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REPRESENTATION OF A RATIONAL NUMBER AS A SUM
OF NINTH OR HIGHER ODD POWERS

M.A. Reynya

Abstract: In the present paper, we substantially generalize one of the results obtained in our
earlier paper [RM]. We present a solution of a problem of Waring type: if F (x1, . . . , xN ) is
a symmetric form of odd degree n ≥ 9 in N = 16 · 2n−9 variables, then for any q ∈ Q, q 6= 0, the
equation F (xi) = q has rational parametric solutions, that depend on n− 8 parameters.
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1. Introduction

For any form F (x1, . . . , xN ) with rational coefficients, one can look for conditions
under which the equation F (x1, . . . , xN ) = q has a rational solution for any q ∈ Q,
q 6= 0. In the present paper, we examine symmetric forms F (x1, . . . , xN ), i.e., forms
invariant under the natural action of the symmetric group SN on the variables,
and the equation of Waring type: F (x1, . . . , xN ) = q, for any q ∈ Q, q 6= 0. For
such an equation, we are interested in deriving of parametric rational solutions
and estimating of number of parameters.

We will begin with the case of the equation x9
1 + . . .+ x9

16 = q (see Section 2).
We apply to this equation the same transformation that was applied in paper [M]
on the equation x7

1 + . . . + x7
12 = q.Thus we reduce the solution of our equation

to the system of three equations of the sixth, fourth and second degree:yr1 − yr2 +
yr3 − yr4 + yr5 − yr6 + yr7 − yr8 = 0, r = 2, 4, 6 The parametric solutions of this
system given by Tarry [D]. We will find two new parametric solutions of this
system of equations, and consequently two parametric solutions of the equation
x9
1 + . . . + x9

16 = q. Further, we will generalize these results to the equation
F (x1, . . . , x16) = q for any q ∈ Q, q 6= 0, where the F (x1 . . . , x16) is a symmetric
form in 16 variables of degree 9. Note that to the best of our knowledge, such
a result has not appeared in the literature yet. Among the works on this subject,
we can mention [A]. Our method significantly differs both from the elementary
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approach in [R], [C] and computer investigation of [LP], [LPS], [E]. It might be
compared with the geometric construction in [Br], which led to some new insight
into parametric solutions originally obtained in [SwD].

Next, in Section 3, we extend our method to include symmetric forms of arbi-
trary odd degree. Our main result (Theorem 3.1) states that for any q ∈ Q, q 6= 0,
the equation F (x1, . . . , xN ) = q, where F (x1, . . . , xN ) is an arbitrary symmetric
form of odd degree n ≥ 9 in 16 · 2n−9 variables, has rational parametric solutions,
that depend on n− 8 parameters.

2. Equation x9
1 + . . .+ x9

16 = q, for any q ∈ Q

We begin with a simple general observation:

Lemma 2.1. Using any solution of the system of equations:

yr1 − yr2 + yr3 − yr4 + yr5 − yr6 + yr7 − yr8 = 0, r = 2, 4, 6

one can construct a solution of the equation of Waring type:

x9
1 + . . .+ x9

16 = q,

for any q ∈ Q, q 6= 0, where the xi are rational functions in the yi.

Proof. Consider the identity:

(y1 + c)9 + (−y1 + c)9 + (y2 − c)9 + (−y2 − c)9 + (y3 + c)9 + (−y3 + c)9

+ (y4 − c)9 + (−y4 − c)9 + (y5 + c)9 + (−y5 + c)9 + (y6 − c)9 + (−y6 − c)9

+ (y7 + c)9 + (−y7 + c)9 + (y8 − c)9 + (−y8 − c)9

= 18 · c · (y81 − y82 + y83 − y84 + y85 − y86 + y87 − y88)

+ 168 · c3 · (y61 − y62 + y63 − y64 + y65 − y66 + y67 − y68)

+ 252 · c5 · (y41 − y42 + y43 − y44 + y45 − y46 + y47 − y48)

+ 72 · c7 · (y21 − y22 + y23 − y24 + y25 − y26 + y27 − y28)

