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A NOTE ON A TOWER BY BASSA, GARCIA
AND STICHTENOTH

Nurdagül Anbar, Peter Beelen

Abstract: In this note, we prove that the tower given by Bassa, Garcia and Stichtenoth in [4]
is a subtower of the one given by Anbar, Beelen and Nguyen in [2]. This completes the study
initiated in [16, 2] to relate all known towers over cubic finite fields meeting Zink’s bound with
each other.
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1. Introduction

Let Fq be the finite field with q elements, and let F be a function field with (full)
constant field Fq. The number N(F ) of Fq-rational places of F is bounded in
terms of the genus g(F ) and the cardinality of the finite field; namely

N(F ) 6 1 + q + 2g(F )
√
q,

which is a well-known Hasse–Weil bound. It was noticed by Ihara [10] and Manin
[12] that this bound is not optimal when g(F ) is large compared with the cardi-
nality of the finite field. This initiated the study of asymptotic behaviour of the
number of rational places of a function field over its genus as genus goes to infinity,
and resulted in Ihara’s constant :

A(q) := lim sup
g(F )→∞

N(F )

g(F )
,

where “ lim sup” runs over function fields with constant field Fq. To investigate
this constant, one considers towers of function fields. A (recursive) tower F/Fq =
(F1 ⊂ F2 ⊂ · · · ) over Fq is a sequence of function fields with constant field Fq
such that

(i) F1 = Fq(x1) for some x1 ∈ F1, which is transcendental over Fq,
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(ii) for each i > 1, we have Fi+1 = Fi(xi+1) with [Fi+1 : Fi] > 1 and ϕ(xi, xi+1) =
0 for some separable polynomial ϕ(xi, T ) ∈ Fq(xi)[T ], and

(iii) g(Fi)→∞ as i→∞.

One says that the tower satisfies the recursion ϕ(xi, xi+1) = 0. For a tower F/Fq
satisfying the recursion ϕ(xi, xi+1) = 0, we call a tower G/Fq the dual tower of
F/Fq if G/Fq satisfies the recursion ϕ(xi+1, xi) = 0. Note that we do not assume
that ϕ(xi, T ) is irreducible over Fi for all i. As a result, a full characterization of
the function fields in the tower may require further information. A tower F/Fq is
called good if its limit

λ(F/Fq) := lim
i→∞

N(Fi)

g(Fi)

is a positive real number. As the value of λ(F/Fq) gives a lower bound for Ihara’s
constant A(q), we are interested in towers having a limit as large as possible.

Drinfeld and Vladut [15] showed that A(q) 6
√
q − 1 for any finite field Fq.

Therefore, this inequality is called the Drinfeld–Vladut bound. On the other
hand, Ihara [9], Tsfasman, Vladut and Zink [14] used modular curves to show that
A(q) >

√
q − 1 for square q. As a result, they proved that A(q) =

√
q − 1 if q is

square. Then Garcia and Stichtenoth [7] gave another proof for the exact value of
A(q) for square q by constructing explicitly defined recursive tower.

Even though the exact value of A(q) is still an open problem for non-square
q, there are many lower bounds for it. Zink [17] used degenerations of Shimura
surfaces to show

A(p3) > 2(p2 − 1)/(p+ 2),

for p prime. Then van der Geer and van der Vlugt [8] gave an example of an
explicitly defined tower over F8 whose limit is 3/2; i.e. they gave an example of
a tower meeting Zink’s bound for the case p = 2. The bound was generalized for
any cubic fields Fq3 as

A(q3) > 2(q2 − 1)/(q + 2) (1)

by Bezerra, Garcia and Stichtenoth [5] by constructing an explicitly defined tower
A/Fq3 meeting Zink’s bound. After that, a simpler proof for the bound (1) was
given by Bassa, Garcia and Stichtenoth [4] with another explicitly defined tower
C/Fq3 . Then it was shown by Zieve in [16] that C/Fq3 is a partial Galois closure
of A/Fq3 .

