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PIETSCH–MAUREY–ROSENTHAL FACTORIZATION
OF SUMMING MULTILINEAR OPERATORS

Mieczysław Mastyło, Enrique A. Sánchez Pérez

To the memory of Paweł Domański

Abstract: The main purpose of this paper is the study of a new class of summing multilinear op-
erators acting from the product of Banach lattices with some nontrivial lattice convexity. A mixed
Pietsch–Maurey–Rosenthal type factorization theorem for these operators is proved under weaker
convexity requirements than the ones that are needed in the Maurey–Rosenthal factorization
through products of Lq-spaces. A by-product of our factorization is an extension of multilinear
operators defined by a q-concavity type property to a product of special Banach function lattices
which inherit some lattice–geometric properties of the domain spaces, as order continuity and
p-convexity. Factorization through Fremlin’s tensor products is also analyzed. Applications are
presented to study a special class of linear operators between Banach function lattices that can
be characterized by a strong version of q-concavity. This class contains q-dominated operators,
and so the obtained results provide a new factorization theorem for operators from this class.

Keywords: extension, summing multilinear operator, factorization, p-convex, Banach lattice.

1. Introduction

Domination inequalities for multilinear operators are of interest in applications to
factorization of various types of operators (see [2, 4, 5, 11]). In the case of opera-
tors defined on products of Banach lattices, these dominations are deeply related
to Banach lattice geometric notions, as q-convexity or q-concavity. It should be
pointed out that domination does not lead in general to a nice factorization in
the multilinear case. However, in some situations the relation between domination
and factorization works as in the linear case. We recall that the famous Pietsch’s
factorization theorem is given by a domination result associated to summability
properties also in the multilinear case, in which Lp-spaces are involved. We also
point out that under the assumption of some variants of convexity properties of
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the involved lattices, the Maurey–Rosenthal multilinear theorem allows to link
a q-concavity type domination inequality with a factorization/extension of the
multilinear operator.

In this paper we are concerned with the analysis of some new lattice geometric
properties that we call p-strong q-concavity (see Section 2). The motivation for this
is to prove domination/factorization characterizations for multilinear operators
from the product of Banach lattices that satisfy a certain vector norm inequality.
Recall that in the case of linear operators acting in Banach lattices, if an operator
T : X → Y is q-summing then it is also q-concave. This is the main lattice-type
property that is normally used when a summability property for an operator among
Banach lattices is considered. Indeed, this implies – using the Maurey–Rosenthal
factorization and under the assumption of q-convexity of the domain lattice –,
that the operator factors through an Lq-space. For 1 6 p < q, we define r by
1/r := 1/p− 1/q. Then we can easily see that

sup
x∗∈BX∗

( n∑
k=1

|〈xk, x∗〉|q
)1/q

6 sup
x∗∈BX∗

sup
(βk)∈B`r

( n∑
k=1

|βk〈xk, x∗〉|p
)1/p

6 sup
(βk)∈B`r

∥∥∥( n∑
k=1

|βkxk|p
)1/p∥∥∥

X
6
∥∥∥( n∑

k=1

|xk|q
)1/q ∥∥∥

X

for every finite sequence (xk)nk=1 in the Banach lattice X. A look to the definitions
(see Section 2) shows that the implications

p-summing ⇒ p-strongly q-concave⇒ q-concave

hold for operators acting in Banach lattices.
The main advantage in using this new lattice property – p-strong q-concavity –

is that the requirement on the q-convexity of the original space can be relaxed and
still obtain a standard factorization theorem. Indeed, Maurey–Rosenthal theorem
implies that q-summability of the operator plus q-convexity of the domain space
allows a strong factorization through an Lq-space. In the preliminary paper [6], it
is shown that for 1 6 p < q, every p-strongly q-concave operator – and so every
q-summing operator – acting in a p-convex space factors strongly through a Banach
function lattice space of the new class SqXp

(ξ), that admits an easy description and
whose lattice properties are naturally associated to p-strongly q-concave operators.
The aim of this paper is to draw the complete picture for this class of lattice
dominations/factorizations of operators by analyzing their multilinear variants.
By applying them to the linear case we will show new factorization theorems for
the classical q-dominated (linear) operators among Banach lattices.

In Section 2 we sketch some background from the theory of general Banach
lattices, Fremlin’s tensor product of Banach lattices, and also summing operators.
We also provide examples which motivates our study.

In Section 3 we study a new class of summing multilinear operators acting
from the product of Banach lattices with nontrivial lattice convexity. We prove
an extension theorem for these operators acting in products of Banach lattices
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with some nontrivial convexity. We give a mixed Pietsch–Maurey–Rosenthal type
factorization theorem for the multilinear case. We show that a particular class of
multilinear operators defined by a q-concavity type property can be extended to
a product of Banach lattice satisfying some lattice-geometric properties, as order
continuity and p-convexity.

In section 4 we show the relation among summability of multilinear operators
from suitable products of Banach function lattices and Fremlin tensor product.
Factorization theorems are also proved.

In Section 5 we focus our attention on the factorization of the linear dominated
operators associated to a new geometric definition introduced in the paper. In-
deed, the lattice–geometric domination inequality appearing in the definition of the
p-strongly q-concave operators motivates the definition of the dual notion.

2. Notation and background material

The purpose of this section is to sketch some background from the theory of general
Banach lattices and summing operators. We shall also take the opportunity to
establish some notation. For a given dual pair 〈X,Y, (·, ·)〉 the evaluation map
(x, y) is denoted by 〈x, y〉 for all x ∈ X, y ∈ Y .

For notations concerning vector lattices we follow [1, 10], and for tensor prod-
ucts of Banach lattices we follow [8, 9]. Let (E,6) be a vector lattice (called also
a Riesz space). If A ⊂ E, then A+ := {x ∈ A; x > 0}. Let us recall, that if A is
a subset of a Banach lattice E, then a functional x∗ ∈ E∗ satisfying the condition
〈x, x∗〉 > 0 whenever 0 < x ∈ A is called strictly positive on A. It is known that
strictly positive functionals on E exist when E has the order continuous norm and
a weak unit (see [1, Theorem 12.43] or [10, Proposition 1.b.15]).