Now, let yi be a rational solution of the system:

yr1 − yr2 + yr3 − yr4 + yr5 − yr6 + yr7 − yr8 = 0, r = 2, 4, 6

We introduce a new variable q such that

q = 18 · c · (y81 − y82 + y83 − y84 + y85 − y86 + y87 − y88)

and get the identity

(y1 + c)9 + (−y1 + c)9 + (y2 − c)9 + (−y2 − c)9 + (y3 + c)9 + (−y3 + c)9

+ (y4 − c)9 + (−y4 − c)9 + (y5 + c)9 + (−y5 + c)9 + (y6 − c)9 + (−y6 − c)9

+ (y7 + c)9 + (−y7 + c)9 + (y8 − c)9 + (−y8 − c)9 = q

where c = q/18 · (y81 − y82 + y83 − y84 + y85 − y86 + y87 − y88). �
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Now we will look for the parametric solutions of the system

yr1 − yr2 + yr3 − yr4 + yr5 − yr6 + yr7 − yr8 = 0, r = 2, 4, 6

Proposition 2.2. The system (∗) has two parametric solutions where yi are poly-
nomials depending on one parameter.

Proof. To solve this system we shall assume that:

y1 = a+m+ z, y2 = a−m+ z, y3 = a+m− z, y4 = a−m− z

y5 = b+ n+ y, y6 = b− n+ y, y7 = b+ n− y, y8 = b− n− y

If we substitute these expressions in the system (*), the first equation will be
transformed into:

8 · a ·m+ 8 · b · n = 0

If we solve this equation and substitute the value: a = −(b ·n)/m) in the other
two equations of the system (*), after reducing we obtain the new system of the
next two equations :

(∗∗)


b · n · (b2 · (m2 − n2) +m2 · (−m2 + n2 + 3y2 − 3 · z2)) = 0

b · n · (b4 · (m4 − n4) + 10 · b2 · (m4 · y2 −m2 · n2 · z2)
+m4 · (−m4 + n4 + 10 · n2 · y2 + 5 · y4 · −10 ·m2 · z2 − 5 · z4)) = 0

,

Now we introduce the new variable k: k = y−z. If we substitute y = z+k into the
first equation of the system (∗∗). Solving this equation we obtain the expression
for z:

z = (−b2 ·m2 − 3 · k2 ·m2 +m4 + b2 · n2 −m2 · n2)/(6 · k ·m2).

Now let us substitute the expressions for y and z into the second equation of
the system (∗∗). Having reduced it we obtain the next equation:

((b2 −m2) · (m2 − n2) · (45 · k4 ·m4 + 5 · (m2 − n2)2 · (m2 − b2)2

− 18 · k2 ·m2 · (m2 + n2) · (m2 + b2)))/(27 · k2 ·m2) = 0.

Now, if we assume that: b2 6= m2,m2 6= n2, k 6= 0,m 6= 0, we will obtain the
next equation:

(∗∗∗) 45 ·k4 ·m4+5 · (m2−n2)2 · (m2−b2)2−18 ·k2 ·m2 · (m2+n2) · (m2+b2) = 0.

We will find two various parametric solutions of this equation.
One can easily see that the substitution : n = m+ k, b = m · k transforms the

given equation into the next one :

k2 · (−4+ k2) ·m4 · (5 · k4+4 · k ·m+20 · k3 ·m+4 ·m2+4 · k2 · (−2+5 ·m2)) = 0.
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Now, assuming that k 6= 0, k2 6= 4, m 6= 0, we obtain the equation of the
second degree for the variable m, where the coefficients are the polynomials of the
variable k:

(5 · k4 + 4 · k ·m+ 20 · k3 ·m+ 4 ·m2 + 4 · k2 · (−2 + 5 ·m2)) = 0.

The discriminant of this equation is:

k2 · (−4 + k2)2 · (1 + 5 · k2).

Obviously, the discriminant of the equation is a full square, if and only if the next
expression is true :

(1 + 5 · k2) = R2.

