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ON A GENERAL DIOPHANTINE INEQUALITY

Min Ru

Abstract: In [Ru15], the author introduced the notion of Nevanlinna constant (denoted by
Nev(D)) for any effective Cartier divisor D on a normal projective variety X, and established
a defect relation for Zariski-dense holomorphic mappings f : C → X in terms of Nev(D).
In this paper, we prove its counterpart result in Diophantine approximation, according to
Vojta’s correspondence (or Vojta’s dictionary [Voj87]). The results obtained gave the quantita-
tive extension of the earlier results of Corvaja-Zannier [CZ04a][CZ04b], Evertse-Ferretti [EF02]
[EF08], A. Levin [Lev09], P. Autissier [Aut1], and others.

Keywords: Schmidt’s subspace theorem, integral points, Diophantine approximation.

1. Introduction and the statement of the main results

The celebrated Vojta’s Conjecture (discussed e.g. in [Vojcm]) predicts a lower
bound for the rational approximation to a configuration of hypersurfaces on a pro-
jective variety. The conjectured inequality vastly generalizes theorems of Roth and
Schmidt-Schlickewei. This paper makes a step in this direction, using techniques
introduced by Corvaja-Zannier [CZ02], Evertse-Ferretti and developed by Levin,
Autissier, Min Ru and others. The Main Theorem proved in this paper provides
a Diophantine inequality (inequality (3)) which bounds the proximity function to
an effective divisor in term of the corresponding height. The dependence on the
height is linear and the involved ‘constant’ is the Nevanlinna constant introduced
by the author in [Ru15], depends on the geometric data. As it is customary in this
kind of results, this Nevanlinna constant (denoted by Nev(D)) becomes smaller (so
that the result is better) whenever the divisor is highly reducible; in particular, it
cannot be made dependent only on the divisor class in the Picard group, as should
be the case following Vojta’s conjecture. As we shall see in this paper, the Nevan-
linna constant clarifies, quantifies and unifies in some sense the applicability of
the method of Corvaja-Zannier ([CZ04a], [CZ04b]), and Evertse-Ferretti ([EF08])
based on the Subspace Theorem (see also Levin [Lev09], Heier-Ru [HR12], and
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P. Autissier [Aut1]). In the last part of the paper, an explicit computation of this
constant recovers the important result of Evertse-Ferretti ([EF08]). It also derives
new results, by explicit computation of Nev(D) for the divisor D = D1 + · · ·+Dq,
where (multiples of) D1, . . . , Dq are not necessarily linearly equivalent (see Sec-
tion 4). We note that it is the first time that Diophantine inequalities are obtained
for divisors which are not necessarily linearly equivalent on X.

To state the results, we recall the notion of Weil functions. Let k be a number
field and let Ok denote the ring of integers of k. As usual, we have a set Mk of
places of k consisting of one place for each nonzero prime ideal in Ok, one place
for each real embedding σ : k → R, and one place for each pair of conjugate
embeddings σ, σ̄ : k → C. Denote by kυ the completion of k with respect to υ. We
normalize our absolute values so that ‖p‖υ = p−[kυ :Qp]/[k:Q] if υ corresponds to the
prime ideal above the prime p ∈ Q, ‖x‖υ = |σ(x)|1/[k:Q] if υ corresponds to the real
embedding σ, and ‖x‖υ = |σ(x)|2/[k:Q] if υ corresponds to the pair of conjugate
embeddings σ, σ̄ : k → C. Let X be a projective variety over a number field k. To
every Cartier divisorD onX and every place υ ∈Mk, we can associate a local Weil
function λD,υ : X(k)\ suppD → R (see, for example, [Lan87] or [Vojcm]), where
suppD is the support of the divisor D. When D is effective, the Weil function
λD,υ gives a measurement of the υ-adic distance of a point to D. If X = Pn and
D ⊂ Pn is a hypersurface defined by a homogeneous polynomial Q of degree d,
then

λD,υ([x0 : · · · : xn]) := log
max{‖x0‖dυ, . . . , ‖xn‖dυ}
‖Q(x0, . . . , xn)‖υ

.

The height hD(x) for points x ∈ X(k) is defined as

hD(x) =
∑
υ∈Mk

λD,υ(x).

It is independent of, up to O(1), the choice of Weil functions. Let S ⊂ Mk

be a finite set of places containing all archimedean ones. We define, for x ∈
X(k)\ suppD,

mS(x,D) =
∑
υ∈S

λD,υ(x).

Definition 1.1. Let X be a projective variety X of dimension n > 1. Divisors
D1, . . . , Dq on a projective variety X with q > n are said to be in general position
on X if any {i1, . . . , in+1} ⊂ {1, . . . , q}, suppDi1 ∩ · · · ∩ suppDin+1

= ∅..

