Functiones et Approximatio 59.1 (2018), 141–152 doi: 10.7169/facm/1729

SPACES OF ANALYTIC FUNCTIONS ON ESSENTIALLY PLURIPOLAR COMPACTA

Vyacheslav Zakharyuta

Abstract: Let $A(K)$ be the locally convex space of all analytic germs on a compact subset K of a Stein manifold Ω , dim $\Omega = n$, endowed with the standard inductive topogy, let 0^n denote the origin of \mathbb{C}^n , The main result is the characterisation of the isomorphism $A(K) \simeq A({0^n})$ in terms of pluripotential theory. It is based on the general result of Aytuna-Krone-Terzioğlu on the characterisation of power series spaces of infinite type in terms of interpolational invariants (DN) and (Ω) .

Keywords: complete pluripolarity, spaces of analytic functions, interpolation invariants.

1. Preliminaries

Let X be a Fréchet space, $\{U_p, p \in \mathbb{N}\}\$ a base of absolutely convex neighborhoods of the origin in X and $\{|x|_p\}$ the corresponding system of seminorms in X; the family

$$
U_p^{\circ} := \{ x' \in X^* : |x'(x)| \leq 1 \}, \qquad p \in \mathbb{N}, \tag{1}
$$

is a basis of the bornology of X^* , that is every bounded set M in X^* is contained in some U_p° ; we consider also the corresponding system of non-bounded norms $(shortly, *conorms*)$ on X^* :

$$
|x'|_p^* := \sup \{|x'(x)| : x \in U_p\}, \qquad x' \in X^*.
$$

Following interpolation invariants turn to be an important tool in theory of locally convex spaces, especially, in the structure theory of power series spaces ([6]).

Definition 1. A Fréchet space X has property (DN) if there is p so that for every q there is r and a constant C such that

$$
|x|_q^2 \leqslant C |x|_p |x|_r, \qquad x \in X.
$$

2010 Mathematics Subject Classification: primary: 32015, 46A63; secondary: 46A04, 32E10

Definition 2. A Fréchet space X has property (Ω) if for every p there is q such that for every r there is $0 < \delta < 1$ and $C > 0$ such that

$$
\left|x'\right|_q^* \leqslant C\left(\left|x'\right|_p^*\right)^{1-\delta}\left(\left|x'\right|_r^*\right)^{\delta}, \qquad x' \in X.
$$

Given a non-decreasing sequence of positive numbers $\alpha = (\alpha_k)$ leading to ∞ , we consider the Fréchet space

$$
\Lambda_{\infty}(\alpha) = \{x = (x_k)\} : |x|_p := \sum |x_k| \exp(pa_k) < \infty, \qquad p \in \mathbb{N},
$$

endowed with the system of norms $\{|x|_p\}$; it is called the *power series space of* infinite type with the exponent sequence α .

Definition 3. For a Fréchet space X satisfying both properties (DN) and (Ω) take p as in Definition 1 and q as in Definition 2 for a chosen p. The sequence

$$
\alpha_k := -\ln d_k \left(U_q, U_p \right),\tag{2}
$$

where d_k means the k-th Kolmogorov diameter (see e.g., [5]), is called an associated exponent sequence of X.

The following important result is due to Aytuna-Krone-Terzioğlu [1].

Theorem 4. Let X be a nuclear Frechet space satisfying properties (DN) and (Ω) and its associated exponent sequence $\alpha = (\alpha_k)$ is such that

$$
\limsup_{k \to \infty} \frac{\alpha_{2k}}{\alpha_k} < \infty. \tag{3}
$$

Then $X \simeq \Lambda_{\infty}(\alpha)$.

If D is an open set on a Stein manifold Ω , then $A(D)$ denotes the Fréchet space of analytic functions on D with topology of locally uniform convergence on D . If K is a compact subset of Ω , then $A(K)$ denotes the space of all analytic germs on K with the inductive topology: $A(K) = \liminf_{p \to \infty} A(D_p)$, where D_p is any sequence of open sets such that $D_{p+1} \subset D_p$ and $\cap D_p = K$.

As an application of the theorem 4, Aytuna-Krone-Terzioğlu obtained in [1] the following result, solving a long-standing problem on isomorphisms of spaces of analytic functions.

Theorem 5. Let Ω be a Stein manifold. The following statements are equivalent:

- (i) $A(\Omega) \simeq A(\mathbb{C}^n),$
- (ii) $A(\Omega) \in (DN)$,
- (iii) Ω satisfies the Liouville principle for plurisubharmonic functions, i.e. a bounded plurisubharmonic function on Ω must be an identical constant.