This conic has the rational point P (k = 1/2, R = 3/2). Therefore, according
to the famous theorem, this conic has the parametric solution depending on one
parameter. Using this solution we can obtain the parametric solution of the system
(∗) depending on one parameter.

To find the second parametric solution we use the substitution n = m+ 2 · k,
b = m · k into the equation (∗ ∗ ∗). Similarly, we obtain the conic:

(−11 + 5k2) = R2.

This conic has the rational point Q(k = 2, R = 3). Therefore, according to the
famous theorem, this conic has the parametric solution depending on one param-
eter. Using this solution we can obtain the parametric solution of the system (∗)
depending on one parameter.

Now, according to Lemma 2.1, we get the two parametric solutions of the
equation x9

1 + . . .+ x9
16 = q, for any q ∈ Q, q 6= 0. �

This solution represents sixteen rational functions of degree 36 of one param-
eter.

This method can be extended onto more complicated cases.

Theorem 2.3. Every equation F (x1, . . . , x16) = q, where F is a symmetric form
of ninth degree, has a parametric solution, where xi are polynomials of one param-
eter and x1 + · · ·+ x16 = 0.

Proof. Assuming that x1 + · · · + x16 = 0, every symmetric form of ninth degree
can be represented as

A1 · (x9
1 + · · ·+ x9

16) +A2 · (x7
1 + · · ·+ x7

16) · (x2
1 + · · ·+ x2

16)

+A3 · (x6
1 + · · ·+ x6

16) · (x3
1 + · · ·+ x3

16) +A4 · (x5
1 + · · ·+ x5

12) · (x4
1 + · · ·+ x4

16)

+A5 · (x5
1 + · · ·+ x5

16) · (x2
1 + · · ·+ x2

16)
2

+A6 · (x3
1 + · · ·+ x3

16) · (x4
1 + · · ·+ x4

16) · (x2
1 + · · ·+ x2

16)

+A7 · (x3
1 + · · ·+ x3

16) · (x2
1 + · · ·+ x2

16)
3.
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Indeed, let us denote sk = xk
1 + · · ·+ xk

16. Then any symmetric polynomial of
x1, . . . , x16 is a polynomial of s1, s2, . . . (see [Wa, §33]). In our case it is enough
to take linear combinations of monomials s1, . . . , s9 of degree 9 of x1, . . . , x16.

It is easy to see that all terms, except for:

s9, s7 · s2, s6 · s3, s5 · s4, s5 · s22, s4 · s3 · s2, s3 · s32

vanish if s1 = 0
To find a parametric solution of the resulting form of ninth degree, we use

exactly the same method as for the diagonal form of ninth degree in Proposition.
Let us represent the symmetric form of ninth degree as follows:

A1 · (x9
1 + · · ·+ x9

16) +B1(xi) · (x7
1 + · · ·+ x7

16)

+ C1(xi) · (x5
1 + · · ·+ x5

16) +D1(xi) · (x3
1 + · · ·+ x3

16)

where B1(xi), C1(xi), D1(xi) are polynomials of 2, 4, 6 degree, respectively.
Let us consider the three identities:

(y1 + c)9 + (−y1 + c)9 + (y2 − c)9 + (−y2 − c)9 + (y3 + c)9 + (−y3 + c)9

+ (y4 − c)9 + (−y4 − c)9 + (y5 + c)9 + (−y5 + c)9 + (y6 − c)9 + (−y6 − c)9

+ (y7 + c)9 + (−y7 + c)9 + (y8 − c)9 + (−y8 − c)9

= 18 · c · (y81 − y82 + y83 − y84 + y85 − y86 + y87 − y88)

+ 168 · c3 · (y61 − y62 + y63 − y64 + y65 − y66 + y67 − y68)

+ 252 · c5 · (y41 − y42 + y43 − y44 + y45 − y46 + y47 − y48)

+ 72 · c7 · (y21 − y22 + y23 − y24 + y25 − y26 + y27 − y28).