For any non-prime finite field Fqn , a new explicit tower BBGS was introduced
by Bassa, Beelen, Garcia and Stichtenoth [3]. The tower’s limit gave the following
lower bound for A(qn):

A(qn) > 2

(
1

qj − 1
+

1

qn−j − 1

)−1

,

where 1 6 j 6 n − 1. In fact, this resulted in the currently best known lower
bound for A(qn) in the case j = bn/2c, where bxc denotes the integer part of x.
Note that for n = 3, the bound coincides with Zink’s bound.
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In [1], another tower X was introduced over cubic fields resulting in Zink’s
bound. It was noticed that all steps in X/Fq3 are Galois except the first one and
that X/Fq3 contains A/Fq3 as a subtower. In this article, we show that C/Fq3
is also a subtower of X/Fq3 . This completes the work started in [16] to relate
the various towers over Fq3 to each other. The article is organised as follows: In
Section 2, we give recursive equations of several towers over Fq3 and discuss the
relationship between them. In Section 3 we prove our main result that C/Fq3 is
a subtower of X/Fq3 .

2. Relationship between some cubic towers

In this section we formulate the defining equations of previously introduced towers
over cubic fields and the relationship between them. For convenience, we set
F := Fq3 . Recently in [1], the authors introduced a tower X/F satisfying the
same reducible recursive equation as the BBGS Tower for n = 3, but arising
from a different factor. More precisely, the reducible recursive equation and its
factorization are given as follows.

xq
3−q

1 (xq
3

2 − x2)− (xq
3−1

1 − 1)xq
2

2 = x2(xq
2−1

1 xq
2−1

2 + xq−1
2 + xq

2−q
1 )·

×
∏

α∈Fq\{0}

(xq
2−1

1 xq
2

2 + xq2 + xq
2−q

1 x2 − αxq
2

1 ).

While the factor xq
2−1

1 xq
2

2 + xq2 + xq
2−q

1 x2 − αxq
2

1 is used as the defining equation
of BBGS/F for some α ∈ Fq \ {0}, the tower

X/F = (X1 = F(x1) ⊂ X2 = F(x1, x2) ⊂ · · · )

is defined by the following equations:

xq
2−1

1 xq
2−1

2 +xq−1
2 +xq

2−q
1 = 0 and xqn+1−

xn+1

(xn−1xn)q−1
= xn−1 for n > 2.

(2)
Tower X/F is investigated through its subtower

Z/F = (Z1 = F(z1) ⊂ Z2 = F(z1, z2) ⊂ · · · ),

where zi := xq
3−1
i . This is the same tower investigated in [2]. Tower Z/F is defined

by the following equations:

(z2 − 1)q+1 +
z1 − 1

z1
(z2 − 1)q −

(
z1 − 1

z1

)q+1

z2 = 0 and

(znzn+1 − 1)

(
znzn+1 +

1

zn−1

)q−1

− (zn + 1)q

zn
−
(
zn−1 + 1

zn−1

)q
= 0 for n > 2.
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Moreover, it is shown in [2] that there exists an element αn ∈ F(zn, zn+1) such
that

zn = −1 + αn

αq+1
n

and zn+1 = −(αn + αq+1
n ) for n > 1;

that is, F(αn) = F(zn, zn+1) for all n > 1. This implies that by deleting the first
function field Z1 of Z we obtain the dual tower of Caro–Garcia ([6])

B/F = (B1 = F(b1) ⊂ B2 = F(b1, b2) ⊂ · · · ),

which is the same as the one given by Ihara ([11])

Y/F = (Y1 = F(y1) ⊂ Y2 = F(y1, y2) ⊂ · · · )

with the change of variable yn := 1/(1 + bn) for all n > 1, and its reducible
recursive equation is

yn+1 − 1

yq+1
n+1

= − yqn
(1− yn)q+1

for n > 1.

In [11] the author shows that the tower given by Bezerra, Garcia and Stichtenoth
([5])

A/F = (A1 = F(a1) ⊂ A2 = F(a1, a2) ⊂ · · · )

is a subtower of Y/F . In fact, Y2 = F(y1, y2) = F(a2) with

y1 =
1− a2

aq2
, y2 =

aq2 + a2 − 1

a2
and a2 =

1− y1

y1y2 − y1 + 1
.

