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REMARKS ON THE DISTRIBUTION OF THE PRIMITIVE
ROOTS OF A PRIME

SHANE CHERN

Abstract: Let F, be a finite field of size p where p is an odd prime. Let f(z) € Fplz] be
a polynomial of positive degree k that is not a d-th power in Fy[z] for all d | p — 1. Furthermore,
we require that f(z) and x are coprime. The main purpose of this paper is to give an estimate
of the number of pairs (§,£%f(§)) such that both £ and £% f(§) are primitive roots of p where «
is a given integer. This answers a question of Han and Zhang.

Keywords: primitive root, character sum, Weil bound.

1. Introduction

Let a and ¢ be relatively prime integers, with ¢ > 1. We know from the Euler—
Fermat theorem that a?? = 1 mod ¢, where ¢(q) is the Euler totient function.
We say an integer f is the exponent of a modulo ¢ if f is smallest positive integer
such that a/ = 1 mod q. If f = ¢(gq), then a is called a primitive root of ¢q. If ¢
has a primitive root a, then the group of the reduced residue classes mod ¢ is the
cyclic group generated by the residue class a. It is well-known that primitive roots
exist only for the following moduli:

q= 13 23 4; poz’ and 2pa,

where p is an odd prime and o > 1. The reader may refer to Chapter 10 of
T.M. Apostol’s book [1] for detailed contents.

There has been a long history studying the distribution of the primitive roots
of a prime. In a recent paper, D. Han and W. Zhang [3] considered the num-
ber of pairs (&, m&* 4 ng) such that both & and mé&F + né are primitive roots
of an odd prime p where m, n and k are given integers with k£ # 1 and
(mn,p) = 1. The reader may also find some descriptions of other interesting
problems on primitive roots such as the Golomb’s conjecture in [3] and refer-
ences therein. After presenting their main results, Han and Zhang proposed the
following
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Question 1.1. Let F, be a finite field of size p and f(z) be an irreducible poly-
nomial in F,[z]. Whether there exists a primitive element £ € F,, such that f(&)
is also a primitive element in F),?

In this paper, we let f(z) € Fp[z] be a polynomial of positive degree k that is
not a d-th power in Fp[z] for all d | p — 1 with d > 1. Furthermore, we require
that  does not divide f(x). Let a be a given integer, we denote by N(a, f;p) the
number of pairs (£,£%f(€)) such that both & and £*f(€) are primitive roots of p.
Our result is

Theorem 1.1. It holds that

N fin) = (=1 = RO (L) oraeo g ()

where |0] < 1, w(n) denotes the number of distinct prime divisors of n, R(f)
denotes the number of distinct zeros of f(z) in Fp, and k = deg f.

Now if we take & = 0 and f(z) = z + 1, then we get the famous result on
consecutive primitive roots obtained by J. Johnsen [4] and M. Szalay [5]. If we
take

a=1and f(z) =ma" 1 +n ifk>1,
a=kand f(z) =nz'F4+m ifk<1,

where (mn,p) = 1, then we have deg f = |k — 1| and £¥f(&) = m&r +né. Tt
follows from Theorem 1.1 that the asymptotic formula for the number of pairs
(€, me*F +ng) € IF?, such that both ¢ and m&F + né are primitive roots of p is

1R (2 ) e g (2221
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We should mention that there is a minor mistake in Han and Zhang’s result.
(However, this does not affect the existence of such pairs; see our Corollary 1.2.)
In fact, they forgot to consider the zeros of f(z) in F,. For example, if we choose
f(z) =27 '+2 = 271 (22+1), then there are 14 (—1|p) distinct zeros of 2% +1 in F,,
where (x|p) is the Legendre symbol. In this sense, the main term of N(—1,2%+1;p)
(or their N(—1,1,1, p)) should be

1)’

-2 (1) (42

while not ¢%(p —1)/(p — 1).

From Theorem 1.1 we also immediately deduce the existence of pairs (£, £ f(£))
such that both £ and £*f(£) are primitive roots of p. Again, we write k = deg f
where f(z) € F,[z] is a polynomial that is not a d-th power in F,,[z] for all d | p—1.

Corollary 1.2. Let p be an odd prime large enough, then for any given integers
k > 0 and «, there exists a primitive root & of p such that £* f(§) is also a primitive
root of p. Moreover, as p goes to infinity, the number of such & also goes to infinity.
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2. Preliminary lemmas

We first introduce the indicator function of primitive roots.

Lemma 2.1 (L. Carlitz [2, Lemma 2]). We have

(2.1)

op(p—1) w(d) )1 ifn is a primitive root of p,
p—1 o(d) Z x(n) = {O otherwise.

d|lp—1 x mod p

ordx=d
Here p is the Mobius function, and ordy denotes the order of a Dirichlet character
x mod p, that is, the smallest positive integer f such that x' = xo, the principal
character modulo p.

Remark 2.1. We should mention that Carlitz proved more than Lemma 2.1. In
fact, for an arbitrary finite field Fy, where ¢ = p, Carlitz obtained the indicator
function of numbers belonging to an exponent e, where e | ¢ — 1. Let ¢ — 1 = ee’.
It follows that

o(e) u(d')
P

q-—

1 if n belongs to the exponent e,
Y x(n)= )
0 otherwise,
x mod g
ordx=d
where d' = d/gcd(d,e’). To get Lemma 2.1, we only need to take ¢ = p and
e=p-—1.

The following famous Weil bound for character sums plays an important role
in our proof.

Lemma 2.2 (A. Weil [7]). Let x be a non-principal Dirichlet character modulo
p of order d. Suppose f(x) € Fplz] is a polynomial of positive degree k that is not
a d-th power in Fylz]. Then we have

< (k-1)p. (2.2)

We also need the less-known extension of Weil bound obtained by D. Wan.