We also recall that a Banach lattice possessing order continuous norm and
a weak unit is order isomorphic to a Banach function lattice on a finite measure
space.

We recall that if (Ω,Σ, µ) is a σ-finite measure space L0(µ) denotes the space of
µ-a.e. equal equivalence classes of functions. A Banach function lattice is a Banach
space X ⊂ L0(µ) with a norm ‖ · ‖X such that if f ∈ L0(µ), g ∈ X and |f | 6 |g|
µ-a.e. then f ∈ X and ‖f‖X 6 ‖g‖X . Every Banach function space is a Banach
lattice with the pointwise µ-a.e. order. The Köthe dual X ′ of a Banach function
space X is the subspace of the dual space X∗ of the functionals that has an integral
representation, that is, x∗ ∈ X∗ for which there exists x′ ∈ L0(µ) such that

〈x, x∗〉 =

∫
Ω

xx′ dµ, x ∈ X.

In what follows we consider a dual pair 〈X,X ′〉 with the evaluation map (x, x′) 7→
〈x, x′〉 :=

∫
Ω
xx′ dµ for all (x, x′) ∈ X ×X ′.
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A Banach function lattice is said to have the Fatou property if for every se-
quence (fn) in X such that 0 6 fn ↑ f a.e. and supn ‖fn‖X < ∞, it follows that
f ∈ X and ‖fn‖X ↑ ‖f‖X . This is equivalent to the fact that X = X ′′ with
equality of norms.

We useM(K) to denote the space of regular Borel probability spaces on a com-
pact Hausdorff space. We recall that the weak∗ topology on the dual E∗ of a Ba-
nach space E is the topology of pointwise convergence. Then the unit ball is
compact, by the Banach-Alaoglu theorem.

The normed space (Rn, ‖ · ‖p) is denoted by `np for 1 6 p 6∞, where as usual
for any x = (t1, . . . , tn) ∈ Rn,

‖x‖p =
( n∑
k=1

|tk|p
)1/p

,

and
‖x‖∞ = max

16k6n
|tk|.

In what follows the unit ball B`np is denoted by Bnp for short.
Given a Banach lattice X, a Banach space Y , and numbers 1 6 p, q < ∞, an

operator T : X → Y is said to be q-concave if there exists C(q) > 0 such that( n∑
k=1

‖Txk‖qY
)1/q

6 C(q)

∥∥∥( n∑
k=1

|xk|q
)1/q ∥∥∥

X

for every choice of elements x1, ..., xn in X. The infimum of the values C(q) for
which the inequality above is satisfied will be denoted by M(q)(T ).

A Banach lattice X is said to be p-convex, 1 6 p <∞, respectively q-concave,
1 6 q <∞, if there are positive constants C(p) and C(q) such that∥∥∥( n∑

k=1

|xk|p
)1/p ∥∥∥

X
6 C(p)

( n∑
k=1

‖xk‖pX
)1/p

,

respectively, ( n∑
k=1

‖xk‖qX
)1/q

6 C(q)

∥∥∥( n∑
k=1

|xk|q
)1/q∥∥∥

X

for every finite sequence (xk)nk=1 in X. The least such C(p) (respectively, C(q)))
is denoted by M (p)(X) (respectively, M(q)(X)). It is well-known that a p-convex
Banach (q-concave) lattice can always be renormed with a lattice norm in such
a way that M (p)(X) = 1 (M(q)(X) = 1). Henceforth, throughout the paper we
will always assume that M (p)(X) = 1. We refer to [10, Ch. 1.d] or [12, Ch.2]
for information about the classical geometric concepts of (lattice) p-convexity and
q-concavity.

If a Banach lattice X is p-convex with 1 6 p <∞, then its p-concavification is
a Banach lattice Xp (see [10, p. 54] for details). Note that in the case of a Banach
function lattice X on (Ω,Σ, µ), Xp is identified with the space of all f ∈ L0(µ) so
that |f |1/p ∈ X and equipped with the norm ‖f‖Xp

= ‖|f |1/p‖pX .
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We will use Fremlin tensor products of Banach lattices. Let X1, . . . , Xn and Y
be Archimedean Riesz spaces. An n-linear map

B : X1 × · · · ×Xn → Y

is called positive if B(x1, . . . , xn) ∈ Y + whenever xk ∈ X+
k , 1 6 k 6 n; it is

called a Riesz n-morphism if B(|x1|, . . . , |xn|) = |B(x1, . . . , xn)| for all xk ∈ Xk,
1 6 k 6 n.

Following [9] (see also [13]) one can construct an Archimedean Riesz space
X1⊗̄ · · · ⊗̄Xn and a Riesz morphism (called the Fremlin map)

⊗
.

We recall fundamental properties of this construction;

(a) X1⊗ · · · ⊗Xn is dense in X1⊗̄ · · · ⊗̄Xn, i.e., for any u ∈ X1⊗̄ · · · ⊗̄Xn there
exist xk ∈ X+

k (1 6 k 6 n) such that for all ε > 0 there is a v ∈ X1⊗̄· · ·⊗̄Xn

with |u− v| 6 ε(x1 ⊗ · · · ⊗ xk).
(b) If u ∈ X1⊗̄ · · · ⊗̄Xn, then there exist xk ∈ X+

k (1 6 k 6 n) such that
|u| 6 x1 ⊗ · · · ⊗ xn.

If X1, . . . , Xn are Banach lattices, then we can define the positive-projective
norm ‖ · ‖|π| on X1⊗̄ · · · ⊗̄Xn by

‖x‖|π| = inf

{ n∑
i=1

m∑
j=1

‖xi,j‖Xj
; xi,j ∈ X+

j , |x| 6
n∑
i=1

xi,1 ⊗ · · · ⊗ xi,m
}
.

