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RIESZ MEANS OF THE EULER TOTIENT FUNCTION

Shōta Inoue, Isao Kiuchi

Abstract: Let φ denote the Euler totient function, defined by id ∗ µ where µ is the Möbius
function. We shall consider the k-th Riesz mean of the arithmetical function n/φ(n) for any
positive integer k > 2 on the assumption of the Riemann Hypothesis. Our result is a refinement
of Theorem 2 in A. Sankaranarayanan and S.K. Singh [6]. We also improve it upon the assumption
of the Gonek-Hejhal Hypothesis.

Keywords: Euler totient function, Riemann zeta-function, Riemann Hypothesis, Mertens
Hypothesis, Gonek-Hejhal Hypothesis.

1. Statement of results

Let s = σ + it be a complex variable, where σ and t are real, and let γ be Euler’s
constant. The arithmetical function φ denotes the Euler totient function, defined
by φ(n) =

∑
d|n dµ (n/d) , where µ is the Möbius function. For any positive real

number x (> x0), with x0 being a sufficiently large positive number, R. Sitara-
machandrarao [7] established the first Riesz mean of n/φ(n) and showed that the
asymptotic relation

∑
n6x

n

φ(n)

(
1− n

x

)
=

315ζ(3)

4π4
x− 1

2
log x (1.1)

+
1

2

(
1− γ − log(2π)−

∑
p

log p

p(p− 1)

)
+ E1(x)

holds with error term E1(x) = O
(
x−

1
5

)
. He conjectured that E1(x) � x−

3
4+ε

holds for any small fixed positive number ε. Recently, the asymptotic formulas for
the general k-th Riesz mean related to the arithmetic function n/φ(n), for any pos-
itive integer k > 2, were studied by A. Sankaranarayanan and S.K. Singh [4]–[6].
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They showed that

1

k!

∑
n6x

n

φ(n)

(
1− n

x

)k
= c1(k)x+ c2(k) log x+ c3(k) + Ek(x) (1.2)

holds, where the function Ek(x) is the error term. Here the constants c1(k), c2(k),
and c3(k) are given by1 c1(k) =

ζ(2)ζ(3)
(k+1)!ζ(6) , c2(k) = −

1
2k! , and

c3(k) =
1

k!

1

2

k∑
j=1

1

j
− γ

2
− log

√
2π − 1

2

∑
p

log p

p(p− 1)

 ,

respectively. They showed [4] that Ek(x) � x−
1
2+ε for any small fixed positive

constant ε and that the implied constant is independent of k. Later, they refined
in [5] certain arguments of [4], and with some extra inputs they established the
following result in [5]. Let c∗ be any real number > 10. Then

E1(x)� x−
1
2 (log x)

5
4 log log x

and

Ek(x)�
max(4k, c∗

2
3+ε) log x

xc∗k−1
+ c∗

1
2
x−

1
2 (log x)

1
4 log log x

ek

for any positive integer k > 2, where the implied constants are independent of k.
They [6] showed that there exists a computable constant c such that

Ek(x)�
x−

1
2

k
exp

(
−c (log x)

1
3

(log log x)
1
3

)

for x > x0, where x0 is a sufficiently large positive number and k is any positive
integer. Furthermore, assuming that the Riemann Hypothesis is true, they showed
that the inequality

Ek(x)�
x−

3
4+ε

k
(1.3)

holds for any integer k > 2 and any small fixed positive constant ε. Moreover, the
implied constant is independent of k.

Before going into the introduction of our theorem, we denote the function hn(s)
below (the Euler product (2.2) in Lemma 2.1) defined by

hn(s) :=
∏
p

(
1 +

2n−1∑
m=1

(−1)m−1

pms+m+1
(
1− 1

p

) − 1

p2ns+2n
(
1− 1

p

)),
1 The correct coefficient of c1(k) is ζ(2)ζ(3)

(k+1)!ζ(6)
since the coefficient (29) in [4] was given by

ζ(2)ζ(3)
k!ζ(6)

, which might be mistyped.
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which is absolutely and uniformly convergent in any compact set in the half-plane
Re s > −1 + 1

2n . The purpose of this paper is to consider exact representation of
Ek(x) of the general k-th Riesz mean related to the arithmetical function n/φ(n)
on the assumption that the Riemann Hypothesis is true and all zeros of the Rie-
mann zeta-function ζ(s) on the critical line are simple. We will prove the following
theorem.

