

)
=
(

1− 1

p

)k−1

τk−1(pα+1)
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and thus

Rk,`(α+ 1)−Rk,`(α)

= Xα+1
(
τk−1(pα+1)σ`−1(pα+1, 1) + τ`−1(pα+1)

σk−1(pα+2, 1)

p

)
= Xα+1

(
τk−1(pα+1)

∞∑
i=0

τ`−1(pα+i+1)

pi
+ τ`−1(pα+1)

1

p

∞∑
i=0

τ`−1(pα+2+1)

pi

)
= τk−1(pα+1)τ`−1(pα+1)Xα+1

+

∞∑
i=α+2

(τk−1(pα+1)τ`−1(pi) + τ`−1(pα+1)τk−1(pi))Xi

= Lk,`(α+ 1)− Lk,`(α),

by (2.36). Hence, by the induction hypothesis Lk,`(α + 1) = Rk,`(α + 1) as
desired. Thus we have Lk,`(α) = Rk,`(α) for all α ∈ N. Consequently, we have
proven (2.28).

In summary, we arrive at the following conjecture.

Conjecture 2.2 (Additive divisor conjecture). Let k, ` > 1 be natural num-
bers and x > 0 is large. Then there exists a positive constant θk,` ∈ [ 1

2 , 1) such
that

Dk,`(x, h) =

∫ x

0

qk,`(t, h)dt+ Ek,`(x, h), (2.37)

where qk,`(t, h) is given by (2.22) and for every ε > 0

Ek,`(x, h)� xϑk,`+ε uniformly for 1 6 h 6 x1−ε. (2.38)

Moreover, in (2.22), the coefficient of log(t) log(t + h) is Dk,`(0, 0) = Ck,`fk,`(h)
where Ck,` is given by (1.6) and fk,`(h) is the multiplicative function defined
by (1.7).

To abbreviate notation we set Ek(x, h) = Ek,k(x, h), qk(x, h) = qk,k(x, h), and
ϑk = ϑk,k.

Remarks.

1. It appears that Titchmarsh [43] was the first to conjecture the leading term in
the asymptotic formula for a weighted version of D3(x, 1), based on the circle
method. Vinogradov [46] proposed the general form of a conjectural formula
for Dk(x, h) (see equation (2) of [46]). However, few details were given and
he did not provide any formulae for the coefficients of qk(t, h). Then in the
nineties Ivić [25], [26] and Conrey-Gonek [8] provided more precise formulae
following Duke, Friedlander, and Iwaniec’s δ-method.

2. It is not clear what is the true size of the error term Ek(x, h) and various
opinions have been expressed. Conrey and Gonek [8] conjectured that ϑk = 1

2
in the case that h 6

√
x. However, Conrey and Keating [9] revised this to



112 Nathan Ng, Mark Thom

ϑk = 1
2 is valid for all h 6 x1−ε. Recent work of Farzad Aryan suggests

that ϑ2 = 1
2 is the correct value. In fact, Aryan [2] shows that a smoothed

variant of D2(x, h) has error term O(x
1
2 +εhα) where α is given by (2.8) and

conjecturally α = 0. On the other hand, Vinogradov [46] conjectured that
Ek(x, h)� x1− 1

k in the case of h fixed. Ivić [25] suggested that Vinogradov’s
bound was slightly too strong and that perhaps Ek(x, h) � x1− 1

k (log x)C
′
k

for a positive constant C ′k. In light of these diverging opinions, it would be
beneficial to have numerical data checking this conjecture.

3. Note that the conjecture is sometimes written as

Dk,`(x, h) =

∫ x

0

rk,`(t, h)dt+ Ẽk,`(x, h), (2.39)

where Ẽk,`(x, h) � xϑk,`+ε uniformly for 1 6 h 6 x1−ε. By (2.16) we may
replace qk,`(t, h) by rk,`(t, h) with an error O(x

1
2 +ε) for h 6

√
x. Since we

expect that θk,` > 1
2 , it should not matter whether the main term in (2.37)

or (2.39) is used for h 6
√
x. However, as we expect to have an asymptotic

formula for h 6 x1−ε, it is preferable to use the form (2.37).
4. In the case k = ` = 2, this conjecture agrees with Ingham’s result (2.1).

Note that 2(1 − 1
p ) − (1 − 1

p )2 = 1 − p−2 and thus C2 =
∏
p(1 − p−2) = 6

π2 .
Also, τ1(pj) = τ1(pj+1) = 1, H1,j(u) = H1,j+1(u) = 1, and by (1.7) f2(pα) =∑α

j=0( 1

pj
− 1

pj+2 )

1−p−2 =
∑α
j=0

1
pj = σ−1(pα).

5. Recently, Andrade, Bary-Soker, and Rudnick [1] proved a function field ver-
sion of the above conjecture.

6. Although Conjecture 2.2 remains open for k > 3, averaged versions have been
established. For instance, see [3] and [27]. Recently, Matomäki, Radziwiłł,
and Tao [30], [31] have established an almost all results. For instance, in
[30] they have shown that there exists Ck > 0 such that if x1−ε > H >
(log x)Ck > 2, then

Dk(2x, h)−Dk(x, h) =
(∫ 2x

x

qk(t, h) dt
)

(1 + o(1))

for all but o(H) values of |h| 6 H.

To complete this section we provide the proof of Lemma 2.1.

Proof of Lemma 2.1. For each g | h, write g =
∏
pα||g p

α. By multiplicativity
of the inner summand it follows that

S(τ1, τ2;h) :=
∑
g|h

1

gτ1

( ∏
(p,g)=1

∞∑
m=0

µ(pm)f1(pm)f2(pm)

(pm)τ2

)

×
( ∏
pα||g

∞∑
m=0

µ(pm)f1(pm+α)f2(pm+α)

(pm)τ2

)
.
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Simplifying this expression, using that µ(1) = 1, µ(p) = −1, and µ(pm) = 0 for
m > 2,

S(τ1, τ2;h) :=
∑
g|h

1

gτ1

∏
(p,g)=1

(
1− f1(p)f2(p)

pτ2

)
×
∏
pα||g

(
f1(pα)f2(pα)− f1(pα+1)f2(pα+1)

pτ2

)
.

Since f1(p)f2(p) 6= pτ2 , we multiply and divide each summand by
∏
p|g

(
1 −

f1(p)f2(p)
pτ2

)
to obtain

S(τ1, τ2;h)

:=
∑
g|h

1

gτ1

∏
p

(
1− f1(p)f2(p)

pτ2

)
×
∏
pα||g

(
f1(pα)f2(pα)− f1(pα+1)f2(pα+1)

pτ2

)(
1− f1(p)f2(p)

pτ2

)−1

(2.40)

=
∏
p

(
1− f1(p)f2(p)

pτ2

)
×
∑
g|h

1

gτ1

∏
pα||g

(
f1(pα)f2(pα)− f1(pα+1)f2(pα+1)

pτ2

)(
1− f1(p)f2(p)

pτ2

)−1

.

Let r be a multiplicative function defined on prime powers by

r(pα) =
(
f1(pα)f2(pα)− f1(pα+1)f2(pα+1)

pτ2

)(
1− f1(p)f2(p)

pτ2

)−1

.

The sum in (2.40) equals
∑
g|h r(g)g−τ1 . By multiplicativity,

∑
g|h

r(g)g−τ1 =
∏
pα||h

α∑
j=0

r(pj)p−jτ1

=
∏
pα||h

α∑
j=0

(f1(pj)f2(pj)

pτ1j
− f1(pj+1)f2(pj+1)

pτ1j+τ2

)(
1− f1(p)f2(p)

pτ2

)−1

.

Inserting this expression in (2.40) we derive (2.27). �

3. A lower bound for Dk,`(x, h)

In this section, we establish Theorem 1.2, which provides a lower bound for
Dk,`(x, h). Before proving this result, we require a proposition which gives an
asymptotic estimate for a certain divisor sum.
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Proposition 3.1. Let k, ` ∈ N and k, ` > 2.
(i) Then there exists h0 = h0(k, `) > 0 such that for h > h0,∑

a,b6X
(a,b)|h

τk(a)τ`(b)

[a, b]

=
C̃k,`gk,`(h)

k!`!
(logX)k+` +Ok,`

(∏
p|h

(1 + p−1)k`(logX)k+`−1 log log h)
)

+Ok,`

(
exp

(
(12.94m4 − 12.81m3 + 4.52m2)

(log h)1−0.99/m

log log h

) (logX)2m

X0.99/M

)
(3.1)

where m = min(k, `), M = max(k, `),

C̃k,` =
∏
p

((
1− 1

p

)k
+
(

1− 1

p

)`
−
(

1− 1

p

)k+`)
, (3.2)

and gk,` is the multiplicative function defined on prime powers by

gk,`(p
α) :=

α∑
j=0

(σk(pj , 1)σ`(p
j , 1)

pj
− σk(pj+1, 1)σ`(p

j+1, 1)

pj+2

)
×
((

1− 1

p

)k
+
(

1− 1

p

)`
−
(

1− 1

p

)k+`)−1

.