It is worth to notice that the equivalence (ii) \iff (iii) was stated in [11] and proved in [12] (not published).

Our aim here is, applying Theorem 4, to characterize the isomorphism

$$
A(K) \simeq A(\{0^n\}),\tag{4}
$$

where K is a compact set on a Stein manifold Ω , dim $\Omega = n$, and 0^n is the origin of \mathbb{C}^n .

It was proved in [9] that the isomorphism (4), for $K \subset \overline{\mathbb{C}}$, $K \neq \overline{\mathbb{C}}$, is equivalent to the polarity of K ; on the other hand, it was proved there that the isomorphism $A(D) \simeq A(\mathbb{C})$ for $D \subset \overline{\mathbb{C}}, D \neq \overline{\mathbb{C}}$, is equivalent to the polarity of the compact set $\overline{C} \setminus D$, what is the same that D has the Liouville principle for subharmonic functions. Due to the Grothendieck-Köthe-Silva duality, these two cases derive one from the other. On the contrary, because of the lack of a proper duality in multidimensional case, a general characterization of (4) cannot be derived from Theorem 5 and requires special consideration. Our main result on the characterization of the isomorphism (4) will be proved in Section 4 after some preparations: we consider in Section 2 a pluripotential counterpart of (4) - the essential pluripolarity, in whose terms the relation $A(K)^* \in (DN)$ is characterized in Section 3.

2. Complete and essential pluripolarity

Given a compact set K on a Stein manifold Ω and its open neighborhood D, consider the extremal functions

$$
\omega^{\circ}(D, K; z) := \sup \{ u(z) : u \in P(D, K) \},
$$

$$
\omega(D, K; z) := \limsup_{\zeta \to z} \omega^{\circ}(D, K; \zeta),
$$

where $P(D, K)$ is the set of all $u \in Psh(D)$ such that $u|_K \leq 0$ and $u < 1$ in D.

An open set D on a Stein manifold Ω is called *strictly pluriregular*, if there is an open set $G \supseteq \overline{D}$ and a continuous function $u \in Psh(G)$ such that $D =$ ${z \in G : u(z) < 0}$. A compact set $K \subset \Omega$ is called *pluriregular* if $\omega(D, K; z) \equiv 0$ on K for any neighborhood $D \supset K$.

A set E on a Stein manifold Ω is called *complete pluripolar on* Ω if there exists a function $u \in Psh(\Omega)$ such that $E = \{z \in \Omega : u(z) = -\infty\}$. In the one-dimensional situation ($\Omega = \mathbb{C}$), the notions of polarity and complete polarity coincide for G_{δ} -sets. In several variables, this is no longer true even for compact sets: for instance, a closed disk in a one-dimensional plane $\Gamma \subset \mathbb{C}^2$ is pluripolar in \mathbb{C}^2 but not complete pluripolar in \mathbb{C}^2 .

In connection with studying isomorphisms of spaces of analytic functions, a somewhat more complicated notion is needed, which we consider only for compact sets.

Definition 6. A compact set K on a Stein manifold Ω is called *essentially pluripo*lar if there exists its open Runge neighborhood $D \subset \Omega$ such that $\hat{K}_{\tilde{D}}$ is complete pluripolar on the holomorphic envelope \tilde{D} (which can be realized as a Riemann surface over Ω).

Let E be logarithmically polar set in $\mathbb{R}^{2n} = \mathbb{C}^n$, that is there exists a Borel non-negative measure μ supported by \overline{E} such that the *logarithmic potential*

$$
U^{\mu}(z) := \int \ln |\zeta - z| \ d\mu_{\zeta} \tag{5}
$$

is equal to $-\infty$ on E and only on E. Then E is completely pluripolar, because the function $U^{\mu}(z)$ is plurisubharmonic on \mathbb{C}^{n} and such that E consists of all its poles.

If a compact set $K \subset \Omega$ is complete pluripolar then, obviously, $K = \widehat{K}_{\Omega}$, so K is essentially pluripolar.

Given a pluripolar set $E \subset \Omega$, one can consider its pluripolar hull on an open neighborhood $D \subset \Omega$:

$$
E_D^- = \{ z \in D : u(z) = -\infty, \ \forall u \in \Pi_D(E) \},
$$

where $\Pi_D(E)$ is the collection of all functions $u \in Psh(D)$ bounded on D and equal $-\infty$ on E.