In order to give a simple proof for the fact that Zink’s bound holds for any cubic
fields, Bassa, Garcia and Stichtenoth investigate the tower

C/F = (C1 = F(c1) ⊂ C2 = F(c1, c2) ⊂ · · · ),

whose recursive equation is given by

(
cqn+1 − cn+1

)q−1
+ 1 = − c

q(q−1)
n(

cq−1
n − 1

)q−1 . (3)

The complete picture for towers X , Z and C can be seen in Figure 4.1. We
refer to [1] for the investigation of Z/F as a subtower of X/F and to [16] for the
investigation of A/F as a subtower of C/F. In particular, the extension degrees
stated in Figure 4.1 have been determined there.

We finish this section by giving the ramification structure of the extension
X3/F(a2). For details we refer to Section 2.1 in [2] and Proposition 2 in [1].
A place P of F(a2) is ramified in the extension X3/F(a2) only if P ∩ F(z1) is
(z1 = ∞) or (z1 = 0). Hence we give the ramification into two cases (see also
Figure 4.4).
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• The place (a2 = 1) is the unique place lying over (z1 = ∞); i.e.
e((a2 = 1)|(z1 = ∞)) = q(q + 1). Hence there are q − 1 places of X3

lying over (a2 = 1), and each of them has ramification index q3 − 1.
• The places of F(a2) lying over (z1 = 0) are (a2 = 0), (a2 =∞) and (a2 = βi),

where βi’s are distinct roots of the polynomial T q + T − 1 for i ∈ {1, . . . , q}.
They have the following ramification in F(a2)/F(z1).

e((a2 = 0)|(z1 = 0)) = q − 1, e((a2 =∞)|(z1 = 0)) = 1 and
e((a2 = βi)|(z1 = 0)) = q for all i ∈ {1, . . . , q}.

Hence X3 has q − 1 many places lying over (a2 =∞), (a2 = βi), and it has
(q − 1)2 many places lying over (a2 = 0).

3. Main result

In this section we prove that Tower X/F has a subtower which is essentially the
same as Tower C/F. To prove this, we use the fact that a divisor of a nonzero
element f of a function field is zero if and only if f belongs to the constant
field. Then our strategy is to show that the divisor of c2x1x2x3 is zero in the
compositum X3 · F(c2) of the function fields X3 and F(c2) over F(a2). In other
words, the element c2x1x2x3 belongs to the constant field of X3 · F(c2). Then the
argument that the constant field of X3 · F(c2) is Fq3 implies that c2 ∈ X3, and
hence F(c2) ⊆ X3. This gives the desired result.

For the convenience of reader we first fix some notation. Let F be a function
field with a constant field F and let E/F be a finite separable extension. We
denote by

• PF the set of places of F ,
• Div(F) the divisor group of F
• P |Q for a place P ∈ PE lying over a place Q ∈ PF ,
• e(P |Q) the ramification index of P |Q,
• d(P |Q) the different exponent of P |Q,
• (f)F the divisor of a nonzero f ∈ F in F , and
• ConE/F (D) ∈ Div(E) the conorm of a divisor D ∈ Div(F).

For finite separable extensions F ⊆ E ⊆ H and D ∈ Div(F) we have

ConH/F (D) = ConH/E
(
ConE/F (D)

)
;

i.e., “Con” has the transitivity property. For a rational function field F(x) and
γ ∈ F, we denote by (x = γ) and (x =∞) the places corresponding to the unique
zero and the pole of x− γ, respectively.

Since we mainly use Abhyankar’s Lemma in our proofs, we state the lemma
below.

Lemma 1 (Abhyankar’s Lemma ([13],Theorem 3.9.1)). Let E/F be a finite
separable extension. Suppose that E = F1·F2 is the compositum of the intermediate
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fields F ⊆ F1, F2 ⊆ E. Let P ∈ PE lying over Q ∈ PF . We set Pi := P ∩ Fi for
i = 1, 2. If one of Pi|Q is tame, then

e(P |Q) = lcm {e(P1|Q), e(P2|Q)} ,

where lcm denotes the least common multiple.

In our cases, one of the extensions is always tame, say F1/F . Then Abhyankar’s
Lemma implies:

e(P |P1) =
e(P2|Q)

gcd {e(P1|Q), e(P2|Q)}
,

where gcd denotes the greatest common divisor.