(3.3)

(ii) If 1 6 h < h0, then the same result holds as in equation (3.1) except the
second Ok,` term in this equation is replaced by Ok,`((logX)2kX−0.99/M )
where Ok,` constant is polynomial in k and `.

We have not attempted to obtain the best possible error term here. Note that
the sum in this proposition bears some resemblance to the quadratic forms that
occur in the standard Selberg sieve [40]. A similar sum is studied in [14].

With these two results in hand, we prove our main result.

Proof of Theorem 1.2. Let x > 1. For the lower bound, we make use of the
identity

τk(m) >
∑
d|m
d6
√
x

τk−1(d) for m > x. (3.4)

It follows that∑
x6n62x

τk(n)τ`(n+ h) >
∑

x6n62x

∑
a|n
a6
√
x

τk−1(a)
∑
b|n+h

b6
√
x+h

τ`−1(b)

=
∑
a6
√
x

∑
b6
√
x+h

τk−1(a)τ`−1(b)
∑

x6n62x
a|n
b|n+h

1.
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If (a, b) | h, the inner sum is x
[a,b] +O(1) and otherwise it is 0. Thus∑

x6n62x

τk(n)τ`(n+ h) >
∑
a6
√
x

∑
b6
√
x

(a,b)|h

τk−1(a)τ`−1(b)
( x

[a, b]
+O(1)

)
.

The O(1) term contributes( ∑
a6
√
x

τk−1(a)
)( ∑

a6
√
x

τ`−1(a)
)
� (
√
x(log x)k−2)(

√
x(log x)`−2)� x(log x)k+`−4

and by Proposition 3.1 with X =
√
x∑

a,b6
√
x

(a,b)|h

τk−1(a)τ`−1(b)

[a, b]
=

C̃k−1,`−1gk−1,`−1(h)

(k − 1)!(`− 1)!2k+`−2
(log x)k+`−2

+Ok

(
gk−1,`−1(h)(log x)k+`−3 log log h

+ exp
(Ck,`(log h)ϑ

log log h

) (log x)2m−2

xβ

)
(3.5)

where C̃k−1,`−1 is defined by (3.2), ϑ = 1− 0.99
m−1 , and β = 0.495

m−1 , and Ck,` is a pos-
itive constant depending on k and `. It may be checked that gk−1,`−1(h) �k,` 1
for all h ∈ N. The second error term in (3.5) is dominated by the first if and only

if xβ(log x)k+`−2m−1 � exp(Ck,` (log h)ϑ

log log h )

log log h . In other words,

exp(β log x+ (k + `− 2m− 1) log2 x)� exp
(Ck,`(log h)ϑ

log log h
− log3 h

)
. (3.6)

This inequality will hold if we impose the condition Ck,`(log h)ϑ

log log h 6 β
2 log x. This

implies that log2 h� log2 x. Therefore Ck,`(log h)ϑ 6 β
2 log x log log x. Solving for

h we find that h 6 exp(B̃k,`(log x log log x)
1
ϑ ) for some positive B̃k,`. Combining

the above, ∑
x6n62x

τk(n)τ`(n+ h) >
C̃k−1,`−1gk−1,`−1(h)

(k − 1)!(`− 1)!2k+`−2
x(log x)k+`−2

+Ok(gk−1(h)x(log x)2k−3 log log h),

(3.7)

as long as h 6 exp(B̃k,`(log x log log x)
m−1
m−1.99 ). Now split the interval [

√
x, x] into

O(log x) dyadic intervals and apply (3.7) to obtain∑
√
x6n6x

τk(n)τ`(n+ h) >
Ck,`fk,`(h)

(k − 1)!(`− 1)!2k+`−2
x(log x)k+`−2

+Ok(fk,`(h)x(log x)2k−3 log log h)

(3.8)
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valid for h 6 exp(Bk,`(log x log log x)
m−1
m−1.99 ) for another positive constant Bk,`,

where Ck,` := C̃k−1,`−1 and fk,`(h) := gk−1,`−1(h). Since τk and τ` are positive
functions, we establish the theorem. �

Remark. The above argument in the case k = 2 yields an asymptotic formula for
D2(x, h). This is essentially the argument Ingham used in [23] and [24] to obtain
first an upper bound and then an asymptotic for D2(x, h).

We have reduced the proof of Theorem 1.2 to a verification of Proposition 3.1.
Not surprisingly, we must understand the double Dirichlet series

A(s1, s2) =
∑
a,b>1
(a,b)|h

τk(a)τ`(b)

[a, b]as1bs2
.

We shall show that A(s1, s2) = ζ(s1 + 1)kζ(s2 + 1)`B(s1, s2) where

B(s1, s2) =
∑
g|h

1

gs1+s2+1

∞∑
d=1

µ(d)σk(gd, s1 + 1)σ`(gd, s2 + 1)

ds1+s2+2
(3.9)

and we recall that σk is the multiplicative function defined by

σk(n, s) =
( ∞∑
a=1

τk(na)

as

)
ζ(s)−k.

(Some properties of σk are listed in subsection 1.1.) We require the following
bounds on B(s1, s2).

Lemma 3.2. For z ∈ C and h ∈ N, set

Θ(z, h) =
∏
p|h

(1 + p−z)k`. (3.10)

(i) Let σ1 = <(s1) and σ2 = <(s2). Then

|B(s1, s2)| � Θ(σ1+σ2+1, h) for σ1, σ2 > −0.99, σ1+σ2 > −0.99. (3.11)

(ii) We have
B(0, 0) = C̃k,`gk,`(h). (3.12)

(iii)
B(i1,i2)(0, 0)�k,` Θ(1, h)(log log h)i1+i2 . (3.13)

As the proof of this lemma is long, we shall defer it to the end of the section.
We also require a bound for a certain zeta integral.

Lemma 3.3. Let 0 < ε < 1, r ∈ N, s ∈ C with − 1
r 6 <(s) < 0, then∫ ∞

−∞
min

( 1

|s|
,

ε−1

|s(s+ 1)|

)
|ζ(s+ 1)|rdt�r ε

−1 where s = σ + it. (3.14)
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Proof of Lemma 3.3. Using the first bound, we find the contribution from
|t| 6 1 to the integral is O(1). We now treat the range |t| > 1. It is convenient to
set I(τ, t) =

∫ t
0
|ζ(τ + iu)|rdu. It is well known that for every ε > 0,

I(τ, t)� t1+ε for τ > 1− 1/r. (3.15)

This follows from [42, Theorems 7.5,7.7]. Note that in the case of Theorem 7.7
of [42], the bound I(τ, t) � t for τ > 1 − 1/r is stated, however a minor modifi-
cation of the proof yields (3.15). Since the integrand is even with respect to t the
remaining range is

2ε−1

∫ ∞
1

|s(s+ 1)|−1|ζ(s+ 1)|rdt� ε−1

∫ ∞
1

|ζ(σ + 1 + it)|rt−2dt

� ε−1
(
− I(σ + 1, 1) + 2

∫ ∞
1

I(σ + 1, t)t−3dt
)

� ε−1
(

1 +

∫ ∞
1

t−2+εdt
)
� ε−1

(3.16)

by an integration by parts and (3.15). �

The next lemma is used to bound Θ(z, h) when <(z) < 1.

