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SPACES OF ANALYTIC FUNCTIONS ON ESSENTIALLY
PLURIPOLAR COMPACTA

Vyacheslav Zakharyuta

Abstract: LetA (K) be the locally convex space of all analytic germs on a compact subset K
of a Stein manifold Ω, dim Ω = n, endowed with the standard inductive topogy, let 0n denote
the origin of Cn, The main result is the characterisation of the isomorphism A (K) ' A ({0n})
in terms of pluripotential theory. It is based on the general result of Aytuna-Krone-Terzioğlu on
the characterisation of power series spaces of infinite type in terms of interpolational invariants
(DN) and (Ω).
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1. Preliminaries

Let X be a Fréchet space, {Up, p ∈ N} a base of absolutely convex neighborhoods
of the origin in X and

{
|x|p

}
the corresponding system of seminorms in X; the

family
U◦p := {x′ ∈ X∗ : |x′ (x)| 6 1} , p ∈ N, (1)

is a basis of the bornology of X∗, that is every bounded set M in X∗ is contained
in some U◦p ; we consider also the corresponding system of non-bounded norms
(shortly, conorms) on X∗:

|x′|∗p := sup {|x′ (x)| : x ∈ Up} , x′ ∈ X∗.

Following interpolation invariants turn to be an important tool in theory of locally
convex spaces, especially, in the structure theory of power series spaces ([6]).

Definition 1. A Fréchet space X has property (DN) if there is p so that for every
q there is r and a constant C such that

|x|2q 6 C |x|p |x|r , x ∈ X.
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Definition 2. A Fréchet space X has property (Ω) if for every p there is q such
that for every r there is 0 < δ < 1 and C > 0 such that

|x′|∗q 6 C
(
|x′|∗p

)1−δ (
|x′|∗r

)δ
, x′ ∈ X.

Given a non-decreasing sequence of positive numbers α = (αk) leading to ∞,
we consider the Fréchet space

Λ∞ (α) = {x = (xk)} : |x|p :=
∑
|xk| exp (pak) <∞, p ∈ N,

endowed with the system of norms
{
|x|p

}
; it is called the power series space of

infinite type with the exponent sequence α.

Definition 3. For a Fréchet space X satisfying both properties (DN) and (Ω)
take p as in Definition 1 and q as in Definition 2 for a chosen p. The sequence

αk := − ln dk (Uq, Up) , (2)

where dk means the k-th Kolmogorov diameter (see e.g., [5]), is called an associated
exponent sequence of X.

The following important result is due to Aytuna-Krone-Terzioğlu [1].

Theorem 4. Let X be a nuclear Frechet space satisfying properties (DN) and (Ω)
and its associated exponent sequence α = (αk) is such that

lim sup
k→∞

α2k

αk
<∞. (3)

Then X ' Λ∞ (α).

If D is an open set on a Stein manifold Ω, then A (D) denotes the Fréchet space
of analytic functions on D with topology of locally uniform convergence on D. If
K is a compact subset of Ω, then A (K) denotes the space of all analytic germs on
K with the inductive topology: A (K) = limind

p→∞
A (Dp), where Dp is any sequence

of open sets such that Dp+1 ⊂ Dp and ∩Dp = K.
As an application of the theorem 4, Aytuna-Krone-Terzioğlu obtained in [1]

the following result, solving a long-standing problem on isomorphisms of spaces of
analytic functions.

Theorem 5. Let Ω be a Stein manifold. The following statements are equivalent:

(i) A (Ω) ' A (Cn),
(ii) A (Ω) ∈ (DN),
(iii) Ω satisfies the Liouville principle for plurisubharmonic functions, i.e.

a bounded plurisubharmonic function on Ω must be an identical constant.
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It is worth to notice that the equivalence (ii) ⇐⇒ (iii) was stated in [11] and
proved in [12] (not published).

Our aim here is, applying Theorem 4, to characterize the isomorphism

A (K) ' A ({0n}) , (4)

where K is a compact set on a Stein manifold Ω, dim Ω = n, and 0n is the origin
of Cn.

It was proved in [9] that the isomorphism (4), for K ⊂ C, K 6= C, is equivalent
to the polarity of K; on the other hand, it was proved there that the isomorphism
A (D) ' A (C) for D ⊂ C, D 6= C, is equivalent to the polarity of the compact
set C r D, what is the same that D has the Liouville principle for subharmonic
functions. Due to the Grothendieck-Köthe-Silva duality, these two cases derive one
from the other. On the contrary, because of the lack of a proper duality in multidi-
mensional case, a general characterization of (4) cannot be derived from Theorem
5 and requires special consideration. Our main result on the characterization of
the isomorphism (4) will be proved in Section 4 after some preparations: we con-
sider in Section 2 a pluripotential counterpart of (4) - the essential pluripolarity,
in whose terms the relation A (K)

∗ ∈ (DN) is characterized in Section 3.