Theorem 1.1. Suppose that the Riemann Hypothesis is true and all the zeros ρ
on the critical line of the Riemann zeta-function ζ(s) are simple. Then, for any
positive integers k > 2 and n > log log x

2 log 2 , there exists a point T (x4 6 T 6 x4 + 1)
such that

Ek(x) = Yk,n(x, T )x
− 3

4 +O

(
x
−1+ C√

log x

( √
log x

(k − 1)!
+

1

k

))
(1.4)

with an absolute constant C > 0, where

Yk,n(x, T ) := Re
∑

0<γ<T

ζ

(
−3

4
+ i

γ

2

)
ζ

(
1

4
+ i

γ

2

)
ζ
(
(2n − 3 · 2n−2) + i2nγ

)
ζ ′
(
1
2 + iγ

)
× hn

(
−3

4
+ i

γ

2

)
xi

γ
2(

− 3
4 + iγ2

)
( 14 + iγ2 ) · · · (k −

3
4 + iγ2 )

.

Remark 1.1. The inequality (1.3) implies Yk,n(x, T )� k−1xε for any fixed small
positive constant ε. Based on this observation we conjecture that the estimate
Ek(x)� x−

3
4 holds. In fact, if the finite sum Yk,n(x, T ) is estimated by O(1), then

the estimate Ek(x)� x−
3
4 holds.

We make use of the Gonek-Hejhal Hypothesis (S. M. Gonek [1] and D. Hejhal [2]
independently conjectured), namely

J−λ(T ) :=
∑

0<γ6T

1

|ζ ′(ρ)|2λ
� T (log T )(λ−1)

2

(1.5)

for real numbers λ < 3
2 to improve the error term Ek(x) (Theorem 2 (conditional)

in [6]). Then we have the following theorem.

Theorem 1.2. Suppose that the Riemann Hypothesis and the Gonek-Hejhal Hy-
pothesis are true and all the zeros ρ on the critical line of the Riemann zeta-
function ζ(s) are simple. Then the estimate Ek(x) = O

(
x−

3
4

)
holds for any pos-

itive integer k > 2.

In what follows, ε denotes any arbitrarily small positive number, not necessarily
the same ones at each occurrence.
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2. Some lemmas

In order to prove Theorems 1.1 and 1.2, we shall prepare three lemmas. We denote
the function F (s) defined by

∞∑
n=1

n

φ(n)ns

for Re s > 1. Then the product representation of F (s) gives the following formula.

Lemma 2.1. For any positive integer n > 2 and Re s > 1, we have

F (s) = ζ(s)ζ(s+ 1)
ζ(2ns+ 2n)

ζ(2s+ 2)
hn(s) (2.1)

with

hn(s) :=
∏
p

(
1 +

2n−1∑
m=1

(−1)m−1

pms+m+1
(
1− 1

p

) − 1

p2ns+2n
(
1− 1

p

)), (2.2)

where hn(s) is absolutely and uniformly convergent in any compact set in the half-
plane Re s > −1 + 1

2n .

Proof. We use induction on n. The lemma is true for n = 2 which is Lemma 3.1
in [4]. Now, we assume that the statement (2.1) holds for 2, 3, . . . , n − 1. The
induction assumption tells us

F (s) = ζ(s)ζ(s+ 1)
ζ(2n−1s+ 2n−1)

ζ(2s+ 2)
hn−1(s)

with

hn−1(s) =
∏
p

(
1 +

2n−1−1∑
m=1

(−1)m−1

pms+m+1
(
1− 1

p

) − 1

p2n−1s+2n−1
(
1− 1

p

)).
Using the induction hypothesis, for Re s > 1, we have

F (s) = ζ(s)ζ(s+ 1)
ζ(2n−1s+ 2n−1)

ζ(2s+ 2)

∏
p

1 +
1

p2n−1s+2n−1

1 +
1

p2n−1s+2n−1

×
∏
p

(
1 +

2n−1−1∑
m=1

(−1)m−1

pms+m+1
(
1− 1

p

) − 1

p2n−1s+2n−1
(
1− 1

p

))

= ζ(s)ζ(s+ 1)
ζ(2ns+ 2n)

ζ(2s+ 2)

∏
p

(
1 +

1

p2n−1s+2n−1

)