For two divisors D1, D2 on X, we use the notation D1 ∼ D2 to denote that
D1, D2 are linearly equivalent on X. The slightly re-formulated recent result of
Evertse-Ferretti [EF08] can be stated as follows (see Theorem 3.1 in Levin [Lev14]).

Theorem A (Evertse–Ferretti [EF08], reformulated). Let X be a projective
variety and D1, . . . , Dq be Cartier divisors in general position on X, both defined
over a number field k. Let S ⊂ Mk be a finite set of places. Assume that there
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exist an ample divisor A on X, defined over k, and positive integers di such that
Di ∼ diA for all i. Then, for every ε > 0,

q∑
j=1

1

dj
mS(x,Dj) 6 (dimX + 1 + ε)hA(x),

holds for all k-rational points outside a proper Zariski closed subset of X.

The special case when X = Pn was due to Corvaja-Zannier [CZ04a]. Note
that in the theorem above, the multiples of D1, . . . , Dq are assumed to be linearly
equivalent on X.

In this paper, we establish a Diophantine inequality of the above type for
a general divisor D on a normal variety X, in terms of Nev(D). We recall here
the notion of the Nevanlinna constant Nev(D) (see [Ru15]). Let X be a normal
projective variety over k and D be an effective Cartier divisor on X defined over
k. Note that the condition of normality of X is assumed so that ordED (called the
coefficient of D in E) is defined for any prime divisor E and any effective Cartier
divisor D on X (See [Laz04], Remark 1.1.4). For any section s ∈ H0(X,O(D)),
we use ordE s, or ordE(s), to denote the coefficients of (s) in E where (s) is the
divisor on X associated to s.

Definition 1.2. Let X be a normal projective variety, and D be an effective
Cartier divisor on X, both defined over k. The Nevanlinna constant of D, denoted
by Nev(D), is defined by

Nev(D) := inf
N

(
inf

{µN ,VN}

dimVN
µN

)
, (1)

where the infimum “ inf
N
” is taken over all positive integers N and the infimum

“ inf
{µN ,VN}

” is taken over all pairs {µN , VN} where µN is a positive real number

and VN ⊂ H0(X,O(ND)) is a linear subspace with dimVN > 2 such that, for all
P ∈ suppD, there exists a basis B of VN (may depend on P ) with

1

ordE(ND)

∑
s∈B

ordE(s) > µN (2)

for all irreducible component E ofD passing through P . If dimH0(X,O(ND)) 6 1
for all positive integers N , we define Nev(D) = +∞.

Remark 1.3. The Nevanlinna constant Nev(D) depends on the ground field k
which is denoted, more precisely, by Nevk(D). However, From Proposition 2.3
below, if L ⊃ k are two fields, then NevL(D) 6 Nevk(D). Therefore the Nevan-
linna constant stabilizes after enlarging sufficiently the number field (so that each
irreducible component of each divisor is defined over such a larger field). Hence,
we can always assume that the ground field k is large enough that the Nevanlinna
constant becomes a ‘geometric’ datum only.



146 Min Ru

Example 1.4. Let X = Pn and D = H1 + · · · + Hq where H1, · · · , Hq are
hyperplanes in Pn in general position. We take N = 1 and consider V1 :=
H0(Pn,O(D)) ∼= H0(Pn,OPn(q)). Then dimV1 =

(
q+n
n

)
. For each P ∈ SuppD,

since H1, · · · , Hq are in general position, P ∈ Hi1 ∩ · · · ∩ Hil with {i1, . . . , il} ⊂
{1, . . . , q} and l 6 n and P 6∈ Hj for j 6= i1, . . . , il. Without loss of generality,
we can just assume Hi1 = {z1 = 0}, · · · , Hil = {zl = 0} by taking proper coor-
dinates for Pn. Now we take the basis B = {zi00 · · · zinn | i0 + · · · + in = q} for
V1 = H0(Pn,OPn(q)). Then, for each irreducible component E of D containing
P , say E = {zj0 = 0}, for some 1 6 j0 6 l, we have ordE{zj = 0} = 0 for j 6= j0,
ordE{zj0 = 0} = 1 and thus ordED = 1. On the other hand,∑
s∈B

ordEs =
∑
~i

ij0 =
1

n+ 1

∑
~i

(i0 + · · ·+ in) =
q

n+ 1

(
q + n

n

)
=

q

n+ 1
dimV1,

where, in above, the sum is taken for all~i = (i0, . . . , in) with i0 + · · ·+ in = q, and
we used the fact that the number of choices of~i = (i0, . . . , in) with i0 + · · ·+ in = q
is
(
q+n
n

)
. Thus we can take µ1 = q

n+1 dimV1, and hence,

Nev(D) 6
dimV1

µ1
=
n+ 1

q
.