2. Complete and essential pluripolarity

Given a compact set K on a Stein manifold Ω and its open neighborhood D,
consider the extremal functions

ω◦ (D,K; z) := sup {u (z) : u ∈ P (D,K)} ,
ω (D,K; z) := lim sup

ζ→z
ω◦ (D,K; ζ) ,

where P (D,K) is the set of all u ∈ Psh (D) such that u|K 6 0 and u < 1 in D.
An open set D on a Stein manifold Ω is called strictly pluriregular, if there

is an open set G c D and a continuous function u ∈ Psh (G) such that D =
{z ∈ G : u (z) < 0}. A compact set K ⊂ Ω is called pluriregular if ω (D,K; z) ≡ 0
on K for any neighborhood D ⊃ K.

A set E on a Stein manifold Ω is called complete pluripolar on Ω if there
exists a function u ∈ Psh(Ω) such that E = {z ∈ Ω : u(z) = −∞}. In the
one-dimensional situation (Ω = C), the notions of polarity and complete polarity
coincide for Gδ-sets. In several variables, this is no longer true even for compact
sets: for instance, a closed disk in a one-dimensional plane Γ ⊂ C2 is pluripolar in
C2 but not complete pluripolar in C2.

In connection with studying isomorphisms of spaces of analytic functions,
a somewhat more complicated notion is needed, which we consider only for com-
pact sets.
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Definition 6. A compact setK on a Stein manifold Ω is called essentially pluripo-
lar if there exists its open Runge neighborhood D ⊂ Ω such that K̂D̃ is complete
pluripolar on the holomorphic envelope D̃ (which can be realized as a Riemann
surface over Ω).

Let E be logarithmically polar set in R2n = Cn, that is there exists a Borel
non-negative measure µ supported by E such that the logarithmic potential

Uµ (z) :=
∫

ln |ζ − z| dµζ (5)

is equal to −∞ on E and only on E. Then E is completely pluripolar, because
the function Uµ (z) is plurisubharmonic on Cn and such that E consists of all its
poles.

If a compact set K ⊂ Ω is complete pluripolar then, obviously, K = K̂Ω, so K
is essentially pluripolar.

Given a pluripolar set E ⊂ Ω, one can consider its pluripolar hull on an open
neighborhood D ⊂ Ω:

E−D = {z ∈ D : u(z) = −∞, ∀u ∈ ΠD(E)},

where ΠD(E) is the collection of all functions u ∈ Psh(D) bounded on D and
equal −∞ on E.

Lemma 7 ([4]). Let K be a compact subset of a strictly pluriregular domain D
on a Stein manifold Ω. Then

K−D = {z ∈ D : ω0(D,K; z) < 1}. (6)

Proposition 8. Let K be a Runge compact set on a Stein manifold Ω (i.e., A(Ω)
is dense in the space A(K)). Then the following statements are equivalent:

(i) K−Ω = K̂Ω;
(ii) there exists a function Ψ ∈ Psh(Ω) ∩ C(Ω \ K̂Ω) such that K̂Ω = {z ∈ Ω :

Ψ(z) = −∞}.

Proof. We need only to prove (i)⇒ (ii). Take a strongly pseudoconvex open neigh-
borhood G ⊃ K̂Ω. By Lemma 7, we have ω0(G, K̂Ω; z) ≡ 1 on G \ K̂Ω. Take
a sequence of pluriregular compact sets Kν ⇓ K̂G. Then ω(G,Kν ; z) is a non-
decreasing sequence of continuous functions converging to 1 on G \ K̂G. By Dini’s
theorem, for every m ∈ N we have

α(m)
ν := sup{1− ω(G,Kν ; z) : z ∈ G \ K−m} → 0

as ν →∞. Choose a sequence of positive numbers γν so that

∞∑
ν=1

γν = +∞,
∞∑
ν=1

γν α
(m)
ν <∞, m ∈ N.