Lemma 3.4. Let κ ∈ [0.5, 1). There exists xκ > 0 such that if x > xκ, then∑
p6x

p−κ 6
( 12.68κ

(1− κ)2
+ 3.17

)x1−κ

log x
. (3.17)

Proof. By Theorem 1 of [39] it follows that

π(x) 6
3.17x

log x
for x > 2. (3.18)

By partial summation∑
26p6x

p−κ =
π(t)

tκ

∣∣∣∣x
2

+ κ

∫ x

2

π(t)

tκ+1
dt 6

π(x)

xκ
+ κ

∫ x

2

π(t)

tκ+1
dt

6 3.17
(x1−κ

log x
+ κ

∫ x

2

1

tκ log t
dt
)
,

(3.19)

by (3.18). We now bound the integral. Let y ∈ (2, x) and thus∫ x

2

1

tκ log t
dt =

∫ y

2

1

tκ log t
dt+

∫ x

y

1

tκ log t
dt

6
y − 2

2κ log 2
+

1

log y

∫ x

y

t−κdt

6
y√

2 log 2
+

x1−κ

(1− κ) log y
.
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For x sufficiently large, there exists y ∈ (2, x) such that

y√
2 log 2

=
x1−κ

(1− κ) log y
. (3.20)

Moreover, (3.20) implies that log y > 1−κ
2 log x. Thus for x�κ 1, we have

∑
26p6x

p−κ 6 3.17
( 4κ

(1− κ)2
+ 1
)x1−κ

log x

and we obtain (3.17). �

With these lemmas in hand, we now establish Proposition 3.1.

Proof of Proposition 3.1. Without less of generality, we assume that k 6 `.
Note that if k > `, then we may just swap k and `. We shall give the proof in the
case h > 2. At the end of the proof we will discuss the modifications required in
the simpler case h = 1. A standard approach would be to apply Perron’s formula
twice. Instead, we find it simpler to smooth the truncated sum. To simplify the
evaluation of the previous sum, we insert smoothing factors. Let η be positive
and let ε ∈ (0, 1) be a small positive number. Let φ = φη,ε(t) denote a smooth,
non-negative function such that

φη,ε(t) =

{
1 if t ∈ [0, η],

0 if t ∈ [η + ε,∞).
(3.21)

Observe that the support of φ is contained in [0, η + ε]. We also require the
derivatives to satisfy

φ(j)
η,ε(t)� ε−j . (3.22)

Later, we shall choose the parameter η to be either 1− ε or 1.
We shall evaluate sums of the form

I (φ) =
∑
a,b∈N
(a,b)|h

τk(a)τ`(b)

[a, b]
φ
( a
X

)
φ
( b
X

)
.

where φ(t) = φη,ε(t). We define the Mellin transform

Φ(s) =

∫ ∞
0

φ(t)ts−1dt. (3.23)

This is absolutely convergent for <(s) > 0. By Mellin inversion, we have

φ(t) =
1

2πi

∫
(c)

Φ(s)t−sds (3.24)
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where c > 0. By two applications of (3.24)

I (φ) =
1

(2πi)2

∫
(c1)

∫
(c2)

A(s1, s2)Xs1+s2Φ(s1)Φ(s2)ds1ds2 (3.25)

where c1, c2 > 0, and

A(s1, s2) =
∑
a,b>1
(a,b)|h

τk(a)τ`(b)

[a, b]as1bs2
.

The general approach to evaluate (3.25) is to move each of the contours to the
left of <(s1) = 0 and <(s2) = 0 and apply the residue theorem. The integrand in
(3.25) has poles at s1 = 0 and s2 = 0 arising from A(s1, s2) and from Φ(s1) and
Φ(s2). A main term will arise from these poles. The new contours will contribute
an error term. In order to evaluate the residue and the error terms we need to
understand the behaviour of A(s1, s2), Φ(s1), and Φ(s2) near the poles at s1 = 0
and s2 = 0 and we need to provide bounds for these functions when =(s1) and
=(s2) are large. First, we consider the behaviour of Φ(s). By an integration by
parts, it follows that

Φ(s) =
1

s
Ψ(s) (3.26)

where
Ψ(s) = −

∫ ∞
0

φ′(t)tsdt. (3.27)

This is originally valid for <(s) > 0. However, it is clear that Ψ(s) is an entire
function. Thus Φ(s) is holomorphic everywhere on C with the exception of a
simple pole at s = 0. Note that we have the Laurent expansion

Φ(s) =
Ψ(0)

s
+ Ψ′(0) +

Ψ′′(0)

2
s+ · · · . (3.28)

We shall require some bounds for the expressions Ψ(j)(0). Observe that

Ψ(j)(0) = −
∫ η+ε

η

φ′(t)(log t)jdt. (3.29)

Therefore

Ψ(0) =

∫ η+ε

η

φ′(t)dt = φ(η) = 1 (3.30)

and

|Ψ(j)(0)| 6
∫ η+ε

η

|φ′(t)| max
η6t6η+ε

| log t|jdt� εj . (3.31)

Integrating (3.23) by parts m times, we find that

Φ(s) =
(−1)m

s(s+ 1) · · · (s+m− 1)

∫ ∞
0

φ(m)(t)ts+m−1dt,
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which is valid for all s ∈ C \ {0}. Note that for m > 2 the integrand has simple
zeros at s = −1, . . . ,−(m− 1). Thus for m > 1 and s ∈ C \ {0,−1, . . . ,−(m− 1)},

|Φ(s)| 6 1

|s(s+ 1) · · · (s+m− 1)|

∫ η+ε

η

|φ(m)(t)|tσ+m−1dt

�m
ε1−m(η + ε)σ+m−1

|s(s+ 1) · · · (s+m− 1)|
.

(3.32)

Next, we simplify the Dirichlet series A(s1, s2). We let g = (a, b) and make the
variable change a = gc, b = gd with (c, d) = 1, and group terms according to g | h

A(s1, s2) =
∑
g|h

∑
a,b>1

(a,b)=g

τk(a)τ`(b)

[a, b]as1bs2
=
∑
g|h

g
∑
a,b>1

(a,b)=g

τk(a)τ`(b)

as1+1bs2+1

=
∑
g|h

1

gs1+s2+1

∑
c,d>1

(c,d)=1

τk(gc)τ`(gd)

cs1+1ds2+1
.

The condition (c, d) = 1 is detected by
∑
e|c,e|d µ(e) and thus

A(s1, s2) =
∑
g|h

1

gs1+s2+1

∞∑
e=1

µ(e)

es1+s2+2

∑
c,d>1

τk(gec)τ`(ged)

cs1+1ds2+1
. (3.33)

Inserting (1.21) in (3.33), it follows that

A(s1, s2) = B(s1, s2)ζ(s1 + 1)kζ(s2 + 1)` (3.34)

where

B(s1, s2) =
∑
g|h

1

gs1+s2+1

∞∑
e=1

µ(e)σk(ge, s1 + 1)σ`(ge, s2 + 1)

es1+s2+2
. (3.35)

By Fubini’s theorem, we have

I (φ) =
1

(2πi)2

∫
(c2)

∫
(c1)

B(s1, s2)ζ(s1 + 1)kζ(s2 + 1)`Xs1+s2Φ(s1)Φ(s2)ds1ds2.

The evaluation of multiple integrals of this type is now standard. For instance, in
[18] and [6] more complicated integrals are treated. Note that the main term shall
arise from the pole of order ` at s1 = 0 and the pole of order ` at s2 = 0 of the
integrand. For each fixed s2 with <(s2) = c2, the residue theorem implies that

1

2πi

∫
(c1)

B(s1, s2)Φ(s1)ζ(s1 + 1)kXs1ds1

= Ress1=0

(
B(s1, s2)Φ(s1)ζ(s1 + 1)kXs1

)
+ g(s2) (3.36)
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where
g(s2) =

1

2πi

∫
(c′1)

B(s1, s2)Φ(s1)ζ(s1 + 1)kXs1ds1 (3.37)

and −1 < c′1 < 0. By the Laurent expansions (3.28),

B(s1, s2) = B(0, s2) + B(1,0)(0, s2)s1 +
1

2!
B(2,0)(0, s2)s2

1 + · · · , (3.38)

ζ(s1 + 1)k = s−k1 (α0,k + α1,ks1 + α2,ks
2
1 + · · · ), where α0,k = 1, (3.39)

Xs1 = 1 + (logX)s1 + 1
2 (logX)2s2

1 + · · · (3.40)

it follows that

Ress1=0

(
B(s1, s2)Φ(s1)ζ(s1 + 1)kXs1

)
=

∑
i1+i2+i3+i4=k
i1,i2,i3,i4>0

B(i1,0)(0, s2)Ψ(i2)(0)αi3,k(logX)i4

i1!i2!i4!
. (3.41)

We now bound g(s2). We bound B(s1, s2) using Lemma 3.2 (iii) with i1 = i2 = 0
and we bound Φ(s) with (3.28) and (3.32) with m = 2 to obtain

|g(s2)| 6 Θ(c′1 + σ2 + 1, h)Xc′1

∫ ∞
−∞

min
( 1

|s1|
,

ε−1

|s1(s1 + 1)|

)
|ζ(s1 + 1)|kdt1 (3.42)

where s1 = c′1 + it1. It follows from Lemma 3.3 with c′1 > −1/k

g(s2)� ε−1Θ(c′1 + σ2 + 1, h)Xc′1 . (3.43)