As mentioned above, our strategy is to investigate the compositum of X3 =
F(x1, x2, x3) and F(c2) over F(a2), which is equivalent to the compositum of X3

and F(x1, c2) over F(a2) (see Figure 4.2). We know the exact ramification in
F(x1, x2, x3)/F(a2) as stated at the end of Section 2. Hence we only need to find
out the ramification in F(x1, c2) over F(a2). During the ramification investigation,
we assume without loss of generality that F is the algebraic closure of Fq3 . We first
consider F(x1, c2) over F(z1). For this, we investigate the ramification structure of
the rational function field extension F(c2)/F(z1).

E = F(x1, x2, x3, c2)

X3 = F(x1, x2, x3) F(x1, c2)

F(x1)

deg=q(q2−1)

F(c2)

F(a2)

deg=(q−1)(q3−1)

deg=q−1

F(z1)

deg=q3−1

deg=q(q+1)

Figure 4.2. The compositum of F(x1, x2, x3) and F(x1, c2)
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The ramification structure of F(c2)/F(z1)

By using the relations between the towers in Section 2; i.e.,

z1 = −1 + α1

αq+1
1

, α1 = b2 and b2 =
1

y2
− 1,

we can express z1 in terms of y2 as follows:

z1 = − yq2
(1− y2)q+1

.

As a result, we have extensions of rational function fields

F(z1) ⊆ F(y2) ⊆ F(a2) ⊆ F(c2)

whose defining equations are given in Figure 4.3. From the defining equations of
the extensions, we have the following conclusions.

F(c2)

cq−1
2 = 1− 1

a2

F(a2)

deg=q−1

y2 =
aq2+a2−1

a2

F(y2)

deg=q

z1 = − yq2
(1−y2)q+1

F(z1)

deg=q+1

Figure 4.3. Subfields of F(c2)/F(z1)

• In the extension F(y2)/F(z1), the ramified places are (z1 = 0) and (z1 =∞).
More precisely, there are two places of F(y2) lying over (z1 = 0), namely
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(y2 = 0) and (y2 =∞) with e((y2 = 0)|(z1 = 0)) = d((y2 = 0)|(z1 = 0)) = q
and e((y2 =∞)|(z1 = 0)) = 1. The place (y2 = 1) is the unique place lying
over (z1 =∞); i.e., it is totally ramified in F(y2).

• In the extension F(a2)/F(y2), the ramified places are (y2 = 1) and (y2 =∞).
More precisely, there are two places of F(a2) lying over (y2 = ∞); namely
(a2 = 0) and (a2 =∞) with e((a2 = 0)|(y2 =∞)) = 1 and e((a2 =∞)|(y2 =
∞)) = q − 1. The place (y2 = 1) totally ramifies in F(a2), and (a2 = 1) is
the unique place lying over it.

• It can be easily seen that (c2 =∞) and (c2 = 0) are the unique places lying
over (a2 = 0) and (a2 = 1), respectively. There is no other ramification. �

In particular, we conclude that (z1 = 0) and (z1 = ∞) are the only ramified
places of F(z1) in the extension F(c2)/F(z1). The exact ramification structure of
F(c2)/F(z1) is given in Figure 4.4.

Corollary 1. The extension degree of F(x1, c2)/F(c2) is equal to q3−1, and hence
the extension degree of F(x1, c2)/F(a2) is (q − 1)(q3 − 1).

Proof. We consider F(x1, c2) as a compositum of F(x1) and F(c2) over F(z1) (see
Figure 4.2). Let R be a place of F(x1, c2) lying over Ri,j for some i ∈ {1, . . . , q}
and j ∈ {1, . . . , q − 1} (see Figure 4.4). Note that we have R|Ri,j |(z1 = 0) and
R|(x1 = 0)|(z1 = 0). Since z1 = xq

3−1
1 , the ramification index e((x1 = 0)|(z1 =

0) = q3−1, which is relatively prime to the ramification index e(Ri,j |(z1 = 0)) = q.
By Abhyankar’s Lemma we conclude that e(R|Ri) = q3 − 1. This implies that
the extension degree of F(x1, c2)/F(c2) is at least q3 − 1, which gives the desired
result. �

Note that by Corollary 1 we conclude that [F(x1, c2) : F(a2)] = [F(x1, x2, x3) :
F(a2)]. As a result, we have [E : F(x1, x2, x3)] = [E : F(x1, c2)].