Lemma 7 ([4]). Let K be a compact subset of a strictly pluriregular domain D on a Stein manifold Ω . Then

$$
K_D^- = \{ z \in D : \omega^0(D, K; z) < 1 \}. \tag{6}
$$

Proposition 8. Let K be a Runge compact set on a Stein manifold Ω (i.e., $A(\Omega)$) is dense in the space $A(K)$). Then the following statements are equivalent:

- (i) $K_{\Omega}^- = \hat{K}_{\Omega}$;
- (ii) there exists a function $\Psi \in Psh(\Omega) \cap C(\Omega \setminus \hat{K}_{\Omega})$ such that $\hat{K}_{\Omega} = \{z \in \Omega :$ $\Psi(z) = -\infty$.

Proof. We need only to prove (i) \Rightarrow (ii). Take a strongly pseudoconvex open neighborhood $G \supset \hat{K}_{\Omega}$. By Lemma 7, we have $\omega^{0}(G, \tilde{K}_{\Omega}; z) \equiv 1$ on $\overline{G} \setminus \hat{K}_{\Omega}$. Take a sequence of pluriregular compact sets $K_{\nu} \Downarrow \widehat{K}_G$. Then $\omega(G, K_{\nu}; z)$ is a nondecreasing sequence of continuous functions converging to 1 on $\overline{G} \setminus \overline{K}_G$. By Dini's theorem, for every $m \in \mathbb{N}$ we have

$$
\alpha_{\nu}^{(m)} := \sup\{1 - \omega(G, K_{\nu}; z) : z \in \overline{G} \setminus K_m^-\} \to 0
$$

as $\nu \to \infty$. Choose a sequence of positive numbers γ_{ν} so that

$$
\sum_{\nu=1}^{\infty} \gamma_{\nu} = +\infty, \qquad \sum_{\nu=1}^{\infty} \gamma_{\nu} \, \alpha_{\nu}^{(m)} < \infty, \quad m \in \mathbb{N}.
$$

Then the function $\varphi(z) = \sum_{\nu=1}^{\infty} \gamma_{\nu}(\omega(G, K_{\nu}; z) - 1)$ is continuous on $G \setminus \hat{K}_G$, plurisubharmonic on G and $\hat{K}_G = \{z \in G : \varphi(z) = -\infty\}$. Since Ω is a Runge neighborhood of K, we have $\hat{K}_{\Omega} = \hat{K}_{G}$. A function $\Psi \in Psh(\Omega) \cap C(\Omega \setminus \hat{K}_{G})$, coinciding with φ on a neighborhood of the set K, can be constructed now with the help of Theorem 5.1.6 [2].

Here we present a certain class of complete pluripolar compact sets.

Definition 9 (cf. [7]). A function f defined on a compact set $E \subset \mathbb{C}^n$ is called quasi-entire (in a sense of S. N. Bernstein) if there exists a sequence of polynomials $P_k(z)$ of degree s_k such that

$$
\lim_{k \to \infty} \frac{\ln|f(z) - P_k(z)|_E}{s_k} = -\infty;\tag{7}
$$

it is called *quasi-entire strictly on* E if for every $z_0 \in \mathbb{C}^n \setminus E$ there exists a sequence of polynomials $P_k(z)$ of degree s_k satisfying (7) and such that the sequence ${P_k(z_0)}$ does not converge, that is either has at least two limit points in $\mathbb C$ or $\limsup_{k\to\infty}$ $|P_k(z_0)| = +\infty$.

Example 10. A lacunary power series

$$
\sum_{m=1}^{\infty} \xi_m z^{s(m)}, \qquad \frac{s(m+1)}{s(m)} \to \infty,
$$

satisfying the conditions

$$
\lim_{m \to \infty} \frac{\ln |\xi_m|}{s(m)} = 0, \qquad \lim_{m \to \infty} \frac{\ln |\xi_{m+1}|}{s(m)} = -\infty,
$$

defines a C^{∞} -function $f(z)$ quasi-entire strictly on the closed disk $E = \{|z| \leq 1\}$.

Proposition 11. Let f be a function quasi-entire strictly on a pluriregular compact set $E \subset \mathbb{C}^n$. Then its graph $K = \{(z, f(z)) : z \in E\}$ is complete pluripolar in \mathbb{C}^{n+1} .