Thus we have

I (φ) =
1

2πi

∫
(c2)

ζ(s2 + 1)`Xs2Φ(s2)Ress1=0

(
B(s1, s2)Φ(s1)ζ(s1 + 1)kXs1

)
ds2

+
1

2πi

∫
(c2)

ζ(s2 + 1)`Xs2Φ(s2)g(s2)ds2. (3.44)

By (3.28), (3.32), and (3.43) the second integral is bounded by

ε−1Θ(c′1 + c2 + 1, h)Xc′1Xc2

∫ ∞
−∞

min
( 1

|s2|
,

ε−1

|s2(s2 + 1)|

)
dt2

� ε−2Θ(c′1 + c2 + 1, h)Xc′1+c2 , (3.45)

by another application of Lemma 3.3, where s2 = c2 + it2. Choosing c′1 = −1/k
and c2 = 0.01/k, it follows that

I (φ) =
1

2πi

∫
(c2)

ζ(s2 + 1)`Xs2Φ(s2)Ress1=0

(
B(s1, s2)Φ(s1)ζ(s1 + 1)kXs1

)
ds2

+O`(Θ(1− 0.99
k , h)ε−2X−0.99/k).

(3.46)
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By (3.41) we see that

I (φ) =
∑

i1+i2+i3+i4=k
i1,i2,i3,i4>0

Ψ(i2)(0)αi3,k(logX)i4

i1!i2!i4!
Ii1(φ)

+Ok(Θ(1− 0.99
k , h)ε−2X−0.99/k)

(3.47)

where

Ii1(φ) =
1

2πi

∫
(c2)

B(i1,0)(0, s2)ζ(s2 + 1)`Xs2Φ(s2)ds2 for i1 > 0. (3.48)

By an application of the residue theorem,

Ii1(φ) = Ress2=0

(
B(i1,0)(0, s2)Φ(s2)ζ(s2 + 1)`Xs2

)
+

1

2πi

∫
(c′2)

B(i1,0)(0, s2)Φ(s2)ζ(s2 + 1)`Xs2ds2.
(3.49)

The second integral can be evaluated very similarly to g(s2). However, we require
a bound for B(i1,0)(0, s2) with σ2 = c′2. By Cauchy’s integral formula

B(i1,0)(0, s2) =
i1!

2πi

∫
|z−s2|=δ

B(0, z)

(z − s2)i1+1
dz (3.50)

where δ > 0. By an application of Lemma 3.2, (3.11) it follows that

B(i1,0)(0, s2)� Θ(c′2 − δ + 1, h)δ−i1 , (3.51)

as long as c′2 − δ > −0.99. Therefore, by the above bound and Lemma 3.3

1

2πi

∫
(c′2)

B(i1,0)(0, s2)Φ(s2)ζ(s2 + 1)`Xs2ds2

� Θ(c′2 − δ + 1, h)δ−i1Xc′2

∫ ∞
−∞

min
( 1

|s2|
,

ε−1

|s2(s2 + 1)|

)
|ζ(s2 + 1)|`ds2

� ε−1Θ(c′2 − δ + 1, h)δ−i1Xc′2

�` ε
−1Θ(1− 0.99

` , h)X−1/`,

(3.52)

by the choices c′2 = −1/` and δ = 0.01/`. Thus

Ii1(φ) = Ress2=0

(
B(i1,0)(0, s2)Φ(s2)ζ(s2 + 1)`Xs2

)
+O`(ε

−1Θ(1− 0.99
` , h)X−1/`).

(3.53)

Computing the residue in (3.53) gives

Ii1(φ) =
∑

j1+j2+j3+j4=`
j1,j2,j3,j4>0

B(i1,j1)(0, 0)Ψ(j2)(0)αj3,`(logX)j4

j1!j2!j4!

+O`(ε
−1Θ(1− 0.99

` , h)X−1/`).
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Inserting this last expression in (3.47) yields

I (φ) =
∑

i1+i2+i3+i4=k
i1,i2,i3,i4>0

Ψ(i2)(0)αi3,k(logX)i4

i1!i2!i4!

×
∑

j1+j2+j3+j4=`
j1,j2,j3,j4>0

B(i1,j1)(0, 0)Ψ(j2)(0)αj3,`(logX)j4

j1!j2!j4!

+O`

(( ∑
i2+i4=k

εi2(logX)i4
)
ε−1Θ(1− 0.99

` , h)X−1/`

+ ε−2Θ(1− 0.99
k , h)X−0.99/k

)
,

where we have used Ψ(i2)(0) � εi2 and αi3,` = O`(1). The sum in the
big O term is bounded by (logX)k as ε < 1. The main contribution to I (φ)
is B(0, 0)(logX)k+`/k!`! which arises from (i1, i2, i3, i4) = (0, 0, 0, k) and
(j1, j2, j3, j4) = (0, 0, 0, `). By (3.87) and (3.31) the remaining terms are bounded
by

�`

∑′

i1+i2+i3+i4=k
j1+j2+j3+j4=`

Θ(1, h)(log log h)i1+j1εi2+j2(logX)i4+j4

i1!i2!i4!j1!j2!j4!

where ′ in the summation indicates that the terms (i1, i2, i3, i4) = (0, 0, 0, `) and
(j1, j2, j3, j4) = (0, 0, 0, `) have been excluded. Since ε < 1 and either i4 6 k − 1
or j4 6 `− 1, it follows that the remaining terms are bounded by

�` Θ(1, h)
∑

α+β6k+`−1

(log log h)α(logX)β �` Θ(1, h)(logX)k+`−1 log log h.

Combining the above facts, we find

I (φ) =
C̃k,`gk,`(h)

k!`!
(logX)k+`

+O`

(
Θ(1, h)(logX)k+`−1 log log h

+ ((logX)kε−1 + ε−2)Θ(1− 0.99
k , h)X−0.99/`

) (3.54)

since k 6 `. We now remove the smooth weight to obtain an asymptotic formula
for the truncated sum. Let

φ−(t) = φ1−ε,ε(t) and φ+(t) = φ1,ε(t) (3.55)

be the functions corresponding to the choices η = 1−ε and η = 1. Note that φ−(t)
and φ+(t) are a smooth minorant and majorant of 1[0,1](t), the indicator function
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of [0, 1]. It follows that

I (φ−) 6
∑
a,b6X
(a,b)|h

τk(a)τ`(b)

[a, b]
6 I (φ+). (3.56)

From (3.54) and (3.56) and recalling that k = min(k, `) = m and ` = max(k, `) =
M we have∑

a,b6X
(a,b)|h

τk(a)τ`(b)

[a, b]
=
C̃k,`gk,`(h)

k!`!
(logX)k+`

+Ok,`

(
Θ(1, h)(logX)k+`−1 log log h

+ ((logX)mε−1 + ε−2)Θ(1− 0.99
m , h)X−0.99/M

)
=
C̃k,`gk,`(h)

k!`!
(logX)k+`

+Ok,`

(
Θ(1, h)(logX)k+`−1 log log h

+ Θ(1− 0.99
m , h)(logX)2mX−0.99/M

)
,

(3.57)

by the choice ε = (logX)−m. Finally, we bound Θ(κ, h) where κ = 1 − 0.99
m . We

have
log Θ(κ, h) = k`

∑
p|h

log(1 + p−κ) 6 k`
∑
p|h

p−κ

since log(1 + x) 6 x for x > 0. Let ω(h) denote the number of prime divisors of
h. If h > h0(k, `), then

log Θ(κ, h) 6 k`
( ∑
p6log h

p−κ +
1

(log h)κ
ω(h)

)
6 k`

(( 12.68κ

(1− κ)2
+ 3.17

) (log h)1−κ

log log h
+

1.3841(log h)1−κ

log log h

) (3.58)

by (3.17) and Théorème 11 of [38, Robin]. It follows that

Θ(1− 0.99
m , h) 6 exp

(
(12.94m4 − 12.81m3 + 4.52m2)

(log h)1−0.99/m

log log h

)
. (3.59)

Combining this with (3.57) completes the proof in the case h > h0(k, `). If h ∈
[2, h0(k, `)], it follows that

Θ(κ, h) 6 exp
(
k`
∑
p|h

p−
1
2

)
6 exp(C0(k, `)).