We define the Fremlin tensor product to be the Banach lattice X1⊗|π| · · · ⊗|π|Xm

given by the completion of X1⊗̄ · · · ⊗̄Xn with respect to ‖ · ‖|π|.
We note that in the case of Banach function lattices X1, . . . , Xm on measure

spaces (Ω1,Σ1, µ1), . . . , (Ωn,Σn, µn), respectively, we can define the Riesz space
X1⊗̄ . . . ⊗̄Xn generated by

{x1 � · · · � xn; xj ∈ Xj , 1 6 j 6 n}

in L0(µ1 × · · · × µn), where

(x1 � · · · � xn)(ω1, . . . , ωn) := x1(ω1) · · · xn(ωn)

for all (x1, . . . , xn) ∈ X1 × · · · ×Xn and (ω1, . . . , ωn) ∈ Ω1 × · · · × Ωn.
Let us introduce now the notion that motivates the multilinear definition given

in this paper. Let 1 6 p 6 q < ∞. Consider a linear operator T : X → E
from a Banach lattice X into a Banach space E. We will say that T is p-strongly
q-concave if there exists C > 0 such that( n∑

k=1

‖Txk‖qE
)1/q

6 C sup
(βk)∈Bn

r

∥∥∥( n∑
k=1

|βkxk|p
)1/p ∥∥∥

X

for every finite sequence (xk)nk=1 in X, where 1 < r 6 ∞ is such that 1/r =
1/p− 1/q.
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We present some examples showing the nature of linear p-strongly q-concave
operators. The reader can find more examples in [6].

Fix 1 6 p < q < ∞ and let 1/r = 1/p − 1/q. Clearly that r/p and q/p are
conjugate exponents, that is, 1/(r/p) + 1/(q/p) = 1. Since

sup
(βk)∈Bn

r

∥∥∥( n∑
k=1

|βkxk|p
)1/p ∥∥∥

X
6
∥∥∥( n∑

k=1

|xk|q
)1/q ∥∥∥

X
,

it follows that a p-strongly q-concave operator is always q-concave.
Now observe that if 1 6 p 6 q < ∞ and X is a p-concave Banach lattice,

then the identity map ι : X → X is p-strongly q-concave. To see this we fix
a finite sequence (xk)nk=1 in a p-concave Banach function latticeX. Without loss of
generality we may assume that M(p)(X) = 1. Let αk = ‖xk‖q/r/(

∑n
k=1 ‖xk‖q)1/r

for each 1 6 k 6 n. Since q = (pq/r) + p,
∑n
k=1 α

r
k = 1 and so( n∑

k=1

∥∥xk∥∥qX)1/q

=
( n∑
k=1

∥∥xk∥∥pq/r · ‖xk‖p)1/q

6
∥∥∥( n∑

k=1

(
|xk|‖xk‖q/r

)p)1/p∥∥∥p/q
6 sup

(βk)∈Bn
r

∥∥∥( n∑
k=1

|βk xk|p
)1/p∥∥∥p/q( n∑

k=1

‖xk‖q
)p/(rq)

.

Hence( n∑
k=1

∥∥xk∥∥qX)p/q2 =
( n∑
k=1

∥∥xk∥∥qX)1/q−p/(rq)
6 sup

(βk)∈Bn
r

∥∥∥( n∑
k=1

|βk xk|p
)1/p∥∥∥p/q,

and this gives the above mentioned statement.
We note that the above observation shows that all Lp-spaces are p-strongly

q-concave, thus an operator acting in Lp-space is so. However, there are of course
other situations.

We show an example of a p-strongly q-concave operator acting in a p-convex
Banach function lattice that is not an Lp space. To see this we need to define
special spaces and show some preliminary results.

Let 1 < p < q <∞ and let p′ be the conjugate number given by 1/p′ = 1−1/p.
Assume that (Ω,Σ, µ) is a σ-finite measure space such that there is a measurable
partition (Ak)∞k=1 of Ω with µ(Ak) = 1 for each k. Consider the sequence of
characteristic functions (χAk

)k and define an order continuous Banach function
lattice

Y :=
{
f ∈ L0(µ); (fχAk

)∞k=1 ∈
(
⊕ Lp(µ|Ak

))
`q

}
equipped with the norm

‖f‖Y := ‖(fχAk
)‖(⊕Lp(µ|Ak

))`q
=
( ∞∑
k=1

(∫
Ak

|f |p dµ
)q/p)1/q

, f ∈ Y.

It is easy to check that

‖χAk
‖(Yp)′ = 1, k ∈ N.
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This implies that for each k ∈ N we have a functional x∗k ∈ B(Yp)∗ given by

x∗k(f) =

∫
Ak

f dµ, f ∈ Yp.

Now observe that the linear map T defined by

Tf =
( 1

2k/q

∫
Ak

f dµ
)
k
, f ∈ Y

is bounded from Y to `q.
For the Borel regular measure on B(Yp)∗ given by ν =

∑∞
k=1 2−k δx∗k , we denote

by SqYp
(ν) the space of all f ∈ L0(µ) such that

‖f‖p,q;ν :=
(∫

B+
(Yp)∗

∣∣〈|f |p, y∗〉∣∣q/p dν(y∗)
)1/q

<∞.

A direct computation shows that

‖f‖p,q,ν =
( ∞∑
k=1

1

2k

(∫
Ak

|f |p dµ
)q/p)1/q

, f ∈ Y.

Therefore, ‖ · ‖p,q,ν 6 ‖ · ‖Y and the operator T can be extended to the space
SqYp

(ν), since

‖Tf‖`q =
∥∥∥( 1

2k/q

∫
Ak

f dµ
)
k

∥∥∥
`q

6
( ∞∑
k=1

1

2k

(∫
Ak

|f |p dµ
)q/p

µ(Ak)q/p
′
)1/q

= ‖f‖Y .

Now observe that for any f1, . . . , fn ∈ Y we have

n∑
k=1

‖Tfk‖q`q 6
∫
B+

(Yp)∗

( n∑
k=1

∣∣〈|fk|p, y∗〉∣∣q/p) dν(y∗)

6 sup
y∗∈B+

(Yp)∗

n∑
k=1

∣∣〈|fk|p, y∗〉∣∣q/p
= sup

(βk)∈Bn
r

∥∥∥( n∑
k=1

|βkfk|p
)1/p ∥∥∥q

Y
,

where we have used Lemma 3.3 (see Section 3 below).
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3. Summing multilinear operators on products of Banach lattices

In what follows we assume that the m-tuples (p1, . . . , pm), (q1, . . . , qm) and
(r1, . . . , rm) of real numbers satisfy 1 6 pj 6 qj , 1/rj = 1/pj − 1/qj for each
1 6 j 6 m. We also define q by 1/q := 1/q1 + . . .+ 1/qm.

