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E ′ AS AN ALGEBRA BY MULTIPLICATIVE CONVOLUTION

Dietmar Vogt

Dedicated to the memory of Paweł Domański,
great mathematician and friend

Abstract: We study the algebra E ′(Rd) of distributions with compact support equipped with
the multiplication (T ?S)(f) = Tx(Sy(f(xy)) where xy = (x1y1, . . . , xdyd). This allows us a very
elegant access to the theory of Hadamard type operators on C∞(Ω), Ω open in Rd, that is, of
operators which admit all monomials as eigenvectors. We obtain a representation of the algebra
of such operators as an algebra of holomorphic functions with classical Hadamard multiplication.
Finally we study global solvability for such operators, in particular of Euler differential operators,
on open subsets of Rd

+.
Keywords: operators on smooth functions, distributions with compact support, algebra of
operators, monomials as eigenvectors, Hadamard operators, Euler operators.

In the present paper we continue the investigations in [15]. For that purpose we
define themultiplicative convolution in the space E ′(Rd) of distributions of compact
support on Rd by (T ? S)g = TxSyf(xy). Equipped with this multiplication
E ′(Rd) is a commutative algebra. Each T ∈ E ′(Rd) defines a convolution operator
NT : S 7→ T ? S in E ′(Rd). For open Ω, Ω′ ⊂ Rd we show that NTE ′(Ω′) ⊂ E ′(Ω)
if and only if suppT ·Ω′ ⊂ Ω, in particular, NT defines an operator in L(E ′(Ω)) if
and only if suppT ⊂ V (Ω) where V (Ω) denotes the set of dilations acting on Ω. In
this case NT = M∗T where MT ∈ L(E (Ω)) is the Hadamard operator on C∞(Rd)
defined by MT f(y) = Txf(xy) that is NT is the dual operator of MT . This allows
us an elegant access to the theory of Hadamard operators on E ′(Ω) for open sets
Ω ⊂ Rd, that is, of operators which allow all monomials as eigenvectors. These
have been studied and characterized in [15]. The algebra M(Ω) of such operators
is a closed subalgebra of L(C∞(Ω)). It is isomorphic to the algebra (E ′(V (Ω)), ?)
and we determine the topology induced from Lb(C

∞(Ω)) on E ′(V (Ω)). Then we
use the exponential diffeomorphism between Q+ := (0,+∞)d and Rd to study,
by transfer from the classical theory, global solvability of Hadamard operators on
C∞(Ω) where Ω is an open subset of Q+. Hadamard-type operators assigned to
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distributions with support {(1, . . . , 1)} are differential operators of the form P (θ),
where P is a polynomial and θj = xj ∂/∂xj . They are called Euler operators
and we study, in particular, global solvability for such operators on open subsets
of Q+. Euler operators on general open subsets of Rd are studied, by different
methods, in Domański-Langenbruch [4], global solvability in S ′(Rd) is shown in
[16]. Finally we show that the algebra M(Ω) ∼= (E ′(V (Ω)), ?) is isomorphic to
an algebra of holomorphic functions around zero where the multiplication is the
classical Hadamard multiplication, that is, multiplication of the Taylor coefficients.

Hadamard operators on the space A (Ω) of real analytic functions have been
studied and characterized in Domański-Langenbruch [1], [2], [3]. Analogous prob-
lems as in the present paper for real analytic functions are studied in Domański-
Langenbruch-Vogt [5]. While the problems are analogous, the results, the methods
and the difficulties to overcome are, in part, quite different. For further references
and also for the background of the problem we refer to [15].

We use standard notation of Functional Analysis, in particular, of distribution
theory. For general information and unexplained notation we refer to [6], [10], [12].
For the classical product of convolution in E ′(Rd) see [6] and [13].

1. Multiplicative convolution on E ′

On E ′(Rd) we define the multiplicative convolution :

Definition 1. For T, S ∈ E ′(Rd) and f ∈ C∞(Rd) we set (T ?S)f = Tx(Syf(xy)).

We freely use this notation, in different context, also for other combinations
of T, S and f , whenever the right hand side makes sense. As multiplication on
E ′(Rd) it has the following basic properties:

Proposition 1.1.
1. (E ′(Rd), ?) is a commutative algebra.
2. δ1 is the unit element.
3. The multiplication is hypocontinuous.
4. supp (T ? S) ⊂ suppT · suppS.