×
(
1 +

2n−1−1∑
m=1

(−1)m−1

pms+m+1
(
1− 1

p

) − 1

p2n−1s+2n−1
(
1− 1

p

)).
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Now, we find that

∏
p

(
1 +

1

p2n−1s+2n−1

)1 +
1

1− 1
p

2n−1−1∑
m=1

(−1)m−1

pms+m+1
− 1

p2n−1s+2n−1


=
∏
p

(
1 +

2n−1−1∑
m=1

(−1)m−1

pms+m+1
(
1− 1

p

) − 1

p2n−1s+2n−1+1
− 1

p2n−1s+2n−1+2

+ · · ·+
2n−1−1∑
m=1

(−1)m−1

p(m+2n−1)s+(m+2n−1+1)
(
1− 1

p

) − 1

p2ns+2n
(
1− 1

p

))

=
∏
p

(
1 +

2n−1∑
m=1

(−1)m−1

pms+m+1
(
1− 1

p

) − 1

p2ns+2n
(
1− 1

p

))

holds. Substituting this into the above result we obtain the identity (2.1). �

Lemma 2.2. Let x be any sufficiently large real number and let δ = 1/
√
log x.

For any positive integer n(> log(1/δ)
log 2 > 8), we have

hn(−1 + δ + it)� exp

(
C

δ

)
(2.3)

with an absolute constant C > 0.

Proof. We use (2.2) and the prime number theorem π(u) ∼ u
log u for any positive

number u > 2 to estimate an upper bound for the function hn(−1+ δ+ it) for any
positive integer n(> log(1/δ)

log 2 > 8), namely

|hn(−1 + δ + it)| 6
∏
p

(
1 +

1

p− 1

2n∑
m=1

1

pmδ

)

�
∏
p

(
1 +

1

(p− 1)(pδ − 1)

)
= exp

(∑
p

log

(
1 +

1

(p− 1)(pδ − 1)

))

6 exp

(
C
∑
p

1

p1+δ

)
= exp

(
C(1 + δ)

∫ ∞
2

π(u)

u2+δ
du

)
� exp

(
C(1 + δ)

∫ ∞
2

du

u1+δ log u

)
� exp

(
C

δ

)
with an absolute constant C > 0. This completes the proof of Lemma 2.2. �
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Lemma 2.3. Assume that the Riemann Hypothesis is true. Then there exists
a point t ∈ [T, T + 1] such that

ζ(σ + it)� tε and
1

ζ(σ + it)
� tε

for every σ (1/2 6 σ 6 2) and any sufficiently large real number T > 0.

Proof. The first and second terms of this lemma are given by (14.2.5), (14.14.1)
and (14.16.2) in E. C. Titchmarsh [8], respectively. �

3. Proof of Theorem 1.1

Proof. Suppose that the Riemann Hypothesis is true, and all the zeros ρ on the
critical line of the Riemann zeta-function ζ(s) are simple. Let x be any sufficiently
large real number and let δ = 1/

√
log x. Assume that there exists a T satisfying

the condition x4 6 T 6 x4 + 1. We set any positive integer n (> log(1/δ)
log 2 > 8). We

make use of Lemma 2.1 with

F (s) = ζ(s)ζ(s+ 1)
ζ(2ns+ 2n)

ζ(2s+ 2)
hn(s)

and (5.19) in H. Montgomery and R. C. Vaughan [3] with σ0 := 1+ 1
log x to obtain

Sk(x) :=
1

k!

∑
l6x

l

φ(l)

(
1− l

x

)k
=

1

2πi

∫ σ0+iT

σ0−iT
F (s)

xs

s(s+ 1)(s+ 2) · · · (s+ k)
ds+O

(
xT−k+ε

)
. (3.1)

Now, we move the line of integration to Re s = −1+ δ. In the rectangular contour
formed by the line segments joining the points σ0 − iT , σ0 + iT , −1 + δ + iT ,
−1 + δ − iT , and σ0 − iT in the counter-clockwise sense, we observe that s = 1
is a simple pole, s = 0 is a double pole, and s = − 3

4 + iγ2 is a simple pole of the
integrand. Thus, we get the main term from the sum of the residue coming from
the poles s = 1, s = 0, and s = − 3

4 + iγ2 . That is,

1

2πi

∫ σ0+iT

σ0−iT
F (s)

xs

s(s+ 1)(s+ 2) · · · (s+ k)
ds (3.2)