Spaces of analytic functions on essentially pluripolar compacta 145

Then the function ϕ(z) =
∑∞
ν=1 γν(ω(G,Kν ; z) − 1) is continuous on G \ K̂G,

plurisubharmonic on G and K̂G = {z ∈ G : ϕ(z) = −∞}. Since Ω is a Runge
neighborhood of K, we have K̂Ω = K̂G. A function Ψ ∈ Psh(Ω) ∩ C(Ω \ K̂G),
coinciding with ϕ on a neighborhood of the set K, can be constructed now with
the help of Theorem 5.1.6 [2]. �

Here we present a certain class of complete pluripolar compact sets.

Definition 9 (cf. [7]). A function f defined on a compact set E ⊂ Cn is called
quasi-entire (in a sense of S.N. Bernstein) if there exists a sequence of polynomials
Pk(z) of degree sk such that

lim
k→∞

ln |f(z)− Pk(z)|E
sk

= −∞; (7)

it is called quasi-entire strictly on E if for every z0 ∈ Cn \ E there exists a se-
quence of polynomials Pk(z) of degree sk satisfying (7) and such that the sequence
{Pk(z0)} does not converge, that is either has at least two limit points in C or
lim supk→∞ |Pk(z0)| = +∞.

Example 10. A lacunary power series

∞∑
m=1

ξmz
s(m),

s(m+ 1)

s(m)
→∞,

satisfying the conditions

lim
m→∞

ln |ξm|
s(m)

= 0, lim
m→∞

ln |ξm+1|
s(m)

= −∞,

defines a C∞-function f(z) quasi-entire strictly on the closed disk E = {|z| 6 1}.

Proposition 11. Let f be a function quasi-entire strictly on a pluriregular com-
pact set E ⊂ Cn. Then its graph K = {(z, f (z)) : z ∈ E} is complete pluripolar
in Cn+1.

Proof. Given a point a = (z0, w0) ∈ Cn+1 \ K, we look for a function u ∈
Psh(Cn+1) such that u(z, w) = −∞ on K, u(z0, w0) 6= −∞. First suppose that
z0 /∈ E. Take a sequence of polynomials {Pk} existed for z0 by Definition 9 and
choose a subsequence (kν) so that

|w0 − Pkν (z0) > δ (8)

for some δ > 0 and all ν. Since Pk (z) converges uniformly on E we have |Pk|E 6M
with some constant M . Hence, by the Bernstein-Siciak Lemma

ln |Pk (z)| 6 lnM + sk gE (z) , z ∈ Cn, (9)
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where gE is the pluricomplex Green function. Then a desired function can be
constructed as a series (cf. [8])

u(z, w) =

∞∑
ν=1

γv

[
ln |w − Pkν (z)|

skν
− Cν

]
, (10)

where the sequences of positive numbers (Cν) and (γν) are chosen so that

Cν →∞,
∞∑
ν=1

γνCν <∞,
∞∑
ν=1

γν ln |f − Pkν |E
skν

= −∞. (11)

Indeed, the series converges at each point (z, w), in view of (7), (11); its sum is
plurisubharmonic, since on each ball Br all but finite number summands are non-
positive, due to the estimate (9); by the construction u ≡ −∞ on K and, taking
into account (8), u(z0, w0) 6= −∞.

Consider now the case z0 ∈ E. Since (z0, w0) /∈ K, we have that |w0 − f (z0)| >
2δ for some δ > 0. Take a sequence of polynomials {Pk} satisfying (7). Then there
exists m ∈ N such that |f (z0)− Pk (z0)| < δ for k > m. Therefore the condition
(8) holds for the subsequence kν = m + ν. Now the function u is constructed as
in (7), (11). �

Example 12. Let
K =

{
(z, f (z)) ∈ C2 : |z| 6 1

}
where f is the function from Example 10. ThenK is a complete (hence, essentially)
pluripolar compact set in C2, which

a) is not logarithmically polar,
b) has proper compact subsets that are not complete pluripolar.

The statement b) is contained in the following proposition.

Proposition 13. Let L be a proper compact subset of the compact set K described
above. In order that the set L be essentially pluripolar in C2, it is necessary and
sufficient that its projection M = {z ∈ C : (z, w) ∈ L} to the plane Cz be polar.

Proof. If the projection M is polar in Cz, then M = {z ∈ C : Uµ(z) = −∞}
for some measure µ supported by M . Carrying the measure µ over L by means
of the map g(ζ) = (ζ, f(ζ)), we get a measure ν in C2 supported by L and such
that Uν(z, w) = −∞, (z, w) ∈ L, that is, L is a logarithmically polar compact set
in C2. Thus L is complete (hence essentially) pluripolar in C2.