Proof. 1. To show commutativity we remark that for any α ∈ Nd0 we have

(T ? S)xα = Txα · Sxα

Therefore T ?S and S ?T coincide on the polynomials which are dense in C∞(Rd).
2. is trivial. To show 3. we have, with suitable K and p for T , resp. L and q

for S, and a constant C > 0 depending only on L, p, q the following estimates:

|(T ? S)f | = |Tx(Syf(xy))| 6 ‖T‖∗K,p sup
x∈K,|α|6p

|Sy(yαf (α)(xy))|

6 ‖T‖∗K,p ‖S‖∗L,q sup
x∈K,|α|6p

sup
y∈L,|β|6q

|∂βy (yα(f (α)(yx))|

6 C ‖T‖∗K,p ‖S‖∗L,q sup
z∈KL,|γ|6pq

|f (γ)(z)|.

This shows 3. and implies 4. �
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Let Ω′ and Ω be open subsets of Rd. From Proposition 1.1 we obtain immedi-
ately

Corollary 1.2. If T ∈ E ′(Rd) and suppT · Ω′ ⊂ Ω, then NT : S 7→ T ? S defines
a map in L(E ′(Ω′),E ′(Ω)).

Proof. We have only to remark that E ′(Ω′) is bornological and that, by Proposi-
tion 1.1, the map NT sends equicontinuous (=bounded) sets into equicontinuous
(=bounded) sets. �

We want now to describe the maps N ∈ L(E ′(Ω′),E ′(Ω)) for which there is
T ∈ E ′(Rd) with N = NT . We denote the set of these maps by N(Ω′,Ω). We set
R∗ = R \ {0}.

Lemma 1.3. For N ∈ L(E ′(Ω′),E ′(Ω)) the following are equivalent:

1. N(S1) ? S2 = S1 ? N(S2) for all S1, S2 ∈ E ′(Ω′).
2. There is T ∈ E ′(Rd) such that N(S) = T ? S for all S ∈ E ′(Ω′).

Proof. To show 1. ⇒ 2. we choose η ∈ Ω′ ∩Rd∗. Then for all S ∈ E ′(Ω′) we have
N(S) ? δη = S ? N(δη) and therefore N(S) = T ? S with T = N(δη) ? δ1/η. The
reverse direction is obvious. �

For two sets X, Y ⊂ Rd we set V (X,Y ) := {η ∈ Rd : ηX ⊂ Y }, V (X) =
V (X,X) and Yx = {η ∈ Rd : ηx ∈ Y }.

Lemma 1.4. If X is open and Y is closed, then V (X,Y ) is closed and V (X,Y ) =⋂
x∈X∩Rd∗

1
xY . If, in particular, Y is compact, then also V (X,Y ).

Proof. Because X ∩ Rd∗ is dense in X we have

V (X,Y ) = {η ∈ Rd : η (X ∩ Rd∗) ⊂ Y } =
⋂

x∈X∩Rd∗

1

x
Y.

Since 1
xY is closed for all x ∈ Rd∗ the set V (X,Y ) is closed, same argument in the

case of compact Y . �

Theorem 1.5. For T ∈ E ′(Rd) the following are equivalent:

1. NT ∈ L(E ′(Ω′),E ′(Ω)).
2. NT ∈ L(C ′(Ω′),E ′(Ω)).
3. suppT ⊂ V (Ω′,Ω).

Proof. Since 3. ⇒ 1. and 1. ⇒ 2. are obvious we have only to show 2. ⇒ 3.
If NT ∈ L(C ′(Ω′),E ′(Ω)) we have for every η ∈ Ω′ that supp (T ? δη) ⊂ Ω. We

fix an open ω′ ⊂⊂ Ω′. Because of the continuity of NT there is a compact subset
L ⊂ Ω such that supp (T ?δη) ⊂ L for all η ∈ ω′. For η ∈ Rd∗ we have supp (T ?δη) =
η suppT . So we have shown that suppT ⊂

⋂
η∈ω′∩Rd∗

1
ηL = V (ω′, L) ⊂ V (ω′,Ω).