=
1

2πi

{∫ σ0+iT

−1+δ+iT
+

∫ −1+δ+iT
−1+δ−iT

+

∫ −1+δ−iT
σ0−iT

}
F (s)

xs

s(s+ 1) · · · (s+ k)
ds

+Res
s=1

(
F (s)

xs

s(s+ 1) · · · (s+ k)

)
+Res

s=0

(
F (s)

xs

s(s+ 1) · · · (s+ k)

)
+

∑
0<|γ|<T

Res
s=− 3

4+i
γ
2

(
F (s)

xs

s(s+ 1) · · · (s+ k)

)
.
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The last two terms on the right-hand side of (3.2) were evaluated by A. Sankara-
narayanan and S. K. Singh [4], who have shown that

Res
s=1

(
F (s)

xs

s(s+ 1) · · · (s+ k)

)
=

ζ(2)ζ(3)

(k + 1)!ζ(6)
x

and

Res
s=0

(
F (s)

xs

s(s+ 1) · · · (s+ k)

)

=
1

2k!

− log x+

k∑
j=1

1

j
− γ − log 2π −

∑
p

log p

p(p− 1)

 ,

which denote the first and second terms of the above defined by c1(k)x and
c2(k) log x+ c3(k), respectively. Furthermore, we have∑

0<|γ|<T

Res
s=− 3

4+i
γ
2

(
F (s)

xs

s(s+ 1) · · · (s+ k)

)

=
∑

0<γ<T

Re

(
ζ

(
−3

4
+ i

γ

2

)
ζ

(
1

4
+ i

γ

2

)
ζ
(
(2n − 3 · 2n−2) + i2n−1γ

)
ζ ′
(
1
2 + iγ

)
× hn

(
−3

4
+ i

γ

2

)
xi

γ
2(

− 3
4 + iγ2

)
( 14 + iγ2 )(

5
4 + iγ2 ) · · · (k −

3
4 + iγ2 )

)
x−

3
4 .

Let T > T0, where T0 is a sufficiently large real number. Using (2.3), the second
term (the left vertical line segment) of the integral on the right-hand side of (3.2)
contributes the quantity

Qk(x) :=
1

2π

∫ T

−T

F (−1 + δ + it)x−1+δ+it

(−1 + δ + it)(δ + it) · · · (k − 1 + δ + it)
dt (3.3)

=
x−1+δ

2π

(∫
|t|6T0

+

∫
T06|t|6T

)
ζ(−1 + δ + it)ζ(δ + it)

× ζ(2nδ + i2nt)hn(−1 + δ + it)xit

ζ(2δ + 2it)(−1 + δ + it)(δ + it) · · · (k − 1 + δ + it)
dt

� x−1+δ

δ(k − 1)!
exp

(
C

δ

)
+ x−1+δ exp

(
C

δ

)∫
T06|t|6T

∣∣∣∣∣ t
3
2−δζ(2− δ − it)t 1

2−δζ(1− δ − it)
(2t)

1
2−2δζ(1− 2δ + 2it)tk+1

∣∣∣∣∣ dt,
where C > 0 is an absolute constant. Using Lemma 2.3 we have

Qk(x)� x
−1+ C√

log x

( √
log x

(k − 1)!
+

1

k

)
(3.4)
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for any positive integer k > 2. Also, we can estimate the contributions coming
from the upper horizontal line (the lower horizontal line is similar). We note that∫ σ0+iT

−1+δ+iT
F (s)

xs

s(s+ 1) · · · (s+ k)
ds

=

(∫ σ0+iT

− 3
4+iT

+

∫ − 3
4+iT

−1+δ+iT

)
F (s)

xs

s(s+ 1) · · · (s+ k)
ds

=: I1 + I2,

where

I1 =

∫ σ0+iT

− 3
4+iT

F (s)
xs

s(s+ 1) · · · (s+ k)
ds

=

(∫ σ0

1
2

+

∫ 1
2

0

+

∫ 0

− 1
2

+

∫ − 1
2

− 3
4

)
F (σ + iT )

xσ+iT

(σ + iT ) · · · (σ + k + iT )
dσ

=: J1 + J2 + J3 + J4.