Now assume L to be essentially pluripolar in C2. Then it has a Runge neigh-
borhood D that can be chosen as

D = {(z, w) : z ∈ ∆, |w − P (z) | < ε},

where P (z) is a polynomial sufficiently close (uniformly on E = {|z| 6 1}) to the
function f(z), and ∆ is an open neighborhood of the compact set M in C with
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the boundary consisting of finitely many smooth Jordan curves. By Proposition 8,
there exists a function ψ ∈ Psh(D) ∩ C(D \ L̂D) such that

L̂D = {(z, w) ∈ D : ψ(z, w) = −∞}.

Then the function ϕ(z) = ψ(z, f(z)), z ∈ G = ∆ ∩ E◦, is subharmonic in G and
such that:

a) ϕ(z) ≡ −∞ on the set M ∩G;
b) limζ→z ϕ(ζ) = −∞ if z ∈M ∩ ∂G;
c) ϕ(z) 6≡ −∞ on any connected component of the set G. By results from

Potential Theory, this implies polarity of M in C. �

In the definition of the essential pluripolarity of a compact K, one cannot drop
out the condition on D to be a Runge neighborhood for K. We illustrate this by
the next example.

Example 14. Consider a compact set K = {(z, f(z)) : |z| = 1}, where f is the
function from Example 10. If we take its open pseudoconvex Runge neighborhood
D = {1/2 < |z| < 2} × C, then K = K̂D. So, by Proposition 13, the set K is
not essentially pluripolar. But if D is a sufficiently large polydisk (which is not
a Runge neighborhood for K), then K̂D is complete pluripolar in D.

Problem 15. May it happen that K is essentially pluripolar, but K 6= K̂D̃?

3. Characterization of A (K)
∗ ∈ (DN)

In what follows ↪→ means a dense linear continuous embedding of locally convex
spaces. Let H1 ↪→ H0 be a couple of Hilbert spaces with compact embedding,
then there is a doubly orthogonal basis {ek} ⊂ H1 such that

‖ek‖H0
= 1, ‖ek‖H1

=: µk (H0, H1) = µk ↗∞.

The Hilbert scale, generated by the couple H0, H1, is the one-parameter family
Hα = (H0)

1−α
(H1)

α, defined by the scalar products

(x, y)Hα :=
∑
k∈N

µ2α
k (x, ek)H0

(y, ek)H0
, α ∈ R.

The equality for Kolmogorov diameters takes place (see, e.g., [5], Corollary 3):

dk
(
‖B‖H1

, ‖B‖H0

)
= µ−1

k+1.

Proposition 16 ([10]). Let K be a pluriregular compact set on a Stein manifold
Ω and D b Ω its Runge neighborhood, which is strictly pluriregular and has no
components disjoint with K. Let H0, H1 be Hilbert spaces such that

A
(
D
)
↪→ H1 ↪→ A (D) ↪→ A (K) ↪→ H0 ↪→ AC (K) ,
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where AC (K) is a completion of of A (K) by the norm of C (K). Then the Hilbert
scale Hα, generated by the couple H0, H1, complies with the following embeddings:

A (Kα) ↪→ Hα ↪→ A (Dα) , 0 < α < 1,

where Dα = {z ∈ D : ω (D,K; z) < α} and Kα = {z ∈ D : ω (D,K; z) 6 α}. There-
with

µk � k1/n, k →∞ (12)

Remark 17. The weak equivalence (12) goes back to Kolmogorov [3] (in terms
of asymptotic behavior of ε-entropy); for a direct proof see [10]. Notice that, no-
vadays, the exact asymptotics µk ∼ τk1/n is known ([13]), but we use here the
weaker result (12).

Lemma 18. Let K be a compact set on a Stein manifold Ω. The space A (K)
∗

satisfies the property (DN) if and only if K is essentially pluripolar.

Proof. Suppose that K is essentially pluripolar. Then there is its Runge neigh-
borhood G b Ω such that K−

G̃
= K̂G̃, where G̃ is the envelope of holomorphy of G.

There is a strictly pluriregular open set D : K̂G̃ ⊂ D b G̃ so that K−D = K̂D.

One can write A (K) = A
(
K̂D

)
, identifying analytic germs on K̂D with their

counterparts on K. Thus we assume hereafter, without loss of generality, that
K = K−D = K̂D. Then, by Lemma 7,

ω◦ (D,K; z) ≡ 1, z ∈ D rK. (13)

Take a sequence of pluriregular compact sets Kq ⇓ K. Then, by [10, 8],

ω (D,Kr; z) ↑ ω◦ (D,K; z) , z ∈ D.