The equality comes from Lemma 1.4. Since V (Ω′,Ω) =
⋂
ω′⊂⊂Ω′ V (ω′,Ω) the

proof is complete. �
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2. Transposed description

Let NT ∈ N(Ω′,Ω), then the transposed operator N∗T ∈ L(C∞(Ω), C∞(Ω′)) is
given by

(N∗T f)(x) = 〈δx, N∗T f〉 = 〈T ? δx, f〉 = Tyf(xy) =: (MT f)(x),

that is N∗T = MT . We extend this to a complete characterization:

Theorem 2.1. For M ∈ L(C∞(Ω), C∞(Ω′)) the following are equivalent:
1. There is T ∈ E ′(V (Ω′,Ω)) such that M = N∗T .
2. There is T ∈ E ′(V (Ω′,Ω)) such that M = MT .
3. M admits all monomials as eigenvectors.

Proof. The equivalence of 1. and 2. is obvious. Likewise 2. ⇒ 3. is clear.
We show 3. ⇒ 1. We set N := M∗ ∈ L(E ′(Ω′),E ′(Ω)) and have to show that
N(S1) ∗ S2 = S1 ? N(S2) for all S1, S2 ∈ E ′(Ω′). Due to the density in C∞(Ω′)
of the polynomials we have to show the equality only on the set of all monomials.
For f(x) = xα we obtain

(N(S1) ? S2)f = N(S1)x(S2)y(xy)α = S1(Mxα)S2(xα) = mαS1(xα)S2(xα)

where Mxα = mαx
α. For (S1 ? N(S2))f we obtain the same, which shows the

result. �

The operators described in Theorem 2.1 are called operators of Hadamard type,
or also multipliers and they have been subject of many investigations where the
equivalence of 2. and 3. was one of the main results.

Definition 2. For open Ω ⊂ Rd we setM(Ω) := {M ∈L(C∞(Ω)) : M Hadamard}.

We state two basic facts:
1. M(Ω) is a closed subalgebra of Lb(C∞(Ω)).
2. T 7→MT an algebra isomorphism (E ′(V (Ω)), ?)→M(Ω).

The first follows fromMxα ⊂ span{xα} for all α, the second is a simple calculation.

3. Topologies

In this section we will study the problem: Which topology does the algebraic
isomorphism T 7→ NT from E ′(V (Ω)) to Nb(Ω′,Ω) induce on E ′(V (Ω))? Here ∗b
denotes the topology of uniform convergence on bounded sets

The solution will be given in several steps. First we need some notation:
For Ω′ ⊂⊂ Ω open we set

U = UΩ′ = V (Ω′,Ω) = {η ∈ Rd : ηΩ′ ⊂⊂ Ω}

and
NCb(Ω

′,Ω) = {NT : T ∈ E ′(U)} ∩ Lb(C ′(Ω′),E ′(Ω)).

It is easily seen that UΩ′ is an open neighborhood of V (Ω).
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Proposition 3.1. E ′(U) ∼= Nb(Ω
′,Ω) = NCb(Ω

′,Ω) are topologically isomorphic.
The first isomorphism is given by T 7→ NT .

Proof. From Proposition 1.1 and its proof it is clear that T 7→ NT sends ev-
ery bounded set of E ′(U) into a bounded set of Lb(E ′(Ω′),E ′(Ω)). Since E ′(U)
is bornological the map is continuous. Clearly the identical map Nb(Ω

′,Ω) →
NCb(Ω

′,Ω) is continuous.
Let B ⊂ Lb(C

′(Ω′),E ′(Ω)) be bounded, then B̃ = {ϕ(δη) : η ∈ Ω′, ϕ ∈ B} is
a bounded set in E ′(Ω). Therefore there is a compact set K ⊂ Ω such that B̃ is
bounded in E ′(K).

We fix now η ∈ Ω′ ∩ Rd∗ and obtain, by use of the proof of Lemma 1.3,

{T : NT ∈ B} = {δ1/η ? NT (δη) : NT ∈ B} ⊂ {δ1/η ? S : S ∈ B̃}.

We set L =
⋂
η∈Ω′∩Rd∗

1
ηK = V (Ω′,K) (see Lemma 1.4). Then L is a compact

subset of U and {T : NT ∈ B} is a bounded subset of E ′(L), since it is a bounded
subset of E ′(Rd) and the support of all of its elements is contained in L. So it is
a bounded subset of E ′(U).

We have shown that the map N : E ′(U)→ NCb(Ω
′,Ω) is continuous and sur-

jective. Moreover N−1(B) is bounded for every bounded B ⊂ Lb(C
′(Ω′),E ′(Ω)).