Inserting this in (3.57) establishes the proof if h ∈ [2, h0(k, `)].
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Finally, we mention the modifications in the simplest case h = 1. In this
case, we can show that B(s1, s2) defined by (3.9) satisfies |B(s1, s2)| � 1 for
<(s1),<(s2) > −0.99, B(0, 0) = C̃`, B(i1,i2)(0, 0)� 1. Using these facts instead of
Lemma 3.69 and following the above argument leads to the desired result. �

The proof of Proposition has been reduced to establishing Lemma (3.2).

Proof of Proposition 3.2. Throughout this proof σ1 = <(s1) and σ2 = <(s2).
It will also be convenient to set a1, a2 ∈ (0, 1). At the end of the proof we shall
choose a1 = a2 = 0.99. We begin by using Lemma 2.1 with f1(n) = σk(n, s1 + 1),
f2(n) = σ`(n, s2 + 1), τ1 = s1 + s2 + 1, and τ2 = s1 + s2 + 2 it follows from (2.26)
that

B(s1, s2)

=
∑
g|h

1

gs1+s2+1

∏
(p,g)=1

(
1− σk(p, s1 + 1)σ`(p, s2 + 1)

ps1+s2+2

)
(3.60)

×
∏
pα||g

(
σk(pα, s1 + 1)σ`(p

α, s2 + 1)− σk(pα+1, s1 + 1)σ`(p
α+1, s2 + 1)

ps1+s2+2

)
.

We now bound this expression. By (1.23), we note that

1− σk(p, s1 + 1)σ`(p, s2 + 1)

ps1+s2+2
= Q(p−s1−1, p−s2−1) (3.61)

where Q(x, y) = (1− x)k + (1− y)` − (1− x)k(1− y)`. By Taylor expansion

Q(x, y) =
(

1− kx+

(
k

2

)
x2
)

+
(

1− `y +

(
`

2

)
y2
)

−
(

1− kx+

(
k

2

)
x2
)(

1− `y +

(
`

2

)
y2
)

+Ok,`(|x|3 + |y|3)

= 1− k`xy +Ok,`(|x|2|y|+ |x||y|2 + |x|2|y|2 + |x|3 + |y|3)

= 1− k`xy +Ok,`(|x|3 + |y|3),

(3.62)

since |x|, |y| 6 1. It follows that

1− σk(p, s1 + 1)σ`(p, s2 + 1)

ps1+s2+2
= 1− k`

ps1+s2+2
+Ok,`(p

−3−3σ1 + p−3−3σ2)

= 1− k`

ps1+s2+2
+Ok,`(p

−3+3 max(a1,a2))

(3.63)

for σ1 > −a1, σ2 > −a2. By (1.24), we have that σk(pj , s+1) = τk(pj)Hk,j(p
−s−1).
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For j > 1, we have by (1.24)

σk(pα, s1 + 1)σ`(p
α, s2 + 1)− σk(pα+1, s1 + 1)σ`(p

α+1, s2 + 1)

ps1+s2+2

= τk(pj)τ`(p
j)Hk,j(p

−s1−1)H`,j(p
−s2−1)

− τk(pj+1)τ`(p
j+1)Hk,j+1(p−s1−1)H`,j+1(p−s2−1)

ps1+s2+2

= τk(pj)τ`(p
j)(1 +Ok,`(p

−σ1−1 + p−σ2−1))

− τk(pj+1)τ`(p
j+1)

ps1+s2+2
(1 +Ok,`(p

−σ1−1 + p−σ2−1))

= τk(pj)τ`(p
j)

(
1 +Ok,`(p

−σ1−1 + p−σ2−1)

+Ok,`

(
k`

(1 + j
k )(1 + j

` )

(1 + j)2
p−σ1−σ2−2

))
= τk(pj)τ`(p

j)
(

1 +Ok,`(p
−σ1−1 + p−σ2−1)

)
,

(3.64)

since τk(pj+1) = k+j
j+1 τk(pj). Using (3.63) and the last equation, we have

|B(s1, s2)| 6
∑
g|h

1

gσ1+σ2+1

∏
(p,g)=1

(
1 +O

( k`

pσ1+σ2+2
+ p−3+a1 + p−3+a2

))
×
∏
pα||g

τk(pj)τ`(p
j)
(

1 +O`(p
−1+max(a1,a2))

)
.

Since σ1 + σ2 > −0.99 the first product is absolutely convergent. It follows that

|B(s1, s2)| �
∑
g|h

τk(g)τ`(g)j(g)

gσ1+σ2+1
(3.65)

where j(g) :=
∏
p|g(1 + Cp−1+max(a1,a2)), and C = C(k, `) > 0. By multiplicativ-

ity, it follows that

|B(s1, s2)| �
∏
pα||h

α∑
a=0

τk(pa)τ`(p
a)j(pa)

(pa)σ1+σ2+1

�
∏
p|h

(
1 +

k`

pσ1+σ2+1

)
= Θ(σ1 + σ2 + 1, h),

valid for σ1 > −a1, σ2 > −a2, and σ1 + σ2 > −0.99.
We now establish part (ii). By (3.63) it follows that there exists a prime

p0 = p0(k, `) such that if p > p0, then C(p, 0, s1, s2) 6= 0 for σ1, σ2 > 10−2. Also,
observe that by (3.61) C(p, 0, 0, 0) = (1 − p−1)k + (1 − p−1)` − (1 − p−1)k+` 6= 0.
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Since for each 2 6 p 6 p0, C(p, 0, s1, s2) is a continuous function of s1 and s2,
there exists ε0 ∈ (0, 10−2) such that C(p, 0, s1, s2) 6= 0 for p ∈ [2, p0] and |s1| < ε0

and |s2| < ε0. Combining these facts, it follows that for all primes p and s1, s2

satisfying |s1| < ε0 and |s2| < ε0, that C(p, 0, s1, s2) 6= 0. Thus we may apply
Lemma 2.1 (ii). Let

C(p, j, s1, s2) =
σk(pj , s1 + 1)σ`(p

j , s2 + 1)

pj(s1+s2+1)
− σk(pj+1, s1 + 1)σ`(p

j+1, s2 + 1)

p(j+1)(s1+s2+1)+1
.

(3.66)
Since C(p, 0, s1, s2) 6= 0 for |s1|, |s2| 6 ε0 < 10−2, Lemma (2.1) (ii) implies that

B(s1, s2) = B1(s1, s2)B2(s1, s2) for |s1|, |s2| 6 ε0, (3.67)

where
B1(s1, s2) =

∏
p

C(p, 0, s1, s2) (3.68)

and

B2(s1, s2) =
∏
pα||h

α∑
j=0

C(p, j, s1, s2)C(p, 0, s1, s2)−1. (3.69)

We first determine the value of B(0, 0). It follows from (3.68), (3.61), and (3.2)
that B1(0, 0) = C̃k,`. Similarly, it follows from and (3.69), (3.66), (3.61), and (3.3)
that B2(0, 0) = gk,`(h). Hence, B(0, 0) = C̃k,`gk,`(h).

We now establish (iii). Let ε0 be as in part (ii). It shall be convenient to define

D1 = {s1 ∈ C | |s1| < ε0} and D2 = {s2 ∈ C | |s2| < ε0}.

First observe that by the definition (3.66) and (3.63) and (3.64) we have

C(p, 0, s1, s2) = 1− k`

ps1+s2+2
+Ok,`(p

−2.7) for σ1, σ2 > −10−1, (3.70)

C(p, j, s1, s2) =
τk(pj)τ`(p

j)

pj(s1+s2+1)

(
1 +Ok,`(p

−0.9)
)

for σ1, σ2 > −10−1. (3.71)

In addition, for every ε > 0, τk(pj), τ`(p
j)�` p

jε/2 and we also have the estimate

C(p, j, s1, s2)� p−j(σ1+σ2+1−ε) for σ1 > −a1, σ2 > −a2. (3.72)

From (3.68) and (3.70) we see that

B1(s1, s2) =
∏
p

(
1− k`

ps1+s2+2
+Ok,`(p

−2.7)
)
�k,` 1 for σ1, σ2 > −10−1.