The ramification structure of F(x1, c2)/F(c2)

We have seen that (z1 = 0) and (z1 =∞) are the only places of F(z1) ramified in
the extensions F(x1)/F(z1) and F(c2)/F(z1). Hence a place of F(x1, c2) is ramified
only if it lies over (z1 = 0) or (z1 = ∞). Hence, we investigate the ramification
F(x1, c2)/F(c2) into two cases.
• Let T be a place of F(x1, c2) lying over (z1 =∞). Since (z1 =∞) is totally

ramified in both extensions F(x1) and F(c2), we have T |(x1 =∞)|(z1 =∞)
and T |(c2 = 0)|(z1 =∞). Then we conclude that e(T |(c2 = 0)) = q2 + q+ 1.

• Let S be a place of F(x1, c2) lying over (z1 = 0). Then there are two cases.
(i) If S is a place lying over Ri,j for some i ∈ {1, . . . , q} and j ∈ {1, . . . , q−

1} (see Figure 4.4), then we have S|(x1 = 0)|(z1 = 0) and S|Ri,j |(z1 =
0). By Abhyankar’s Lemma, we conclude that e(S|Ri,j) = q3 − 1;
i.e. Ri,j is totally ramified F(x1, c2) for each i ∈ {1, . . . , q} and j ∈
{1, . . . , q − 1}.

(ii) If S is a place lying over (c2 = ∞) or Pi for some i ∈ {1, . . . , q − 1},
then we have e(S|(c2 =∞)) = e(S|Pi) = q2 + q + 1. �
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Now we can explicitly state the ramification structure of the extension
F(x1, c2)/F(a2). We first note that F(x1, c2)/F(a2) is a Galois extension of de-
gree (q−1)(q3−1) since it is the compositum of two Kummer extensions F(x1, a1)
and F(c2) of F(a2). From the above discussions on the ramification structures of
the extensions F(c2)/F(z1) and F(x1, c2)/F(c2), we conclude the following ramifi-
cation structure of F(x1, c2) over F(a2): The ramified places of F(a2) are (a2 = 1),
(a2 = 0), (a2 =∞) and (a2 = βi) for i = 1, . . . , q, where βi’s are distinct roots of
the polynomial T q +T −1. More precisely, there are q−1 many places of F(x1, c2)
lying over each of the places (a2 = 1), (a2 = 0) and (a2 = βi) for i = 1, . . . , q, and
hence each of them has ramification index q3 − 1. Furthermore, there are (q− 1)2

places lying over (a2 = ∞) each of which has a ramification index q2 + q + 1.
On the other hand, we know that the same tame ramification structure holds in
F(x1, x2, x3)/F(a2). We consider the compositum E := X3 · F(x1, c2) of the fields
X3 and F(x1, c2) over F(a2). The same ramification structure of F(x1, c2)/F(a2)
and X3/F(a2) implies that E is an unramified extension of both X3 and F(x1, c2)
of the same degree.

We denote byQ1, . . . , Qq−1 the places ofX3 lying over (a2 = 1), byA1, . . . , Aq−1

the ones lying over (a2 = 0), by Si,1, . . . , Si,q−1 the ones lying over (a2 = βi) for
each i ∈ {1, . . . , q} and B1, . . . , B(q−1)2 the ones lying over (a2 = ∞). Moreover,
for convenience we define the divisors Q, A, S and B as follows:

Q :=

q−1∑
i=1

Qi, A :=

q−1∑
i=1

Ai, S :=

q∑
j=1

q−1∑
i=1

Si,j and B :=

(q−1)2∑
i=1

Bi.

Now we compute the divisors of x1, x2 and x3 in X3 with this convention.
• The divisor of x1: We have seen that z1 = −yq2/(1 − y2)q+1, and hence

the divisor of z1 in F(y2) is given by

(z1)F(y2) = q(y2 = 0) + (y2 =∞)− (q + 1)(y2 = 1).

By using Figure 4.4 and the transitivity of the Con mapping, we conclude
the following equalities.