By Baernstein’s Lemma (see [10]) T 7→ NT is a topological imbedding of E ′(U)
into Lb(E ′(Ω′),E ′(Ω)), which proves the result. �

Let now ω1 ⊂⊂ ω2 ⊂⊂ . . . be an exhaustion of Ω. We put Un := Uωn . Then
U1 ⊃ U2 ⊃ . . . is a decreasing sequence of open neighborhoods of V (Ω) with⋂
n Un = V (Ω).

Definition 3. E ′t (V (Ω)) := lim projnE ′(Un).

Clearly the t-topology does not depend on the choice of the exhaustion. E ′(Un)
is a (DF)-space hence E ′t (V (Ω)) is a (PDF)-space.

We set Nb(Ω) := Nb(Ω,Ω) and NCb(Ω) = NCb(Ω,Ω).

Theorem 3.2. E ′t (V (Ω)) ∼= Nb(Ω) = NCb(Ω) topologically, the first isomorphism
is established by T 7→MT .

Proof. This follows immediately from Proposition 3.1 by forming projective lim-
its. �

4. Examples

For the following examples see also [15], for a more systematic treatment [5]. We
refer to the notation of Section 3.

Example 4.1. Let Ω = {(x, y) ∈ R2 : 1 < y < 2} then V (Ω) = {(x, 1) : x ∈ R}.
With rn ↘ 1 set ωn = {(x, y) ∈ R2 : |x| < n, rn < y < 2/rn}. We obtain
Un = {(x, y) : 1/rn < y < rn}.
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Example 4.2. Let Ω = {(x, y) ∈ R2 : 0 < x, 1 < y < 2} then V (Ω) = {(x, 1) :
x > 0}. With rn ↘ 1 set ωn = {(x, y) ∈ R2 : 1/n < |x| < n, rn < y < 2/rn}. We
obtain Un = {(x, y) : 0 < x, 1/rn < y < rn}.

In both cases V (Ω) is closed in some Un. If this is the case,

• then it is closed in all Um for m > n
• E ′t (V (Ω)) ∼= E ′(V (Ω)) equipped with the canonical (DF)-topology inherited

from E ′(Un).
• V (Ω) is locally compact, σ-compact and E ′t (V (Ω)) = indK⊂V (Ω)E

′(K).

We have shown:

Theorem 4.3. If V (Ω) is closed in some Un, then V (Ω) is locally compact,
σ-compact and M(Ω) ∼= E ′(V (Ω)) with its standard (DF)-topology.

Example 4.4. If V (Ω) \ V (Ω) is finite then the theorem applies.

We need the following property of dilation sets, see [15] or [5, Proposition 4.4].
We give the proof for the convenience of the reader.

Lemma 4.5. y ∈ V (Ω) \ V (Ω) then there is j with yj = 0.

Proof. If y ∈ V (Ω) and minj |yj | > 2ε > 0 then d(yx, ∂Ω) > εd(x, ∂Ω) for all
x ∈ Ω, since that holds for an approximating sequence in V (Ω). Hence yx ∈ Ω.
Therefore for y ∈ V (Ω) \ V (Ω) there is j such that yj = 0. �

Theorem 4.6. If d = 1 then V (Ω) is locally compact, σ-compact and M(Ω) ∼=
E ′(V (Ω)) with its standard (DF)-topology.

Proof. By Lemma 4.5 we have V (Ω) \ V (Ω) ⊂ {0}. By Theorem 4.3 the result
follows. �

5. Relation to classical convolution

We set Q+ = {x ∈ Rd : xj > 0 for j = 1, . . . , d} and restrict our attention to open
sets Ω ⊂ Q+. The map Log(x) = (log x1, . . . , log xd) defines a diffeomorphism from
Q+ onto Rd whose inverse is Exp(x) = (expx1, . . . , expxd).

The map CLog : ϕ → ϕ ◦ Log is an isomorphism from C∞(Rd) onto C∞(Q+)
whose inverse is CExp, defined analogously. Then the transposed maps C∗Log :

E ′(Q+)→ E ′(Rd) and C∗Exp : E ′(Rd)→ E ′(Q+) are isomorphisms.
The crucial observation relating the two kinds of convolution is:

Lemma 5.1. T ? S = C∗Exp((C∗LogT ) ∗ (C∗LogS)) for all T, S ∈ E ′(Q+).
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A subset X ⊂ Q+ will be called multiplicatively convex (mconvex) if with
x, y ∈ X also xty1−t ∈ X for all 0 < t < 1. For a subset X ⊂ Q+ we define
the multiplicatively convex hull mconvX as the smallest mconvex set, which con-
tains X. We have mconvX = Exp(conv(LogX)) where conv denotes the convex
hull. Explicitly we have

mconvX =
{∏

j

x
λj
j : xj ∈ X, 0 < λj ,

∑
j

λj = 1
}

where the sums and products are finite and the powers are taken coordinatewise.
We obtain the multiplicative analogue of the Theorem of Lions [9].