A multilinear operator T : X1× · · · ×Xm → Y —where Xj is a Banach lattice
and Y is a Banach space—, is said to be (p1, . . . , pm)-strongly (q1, . . . , qm)-concave
whenever there exists a constant C > 0 such that for any finite sequence (xjk)nk=1

in Xj , 1 6 j 6 m, we have that

( n∑
k=1

‖T (x1
k, . . . , x

m
k )‖qY

)1/q

6 C
m∏
j=1

sup
(βj

k)∈B
`
rj

∥∥∥( n∑
k=1

|βjkx
j
k|
pj
)1/pj ∥∥∥

Xj

.

We will use a lemma which is a general version of Lemma 2 in [6].

Lemma 3.1. Let 1 6 p <∞ and let E be a p-convex Banach lattice. Then

sup
(βk)∈Bn

r

∥∥∥( n∑
k=1

|βkxk|p
)1/p ∥∥∥

E
= sup
x∗∈B+

(Ep)∗

( n∑
k=1

〈|xk|p, x∗〉q/p
)1/q

for every choice of (xk)nk=1 in E where 1/r = 1/p− 1/q.

Proof. Fix a finite set {x1, . . . , xn} of E, and note that (`q/p)∗ = `r/p, by r/p+
q/p = 1. Then we have that

sup
(βk)∈Bn

r

∥∥∥( n∑
k=1

|βkxk|p
)1/p ∥∥∥p

E
= sup

(βk)∈Bn
r

∥∥∥ n∑
k=1

|βkxk|p
∥∥∥
Ep

= sup
(βk)∈Bn

r

sup
x∗∈B+

(Ep)∗

〈 n∑
k=1

|βkxk|p, x∗
〉

= sup
x∗∈B+

(Ep)∗

sup
(αk)∈Bn

r/p

n∑
k=1

|αk|
〈
|xk|p, ϕ

〉
= sup
x∗∈B+

(Ep)∗

( n∑
k=1

(〈
|xk|p, x∗

〉)q/p )p/q
. �

Now we state our first main theorem.

Theorem 3.2. Let Xj be pj-convex Banach lattices and let 1 6 qj <∞ for each
1 6 j 6 m. If 1/q = 1/q1 +. . .+1/qm, then the following are equivalent statements
about a multilinear operator T from X1 × · · · ×Xm to a Banach space E.

(i) T is (p1, . . . , pm)-strongly (q1, . . . , qm)-concave.
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(ii) There is a constant C > 0 such that for every (x1, . . . , xm) ∈ X1×···×Xm

‖T (x1, . . . , xm)‖Y 6 C
m∏
j=1

(∫
B+

((Xj)pj
)∗

〈
|xj |pj , x∗j

〉qj/pj
dνj(x

∗
j )
)1/qj

,

where νj is a probability Borel measure on the weak∗ compact set B+
((Xj)p)∗

for each 1 6 j 6 m.

Proof. (i) ⇒ (ii). Fix finite sequences (xji )
n
i=1 in Xj for each 1 6 j 6 m.

First consider Lemma 3.1 (with m = 1 and E = Xj for each j) for factors
in the product of the left hand side of the inequality that provides the definition
of (p1, ..., pm)-strongly (q1, ..., qm)-concave m-linear operator. We obtain that the
following inequality is equivalent to the one in this definition( n∑

i=1

‖T (x1
i , . . . , x

m
i )‖qY

)1/q

6 C
m∏
j=1

sup
x∗j∈B

+
((X1)pj

)∗

( n∑
i=1

(〈
|xji |

pj , x∗j
〉)qj/pj )1/qj

.

From this on, the proof uses some methods from [3, 11]. We only sketch the
main arguments for the convenience of the reader.

Using Young’s inequality, we obtain that the inequality above implies
n∑
i=1

‖T (x1
i , . . . , x

m
i )‖qY 6 C

q
m∑
j=1

(
q

qj
sup

x∗j∈B
+
((Xj)pj

)∗

n∑
i=1

(〈
|xji |

pj , x∗j
〉)qj/pj)

.

We now define a convex set of continuous real functions

ψ : M(B+
((X1)p1 )∗)× · · · ×M(B+

((Xm)pm )∗)→ R,

each one associated to each finite sets of finite sequences as the ones at the begin-
ning of the proof, and given by the formula

ψ(η1, . . . , ηm) :=

n∑
i=1

‖T (x1
i , . . . , x

m
i )‖qY

− Cq
m∑
j=1

(
q

qj

∫
B+

((Xj)pj
)∗

n∑
i=1

(〈
|xji |

pj , x∗j
〉)qj/pj

dηj(x
∗
j )

)
.

Note that M(B+
((Xj)pj )∗) is a compact set with the product topology defined

by means of the weak∗ topology of the dual of each Banach space (Xj)pj for
each 1 6 j 6 m. Recall that these are Banach spaces as a consequence of the
requirement that each of them is pi-convex. The functions are continuous with
respect to the product topology and satisfy all the properties needed for applying
Ky Fan’s Lemma (see, e.g., [7, Lemma 9.10]). This gives the existence of an element

(ν1, . . . , νm) ∈M(B+
((X1)p1 )∗)× · · · ×M(B+

((Xm)pm )∗)
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satisfying

n∑
i=1

‖T (x1
i , . . . , x

m
i )‖qY−C

q
m∑
j=1

(
q

qj

∫
B+

((Xj)pj
)∗

n∑
i=1

(〈
|xji |

pj , x∗j
〉))qj/pj

dνj(x
∗
j ) 6 0.

Now, the multilinearity of T allows to use a direct argument for choosing the
right constants for getting from the above estimation for the product domination
that is shown in (ii) (see [3, Theorem 1] for the details).

To conclude it is enough to observe that the converse inequality is obvious by
using Lemma 3.1. �

The next result deals with factorization of (p1, . . . , pm)-strongly (q1, . . . , qm)-
concave multilinear operators. Motivated by the above result we define Banach
lattices which are connected with the obtained characterization of these operators.