Proof. Given a point $a = (z_0, w_0) \in \mathbb{C}^{n+1} \setminus K$, we look for a function $u \in$ $Psh(\mathbb{C}^{n+1})$ such that $u(z,w) = -\infty$ on K, $u(z_0, w_0) \neq -\infty$. First suppose that $z_0 \notin E$. Take a sequence of polynomials $\{P_k\}$ existed for z_0 by Definition 9 and choose a subsequence (k_{ν}) so that

$$
|w_0 - P_{k_\nu}(z_0) \ge \delta \tag{8}
$$

for some $\delta > 0$ and all ν . Since $P_k(z)$ converges uniformly on E we have $|P_k|_E \leqslant M$ with some constant M. Hence, by the Bernstein-Siciak Lemma

$$
\ln |P_k(z)| \leqslant \ln M + s_k \, g_E(z), \qquad z \in \mathbb{C}^n,\tag{9}
$$

where q_E is the pluricomplex Green function. Then a desired function can be constructed as a series (cf. [8])

$$
u(z, w) = \sum_{\nu=1}^{\infty} \gamma_{\nu} \left[\frac{\ln |w - P_{k_{\nu}}(z)|}{s_{k_{\nu}}} - C_{\nu} \right],
$$
 (10)

where the sequences of positive numbers (C_{ν}) and (γ_{ν}) are chosen so that

$$
C_{\nu} \to \infty, \qquad \sum_{\nu=1}^{\infty} \gamma_{\nu} C_{\nu} < \infty, \qquad \sum_{\nu=1}^{\infty} \frac{\gamma_{\nu} \ln|f - P_{k_{\nu}}|_{E}}{s_{k_{\nu}}} = -\infty. \tag{11}
$$

Indeed, the series converges at each point (z, w) , in view of (7) , (11) ; its sum is plurisubharmonic, since on each ball \mathbb{B}_r all but finite number summands are nonpositive, due to the estimate (9); by the construction $u \equiv -\infty$ on K and, taking into account (8), $u(z_0, w_0) \neq -\infty$.

Consider now the case $z_0 \in E$. Since $(z_0, w_0) \notin K$, we have that $|w_0 - f(z_0)| \geq$ 2δ for some $\delta > 0$. Take a sequence of polynomials $\{P_k\}$ satisfying (7). Then there exists $m \in \mathbb{N}$ such that $|f(z_0) - P_k(z_0)| < \delta$ for $k > m$. Therefore the condition (8) holds for the subsequence $k_{\nu} = m + \nu$. Now the function u is constructed as in $(7), (11)$.

Example 12. Let

$$
K = \{(z, f(z)) \in \mathbb{C}^2 : |z| \leq 1\}
$$

where f is the function from Example 10. Then K is a complete (hence, essentially) pluripolar compact set in \mathbb{C}^2 , which

- a) is not logarithmically polar,
- b) has proper compact subsets that are not complete pluripolar.

The statement b) is contained in the following proposition.

Proposition 13. Let L be a proper compact subset of the compact set K described above. In order that the set L be essentially pluripolar in \mathbb{C}^2 , it is necessary and sufficient that its projection $M = \{z \in \mathbb{C} : (z, w) \in L\}$ to the plane \mathbb{C}_z be polar.

Proof. If the projection M is polar in \mathbb{C}_z , then $M = \{z \in \mathbb{C} : U^{\mu}(z) = -\infty\}$ for some measure μ supported by M. Carrying the measure μ over L by means of the map $g(\zeta) = (\zeta, f(\zeta))$, we get a measure ν in \mathbb{C}^2 supported by L and such that $U^{\nu}(z, w) = -\infty$, $(z, w) \in L$, that is, L is a logarithmically polar compact set in \mathbb{C}^2 . Thus L is complete (hence essentially) pluripolar in \mathbb{C}^2 .

Now assume L to be essentially pluripolar in \mathbb{C}^2 . Then it has a Runge neighborhood D that can be chosen as

$$
D = \{(z, w) : z \in \Delta, \ |w - P(z)| < \varepsilon\},
$$

where $P(z)$ is a polynomial sufficiently close (uniformly on $E = \{|z| \leq 1\}$) to the function $f(z)$, and Δ is an open neighborhood of the compact set M in $\mathbb C$ with the boundary consisting of finitely many smooth Jordan curves. By Proposition 8, there exists a function $\psi \in Psh(D) \cap C(D \setminus \widehat{L}_D)$ such that

$$
\hat{L}_D = \{ (z, w) \in D : \psi(z, w) = -\infty \}.
$$

Then the function $\varphi(z) = \psi(z, f(z)), z \in G = \Delta \cap E^{\circ}$, is subharmonic in G and such that:

- a) $\varphi(z) \equiv -\infty$ on the set $M \cap G$;
- b) $\lim_{\zeta \to z} \varphi(\zeta) = -\infty$ if $z \in M \cap \partial G$;
- c) $\varphi(z) \neq -\infty$ on any connected component of the set G. By results from Potential Theory, this implies polarity of M in \mathbb{C} .