Theorem 5.2. mconv(supp (T ? S)) = mconv(suppT ) · mconv(suppS) for all
T, S ∈ E ′(Q+).

For the following we might exploit Theorem 5.2, but we prefer to use the direct
transfer of properties of classical convolution operators.

First we consider the case of suppT = {1}. The operators MT , resp. NT , are
then called Euler operators . In this case T has the form T =

∑
|α|6p cαδ

(α)
1 . Since

M
δ
(α)
1

= (−1)|α|xα∂α the Euler operator MT has the form MT =
∑
|α|6p bαx

α∂α.

With θj = xj∂j and different coefficients it can also be written as MT =∑
|α|6p cα θ

α.

Let now Ω ⊂ Q+ be open. If we set, keeping the notation, P (z) =
∑
|α|6p cαz

α,
then P (∂)C∞(Log Ω) = C∞(Log Ω) if, and only if, Log Ω is P (∂)-convex. This
means that for every compact K ⊂ Log Ω there is a compact L ⊂ Log Ω with the
following property: if ϕ ∈ D(Log Ω) and P (−∂)ϕ ∈ D(K) then ϕ ∈ D(L) or,
equivalently: if S ∈ E ′(Log Ω) and P (−∂)S ∈ E ′(K) then S ∈ E ′(L) (see [8]).

Now, it is obvious that this condition simply carries over to P (θ) and Ω, and
we obtain:

Theorem 5.3. P (θ)C∞(Ω) = C∞(Ω) if, and only if, Ω is P (θ)-convex, that is,
for every compact K ⊂ Ω there is a compact L ⊂ Ω with the following property: if
ϕ ∈ D(Ω) and P (−θ)ϕ ∈ D(K) then ϕ ∈ D(L) or, equivalently: if S ∈ E ′(Ω) and
P (−θ)S ∈ E ′(K) then S ∈ E ′(L).

Proof. The first condition comes by transfer via CLog. The second condition im-
plies the first one. To show its necessity we define the multiplication operator
MT = x1 · .. · xd T . Let θ∗ denote the transpose of θ, hence P (θ∗) the transpose
of P (θ). From elementary calculations we get M−1P (−θ)M = P (θ∗). Since M
preserves supports on E ′(Q) the assertion follows from functional analytic princi-
ples. �

Using Theorem 5.2 we get:

Corollary 5.4. If Ω is mconvex then all Euler operators are surjective in C∞(Ω).
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Staying with mconvex Ω ⊂ Q+ we study a more general situation. We fix
T ∈ E ′(Q+) and set Ω′ = V (suppT,Ω) = V (mconv suppT,Ω). It is easy to
see that Ω′ is open and mconvex. Clearly suppT ⊂ V (Ω′,Ω), that is, NT ∈
L(E ′(Ω′),E ′(Ω)). Let K ⊂ Ω be compact and mconvex. Assume moreover that
S ∈ E ′(Q+) and supp (T ? S) ⊂ K, then also mconv suppT · mconv suppS =
mconv supp (T ? S) ⊂ K. This implies that suppS ⊂ L := V (mconv suppT,K).
Since suppT ⊂ Rd∗ we have L ⊂ 1

ηK for any η ∈ suppT . Therefore L is compact.
We have shown:

Lemma 5.5. If Ω ⊂ Q+ is open and mconvex, T ∈ E ′(Q+) and Ω′ = V (suppT,Ω),
then for every mconvex compact set K ⊂ Ω there is a compact set L ⊂ Ω′ such
that the following holds: if S ∈ E ′(Q+) and supp (T ? S) ⊂ K the suppS ⊂ L.

To get solvability conditions for our multplicative convolution equations we
need the equivalent of an elementary solution. We set for T ∈ E ′(Q+)

T̆ (z) := Tx(x−iz), z ∈ Cd

and remark that T̆ = Ĉ∗LogT , ̂ denoting the Fourier-transform.