Lemma 2.3 (D. Wan [6, Corollary 2.3]). Let x1, X2, .-, Xm be non-principal
Dirichlet characters modulo p of orders dy, da, ..., dp,, Tespectively. Suppose f1(x),
fa(z), ..., fm(z) € Fplz] are pairwise coprime polynomials of positive degrees
k1, ko, ..., km. Suppose also that fi(z) is not a d;-th power in F,[z] for all
i=1,2,...,m. Then we have

Z x1(f1(n))xa(f2(n)) - X (fm(n))

< (i ki — 1) N (2.3)

From Lemmas 2.2 and 2.3, we have
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Lemma 2.4. Let x1 be a Dirichlet character modulo p, and x2 be a non-principal
Dirichlet character modulo p of order d. Suppose f(x) € Fplz] is a polynomial of
positive degree k that is not a d-th power in Fylx]. We also require that = does not
divide f(x). Furthermore, let « be a given integer. Then we have

<

fn))] < (2.4)

(k—1)y/p if x§ is the principal character,
ky/p otherwise.

Proof. Note that

p—1 p—1
Y xan®)xe(f(n) = x§(n)xa(f(n)).

Now if x¢ is the principal character, then it follows that

Y oxam®)xe(f(n) =Y xa(f(n)

and we get the bound from Lemma 2.2. If x{ is not the principal character, then
the bound is obtained through a direct application of Lemma 2.3. |

3. Proofs

Proof of Theorem 1.1. It follows by Lemma 2.1 that

N(a, f;p)

S (D) S 3 M S )

di|p—1da|p—1 x1 mod p x2 mod p
ord)(l di ordxe=d>

p—1
op—1))* 5~ plda) S
(55 T HH T Y
di>1 ordx1=d;
o(p—1)\? p(d o
(550) X4 )zz fin
da>1 ordxz=d2
@
(L) ¥y s > > S ueateson

dilp—1da|p x mod p x2 mod p n=1
di1>1 do>1 ordxl_dl ordxa=d2
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Claim 3.1. We have

g > Suw

x1 mod p n—1
d1>1 ord)(l dy

Proof. We deduce it directly from

if x is not the principal character modulo p.

Claim 3.2. We have

Z ” 3 sz n®f(n)| < (2°*7Y — Dky/p.

x2 mod p n—1
d2>1 OI‘dX2 do

Proof. Note that

ZX2 n®f(n ZX2 f(n)).

Now by Lemma 2.4, we have

n))| < ky/p.

Note also that

S Jud)] = 2207 — 1.

d|lp—1
d>1

We therefore have

-1
u o p(d2) X
Z Z ZX2 f(n Z o(ds Z ZX2(”
x2 mod p n—1 da|p—1 x2 mod p In—1
d2>1 ordxfz d2 da>1 ordxz=d>
d
oy 1 9(d2)

do>1

= (2¢®=Y _ 1)k\/p.

43
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Claim 3.3. We have

ZZ“ Y Y S e sm

di|p—1ds|p— 1 x1 mod p x2 mod p n=1
di>1 do>1 ordx1 dy ordxa=da

< (247D 1)k /p.

Proof. Note that

> xamxa(n®f(n) = xax5(n)x2(f(n).
n=1 n=1

Again by Lemma 2.4, we get

We therefore have

ZZ” Y Y S e sm)

di|p—1da|p— 1 x1 mod p x2 mod p n=1
di>1 d2>1 0FdX1 dy1 ordx2=d>
p—1
<) Z Yo > Do fn)
di|p—1dz|p— x1 mod p x2 mod p [n=1
di>1 d2>1 ordxi1=d; ordxa=ds
<X X5 H ; 6(dh)B(da) /P
di|p—1da|p—1 2
di1>1 d2>1
= (QW(IJ—l) _ 1)2k\/}3. m
We conclude by combining Claims 3.1-3.3 that
olp—1)\?
‘N(Oéaf;p)—(P—l—R(f)) (;_1)
s(p—1)\
< ((2“’(?*1) —1) + (v~ )2) kf( : )
p—

< k4w(p—l)\/25 <¢;p_11)>2 -

This completes our proof. |
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Proof of Corollary 1.2. We first estimate 4“(—1)_ In fact, we have the following
Proposition 3.4. Let A and e be given positive real numbers, then we have
AY™M) = o(n)
as n — oo.

Proof. Let p, denote the n-th prime, then we have

w(n)

logn > log H pi > w(n)logw(n).
i=1

This leads to w(n) = o(logn) as n — oo and thus the desired estimate follows
immediately. |

Now taking A =4 and e = 1/2, then
2 2
w(p—1) ¢(p B 1) _ ¢> (p B 1)
0k4 \/ﬁ(p—l 0 -1 )
On the other hand, we have R(f) < k. Thus
sp—1)\'_ (¢*(p-1)

R(f) < p— =o P .

We therefore conclude

2(p —
N fin = 2= o

&@—U)

p—1

At last, to show N(a, f;p) — 0o as p — oo, we only need to estimate ¢?(n)/n.
Let pmax(n) be the largest prime factor of n and ord,.x(n) be the largest positive
integer o such that p® | n and p®*™! { n for some prime factor p of n. As n — oo,
either pmax(n) or ordpmax(n) goes to infinity. Finally, we note that ¢2(n)/n is
multiplicative. Since

¢*(p)
p()é

= pa72(p - 1)27

we conclude that ¢?(n)/n — oo as n — oco. This ends the proof of Corollary 1.2.
|
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