Let 1 6 p 6 q < ∞. For a given p-convex Banach function lattice X and
a regular Borel probability measure ν on B(Xp)∗ equipped with the weak∗-topology
we define on X a functional by

‖x‖p,q,ν :=
(∫

B+
(Xp)∗

〈|x|p, x∗〉q/pd ν(x∗)
)1/q

, x ∈ X.

We put F qXp
(ν) := (X, ‖·‖p,q,ν). Clearly ρ(·) := ‖·‖p,q,ν defines a lattice seminorm

on X. If N is the null ideal of ρ, i.e., N = {x ∈ X; ρ(x) = 0}, then X/N is
a normed lattice (under the natural order) equipped with the norm

‖[x]‖ := ρ(x), [x] ∈ X/N.

The norm completion F̃ qXp
(ν) of X/N with respect to the above lattice norm is

a Banach lattice. Note that ‖x‖p,q,ν 6 ‖x‖X for all x ∈ X implies that the map
iX defined by

ιX(x) = [x], x ∈ X

is bounded from X to F̃ qXp
(ν).

We have the following useful lemma.

Lemma 3.3. Let 1 6 p 6 q <∞ and let X be a p-convex Banach lattice.

(i) If there exists a strictly positive functional on Xp, then for every ν ∈
M(B+

(Xp)∗) there exists ν̃ ∈ M(B+
(Xp)∗) such that FXp(ν̃) = (X, ‖ · ‖p,q,ν̃)

is a normed lattice and

1

2
‖x‖p,q,ν 6 ‖x‖p,q,ν̃ 6 ‖x‖X , x ∈ X.

(ii) If X is an order continuous Banach function lattice on (Ω,Σ, µ), then
for every ν ∈ M(B+

(Xp)∗) there exists a probability Borel measure ξ ∈
M(B+

(Xp)′
) such that the completion of FXp(ν̃) —for ν̃ as in (ii)— is an
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order continuous Banach function lattice (SqXp
(ξ), ‖ · ‖) on (Ω,Σ, µ) given

by

SqXp
(ξ) :=

{
f ∈ L0(µ);

‖f‖ =

(∫
B+

(Xp)′

(∫
Ω

|f(ω)|p h(ω) dµ(ω)

)q/p
dξ(h)

)1/q

<∞
}

and satisfying

1

2
‖x‖p,q,ν 6 ‖x‖ 6 ‖x‖X , x ∈ X.

Proof. (i). Let x∗ ∈ (Xp)
∗ be a norm one strictly positive functional on Xp and

let δx∗ ∈M(B+
(Xp)∗) be the associated Dirac measure. For a given ν ∈M(B+

(Xp)∗),
we define ν̃ := 1/2(ν+δx∗) ∈M(B+

(Xp)∗). It is obvious that ν̃ satisfies the required
properties.

(ii). Our hypothesis that X (and so Xp) is order continuous implies that for
every x∗ ∈ (Xp)

∗ there exists a unique h = hx∗ ∈ (Xp)
′ such that

〈|x|p, x∗〉 =

∫
Ω

|x|ph dµ, x ∈ X

with ‖x∗‖(Xp)∗ = ‖h‖(Xp)′ , and moreover the map (Xp)
∗ 3 x∗ 7→ hx∗ is an order

isometrical isomorphism. We denote the restriction of this map to B(Xp)∗ by ϕ.
Clearly, ϕ is a topological homeomorphism of B(Xp)∗ equipped with the weak∗
topology onto B(Xp)′ equipped with the pointwise topology induced by σ(X ′, X).

For a fixed ν ∈M(B+
(Xp)∗), we define νϕ ∈M(B+

(Xp)′) by νϕ(A) := ν(ϕ−1(A))

for any Borel subset of B+
(Xp)′ . Then for every x ∈ X, we get that∫

B+
(Xp)∗

〈|x|p, x∗〉q/p dν(x∗) =

∫
ϕ−1(B+

(Xp)′ )

〈|x|p, ϕ−1(hx∗)〉q/p dν(x∗)

=

∫
B+

(Xp)′

(∫
Ω

|x|phdµ
)q/p

dνϕ(h).

Since (Xp)
′ is a Banach function lattice on (Ω,Σ, µ) there exists h ∈ B(Xp)′ with

h > 0 on Ω. Then ξ := 1/2(νϕ + δh) ∈ M(B(Xp)′), where δh is a Dirac measure
generated by h.

Combining the above formula with [6, Proposition 1], we conclude that

(SqXp
(ξ), ‖ · ‖)

is the desired Banach function lattice. �
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We are now ready to state the following factorization theorem.

Theorem 3.4. Let Xj be pj-convex Banach function lattices and let 1 6 qj <∞
for each 1 6 j 6 m. If 1/q = 1/q1 + . . .+ 1/qm, then the following are equivalent
statements about a multilinear operator T from X1×· · ·×Xm to a Banach space Y .

(i) T is (p1, . . . , pm)-strongly (q1, . . . , qm)-concave.
(ii) There are probability Borel measures νj in M(B((Xj)pj )∗) for each

1 6 j 6 m, and a multilinear operator S such that T factors as

X1 × · · · ×Xm
T //

ι1×···×ιm
��

Y

F̃ q1Xp1
(ν1)× · · · × F̃ qmXpm

(νm)

S
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where ιj = ιXj for each 1 6 j 6 m.

Proof. (i) ⇒ (ii). From Theorem 3.2, it follows that there is a constant C > 0
such that for every (x1, . . . , xm) ∈ X1 × · · · ×Xm,

‖T (x1, . . . , xm)‖Y 6 C
m∏
j=1

(∫
B+

((Xj)pj
)∗

〈
|xj |pj , x∗j

〉qj/pj
dνj(x

∗
j )
)1/qj

,

where νj is a probability Borel measure on the weak∗-compact set B+
((Xj)p)∗ for

each 1 6 j 6 m. This implies that

‖T (x1, . . . , xm)‖Y 6 Cρ1(x1) · · · ρm(xm)

holds for all (x1, . . . , xm) ∈ X1 × · · · × Xm with ρj(·) = ‖ · ‖Pj ,qj ,νj for each
1 6 j 6 m. In particular, this implies that the formula

T0([x1], . . . , [xm]) := T (x1, . . . , xm), (x1, . . . , xm) ∈ X1 × · · · ×Xm

defines a bounded multilinear operator from X1/N1 × · · · ×Xm/Nm to Y , where
Nj = {x ∈ Xj ; ρj(x) = 0} for each 1 6 j 6 m. Denote by S the unique multilinear
continuous extension of T0 to F̃ q1Xp1

×· · ·× F̃ qmXpm
. Clearly we have that ι1×· · ·× ιm

given by
(ι1 × · · · × ιm)(x1, . . . , xm) := ([x1], . . . , [xm])

for all (x1, . . . , xm) ∈ X1×···×Xm is a bounded linear operator from X1×···×Xm

to F̃ q1Xp1
(ν1)× · · · × F̃ qmXpm

(νm) and so we have the required factorization

T = S ◦ (ι1 × · · · × ιm).