Definition 4. An entire function J is said to be slowly decreasing if there exist
positive numbers a, b, c such that for each point x ∈ Rd we can find a point y ∈ Rd
with

(1) |x− y| 6 a log(1 + |x|),
(2) |J(y)| > b/(1 + |y|c).

This notation is due to Ehrenpreis and we obtain the following multplicative
analogue to the Theorem of Ehrenpreis on completely inversible operators [7].
Note that in 2. below (T ∗E)ϕ = Tx(Eyϕ(xy)) makes sense since for x ∈ Q+ and
ϕ ∈ D(Q+) the function x 7→ ϕ(xy) is in D(Q+).

Theorem 5.6. For T ∈ E ′(Q+) the following are equivalent

1. MT is surjective in C∞(Q+).
2. There exists E ∈ D ′(Q+) such that T ? E = δ1.
3. T̆ is slowly decreasing.

Proof. 1. is equivalent to the surjectivity of f 7→ (C∗LogT ) ∗ f in C∞(Rd). By the
Theorem of Ehrenpreis this is equivalent to Ĉ∗LogT being slowly decreasing an this
is equivalent to 3.

3. means that Ĉ∗LogT is slowly decreasing and this is, by the Theorem of Ehren-
preis, equivalent to the existence of a distributionW ∈ D ′(Rd) with (C∗LogT )∗W =
δ. Given 3. we set E = C∗ExpW and obtain

T ? E = C?Exp((C∗LogT ) ∗ (C?LogE)) = C?Exp((C∗LogT ) ∗W ) = C?Expδ = δ1.

Given 2. we set W = C∗LogE and proceed like before. �
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Putting things together we obtain

Theorem 5.7. If Ω ⊂ Q+ is mconvex and open, T ∈ E ′(Q+), T̆ slowly decreasing
and Ω′ = V (suppT,Ω), then MT : C∞(Ω′)→ C∞(Ω) is surjective.

Proof. First we remark that, by Theorem 5.6 MTE (Ω′) is dense in E (Ω). Due to
the Surjectivity Criterion we have to show that for any bounded set B ⊂ E ′(Ω)
the set N−1

T B is bounded in E ′(Ω). There is compact, mconvex K ⊂ Ω such
that B ⊂ E ′(K) and bounded there. By Lemma 5.5 there is compact L ⊂ Ω′ such
thatN−1

T E ′(K) ⊂ E ′(L). Then ?-convolution with E (notation of Theorem 5.6, 2.)
yields a continuous linear map R(NT )∩E ′(K)→ E ′(L) inverting NT . So N−1

T B =
E ? (R(NT ) ∩B) is bounded in E ′(L) ⊂ E ′(Ω′). �

An interesting fact is the following: for fixed z ∈ Cd we have MT (ξ → ξz)[x] =
Ty(xy)z = Tξ(ξ

z)xz. So all functions xz are eigenfunctions of the operator MT

with eigenvalue T̆ (iz). In particular we have mα = T̆ (iα) where mα, α ∈ Nd0 is
the multiplier sequence for the Hadamard operator MT .

This all can be done for each of the 2d quadrants, but not for the whole eu-
clidean space, as the following simple example shows. Take the operator x ∂

∂x . It
is easily seen to be surjective on C∞(Q+/−), but it is not surjectice on C∞(R)
since xf ′(x) is 0 in 0 for any f .

6. Laurent representation theorem

For T ∈ E ′(Rd) and z ∈ Cd, zj 6= 0 for all j we set C (z) =
∏d
j=1

1
zj
. For any

subset B ⊂ Rd we define

W (B) = {z ∈ Cd : ξj 6= zj for all ξ ∈ B and j = 1, . . . , d}.

Since C defines a distribution on Cd also CT := T ∗ C is a distribution on
Cd. For z ∈ W (suppT ) we obtain CT (z) = (T ∗ C )(z) = Tξ(C (z − ξ)) which is
a holomorphic function on W (suppT ).

On D ′(Cd) we set ∂̄1 := π−d ∂
∂z̄1
· · · ∂

∂z̄d
, then C is a fundamental solution for

∂̄1 and therefore ∂̄1CT = T .
If suppT ⊂ {ξ ∈ Rd : |ξ|∞ 6 R} then (C \ [−R,+R])d ⊂ W (suppT ) and CT

extends to a holomorphic function on (Ĉ \ [−R,+R])d, Ĉ denoting the Riemann
sphere. CT (z) = 0 outside Cd. CT is the unique solution of ∂̄1u = T with this
property.