In the definition of the essential pluripolarity of a compact K , one cannot drop out the condition on D to be a Runge neighborhood for K . We illustrate this by the next example.

Example 14. Consider a compact set $K = \{(z, f(z)) : |z| = 1\}$, where f is the function from Example 10. If we take its open pseudoconvex Runge neighborhood $D = \{1/2 < |z| < 2\} \times \mathbb{C}$, then $K = K_D$. So, by Proposition 13, the set K is not essentially pluripolar. But if D is a sufficiently large polydisk (which is not a Runge neighborhood for K), then K_D is complete pluripolar in D.

Problem 15. May it happen that K is essentially pluripolar, but $K \neq K_{\tilde{D}}$?

3. Characterization of $A (K)^* \in (DN)$

In what follows \hookrightarrow means a dense linear continuous embedding of locally convex spaces. Let $H_1 \hookrightarrow H_0$ be a couple of Hilbert spaces with compact embedding, then there is a doubly orthogonal basis $\{e_k\} \subset H_1$ such that

$$
||e_k||_{H_0} = 1, \qquad ||e_k||_{H_1} =: \mu_k (H_0, H_1) = \mu_k \nearrow \infty.
$$

The Hilbert scale, generated by the couple H_0, H_1 , is the one-parameter family $H_{\alpha} = (H_0)^{1-\alpha} (H_1)^{\alpha}$, defined by the scalar products

$$
(x,y)_{H_{\alpha}} := \sum_{k \in \mathbb{N}} \mu_k^{2\alpha} (x,e_k)_{H_0} \overline{(y,e_k)_{H_0}}, \qquad \alpha \in \mathbb{R}.
$$

The equality for Kolmogorov diameters takes place (see, e.g., [5], Corollary 3):

$$
d_k (\|\mathbb{B}\|_{H_1}, \|\mathbb{B}\|_{H_0}) = \mu_{k+1}^{-1}.
$$

Proposition 16 ([10]). Let K be a pluriregular compact set on a Stein manifold Ω and $D \in \Omega$ its Runge neighborhood, which is strictly pluriregular and has no components disjoint with K . Let H_0 , H_1 be Hilbert spaces such that

$$
A(\overline{D}) \hookrightarrow H_1 \hookrightarrow A(D) \hookrightarrow A(K) \hookrightarrow H_0 \hookrightarrow AC(K),
$$

where $AC(K)$ is a completion of of $A(K)$ by the norm of $C(K)$. Then the Hilbert scale H_{α} , generated by the couple H_0 , H_1 , complies with the following embeddings:

$$
A(K_{\alpha}) \hookrightarrow H_{\alpha} \hookrightarrow A(D_{\alpha}), \qquad 0 < \alpha < 1,
$$

where $D_{\alpha} = \{z \in D : \omega(D, K; z) < \alpha\}$ and $K_{\alpha} = \{z \in D : \omega(D, K; z) \leq \alpha\}$. Therewith

$$
\mu_k \asymp k^{1/n}, \qquad k \to \infty \tag{12}
$$

Remark 17. The weak equivalence (12) goes back to Kolmogorov [3] (in terms of asymptotic behavior of ε -entropy); for a direct proof see [10]. Notice that, novadays, the exact asymptotics $\mu_k \sim \tau k^{1/n}$ is known ([13]), but we use here the weaker result (12).

Lemma 18. Let K be a compact set on a Stein manifold Ω . The space $A(K)^*$ satisfies the property (DN) if and only if K is essentially pluripolar.

Proof. Suppose that K is essentially pluripolar. Then there is its Runge neighborhood $G \in \Omega$ such that $K_{\widetilde{G}} = \widehat{K}_{\widetilde{G}}$, where \widetilde{G} is the envelope of holomorphy of G . There is a strictly pluriregular open set $D : \widehat{K}_{\widetilde{G}} \subset D \Subset \widetilde{G}$ so that $K_D^- = \widehat{K}_D$. One can write $A(K) = A(\widehat{K}_D)$, identifying analytic germs on \widehat{K}_D with their counterparts on K . Thus we assume hereafter, without loss of generality, that $K = K_D^- = \widehat{K}_D$. Then, by Lemma 7,

$$
\omega^{\circ}(D, K; z) \equiv 1, \qquad z \in D \setminus K. \tag{13}
$$

Take a sequence of pluriregular compact sets $K_q \Downarrow K$. Then, by [10, 8],

$$
\omega(D, K_r; z) \uparrow \omega^{\circ}(D, K; z), \qquad z \in D.
$$

The functions $\omega(D, K_r; z)$ are continuous on D and extendable continuously onto \overline{D} . Therefore, due to (13) and Dini's Theorem, the sequence $\omega(D, K_r; z)$ converges uniformly on each $D \setminus \text{int } K_q$, $q \in \mathbb{N}$ to the identical unity. Hence

$$
\forall q \exists r \mid \omega(D, K_r; z) > \frac{1}{2}, \qquad z \in D \smallsetminus \text{int } K_q. \tag{14}
$$