The implication (ii) ⇒ (i) is obvious. �
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Combing the above corollary with Lemma 3.3 we obtain the following result
for the case of order continuous Banach function lattices.

Corollary 3.5. Let Xj be order continuous pj-convex Banach function lattices
on measure spaces (Ωj ,Σj , µj) and let 1 6 qj < ∞, 1 6 j 6 m. If 1/q =
1/q1 + . . .+ 1/qm, then the following are equivalent statements about an m-linear
operator T from X1 × · · · ×Xm to a Banach space Y .

(i) T is (p1, . . . , pm)-strongly (q1, . . . , qm)-concave.
(ii) There are probability measures νj in M(B((Xj)pj )′ ) for each 1 6 j 6 m,

and a multilinear operator S such that T factors through the product of
Banach function lattices SqjXpj

(νj) on the corresponding measure spaces
(Ωj ,Σj , µj) as

X1 × · · · ×Xm
T //

ι1×···×ιm
��

Y

Sq1Xp1
(ν1)× · · · × SqmXpm

(νm)

S
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where ιj : Xj → S
qj
Xpj

(νj) are continuous inclusions for 1 6 j 6 m.

4. Domination and the Fremlin tensor product

In this section we show the relation between summability of multilinear operators
from suitable products of Banach function lattices and Fremlin tensor products.
This will provide a class of multilinear operators which is different from the one
analyzed in the previous section. The main difference is that the factorization is in
the present case defined by a multilinear operator with values in a tensor product
structure and a linear map, in an opposite way as what happens with the class of
(p1, . . . , pm)-strongly (q1, . . . , qm)-concave operators.

Theorem 4.1. Let T : X1 × · · · ×Xm → Y be a Banach space valued multilinear
operator, where Xj, 1 6 j 6 m, are Banach lattices. Suppose that X1 ⊗|π| · · · ⊗|π|
Xm is embedded in the p-convex Banach lattice E. Then the following statements
are equivalent.

(i) There is a constant C > 0 such that for each 1 6 j 6 m and every choice
of (xji )

n
i=1 in Xj,( n∑

i=1

‖T (x1
i , . . . , x

m
i )‖qY

)1/q

6 C sup
(βi)∈Bn

r

∥∥∥( n∑
i=1

∣∣βi(x1
i ⊗···⊗xmi

)∣∣p)1/p ∥∥∥
E
.

(ii) There is a constant C > 0 such that for every (x1, . . . , xm) ∈ X1×· · ·×Xm,

‖T (x1, . . . , xm)‖Y 6 C
(∫

B+
(Ep)∗

〈
|x1 ⊗ · · · ⊗ xm|p, x∗

〉q/p
dν
)1/q

,

where ν is a probability Borel measure on the weak* compact set B+
(Ep)∗ .
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Proof. The argument follows the lines of the one given for Theorem 3.2. The
p-convexity of E implies that Ep is a Banach lattice. By the inclusion of the
Fremlin tensor product X1 ⊗|π| · · · ⊗|π| Xm ↪→ E we have that all the tensors
x1 ⊗ · · · ⊗ xm are in E, and so |x1 ⊗ · · · ⊗ xm|p define a continuous function
in C(B(Ep)∗), where B(Ep)∗ is equipped with the induced topology by the weak∗
topology of (Ep)

∗. From this point on, the proof using Ky Fan’s Lemma is similar
to the one of Theorem 3.2, using Lemma 3.1 for defining the right set of functions
φ : M(B(Ep)∗)→ R, where only functions as |x1 ⊗ · · · ⊗ xm|p are considered.

The converse implication is easily obtained by a direct calculation. �

In the case of Banach function lattices on measure spaces we obtain the fol-
lowing results on factorization of multilinear operators.

Corollary 4.2. Let T : X1 × · · · ×Xm → Y be a Banach space valued multilinear
operator, where Xj are Banach function lattices on (Ωj ,Σj , µj), 1 6 j 6 m.
Suppose that X1⊗|π| · · ·⊗|π|Xm is continuously embedded in E, where E = E(µ1×
· · ·×µm) is a p-convex Banach function lattice on the product measure space. Then
the following statements are equivalent.

(i) There is a constant C > 0 such that for each 1 6 j 6 m and for every
choice of sequences (xji )

n
i=1 in Xj,( n∑

i=1

‖T (x1
i , . . . , x

m
i )‖qY

)1/q

6 C sup
(βi)∈Bn

r

∥∥∥( n∑
i=1

∣∣βi(x1
i �···�xmi )

∣∣p)1/p ∥∥∥
E
.

(ii) There is a constant C > 0 such that for every (x1, . . . , xm) ∈ X1×· · ·×Xm,

‖T (x1, . . . , xm)‖E 6 C
(∫

B+
(Ep)∗

〈
|x1 � · · · � xm|p, x∗

〉q/p
dν
)1/q

,

where ν is a probability Borel measure on the weak* compact set B+
(Ep)∗ .

Using the same proof but changing single tensors x1 ⊗ · · · ⊗ xm by finite com-
binations of these products, we obtain the corresponding factorization theorem.

Corollary 4.3. Under the assumptions of Theorem 4.1 on the spaces X1, . . . , Xm,
E and the multilinear operator T : X1 × · · · ×Xm → Y , the following statements
are equivalent.