(3.73)

By two applications of Cauchy’s integral formula,

B(i,j)
1 (s1, s2) = Ok,`(1) for σ1, σ2 > −10−2 (3.74)
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where B(i,j)
1 is defined by (1.29). We now estimate B2(s1, s2). First, we examine

each local factor at p of B2. Since D1 × D2 ⊂ {s1 ∈ C | σ1 > −10−1} × {s2 ∈
C | σ2 > −10−1} it follows from (3.70), (3.71), and (3.72) that

α∑
j=0

C(p, j, s1, s2)

C(p, 0, s1, s2)
= 1 +

k`
ps1+s2+1 +O(p−1.5)

1 +O(p−1.8)
+

∑α
j=2 p

−0.7j

1 +O(p−1.8)

= 1 +
k`

ps1+s2+1
+O(p−1.4) for (s1, s2) ∈ D1 ×D2.

(3.75)

Hence we can factor out a term (1 + 1
ps1+s2+1 )k` from (3.69). Therefore we may

write

B2(s1, s2) = Θ(s1 + s1 + 1, h)B3(s1, s2) for (s1, s2) ∈ D1 ×D2, (3.76)

where we recall that Θ(z, h) =
∏
p|h(1 + p−z)k` and

B3(s1, s2) =
∏
pα||h

( α∑
j=0

C(p, j, s1, s2)C(p, 0, s1, s2)−1
)(

1 +
1

ps1+s2+1

)−k`
. (3.77)

It follows from (3.75) and (3.77) that

B3(s1, s2) =
∏
p|h

(1 +Ok,`(p
−σ1−σ2−2))

�k,`

∏
p

(1 +Ok,`(p
−1.8))�k,` 1 for (s1, s2) ∈ D1 ×D2.

By Cauchy’s integral formula it follows that

B(i1,i2)
3 (0, 0)�k,` 1. (3.78)

We also require an estimate for the partial derivatives of B. By (3.67) and (3.76)
it follows that

B(s1, s2) = Θ(s1 + s1 + 1, h)B̃(s1, s2) for (s1, s2) ∈ D1 ×D2, (3.79)

where B̃(s1, s2) = B1(s1, s2)B3(s1, s2). Note that the generalized product rule,
(3.74), and (3.78) imply

B̃(i1,i2)(0, 0)�k,` 1. (3.80)

By two applications of the generalized product rule to (3.79)

B(i1,i2)(s1, s2)

=
∑

a1+a2=i1

(
i1
a1

) ∑
a3+a4=i2

(
i2
a3

)( ∂a1
∂sa11

∂a3

∂sa32

Θ(s1 + s1 + 1, h)
)
B̃(a2,a4)(s1, s2).
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Note that

∂a1

∂sa11

∂a3

∂sa32

Θ(s1 + s1 + 1, h) =
da1+a3

dza1+a3
Θ(z, h)

∣∣∣
z=s1+s2+1

. (3.81)

By (3.78) and (3.81) it follows that

B(i1,i2)(0, 0)�k,`

i1+i2∑
α=0

Θ(α)(1, h).

We now demonstrate for α > 1

Θ(α)(1, h)� Θ(1, h)(log log h)α. (3.82)

We begin by remarking that

Θ(1)(z, h) = −k`Θ(z, h)η(z, h) (3.83)

where
η(z, h) =

∑
p|h

log p

pz + 1
. (3.84)

By the product rule it follows that

Θ(α)(z, h) = −k`
∑

u1+u2=α−1

(
α− 1

u1

)
Θ(u1)(z, h)η(u2)(z, h). (3.85)

A calculation demonstrates that for u > 0

η(u)(1, h) =
∑
p|h

(log p)u

p

∞∑
j=1

(−1)j−1(−j)u

pj−1

and thus

η(u)(1, h)�
∑
p|h

(log p)u

p

�
∑

p6log h

(log p)u

p
+

(log log h)u

log h

∑
p|h

1� (log log h)u.

(3.86)

We now show (3.82). The case α = 1 follows from (3.83) and (3.86) with u = 1.
By induction, using (3.85) and (3.86), we establish (3.82) for all α > 1. From
(3.82) we now have

B(i1,i2)(0, 0)�k,` Θ(1, h)(log log h)i1+i2 . (3.87)

�
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4. A probabilistic method for determining main term of Dk,`(x, h)

In this section, we use a simple heuristic probabilistic method to rederive the
conjectured formula

Dk,`(x, h) ∼ ck,`(h)

(k − 1)!(`− 1)!
x(log x)k+`−2 for 1 6 h 6 x1−ε (4.1)

for x large, ε arbitrarily small, and recall that Ck,` is defined by (1.6) and fk,`(h) is
defined by (1.7). In section three, we derived this conjecture using the δ-method.

The argument in this section has been used to derive conjectures for∑
n6x Λ(n)Λ(n+ h), where Λ(n) is the von Mangoldt function (for full details see

[7] and [37]). The extension to the case of multiplicative functions was explained to
the first author by Andrew Granville. We now proceed with our heuristic derivation
of (4.1). It is well known that∑

n6x

τk(n) ∼ 1

(k − 1)!
x(log x)k−1. (4.2)

It follows that on average τk(n) in the interval [1, x] is 1
(k−1)!x(log x)k−1. Similarly,

for 1 6 h 6 x1−ε, τ`(n + h) in the interval [1, x] is also 1
(`−1)!x(log x)`−1. Thus

it is reasonable to believe that for 1 6 h 6 x1−ε, τk(n)τ`(n + h) is on average
1

(k−1)!(`−1)! (log x)k+`−2 in [1, x]. However, we must take into consideration that
the values of τk(n) and τ`(n + h) are not independent. For instance, if h = p is
prime, then if p - n we also have p - n+h. The factor Ck,`fk,`(h) in (4.1) accounts
for such local considerations. In order to make this precise we define a sequence
of random variables (Xp)p prime by

Xp(n) = τk(pordp(n))

where ordp(·) is the p-adic valuation. Furthermore, we define

Yp(n) = τ`(p
ordp(n+h)).

Associated to a random variable Y : N→ C with image im(Y ) = {Y (n) | n ∈ N},
its expected value to be

E(Y ) =
∑

i∈im(Y )

i · P(Y = i) (4.3)

where for B ⊆ N,

P(B) = lim
X→∞

#{1 6 n 6 X | n ∈ B}
X

. (4.4)

With these definitions in hand, it is natural to make the following conjecture.
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Conjecture. For ε ∈ (0, 1), x large, and 1 6 h 6 x1−ε,

1

x
Dk,`(x, h) ∼

(∏
p

E(XpYp)

E(Xp)E(Yp)

)( 1

x

∑
n6x

τk(n)
)( 1

x

∑
n6x

τ`(n+ h)
)

(4.5)

as x→∞.

The product in the above conjecture is the correction factor taking into account
that the values of τk(n) and τ`(n+h) are not independent. Each local factor in the
product measures the lack of independence of Xp and Yp. We shall prove that the
product equals ck,`(h) = Ck,`fk,`(h), which we computed earlier via the δ-method.

Proposition 4.1. Let k, `, h ∈ N. Then

ck,`(h) =
∏
p

E(XpYp)

E(Xp)E(Yp)
. (4.6)

By (4.5), Proposition 4.1, and (4.2) we have that

1

x
Dk,`(x, h) ∼ ck,`(h)

(k − 1)!(`− 1)!
logk−1(x) log`−1(x+ h)

∼ ck,`(h)

(k − 1)!(`− 1)!
logk+`−2(x)

(4.7)

as x → ∞ for h 6 x1−ε. This yields the Additive Divisor Conjecture (simplified
version) stated in the introduction.

The above proposition is deduced from the next lemma.

Lemma 4.2.

(i) For every prime p,

E(Xp) =
(

1− 1

p

)−(k−1)

and E(Yp) =
(

1− 1

p

)−(`−1)

. (4.8)

(ii) If p - h, then

E(XpYp) =
(

1− 1

p

)−(k−1)

+
(

1− 1

p

)−(`−1)

− 1. (4.9)

(iii) If pα || h, then

E(XpYp) = 1 +

α∑
i=1

(τk(pi)τ`(p
i)− τk(pi−1)τ`(p

i−1))Xi

+

∞∑
i=α+1

(τk(pα)τ`−1(pi) + τ`(p
α)τk−1(pi))Xi.

(4.10)
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In this section we also show that Tao’s probabilistic argument [41] gives the
same answer.

Proposition 4.3. Let k, `, h ∈ N. Then

ck,`(h) =
∏
p

Sk,`,h(p) (4.11)

where Sk,`,h(p) is defined by (1.9).

We now demonstrate the proof of Proposition 4.1 based on this lemma.