Take Hilbert spaces H_0 and H_q , complying with the following linear continuous embeddings:

$$
A(\overline{D}) \hookrightarrow H_0 \hookrightarrow A(D); \qquad A(K_q) \hookrightarrow H_q \hookrightarrow AC(K_q), \quad q \in \mathbb{N}.\tag{15}
$$

Then

$$
A(K) = \liminf_{q} H_q, \qquad A(K)^* = \limproj_{q} H_q^*.
$$

Let $K_r^{\alpha} := \{ z \in D : \omega(D, K_r; z) \leq \alpha \}$ and $H_r^{\alpha} = (H_r)^{1-\alpha} (H_0)^{\alpha}$ be the Hilbert scale spanned on the spaces H_r and H_0 . Applying Proposition 16 for $\alpha = \frac{1}{2}$, we get the embeddings:

$$
H_r^{1/2} \hookleftarrow A\left(K_r^{1/2}\right), \qquad r \in \mathbb{N}.\tag{16}
$$

The relation (14) can be written in the form

$$
\forall q \exists r = r(q) \mid K_r^{1/2} \subset \text{int } K_q,
$$

therefore, taking into account (15) and (16), we have:

$$
H_r^{1/2} \hookleftarrow A\left(K_r^{1/2}\right) \hookleftarrow A\left(\text{int } K_q\right) \hookleftarrow H_q, \qquad r = r\left(q\right). \tag{17}
$$

Let $G_r^{\alpha} = (H_r^{\alpha})^* = (H_0^*)^{\alpha} (H_r^*)^{1-\alpha}$ be the dual Hilbert scale. Then (17) implies that there is a constant C such that

$$
||x'||_{H_q^*} \leqslant C ||x'||_{G_r^{1/2}}, \qquad x' \in A(K)^*.
$$

Applying the multiplicative property for the Hilbert scale G_r^{α} , we get finally

$$
\forall q \exists r \exists C \mid ||x'||_{H_q^*} \leq C \left(||x'||_{H_0^*} \right)^{1/2} \cdot \left(||x'||_{H_r^*} \right)^{1/2},
$$

which means that $A(K)^* \in (DN)$.

Suppose now that $\overrightarrow{A}(K)^* \in (DN)$. First we show that K has a Runge neighborhood. Assuming the contrary, there is a basis ${G_p}_{p \in \mathbb{N}}$ of open neighborhoods of K such that $G_{p+1} \n\in G_p$ and such that the set $A(G_p)$ is not dense in the space $A(K)$ for each $p \in \mathbb{N}$. Take a sequence of Hilbert spaces H_p so that

$$
A\left(\overline{G}_{p+1}\right) \hookrightarrow H_p \hookrightarrow A\left(G_p\right), \qquad p \in \mathbb{N}.\tag{18}
$$

Since the closure of H_p in $A(K)$ is a proper subspace of $A(K)$ for every $p \in \mathbb{N}$, there is, by the Hahn-Banach Theorem, a non-trivial functional $x'_p \in A(K)^*$ vanishing identically on H_p , hence $||x'_p||_{H_p^*} = 0$. The space $A(K)^* = \limproj_i H_q^*$

is a Hausdorff space, hence there exists $q = q(p)$ such that $||x'_{p}||_{H_q^*} > 0$. Thus

$$
\forall p \exists q \forall r \forall C \mid (\left\|x'_{p}\right\|_{H^{*}_{q}})^{2} > 0 = C \left\|x'_{p}\right\|_{H^{*}_{p}} \cdot \left\|x'_{p}\right\|_{H^{*}_{r}},
$$

which contradicts to the assumption $A(K)^* \in (DN)$. So it is proved that K has a Runge neighborhood $G \in \Omega$.