(i) There is a constant C > 0 such that for each 1 6 j 6 m and for every
choice of matrices (xji,k)N,Mi=1,k=1 in Xj, (λi,k)N,Mi=1,k=1 in R,

( N∑
i=1

∥∥∥ M∑
k=1

λi,kT (x1
i,k, . . . , x

m
i,k)
∥∥∥q
Y

)1/q

6 C sup
(βi)∈Bn

r

∥∥∥( N∑
i=1

∣∣∣βi( M∑
k=1

λi,k
(
x1
i,k ⊗ · · · ⊗ xmi,k

))∣∣∣p)1/p ∥∥∥
E
.
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(ii) The operator T admits the following factorization

X1 × · · · ×Xm
T //

⊗
��

E

F̃ qEp
(ν)

S

99

where ν is a probability Borel measure on the weak* compact set B+
(Ep)∗

and
⊗

is the Fremlin map.

5. Factorization of p-strongly q-dominated operators.

In this section we prove a factorization theorem for a special class of linear op-
erators between Banach lattices. We start with the following definition. Let
1 6 q < ∞ and 1/q + 1/q′ = 1, 1 6 p1 6 q1 = q, 1 6 p2 6 q2 = q′ and
1/r1 = 1/p1 − 1/q1, 1/r2 = 1/p2 − 1/q2. An operator T : X → Y between Banach
lattices is said to be (p1, p2)-strongly (q1, q2)-concave whenever

∣∣∣ n∑
k=1

〈Txk, y∗k〉
∣∣∣ 6 C sup

(αk)∈Bn
r1

∥∥∥( n∑
k=1

|αkxk|p1
)1/p1 ∥∥∥

X

× sup
(βk)∈Bn

r2

∥∥∥( n∑
k=1

|βky∗k|p2
)1/p2 ∥∥∥

Y ∗
,

for every choice of sequences (xk)nk=1 in X and (y∗k)nk=1 in Y ∗.
We note that general examples of (p1, p2)-strongly (q1, q2)-concave operators

are given by the classical q-dominated operators. Indeed, an operator T : X → Y
is said to be q-dominated (1 6 q <∞) if

∣∣∣ n∑
k=1

〈T (xk), y∗k〉
∣∣∣ 6 C sup

x∗∈BX∗

( n∑
k=1

|〈xk, x∗〉|q
)1/q

sup
y∗∗∈BY ∗∗

( n∑
k=1

|〈y∗k, y∗∗〉|q
′
)1/q′

for every choice of (xk)nk=1 in X and (y∗k)nk=1 in Y ∗.
Since 1/q = 1− 1/q′, 1/q′ = 1− 1/q and

sup
x∗∈BX∗

( n∑
k=1

|〈xk, x∗〉|q
)1/q

· sup
y∗∗∈BY ∗∗

( n∑
k=1

|〈y∗k, y∗∗〉|q
′
)1/q′

6 sup
(αk)∈Bn

q′

∥∥∥ n∑
i=1

|αkxk|
∥∥∥
X
· sup

(βk)∈Bn
q

∥∥∥ n∑
k=1

|βky∗k|
∥∥∥
Y ∗
,

we conclude that T : X → Y is (1, 1)-strongly (q, q′)-concave operator.
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Before showing the results, let us observe the following fact. Suppose that
T : X → Y is an operator between Banach lattices such that X is p1-convex and
Y is p′2-concave with 1/p2 + 1/p′2 = 1. Then it follows from Theorem 3.2 that
T is (p1, p2)-strongly (q1, q2)-concave operator if and only if there exist C > 0
and probability measures ν1 ∈ M(B(Xp1 )∗) and ν2 ∈ M(B((Y ∗)p2 )∗) such that for
every (x, y∗) ∈ X × Y ∗,

|〈Tx, y∗〉| 6 C
(∫

B+
(Xp1 )∗

〈
|x|p1 , x∗

〉q1/p1
dν1(x∗)

)1/q1

×
(∫

B+
((Y ∗)p2 )∗

〈
|y∗|p2 , y∗∗

〉q2/p2
dν2(y∗∗)

)1/q2

.

We need the following lattice formula (see [14, Proposition 12.6]).

Proposition 5.1. Let E be a Banach lattice, xk ∈ E (1 6 k 6 n), and 1 6 p 6∞.
Then

∥∥∥( n∑
k=1

|xk|p
)1/p∥∥∥

E
= sup

{ n∑
k=1

〈xk, x∗k〉; x∗k ∈ E∗,
∥∥∥( n∑

k=1

|x∗k|p
′
)1/p′∥∥∥

E∗
6 1

}
.

An application of the above proposition is the following corollary.

Corollary 5.2. Let 1 6 p1 < q, 1 6 p2 < q′, and let r1 and r2 be given by
1/r1 = 1/p1− 1/q and 1/r2 = 1/p2− 1/q′. Assume that T : X → Y is an operator
between Banach lattices such that X is p1-convex and Y be p′2-concave. If there
exists a constant C > 0 such that for every sequence (xk)nk=1,

inf
(αk)∈Bn

r2

∥∥∥( n∑
k=1

∣∣∣T (xk)

αk

∣∣∣p′2)1/p′2
∥∥∥
Y
6 C sup

(βk)∈Bn
r1

∥∥∥( n∑
k=1

|βkxk|p1
)1/p1∥∥∥

X
,

then T is (p1, p2)-strongly (q, q′)-concave.

Proof. From Proposition 5.1, it follows that it is enough to show that

sup

{∣∣∣ n∑
k=1

〈T (xk), y∗k〉
∣∣∣; y∗k ∈ Y ∗, sup

(γk)∈Bn
r2

∥∥∥( n∑
i=1

|γky∗k|p2
)1/p2 ∥∥∥

Y ∗
6 1

}

6 C sup
(βk)∈Bn

r1

∥∥∥( n∑
k=1

|βkxk|p1
)1/p1 ∥∥∥

X

for every choice of finite sequences (xk)nk=1 in X and (y∗k)nk=1 in Y ∗.
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Assume that p2 > 1; the proof for p2 = 1 is the same with the obvious changes
in the computations. Fix now (αk) in Bnr2 . We have

sup

{∣∣∣ n∑
k=1

〈T (xk), y∗k〉
∣∣∣; y∗k ∈ Y ∗, sup

(γk)∈Bn
r2

∥∥∥( n∑
k=1

|γky∗k|p2
)1/p2 ∥∥∥

Y ∗
6 1

}

6 sup

{∣∣∣ n∑
k=1

〈T (xk), y∗k〉
∣∣∣; y∗k ∈ Y ∗, ∥∥∥( n∑

k=1

|αky∗k|p2
)1/p2 ∥∥∥

Y ∗
6 1

}
.