Proof of Proposition 4.1. If p - h, then by Lemma 4.2 (i) and (ii)

E(XpYp)

E(Xp)E(Yp)
=

(
1− 1

p

)−(k−1)

+
(

1− 1
p

)−(`−1)

− 1(
1− 1

p

)−(k−1)(
1− 1

p

)−(`−1)

=
(

1− 1

p

)k−1

+
(

1− 1

p

)`−1

−
(

1− 1

p

)k+`−2

.

Therefore∏
p

E(XpYp)

E(Xp)E(Yp)

= Ck,`
∏
pα||h

E(XpYp)

E(Xp)E(Yp)

= Ck,`
∏
pα||h

1 +
∑α
i=1(τk(pi)τ`(p

i)− τk(pi−1)τ`(p
i−1))Xi

+
∑∞
i=α+1(τk(pα)τ`−1(pi) + τ`(p

α)τk−1(pi))Xi((
1− 1

p

)−(k−1)

+
(

1− 1
p

)−(`−1)

− 1
)

= Ck,`fk,`(h)

(4.12)

by an application of Lemma 4.2 part (iii). �

Before establishing Lemma 4.2, we make a few observations.

P
(
{n ∈ N | p - n}

)
= 1− 1

p
(4.13)

and for i > 1,

P
(
{n ∈ N | pi || n}

)
=

1

pi
− 1

pi+1
, (4.14)

where P is defined by (4.4). Idenitity (4.13) is since n lies in p − 1 of p residue
classes modulo p and (4.14) follows from writing n = pin′ where (n′, p) = 1.
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Proof of Lemma 4.2. (i) First, we compute E(Xp). The values of Xp are pre-
cisely τk(pi) for i > 0. Note that if i = 0, then Xp = 1. This means that p - n and
the probability of this occurring is 1− 1

p , since n lies in p− 1 of p residue classes
modulo p. Now Xp(n) = τk(pi) with i > 1, precisely when pi || n. This occurs
with probability 1

pi −
1

pi+1 . Therefore

E(Xp) = 1− 1

p
+

∞∑
i=0

τk(pi)
( 1

pi
− 1

pi+1

)
=
(

1− 1

p

) ∞∑
i=0

τk(pi)

pi
=
(

1− 1

p

)−(k−1)

.

A similar argument establishes E(Yp) = (1− 1
p )−(`−1).

(ii) We now compute E(XpYp), in the case p - h. If n 6≡ 0,−h(mod p), then
Xp(n) = Yp(n) = 1. The probability of this occurring is p−2

p = 1 − 2
p .

If n ≡ 0 (mod p) and pi || n with i > 1, then p - n+ h. Therefore Xp(n) = τk(pi)
and Yp(n) = 1. The probability of this occurring is 1

pi −
1

pi+1 . Similarly, if
n ≡ −h(mod p) and pi || n + h with i > 1, then p - n. Therefore Xp(n) = 1
and Yp(n) = τ`(p

i) and the probability of this occurring is 1
pi −

1
pi+1 . It follows

that

E(XpYp) = 1− 2

p
+

∞∑
i=1

τk(pi)
( 1

pi
− 1

pi+1

)
+

∞∑
i=1

τ`(p
i)
( 1

pi
− 1

pi+1

)
.

Now
∞∑
i=1

τk(pi)
( 1

pi
− 1

pi+1

)
=
(

1− 1

p

) ∞∑
i=1

τk(pi)

pi
=
(

1− 1

p

)((
1− 1

p

)−k
− 1
)

=
(

1− 1

p

)−(k−1)

− 1 +
1

p

and thus

E(XpYp) = 1− 2

p
+
(

1− 1

p

)−(k−1)

− 1 +
1

p
+
(

1− 1

p

)−(`−1)

− 1 +
1

p

=
(

1− 1

p

)−(k−1)

+
(

1− 1

p

)−(`−1)

− 1.

(iii) We now compute E(XpYp), in the case pα || h.
If n 6≡ 0(mod p), then n + h 6≡ 0(mod p). This is since if p | n + h, then p | n as
pα || h. This case occurs with probability 1− 1

p and for these n, Xp(n) = Yp(n) = 1.
These terms contribute

1 ·
(

1− 1

p

)
= 1− 1

p
(4.15)

to E(XpYp). Now consider pi || n with i > 1. In this case, Xp(n) = τk(pi). We
now determine the order of p dividing n+ h. Writing n = pin′ and h = pαh′ with
(n′, p) = (h′, p) = 1, we have

n+ h = pin′ + pαh′ = pmin(i,α)(n′pi−min(i,α) + h′pα−min(i,α)).
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Note that if i 6= α, then ordp(n+ h) = min(i, α) and Yp(n) = τ`(p
min(i,α)). These

terms make a contribution
∞∑
i=1
i 6=α

τk(pi)τ`(p
min(i,α))

( 1

pi
− 1

pi+1

)
. (4.16)

to E(XpYp). However, if i = α, then Xp(n) = τk(pα). Now we determine the
power of p dividing n+h. Since n+h = pα(n′+h′), the p-adic valuation depends
on the order of p dividing n′ + h′. Since (n′, p) = 1, it falls in p− 1 residue classes
modulo p. If n′ 6≡ −h′(mod p), then ordp(n + h) = α. If n′ ≡ −h′(mod p), then
there exists j > 1 such that pj || n′ + h′ and ordp(n + h) = α + j. By these
observations we have the disjoint union

{n ∈ N | pα || n} = A0 ∪
∞⋃
j=1

Aj

where A0 = {n ∈ N | pα || n, n′ 6≡ −h′(mod p)}, Aj = {n ∈ N | pα || n, pj ||
n′ + h′}, and n′ = n

pα . Since (n′, p) = 1 and n′ 6≡ −h′(mod p), it follows that
P(A0) = 1

pα (1− 2
p ) as n′ lies in p−2 residue classes modulo p. A similar calculation

establishes that P(Aj) = 1
pα ( 1

pj −
1

pj+1 ). If n ∈ A0, then Yp(n) = τ`(p
α) and if

n ∈ Aj , then Yp(n) = τ`(p
α+j). The contribution from all terms with pα || n is

τk(pα)τ`(p
α)

pα

(
1− 2

p

)
+

∞∑
j=1

τk(pα)τ`(p
α+j)

pα

( 1

pj
− 1

pj+1

)
. (4.17)

Combining (4.15), (4.16), and (4.17) yields

E(XpYp) = 1− 1

p
+
(

1− 1

p

)∑
i>1
i6=α

τk(pi)τ`(p
min(i,α))

pi
+
τk(pα)τ`(p

α)

pα

(
1− 2

p

)

+

∞∑
j=1

τk(pα)τ`(p
α+j)

pα

( 1

pj
− 1

pj+1

)

=
(

1− 1

p

)(
1 +

∑
i>1
i 6=α

τk(pi)τ`(p
min(i,α))

pi

+
τk(pα)τ`(p

α)

pα

(
1− 2

p

)(
1− 1

p

)−1

+

∞∑
j=1

τk(pα)τ`(p
α+j)

pα+j

)

=
(

1− 1

p

)( α−1∑
i=0

τk(pi)τ`(p
i)

pi
+

∞∑
j=0

τk(pα)τ`(p
α+j)

pα+j

+

∞∑
j=0

τk(pα+j)τ`(p
α)

pα+j
− τk(pα)τ`(p

α)

pα

(
1− 1

p

)−1
)
.
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We simplify this a bit further. Setting X = 1
p we have

E(XpYp) =

α−1∑
i=0

τk(pi)τ`(p
i)Xi −X

α−1∑
i=0

τk(pi)τ`(p
i)Xi +

∞∑
j=0

τk(pα)τ`(p
α+j)Xα+j

−X
∞∑
j=0

τk(pα)τ`(p
α+j)Xα+j +

∞∑
j=0

τk(pα+j)τ`(p
α)Xα+j

−X
∞∑
j=0

τk(pα+j)τ`(p
α)Xα+j − τk(pα)τ`(p

α)Xα

= 1 +

α−1∑
i=1

(τk(pi)τ`(p
i)− τk(pi−1)τ`(p

i−1))Xi − τk(pα−1)τ`(p
α−1)Xα

+ τk(pα)
(
τ`(p

α)Xα +

∞∑
i=α+1

(τ`(p
i)− τ`(pi−1))Xi

)
+ τ`(p

α)
(
τk(pα)Xα +

∞∑
i=α+1

(τk(pi)− τk(pi−1))Xi
)
− τk(pα)τ`(p

α)Xα

= 1 +

α∑
i=1

(τk(pi)τ`(p
i)− τk(pi−1)τ`(p

i−1))Xi

+ τk(pα)

∞∑
i=α+1

τ`−1(pi)Xi + τ`(p
α)

∞∑
i=α+1

τk−1(pi)Xi,

by two applications of (1.20). This establishes (4.10) and completes the proof of
Lemma 4.2. �

Finally, we establish Proposition 4.3.