We prove now, that $A(K)^* \in (DN)$ implies that K is essentially pluripolar. Let G be a Runge neighborhood of K and \tilde{G} its envelope of holomorphy. Choose a sequence of strictly pluriregular open sets $\{D_q\}$, holomorphically convex with respect to \widetilde{G} and such that $D_{p+1} \Subset D_p$, $\cap D_p = \widehat{K}_{\widetilde{G}}$. Let H_q be Hilbert spaces which comply with linear continuous dense embeddings

$$
A\left(\overline{D_q}\right) \hookrightarrow H_q \hookrightarrow AC\left(\overline{D_q}\right), \qquad q \in \mathbb{N} \tag{19}
$$

It follows from $A(K)^* \in (DN)$ that there is p so that for every q and $0 < \delta < 1$ there is $r = r(q, \delta)$ and a constant C such that

$$
\|x'\|_{H_q^*} \leq C \, \left(\|x'\|_{H_p^*}\right)^{1-\delta} \cdot \left(\|x'\|_{H_r^*}\right)^{\delta}, \qquad x' \in A\left(K\right)^*.
$$
 (20)

Since $A(K)^* \simeq A(\widehat{K}_{D_p})^*$ and (DN) is an invariant, we can assume that $\widehat{K}_{D_p} = K$. By Proposition 8, it suffices to prove that K is pluripolar and $K_{D_p}^- = K$. Suppose the contrary, that either (a) K is pluripolar but $K_{D_p}^-$, $K \neq \emptyset$, or (b) K is not pluripolar. In the case (a), due to Lemma 7, there exists $\delta: 0 < \delta < \frac{1}{4}$ such that the set

$$
L_{\delta} := \{ z \in D_p : \omega^{\circ} \left(D_p, K; z \right) < 1 - 4\delta \}
$$

has non-empty intersection with $D_p\setminus K$; on the other hand, $L_{\delta}\setminus K\neq\emptyset$ is evident in the case (b).

Thus, it is sufficient to show that the condition $L_{\delta} \setminus K \neq \emptyset$ with some $\delta > 0$ leads to a contradiction. Fix q so that $L_{\delta} \setminus K_q \neq \emptyset$ then choose a pseudoconvex open set $V: \overline{D_q} \subset V \subset D_p$ so that

$$
L_{\delta} \smallsetminus V \neq \varnothing.
$$

By pseudoconvexity of V there exists a function $f \in A(V)$, such that

$$
spec f = V.\t\t(21)
$$

Let ${e_k}_{k\in\mathbb{N}}$ be a doubly orthogonal basis generated by the pair (H_p, H_r) and such that

$$
||e_k||_{H_r} = 1,
$$
 $||e_k||_{H_p} =: \mu_k \nearrow \infty.$

Accordingly, $||e'_k||_{H^*_r} = 1$, $||e'_k||_{H^*_p} = \mu_k^{-1}$ for the biorthogonal system $\{e'_k\}$. Therefore, by (20),

$$
||e'_k||_{H_r^*} \leqslant C \ \mu_k^{\delta - 1}.
$$

It follows from $\omega(D_p, \overline{D_r}; z) \leqslant \omega^{\circ}(D_p, K; z)$ that

$$
L_{\delta} \subset \Phi_{\delta} := \{ z \in D_p : \omega(D_p, K; z) < 1 - 3\delta \}
$$

Hence, by Two Constant Theorem,

$$
|e_k|_{\Phi_\delta} \leqslant C_1 \ \mu_k^{1-2\delta}.\tag{23}
$$

As $f \in A(V) \subset A(\overline{D_q}) \subset H_q$, we consider the expansion of f in the space H_q :

$$
f = \sum_{k \in \mathbb{N}} e'_k(f) \ e_k. \tag{24}
$$

Due to (22), (23), we have the estimate

$$
|e'_{k}(f)| |e_{k}|_{\Phi_{\delta}} \leq C_{1} \|e'_{k}\|_{H_{q}^{*}} \|f\|_{H_{q}} \mu_{k}^{1-2\delta} \leq C C_{1} \|f\|_{H_{q}} \mu_{k}^{-\delta}.
$$

Since, by Proposition 16, $\ln \mu_k \leq k^{1/n}$ as $k \to \infty$, this estimate implies that the series (24) converges uniformly on Φ_{δ} to a function $g \in A(\Phi_{\delta})$. Taking into account that, by the construction, L_{δ} has a non-empty intersection with V, we obtain the contradiction to (21).

4. Isomorphism $A(K) \simeq A(\{0^n\})$

Lemma 19. Let K be a Runge compact set on a Stein manifold $Ω$. Then the Fréchet space $A(K)^*$ has the property (Ω) .