(y1 + c)7 + (−y1 + c)7 + (y2 − c)7 + (−y2 − c)7 + (y3 + c)7 + (−y3 + c)7

+ (y4 − c)7 + (−y4 − c)7 + (y5 + c)7 + (−y5 + c)7 + (y6 − c)7 + (−y6 − c)7

+ (y7 + c)7 + (−y7 + c)7 + (y8 − c)7 + (−y8 − c)7

= 14 · c · (y61 − y62 + y63 − y64 + y65 − y66 + y87 − y88)

+ 70 · c3 · (y41 − y42 + y43 − y44 + y45 − y46 + y47 − y48)

+ 42 · c5 · (y21 − y22 + y23 − y24 + y25 − y26 + y27 − y28),

(y1 + c)5 + (−y1 + c)5 + (y2 − c)5 + (−y2 − c)5 + (y3 + c)5 + (−y3 + c)5

+ (y4 − c)5 + (−y4 − c)5 + (y5 + c)5 + (−y5 + c)5 + (y6 − c)5 + (−y6 − c)5

+ (y7 + c)5 + (−y7 + c)5 + (y8 − c)5 + (−y8 − c)5

= 10 · c · (y41 − y42 + y43 − y44 + y45 − y46 + y47 − y48)

+ 2 · c2 · (y21 − y22 + y23 − y24 + y25 − y26 + y27 − y28)),
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(y1 + c)3 + (−y1 + c)3 + (y2 − c)3 + (−y2 − c)3 + (y3 + c)3

+ (−y3 + c)3 + (y4 − c)3 + (−y4 − c)3 + (y5 + c)3 + (−y5 + c)3

+ (y6 − c)3 + (−y6 − c)3 + (y7 + c)3 + (−y7 + c)3 + (y8 − c)3 + (−y8 − c)3

= 6 · c · (y21 − y22 + y23 − y24 + y25 − y26 + y27 − y28)).

Thus we see that the obtained parametric solutions for the diagonal symmetric
form are also solutions for any symmetric form. �

In the next section, we will use the transformation mentioned in our previous
paper [M].

3. General results

In this section we generalize Theorem 2.3 for the case of a form of an arbitrary
odd degree.

Theorem 3.1. Let F be a symmetric form of N variables of odd degree n ≥ 9
with rational coefficients. If N = 16 · 2n−9, the equation F (x1, . . . , xN ) = q has
a parametric solution where xi are rational functions of s = n−8 parameters, and
x1 + · · ·+ xN = 0.

Proof. Let F be an arbitrary symmetric form of degree n = 2k + 1 of N = 4s
variables. First of all, the variables are grouped in sets of four. For every quadruple
of variables we use a transformation of the form

x1 = y1 + c1, x2 = −y1 + c1, x3 = −y2 − c1, x4 = y2 − c1. (1)

An arbitrary symmetric equation takes the form:

y2k+1
1 +· · ·+y2k+1

N +A1(y
2k−1
1 +· · ·+y2k−1

N )R1(yi)+· · ·+Ak(y1+· · ·+yN )Rk(yi) = q,

where Rj(yi) are symmetric polynomials.
Thus we have obtained a form of degree 2k, whose coefficients are functions

of c1. But we obtain a new construction of the form:

(y2k1 − y2k2 + y2k3 − y2k4 + . . . ) ·D0(c1)

+ (y2k−2
1 − y2k−2

2 + y2k−2
3 − . . . ) ·D1(c1, y1, . . . , y2s)

+ (y2k−4
1 − y2k−4

2 + y2k−4
3 − y2k−4

4 + . . . ) ·D2(c1, y1, . . . , y2s)

+ (y2k−6
1 + y2k−6

2 + . . . ) ·D3(c1, y1, . . . , y2s)

+ · · ·+ (y21 − y22 + y23 − . . . ) ·D2k−1(c1, y1, . . . , y2s) + · · · = q.