ConX3/F(y2) ((y2 = 0)) = ConX3/F(a2)

(
ConF(a2)/F(y2)(y2 = 0)

)
(4)

=

q∑
j=1

ConX3/F(a2) ((a2 = βj))

= (q3 − 1)S.
ConX3/F(y2) ((y2 =∞)) = ConX3/F(a2)

(
ConF(a2)/F(y2)(y2 =∞)

)
= ConX3/F(a2) ((a2 = 0))

+ (q − 1)ConF/F(a2) ((a2 =∞))

= (q3 − 1)A+ (q3 − 1)B
ConX3/F(y2) ((y2 = 1)) = ConX3/F(a2)

(
ConF(a2)/F(y2)(y2 = 1)

)
= qConX3/F(a2) ((a2 = 1))

= q(q3 − 1)Q
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As a result, we conclude that

(z1)X3 = (q3 − 1) (qS +A+ B − q(q + 1)Q) .

Since z1 = xq
3−1

1 , this implies that (x1)X3 = qS +A+ B − q(q + 1)Q.
• The divisor of x2: Similarly we can compute z2 in terms of y2 by using

the relations given in Section 2 as follows.

z2 = −(α1 + αq+1
1 ) = −(b2 + bq+1

2 ) =
y2 − 1

yq+1
2

Hence, the divisor of z2 in F(y2) is given by

(z2)F(y2) = (y2 = 1) + q(y2 =∞)− (q + 1)(y2 = 0).

By Equations (4), we conclude that

(z2)X3 = (q3 − 1) (qQ+ qA+ qB − (q + 1)S) ,

which implies that (x2)X3 = qQ+ qA+ qB − (q + 1)S.
• The divisor of x3: By the fact that y1 = (1− a2)/aq2, we have

z3 =
y1 − 1

yq+1
1

=
aq

2

2 (aq2 + a2 − 1)

(a2 − 1)q+1
.

In other words, the divisor of z3 in F(a2) is

(z3)F(a2) = q2(a2 = 0) +

q∑
j=1

(a2 = βj)− (q + 1)(a2 = 1)− (q2 − 1)(a2 =∞),

where βj ’s are distinct roots of T q+T −1 as before. As a result, we conclude
that

(z3)X3 = (q3 − 1)
(
q2A+ S − (q + 1)Q− (q + 1)B

)
,

or equivalently this means that (x3)X3 = q2A+ S − (q + 1)Q− (q + 1)B.

Now we can state our main result.

Theorem 1. Let X/Fq3 = (X1 = F(x1) ⊂ X2 = F(x1, x2) ⊂ · · · ) be the tower
defined by Equation (2). Then X/Fq3 contains a tower, which is essentially the
same as the tower C/Fq3 = (C1 = F(c1) ⊂ C2 = F(c1, c2) ⊂ · · · ) given by Equation
(3). In other words, the Bassa–Garcia–Stichtenoth Tower is a subtower of X/Fq3 .

Proof. We know that cq−1
2 = (a2−1)/a2; i.e. the divisor of c

q−1
2 in F(a2) is given

by

(cq−1
2 )F(a2) = (a2 = 1)− (a2 = 0).
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Hence we conclude that

(cq−1
2 )X3 = (q3 − 1)(Q−A).

On the other hand, we have computed the divisors of x1, x2, x3 in X3. With these
computations we conclude that

(x1x2x3)X3 = (x1)X3 + (x2)X3 + (x3)X3 = (q2 + q + 1)A− (q2 + q + 1)Q.

Since the compositum E of X3 = F(x1, x2, x3) and F(x1, c2) is an unramified
extension of X3, we conclude that (x1x2x3)E + (c2)E = 0. This holds if and only
if x1x2x3c2 = γ for some nonzero γ ∈ F. Note that the place (z1 = 1) of F(z1)
splits in both extension X3 and F(c2). Hence (z1 = 1) splits in the compositum
X3 · F(c2) = E. This implies that the full constant field of E is Fq3 . Similarly, for
all i > 2 we can show that

cixi−1xixi+1 = γi for some nonzero γi ∈ Fq3 ,

which shows that C/F is contained in X/F. �
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