Proof. Since $A(K) \simeq A(\widehat{K}_{\Omega})$ and the property (Ω) is invariant, we may assume that $\widehat{K}_{\Omega} = K$. Take a sequence of strictly pluriregular open Runge neighborhoods ${D_p}$ of K, so that

$$
D_{p+1} \Subset D_p, \qquad \bigcap D_p = K,
$$

and every D_p has no components disjoint with K. Let $X = A(K)^*$. Since $A(K)$ is reflexive, we can identify $X^* = A(K)^{**}$ with $A(K)$, by the canonical embedding. Then the norms

$$
|x|_p := \sup \{|x(z)| : z \in D_p\}
$$

are conorms generating the topology in X^* . Given an arbitrary p take $q = p + 1$. For any r define the number

$$
\delta = \delta(p, r) := \sup \left\{ \omega \left(D_p, \overline{D_r}, z \right) : z \in D_q \right\}.
$$

Then $0 < \delta < 1$ and, by the Two Constants Theorem, we have

$$
|x|_q \leq (|x|_p)^{1-\delta} (|x|_r)^{\delta}, \quad x \in A(K) = X^*,
$$

that means $A(K)^*$ $\in (\Omega).$

Theorem 20. Let K be a compact set on a Stein manifold Ω , dim $\Omega = n$. Then the following statements are equivalent:

- (i) $A(K)^* \simeq A(\mathbb{C}^n);$
- (ii) $A(K) \simeq A(\{0^n\});$
- (iii) $A (K)^* \in (DN);$
- (iv) K is essentially pluripolar on Ω .

Proof. The equivalence (iii) \iff (iv) is proved in Lemma 18. The relations $(i) \implies (ii) \implies (iii)$ are evident. It remains to prove $(iii) \implies (i)$. By Lemma 18, K is a Runge compactum. Hence, by Lemma 19, $A(K)^* \in (0)$. It follows from (12) that the associated exponent sequence (α_k) of $A(K)^*$ is determined by the weak equivalence: $\alpha_k \asymp k^{1/n}$. All conditions of the Theorem 4, including (3), are fulfilled. Therefore $\hat{A}(K)^* \simeq \Lambda_{\infty}((k^{1/n})) \simeq A(\mathbb{C})$ $\binom{n}{k}$.

Corollary 21. Let K be as in Proposition 11, then $A(K) \simeq A(\{0^{n+1}\})$. In particular, $A(K) \simeq A(\{0^2\})$ for K from Example 12.

Acknowledgement. The author thanks the reviewer for important remarks.

References

- [1] A. Aytuna, J. Krone, T. Terzioğlu, Complemented infinite type power series subspaces of nuclear Fréchet spaces, Math. Ann. 283 (1989), 193–202.
- [2] L. Hörmander, An Introduction to Complex Analysis in Several Variables North Holland Publishing Company, 1973.
- [3] A. N. Kolmogorov, On a linear dimension of topological vector spaces, Doklady AN SSSR 120 (1958), 239–241.
- [4] N. Levenberg, E. Poletsky, Pluripolar hulls, Michigan Math. J. 45 (1999), 151–162.
- [5] B. Mityagin, Approximative dimension and bases in nuclear spaces, Russian Math. Surveys 16 (1961), 59–127.
- [6] R. Meise, D. Vogt, Introduction to Functional Analysis, Clarendon Press, Oxford, 1997.
- [7] W. Pleśniak, Quasianalytic functions in the sense of Bernstein, Dissertationes Mathematicae (Rozprawy Matematyczne), Warszawa, PLN, 1977, 70pp.
- [8] A. Sadullaev, Plurisubharmonic measures and capacity on complex manifolds, Uspekhi Matem. Nauk 36 (1981), 53–105.
- [9] V. Zakharyuta, Spaces of functions of one variable, analytic in open sets and on compacta, Math. USSR Sbornik 7 (1970), 77–88.
- [10] V. Zakharyuta, Extremal plurisubharmonic functions, Hilbert scales, and the isomorphism of spaces of analytic functions of several variables, I, II. Teor. Funkciĭ, Funkcional. Anal. i Priložen. 19 (1974), 133–157; ibid. 21 (1974), 65–83.
- [11] V. Zakharyuta, Isomorphism of spaces of analytic functions, Sov. Math. Dokl. 22 (1980), 631–634.
- [12] V. Zakharyuta, Spaces of analytic functions and maximal plurisubharmonic functions, Dr. Sci. Thesis, Rostov State University, Rostov-na-Donu, 1984, 281pp.
- [13] V. Zakharyuta, Kolmogorov problem on widths asymptotics and pluripotential theory, Contemporary Mathematics 481 (2009), 171–196.

Address: V. Zakharyuta: Sabancı University, 34956 Tuzla/İstanbul, Turkey.

E-mail: zaha@sabanciuniv.edu

Received: 3 January 2018; revised: 6 March 2018