Thus, we get that

sup

{∣∣∣ n∑
k=1

〈T (xk), y∗k〉
∣∣∣; sup

(γk)∈Bn
r2

∥∥∥( n∑
k=1

|γky∗k|p2
)1/p2 ∥∥∥

Y ∗
6 1

}

6 inf
(αk)∈Bn

r2

∥∥∥( n∑
k=1

∣∣∣T (xk)

αk

∣∣∣p′2)1/p′2
∥∥∥
Y
.

Combining with Proposition 5.1, the proof is completed. �

Note that Corollary 5.2 shows that some classical operators are (p1, p2)-strongly
(q1, q2)-concave. Consider the following example. Let ([0, 1],B, µ) be Lebesgue
measure space, and let (Ak)∞k=1 be the decreasing sequence of the intervals Ak :=
[0, 1/2k−1] for each k ∈ N. Consider the integral evaluation operator T : L1[0, 1]→
`∞ given by

T (x) :=
(∫

Ak

x dµ
)
k
, x ∈ L1[0, 1].

We claim that T satisfies the assumptions of Corollary 5.2 with q = 2 = q′,
p1 = p2 = 1 and r1 = r2 = 2. To see this fix a finite set {x1, ..., xn} in L1[0, 1] and
define the following constants,

α0,i :=

∫
[0,1]
|xi| dµ(∑n

i=1

( ∫
[0,1]
|xi| dµ

)2)1/2 , 1 6 i 6 n.

Note that
(∑n

i=1 α
2
0,i

)1/2
= 1. Then

inf
(αi)∈Bn

2

∥∥∥ sup
16i6n

∣∣∣Txi
αi

∣∣∣∥∥∥
`∞
6
∥∥∥ sup

16i6n

∣∣∣ (∫Ak
xi dµ)k

αi,0

∣∣∣∥∥∥
`∞

6
∥∥∥ sup

16i6n

∣∣∣( ∫
Ak
xi dµ∫

[0,1]
|xi| dµ

)
k

∣∣∣( n∑
i=1

(∫
[0,1]

|xi| dµ
)2)1/2∥∥∥

`∞

6
( n∑
i=1

(∫
[0,1]

|xi| dµ
)2)1/2

6 sup
(βi)∈Bn

2

n∑
i=1

|βi|
∫

[0,1]

|xi|dµ = sup
(βi)∈Bn

2

∥∥ n∑
i=1

|βixi|
∥∥
L1[0,1]

.

Thus, Corollary 5.2 applies and so T is (1, 1)-strongly (2, 2)-concave.
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Theorem 5.3. Let 1 6 p1, p2, q1, q2 be real numbers such that p1 6 q1 and
p2 6 q2 = q′1, where 1/q1 + 1/q′1 = 1. Let (Ω,Σ, µ) be a finite measure space.
Let X be an order continuous p1-convex Banach function space and Y a p′2-con-
cave order continuous Banach function lattice with the Fatou property, where
1/p2 + 1/p′2 = 1. Assume that Y ′ is also order continuous. The following state-
ments about an operator T : X → Y are equivalent.

(i) T is (p1, p2)-strongly (q1, q2)-concave.
(ii) There is a constant C > 0 such that for every choice of (xk)nk=1 in X and

(y∗k)nk=1 in Y ∗,

sup

{∣∣∣ n∑
k=1

〈T (xk), y∗k〉
∣∣∣ : sup

(αk)∈Bn
r2

∥∥∥( n∑
k=1

|αky∗k|p2
)1/p2 ∥∥∥

Y ∗
6 1

}

6 C sup
(βk)∈Bn

r1

∥∥∥( n∑
k=1

|βkxk|p1
)1/p1 ∥∥∥

X
.

(iii) T admits the factorization

X
T //

ιX

��

Y .

Sq1Xp1
(ν1)

T0

// (Sq2Y ′p2
(ν2))′

(ι′Y )′

OO

Proof. The equivalence between (i) and (ii) is just given by Corollary 5.2. Let us
show the equivalence of (i) and (iii). Applying Corollary 3.4, we conclude that (i)
implies that the bounded bilinear form on X × Y ′ given by

(x, y′) 7→ 〈T (x), y′〉, (x, y′) ∈ X × Y ′,

admits a bilinear continuous extension from the product Sq1Xp1
(ν1) × Sq

′
2

(Y ′)p′2
(ν2)

of Banach function lattices for some probability Borel measure spaces, i.e., there
exists a continuous bilinear form S : E × F → R such that

S(iX(x), iY ′(y
′)) = 〈T (x), y′〉, (x, y′) ∈ X × Y ′,

where E := Sq1Xp1
(ν1), F := S

q′2
(Y ′)p′2

(ν2) and

ιX : X → E, ιY ′ : Y
′ → F

are continuous inclusions.
The required factorization follows then by using standard arguments. At first

we observe that for any fixed f ∈ E the formula 〈T0(f), ·〉 := S(f, ·) defines
a continuous functional on F with

sup
g∈F
|〈T0(f), g〉| = sup

g∈F
|S(f, g)| 6 ‖S‖‖f‖E .

This clearly implies that T0 : E → F is a bounded linear operator with ‖T0‖ 6 ‖S‖.
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Since Y is p′2-concave, Y ′ is p2-convex. Our assumption on Y ′ yields that
(Y ′)p2 is also order continuous. Consequently, we have that the Köthe adjoint of
the inclusion ιY ′ : Y

′ → F appearing in the factorization given by Corollary 3.4
for the bilinear map can be considered,

(ιY ′)
′ : F ′ → (Y ′)′.

Combining the Köthe duality with Y ′′ = Y (by the Fatou property), we obtain
the required factorization shown in (iii). The converse is obvious. �
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