Once again, we split variables into quadruples and for each quadruple apply
the transformation:
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y1 = z1 + c2, y2 = −z1 + c2, y3 = −z2 − c2, y4 = z2 − c2. (2)

We get a homogeneous symmetric equation of degree 2 · k − 1:

(z2k−1
1 + z2k−1

2 + z2k−1
3 + . . . ) ·D0(c1, c2)

+ (z2k−3
1 + z2k−3

2 + z2k−3
3 + . . . ) ·D1(c1, c2, z1, . . . , zs)

+ · · ·+ (z1 + z2 + z3 + . . . ) ·D2k−2(c1, c2, zi) + · · · = q.

(3)

Note that in the transformations (1) and (2) each time the number of vari-
ables is reduced by half. After repeating the transformations (1) and (2) in the
alternating order 2k − 8 times we get an equation of degree 9:

(u7
1 + · · ·+ u9

16) ·D0(ci)+

+ (u5
1 + · · ·+ u7

16) ·D2(ci, u1, . . . , u16)

+ (u5
1 + · · ·+ u5

16) ·D4(ci, u1, . . . , u16)

+ (u3
1 + · · ·+ u3

16) ·D6(ci, u1, . . . , u16) = q,

(4)

where D2(u1, . . . , u16) is a polynomial in ui of degree at most 2, D4(u1, . . . , u16)
is a polynomial of ui of degree at most 4, D6(u1, . . . , u16) is a polynomial of ui

degree at most 6.
One can easily see that a solution of the given equation can be obtained by the

following transformation:

u1 = r1 + c, u2 = −r1 + c, u3 = −r2 − c, u4 = r2 − c,

u5 = r3 + c, u6 = −r3 + c, u7 = −r4 − c, u8 = r4 − c,

u9 = r5 + c, u10 = −r5 + c, u11 = −r6 − c, u12 = r6 − c,

u13 = r7 + c, u14 = −r7 + c, u15 = −r8 − c, u16 = r8 − c.

This transformation reduces the solution of the obtained equation to the solu-
tion of following system:

rr1 − rr2 + rr3 − rr4 + rr5 − rr6 + rr7 − rr8 = 0, r = 2, 4, 6.

We have found parametric solutions of the given system in the second section of
the paper. �

4. Numerical example

The computations in this section were made using Wolfram Mathematica.
We examine the equation z91 + · · ·+ z916 = q.
According to Lemma 2.1, the process of solving of the equation can be reduced

to the following system:

yr1 − yr2 + yr3 − yr4 + yr5 − yr6 + yr7 − yr8 = 0, r = 2, 4, 6.
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We have shown that the solution of the given system of the equations is reduced
to the solution of the equation:

1 + 5 · k2 = R2.

Now, we show that the solution of the equation z91 + · · ·+ z916 = q corresponds
to the solution (k = 4, R = 9) of the equation 1 + 5 · k2 = R2.

If a1 = 3177, a2 = 3084, a3 = 453, a4 = 2490, b1 = 2697, b2 = 2790, b3 = 3291,
b4 = 348, we have identities:

ar1 + ar2 + ar3 + ar4 = br1 + br2 + br3 + br4, r = 2, 4, 6.

Further on writing t = −q/3447002593847409082117632000, we have the fol-
lowing identities :

(t+ a1)
k + (t− a1)

k + (−t+ b1)
k + (−t− b1)

k + (t+ a2)
k + (t− a2)

k

+ (−t+ b2)
k + (−t− b2)

k + (t+ a3)
k + (t− a3)

k + (−t+ b3)
k

+ (−t− b3)
k + (t+ a4)

k + (t− a4)
k + (−t+ b4)

k + (−t− b4)
k = q

when k = 9 and

(t+ a1)
k + (t− a1)

k + (−t+ b1)
k + (−t− b1)

k + (t+ a2)
k + (t− a2)

k

+ (−t+ b2)
k + (−t− b2)

k + (t+ a3)
k + (t− a3)

k + (−t+ b3)
k

+ (−t− b3)
k + (t+ a4)

k + (t− a4)
k + (−t+ b4)

k + (−t− b4)
k = 0

when k = 1, 3, 5, 7.
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