For minj |zj | > R the function CT (z) is defined and holomorphic and it has
the expansion

CT (z) =
1

z1 · · · zd

∑
α∈Nd0

Tξ(ξ
α)

1

zα
=
∑
α∈Nd0

mα
1

zα+1
.
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We have proved the following

Proposition 6.1. Let B ⊂ Rd be compact and closed with respect to multiplica-
tion. The algebra (E ′(B), ?) is algebra-isomorphic to the algebra of all distributions
on Cd which are holomorphic on (C \ [−R,+R])d for some R > 0, regular with
value 0 in all infinite points of Ĉd and zero solutions for ∂̄1 outside B, equipped
with Hadamard multiplication of the coefficients of their Laurent expansion around
(∞, . . . ,∞).

We will now give a description in terms of properties of the functions on (C\R)d.
All of the following is well known (see [11, 14]). We indicate the proofs for the
convenience of the reader.

Theorem 6.2.

1. If f = CT on (C \ R)d for T ∈ E ′(Rd) then there is p ∈ N0 such that

sup
z∈(C\R)d

|f(z)| |y1 · · · yd|p < +∞ (1)

where z = x+ iy.
2. If f ∈ H((C\[−R,+R])d) for some R > 0 is regular with value 0 in all infinite

points of Ĉd and fulfills (1), then there is T ∈ E ′(Rd) such that f = CT .
3. If f = CT then for x ∈ Rd we have: x 6∈ suppT if, and only if there is

a complex neighborhood ω of x such that f = f1 + · · · + fd on ω ∩ (C \ R)d

and fj ∈ H(ωj) where ωj = ω ∩ {z = x+ iy ∈ Cd : yν 6= 0 for ν 6= j}.

Proof. 1. follows directly from the continuity estimates.
2. The distribution T is given by

Tϕ = lim
y→0+

∑
e

sgn(e)

∫
ϕ(x)f(x+ iey)dx (2)

for ϕ ∈ D(Rd). Here e ∈ {+1,−1}d, sgn(e) = e1 · · · ed and y → 0+ means yj → 0+
for all j.

3. Sufficiency of the condition follows directly from (2). Necessity follows from
the fact that solutions of ∂̄1u = 0 have locally the form u = u1 + · · · + ud where
∂uj
dz̄j

= 0. �

We collect all this information in a theorem.

Theorem 6.3. T 7→ CT defines an algebra isomorphism of M(Ω) ∼= E ′(V (Ω)) to
the following algebra HC(Ω) of holomorphic functions with Hadamard multiplica-
tion of Laurent coefficients around (∞, . . . ,∞)

1. f ∈ H((Ĉ \ [−R,+R])d) for some R > 0, f is regular with value 0 in all
points outside Cd.
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2. There is p ∈ N0 such that

sup
z∈(C\R)d

|f(z)| |y1 · · · yd|p < +∞

where z = x+ iy.
3. σ(f) is compact and σ(f) ⊂ V (Ω).

Here σ(f) denotes the hyperfunction support of f .

We recall the definition:

Definition 5. x 6∈ σ(f) if in a complex neighborhood of x we have f = f1+· · ·+fd
where fj extends in the j-th variable holomorphically across R.

7. Hadamard representation theorem

In a next step we want to change the equivalence into one with Hadamard mul-
tiplication of power series. For that we observe that for z ∈ Cd∗ ∩ W (suppT ) we
have

CT (z) =
1

z1 · · · zd
Tξ

(∏
j

1

1− ξj · 1/zj

)
and therefore for z ∈ Cd∗ such that 1/z ∈ W (suppT )

Tξ

(∏
j

1

1− ξjzj

)
=

1

z1 · · · zd
CT (1/z).

We set

CT (z) = Tξ

(∏
j

1

1− ξjzj

)
on

W (suppT ) := {z ∈ Cd : xjzj 6= 1 for all x ∈ suppT and j = 1, . . . , d}.

We have (C \ R ∪ [−R,+R])d ⊂W (suppT ) for some R > 0 and for |z|∞ < R

CT (z) =
∑
α

mαx
α.

This establishes an algebra isomorphism of M(Ω) ∼= E ′(V (Ω)) to an algebra
of holomorphic functions with Hadamard multiplication, whose properties we get
from the previous case by the formula

CT (z) =
1

z1 · · · zd
CT (1/z).
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