Proof of Proposition 4.3. First we show that expressions given for Pk,`,p(j) in
(1.10) and (1.11) are equal. Observe that

k∑
k′=2

(
k − k′ + j − 1

k − k′

)
=

k−2∑
i=0

(
i+ j − 1

i

)
=

k−2∑
i=0

τi(p
j) = τk−1(pj)

and

k∑
k′=2

(
k − k′ + j − 1

k − k′

)( p

p− 1

)k′−1

=

k−2∑
i=0

(
i+ j − 1

i

)( p

p− 1

)k−i−1

.
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Therefore

Pk,`,p(j) = τk−1(pj)

`−2∑
i=0

(
i+ j − 1

i

)( p

p− 1

)`−i−1

+ τ`−1(pj)

k−2∑
i=0

(
i+ j − 1

i

)( p

p− 1

)k−i−1

− τk−1(pj)τ`−1(pj).

From (1.5), (1.8), and (1.11) it suffices to prove Lk,`(α) = R̃k,`(α) where

Lk,`(α) = 1 +

α∑
i=1

(τk(pi)τ`(p
i)− τk(pi−1)τ`(p

i−1))Xi

+ τk(pα)

∞∑
i=α+1

τ`−1(pi)Xi + τ`(p
α)

∞∑
i=α+1

τk−1(pi)Xi,

R̃k,`(α) =

α∑
j=0

Xj
(
τk−1(pj)

`−2∑
i=0

(
i+ j − 1

i

)( p

p− 1

)`−i−1

+ τ`−1(pj)

k−2∑
i=0

(
i+ j − 1

i

)( p

p− 1

)k−i−1

− τk−1(pj)τ`−1(pj)
)

andX = 1
p . We shall prove this by induction. As before, we have Lk,`(1) = R̃k,`(1)

where the value is given by (2.35). Now assume that for α ∈ N, Lk,`(α) = R̃k,`(α).
We aim to show that Lk,`(α+ 1) = R̃k,`(α+ 1). Recall that we showed (2.36)

Lk(α+ 1)− Lk(α) = τk(pα+1)τ`(p
α+1)Xα+1

+

∞∑
i=α+2

(τk−1(pα+1)τ`−1(pi) + τ`−1(pα+1)τk−1(pi))Xi.

On the other hand

R̃k,`(α+ 1)− R̃k,`(α) = Xα+1
(
τk−1(pα+1)

`−2∑
i=0

(
i+ α

i

)
(1−X)−`+i+1

+ τ`−1(pα+1)

k−2∑
i=0

(
i+ α

i

)
(1−X)−k+i+1

− τk−1(pα+1)τ`−1(pα+1)
)
.
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We see that Lk,`(α+ 1)− Lk,`(α) = R̃k,`(α+ 1)− R̃k,`(α) if and only if

τk−1(pα+1)τ`−1(pα+1)Xα+1

+ τk−1(pα+1)

∞∑
i=α+2

τ`−1(pi)Xi + τ`−1(pα+1)

∞∑
i=α+2

τk−1(pi)Xi

= Xα+1
(
τk−1(pα+1)

`−2∑
i=0

(
i+ α

i

)
(1−X)−`+i+1

+ τ`−1(pα+1)

k−2∑
i=0

(
i+ α

i

)
(1−X)−k+i+1 − τk−1(pα+1)τ`−1(pα+1)

)
.

Rearranging this becomes

τk−1(pα+1)

∞∑
i=α+1

τ`−1(pi)Xi + τ`−1(pα+1)

∞∑
i=α+1

τk−1(pi)Xi

= Xα+1

(
τk−1(pα+1)

`−2∑
i=0

(
i+ α

i

)
(1−X)−`+i+1

+ τ`−1(pα+1)

k−2∑
i=0

(
i+ α

i

)
(1−X)−k+i+1

)
.

(4.18)

Observe that the left hand side of (4.18) is

∞∑
i=α+1

(τk−1(pα+1)τ`−1(pi) + τ`−1(pα+1)τk−1(pi))Xi. (4.19)

Using (1.18) we see that the right hand side of (4.18) is

Xα+1

(
τk−1(pα+1)

`−2∑
u=0

(
u+ α

u

) ∞∑
u=0

τ`−u−1(pj)Xj

+ τ`−1(pα+1)

k−2∑
u=0

(
u+ α

u

) ∞∑
u=0

τk−u−1(pj)Xj

)

=

∞∑
i=α+1

(
τk−1(pα+1)

`−2∑
u=0

(
u+ α

u

)
τ`−u−1(pi−(α+1))

+ τ`−1(pα+1)

k−2∑
u=0

(
u+ α

u

)
τk−u−1(pi−(α+1))

)
Xi.

(4.20)
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Therefore we see that (4.18) holds if the coefficient of Xi in (4.19) and (4.20) are
equal. In fact, we shall show that for i > α+ 1 that

τ`−1(pi) =

`−2∑
u=0

(
u+ α

u

)
τ`−u−1(pi−(α+1)),

τk−1(pi) =

k−2∑
u=0

(
u+ α

u

)
τk−u−1(pi−(α+1)).

(4.21)

Observe that the second identity is the same as the first with k and ` swapped.
Thus it suffices to establish the first identity in (4.21). By (1.19) this reads as(

`+ i− 2

i

)
=

`−2∑
u=0

(
u+ α

u

)(
`− u− 1 + i− (α+ 1)− 1

i− (α+ 1)

)
for i > α+ 1.

(4.22)
Letting L = `− 1 and j = i− (α+ 1), this is the same as(

L+ j + α

1 + j + α

)
=

L−1∑
u=0

(
u+ α

u

)(
L− u+ j − 1

j

)
for j > 0. (4.23)

However, this is identity (1.78) of [17](
a+ r + n+ 1

n

)
=

n∑
u=0

(
a+ u

u

)(
r + n− u
n− u

)
(4.24)

with n = L − 1, a = α, and r = j. It follows that Lk,`(α + 1) − Lk,`(α) =

R̃k,`(α+ 1)− R̃k,`(α) and thus Lk,`(α) = R̃k,`(α) for all α ∈ N. �

5. Concluding remarks

In this article, we studied the sum Dk,`(x, h). Lower bounds for this sum were
obtained and the main term in its conjectured asymptotic was studied. We now
mention several avenues of possible future research.

1. Improve the lower bounds for Dk,`(x, h). One might attempt to use inequal-
ities of the shape

τk(n) >
∑

α1···αk=n∏
i∈J αi6x

βi

1

where J ranges over certain subsets of {1, . . . , k} and
∑k
i=1 βi 6 1/2.

2. Establish a version of the uniform bound (1.15), making the k and ` depen-
dence explicit. Currently, even the bound (1.15) for h 6 xC does not appear
in a published reference.
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3. It seems possible that the probabilistic method of section 4 can be used to
obtain the full main term asymptotic for Dk,`(x, h).

4. Study the more general sums∑
n6x

τk1(n+ h1) · · · τkr (n+ hr) (5.1)

where r > 2, k1, . . . , kr ∈ R+ and h1, . . . , hr ∈ Z. It is likely that the methods
of this article may be applied to obtain lower bounds for (5.1) of the correct
order of magnitude and to write down conjectural asymptotic formula for
this sum. The asymptotic evaluation of (5.1) is an open problem and this is
well-known to the experts.3 For instance, it is an open problem to evaluate
the sum ∑

n6x

τ(n)τ(n+ 1)τ(n+ 2).

It should be noted that Blomer [4] recently succeeded in evaluating the triple
correlation sum ∑

x6n62x

τ(n− h)τ(n)τ(n+ h)

on average over h.
5. Study the lower order terms in the main term asymptotic for Dk,`(x, h).

More precisely, determine explicit expressions for the coefficients αi(h) for
0 6 i 6 2k− 3 and numerically study the size of |Dk,`(x, h)−P2k−2;h(log x)|
with h as a function of x. This might provide evidence towards the true
sizes of the constants θk and βk in Conjecture (2.2). Furthermore, it seems
possible to use the probabilistic method of section 5 to calculate the lower
order terms.
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