The functions ω (D,Kr; z) are continuous on D and extendable continuously
onto D. Therefore, due to (13) and Dini’s Theorem, the sequence ω (D,Kr; z)
converges uniformly on each D r intKq, q ∈ N to the identical unity. Hence

∀q∃r | ω (D,Kr; z) >
1

2
, z ∈ D r intKq. (14)

Take Hilbert spaces H0 and Hq, complying with the following linear continuous
embeddings:

A
(
D
)
↪→ H0 ↪→ A (D) ; A (Kq) ↪→ Hq ↪→ AC (Kq) , q ∈ N. (15)

Then
A (K) = limind

q
Hq, A (K)

∗
= limproj

q
H∗q .

Let Kα
r := {z ∈ D : ω (D,Kr; z) 6 α} and Hα

r = (Hr)
1−α

(H0)
α be the Hilbert

scale spanned on the spaces Hr and H0. Applying Proposition 16 for α = 1
2 , we

get the embeddings:
H1/2
r ←↩ A

(
K1/2
r

)
, r ∈ N. (16)
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The relation (14) can be written in the form

∀q∃r = r (q) | K1/2
r ⊂ intKq,

therefore, taking into account (15) and (16), we have:

H1/2
r ←↩ A

(
K1/2
r

)
←↩ A (intKq)←↩ Hq, r = r (q) . (17)

Let Gαr = (Hα
r )
∗

= (H∗0 )
α

(H∗r )
1−α be the dual Hilbert scale. Then (17) implies

that there is a constant C such that

‖x′‖H∗
q
6 C ‖x′‖

G
1/2
r

, x′ ∈ A (K)
∗
.

Applying the multiplicative property for the Hilbert scale Gαr , we get finally

∀q∃r∃C | ‖x′‖H∗
q
6 C

(
‖x′‖H∗

0

)1/2

·
(
‖x′‖H∗

r

)1/2

,

which means that A (K)
∗ ∈ (DN).

Suppose now that A (K)
∗ ∈ (DN). First we show that K has a Runge neigh-

borhood. Assuming the contrary, there is a basis {Gp}p∈N of open neighborhoods
of K such that Gp+1 b Gp and such that the set A (Gp) is not dense in the space
A (K) for each p ∈ N. Take a sequence of Hilbert spaces Hp so that

A
(
Gp+1

)
↪→ Hp ↪→ A (Gp) , p ∈ N. (18)

Since the closure of Hp in A (K) is a proper subspace of A (K) for every p ∈ N,
there is, by the Hahn-Banach Theorem, a non-trivial functional x′p ∈ A (K)

∗

vanishing identically on Hp, hence
∥∥x′p∥∥H∗

p

= 0. The space A (K)
∗

= limproj
q

H∗q

is a Hausdorff space, hence there exists q = q (p) such that
∥∥x′p∥∥H∗

q

> 0. Thus

∀p∃q∀r∀C |
(∥∥x′p∥∥H∗

q

)2

> 0 = C
∥∥x′p∥∥H∗

p

·
∥∥x′p∥∥H∗

r

,

which contradicts to the assumption A (K)
∗ ∈ (DN). So it is proved that K has

a Runge neighborhood G b Ω.
We prove now, that A (K)

∗ ∈ (DN) implies that K is essentially pluripolar.
Let G be a Runge neighborhood of K and G̃ its envelope of holomorphy. Choose
a sequence of strictly pluriregular open sets {Dq}, holomorphically convex with
respect to G̃ and such that Dp+1 b Dp, ∩Dp = K̂G̃. Let Hq be Hilbert spaces
which comply with linear continuous dense embeddings

A
(
Dq

)
↪→ Hq ↪→ AC

(
Dq

)
, q ∈ N (19)

It follows from A (K)
∗ ∈ (DN) that there is p so that for every q and 0 < δ < 1

there is r = r (q, δ) and a constant C such that

‖x′‖H∗
q
6 C

(
‖x′‖H∗

p

)1−δ
·
(
‖x′‖H∗

r

)δ
, x′ ∈ A (K)

∗
. (20)
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Since A (K)
∗ ' A

(
K̂Dp

)∗
and (DN) is an invariant, we can assume that

K̂Dp = K. By Proposition 8, it suffices to prove thatK is pluripolar andK−Dp = K.
Suppose the contrary, that either (a) K is pluripolar but K−DprK 6= ∅, or (b) K is
not pluripolar. In the case (a), due to Lemma 7, there exists δ : 0 < δ < 1

4 such
that the set

Lδ := {z ∈ Dp : ω◦ (Dp,K; z) < 1− 4δ}
has non-empty intersection with DprK; on the other hand, LδrK 6= ∅ is evident
in the case (b).