Now, we observe that the function J1 is bounded above by∫ σ0

1
2

∣∣∣∣ζ(σ + iT )ζ(σ + 1 + iT )
ζ(2nσ + 2n + 2niT )

ζ(2σ + 2 + 2iT )
hn(σ + iT )

xσ

T k+1

∣∣∣∣ dσ
�
∫ σ0

1
2

T ε
x

T k+1
dσ � xT−k+ε

using Lemmas 2.1 and 2.3. We use the functional equation of the Riemann zeta-
function and Lemmas 2.1 and 2.3 to obtain

|J2| �
∫ 1

2

0

∣∣∣∣∣T 1
2−σζ(1− σ − iT )T ε x

1
2

T k+1

∣∣∣∣∣ dσ � x
1
2T−k−

1
2+ε.

Similarly, we have |J3| � T−k+3ε and |J4| � x−
1
2T−k+

1
2+ε. Hence, combining the

above estimates, we obtain

I1 � x−
1
2T−k+

1
2+ε (3.5)

for a positive number T (x4 6 T 6 x4 + 1). Also, we use the functional equation
of the Riemann zeta-function and Lemmas 2.1 and 2.3 to obtain

|I2| =

∣∣∣∣∣
∫ − 3

4+iT

−1+δ+iT
F (s)

xs

s(s+ 1) · · · (s+ k)
ds

∣∣∣∣∣
�
∫ − 3

4

−1+δ

∣∣∣∣T 1
2−σζ(1− σ − iT )T− 1

2−σζ(−σ − iT ) T δ

(2T )−3/2−2σ
xσ

T k+1

∣∣∣∣ dσ
�
∫ − 3

4

−1+δ
x−

3
4T−k+

1
2+δ � x−

3
4T−k+

1
2+δ.
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Hence using horizontal lines of height ±T to move the line of integration in (3.2),
we find that the total contribution of the horizontal lines in absolute value is

� x−
1
2T−k+

1
2+δ. (3.6)

Taking the relation (3.2) and the error estimates (3.4), (3.5), (3.6) into (3.1), we
obtain, for k > 2,

Sk(x) = c1(k)x+ c2(k) log x+ c3(k) + Yk,n(x, T )x
− 3

4 (3.7)

+O

(
x
−1+ C√

log x

( √
log x

(k − 1)!
+

1

k

))
with a positive number T (x4 6 T 6 x4 + 1), where

Yk,n(x, T ) := Re
∑

0<γ<T

ζ

(
−3

4
+ i

γ

2

)
ζ

(
1

4
+ i

γ

2

)
ζ
(
(2n − 3 · 2n−2) + i2nγ

)
ζ ′
(
1
2 + iγ

)
× hn

(
−3

4
+ i

γ

2

)
xi

γ
2(

− 3
4 + iγ2

)
( 14 + iγ2 ) · · · (k −

3
4 + iγ2 )

. (3.8)

This completes the proof of the identity (1.4). �

4. Proof of Theorem 1.2

Suppose that the Riemann Hypothesis and the Gonek-Hejhal Hypothesis are true
and all the zeros ρ on the critical line of the Riemann zeta-function ζ(s) are simple.
We use (3.8), Lemma 2.3, functional equation of the Riemann zeta-function, and
Stirling’s formula for χ(s) to obtain∑

0<γ<T

Re

(
χ

(
−3

4
+ i

γ

2

)
χ

(
1

4
+ i

γ

2

)
ζ

(
7

4
− iγ

2

)
ζ

(
3

4
− iγ

2

)

×
ζ
(
2n − 3 · 2n−2 + i2nγ

)
ζ ′
(
1
2 + iγ

) hn
(
− 3

4 + iγ2
)
xi

γ
2(

− 3
4 + iγ2

)
( 14 + iγ2 ) · · · (k −

3
4 + iγ2 )

)
�

∑
0<γ<T

1

γk−
1
2−ε|ζ ′( 12 + iγ)|

.

It suffices to show that Yk,n(x, T ) converges for k = 2. Using (1.5) and partial
summation we obtain

∑
0<γ<T

1

γ
3
2−ε|ζ ′( 12 + iγ)|

�

[
J− 1

2
(t)

t
3
2−ε

]T
14

+

∫ T

14

J− 1
2
(t)

t
5
2−ε

dt� 1,

which implies that the estimate Ek(x) = O
(
x−

3
4

)
holds for any positive inte-

ger k > 2. �
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