Thus, it is sufficient to show that the condition Lδ rK 6= ∅ with some δ > 0
leads to a contradiction. Fix q so that Lδ rKq 6= ∅ then choose a pseudoconvex
open set V : Dq ⊂ V ⊂ Dp so that

Lδ r V 6= ∅.

By pseudoconvexity of V there exists a function f ∈ A (V ), such that

spec f = V. (21)

Let {ek}k∈N be a doubly orthogonal basis generated by the pair (Hp, Hr) and
such that

‖ek‖Hr = 1, ‖ek‖Hp =: µk ↗∞.

Accordingly, ‖e′k‖H∗
r

= 1, ‖e′k‖H∗
p

= µ−1
k for the biorthogonal system {e′k}. There-

fore, by (20),
‖e′k‖H∗

r
6 C µδ−1

k . (22)

It follows from ω
(
Dp, Dr; z

)
6 ω◦ (Dp,K; z) that

Lδ ⊂ Φδ := {z ∈ Dp : ω (Dp,K; z) < 1− 3δ}

Hence, by Two Constant Theorem,

|ek|Φδ 6 C1 µ
1−2δ
k . (23)

As f ∈ A (V ) ⊂ A
(
Dq

)
⊂ Hq, we consider the expansion of f in the space Hq:

f =
∑
k∈N

e′k (f) ek. (24)

Due to (22), (23), we have the estimate

|e′k (f)| |ek|Φδ 6 C1 ‖e′k‖H∗
q
‖f‖Hq µ

1−2δ
k 6 CC1 ‖f‖Hq µ

−δ
k .

Since, by Proposition 16, lnµk � k1/n as k → ∞, this estimate implies that
the series (24) converges uniformly on Φδ to a function g ∈ A (Φδ) . Taking into
account that, by the construction, Lδ has a non-empty intersection with V , we
obtain the contradiction to (21). �
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4. Isomorphism A (K) ' A ({0n})

Lemma 19. Let K be a Runge compact set on a Stein manifold Ω. Then the
Fréchet space A (K)

∗ has the property (Ω).

Proof. Since A (K) ' A
(
K̂Ω

)
and the property (Ω) is invariant, we may assume

that K̂Ω = K. Take a sequence of strictly pluriregular open Runge neighborhoods
{Dp} of K, so that

Dp+1 b Dp,
⋂
Dp = K,

and every Dp has no components disjoint with K. Let X = A (K)
∗. Since A (K) is

reflexive, we can identify X∗ = A (K)
∗∗ with A (K), by the canonical embedding.

Then the norms
|x|p := sup {|x (z)| : z ∈ Dp}

are conorms generating the topology in X∗. Given an arbitrary p take q = p+ 1.
For any r define the number

δ = δ (p, r) := sup
{
ω
(
Dp, Dr, z

)
: z ∈ Dq

}
.

Then 0 < δ < 1 and, by the Two Constants Theorem, we have

|x|q 6
(
|x|p

)1−δ
(|x|r)

δ
, x ∈ A (K) = X∗,

that means A (K)
∗ ∈ (Ω). �

Theorem 20. Let K be a compact set on a Stein manifold Ω, dim Ω = n. Then
the following statements are equivalent:

(i) A (K)
∗ ' A (Cn);

(ii) A (K) ' A ({0n});
(iii) A (K)

∗ ∈ (DN);
(iv) K is essentially pluripolar on Ω.

Proof. The equivalence (iii) ⇐⇒ (iv) is proved in Lemma 18. The relations
(i) =⇒ (ii) =⇒ (iii) are evident. It remains to prove (iii) =⇒ (i). By Lemma 18,
K is a Runge compactum. Hence, by Lemma 19, A (K)

∗ ∈ (Ω). It follows from
(12) that the associated exponent sequence (αk) of A (K)

∗ is determined by the
weak equivalence: αk � k1/n. All conditions of the Theorem 4, including (3), are
fulfilled. Therefore A (K)

∗ ' Λ∞
((
k1/n

))
' A (Cn). �

Corollary 21. Let K be as in Proposition 11, then A (K) ' A
({

0n+1
})

. In
particular, A (K) ' A

({
02
})

for K from Example 12.
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