A similar but more sophisticated argument (see [Ru04] and [Ru15]) shows that
Nev(D) 6 n+1

q is still valid for X = Pn and D = D1 + · · ·+Dq, where D1, · · · , Dq

are hypersurfaces of same degree, located in general position.
The Main Result of this paper is as follows.

Main Theorem.
(a) Let k be a number field and Mk be the set of places on k. Let S ⊂ Mk be

a finite set of places containing all archimedean ones. Let X be a normal
projective variety and D be an effective Cartier divisor on X, both defined
over k (we further assume that all irreducible components of D are Cartier
divisors). Then, for every ε > 0, the inequality

mS(x,D) 6 (Nev(D) + ε)hD(x), (3)

holds for all x ∈ X(k) outside a Zariski closed subset Z of X.
(b) If X is projective but not normal. Let π : X̃ → X be the normalization of

X. Then, for every ε > 0, the inequality

mS(x,D) 6 (Nev(π∗D) + ε)hD(x), (4)

holds for all x ∈ X(k) outside a Zariski closed subset Z of X.

Remark 1.5. From the definition, we have mS(x,D) +NS(x,D) = h(x) + O(1)
whereNS(x,D) =

∑
υ 6∈SλS,υ(x). Therefore (3) automatically holds if Nev(D) > 1.

On the other hand, if Nev(D) < 1, then the set of (D,S)-integral points ofX(k̄)\D
(See Definition 4.3 below or Definition 2.7 in [HR12]) is always degenerate if D is
big (similar to the argument in Corollary 2.10 in [HR12]).
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Consequences of the Main Theorem can be derived by computing the Nevan-
linna constant Nev(D) in various situations. For instance, combining Example 1.4
and the Main Theorem will recover Schmidt’s subspace theorem. The fact that
Nev(D) 6 n+1

q still holds for D = D1 + · · ·+Dq, where D1, · · · , Dq are hypersur-
faces of same degree in general position in Pn, implies the result of Corvaja-Zannier
[CZ04a]. Further computation (see Proposition 3.1) will yield the Theorem A as
well. In addition, the Main Theorem will derive various results of this type for the
divisor D = D1 + · · · + Dq, where (multiples of) D1, . . . , Dq are not necessarily
linearly equivalent (see Section 4).

2. The Proof of the Main Theorem

Throught the rest of the paper, we always assume, unless otherwise indicated, that
X is a normal projective variety and D is an effective Cartier divisor on X, both
defined over the given number field k. The proof the Main Theorem in our paper
is based on the following proposition.

Proposition 2.1. Let S ⊂Mk be a finite set of places containing all archimedean
ones. Assume that there exists a positive number µ > 0 and a linear subspace
V ⊂ H0(X,O(D)) with dimV > 2, such that for all P ∈ suppD, there exists
a basis B of V with

1

ordE(D)

∑
s∈B

ordE(s) > µ

for all irreducible component E of D passing through P . Then for every ε > 0,
the inequality

mS(x,D) 6

(
dimV

µ
+ ε

)
hD(x),

holds for all x ∈ X(k) outside a Zariski closed subset Z of X.

To prove the Proposition, we introduce the following definition.

Definition 2.2. Let µ > 0. The divisor D is said to have µ-growth with respect to
V , where V ⊂ H0(X,O(D)) is a subspace with dimV > 2, if for all P ∈ suppD
there exists a basis B of V such that

1

ordE(D)

∑
s∈B

ordE(s) > µ (5)

for all irreducible component E of D passing through P .

Following [Vojcm], we derive the following functoriality property of µ-growth
divisors with respect to a subspace V ⊂ H0(X,O(D)) (compare with [Vojcm],
Proposition 20.2).

Proposition 2.3. Let X ′ and X be two normal projective varieties over fields L
and k, respectively, with L ⊃ k, and let φ : X ′ → X be a morphism of schemes
such that the diagram
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X ′ X

Spec L Spec k

φ

commutes. Let D be an effective Cartier divisor on X whose support doesn’t con-
tain φ(X ′), and let D′ = φ∗D be the corresponding divisor on X ′. Assume that
the natural map

α : H0(X,O(D))⊗k L→ H0(X ′,O(D′)) (6)

is an isomorphism. If D has µ-growth with respect to a subspace V ⊂ H0(X,O(D)),
then D′ also has µ-growth with respect to the subspace V ′ ⊂ H0(X ′,O(D′)) with
V ′ = α(V ⊗k L).

Proof. Let P ′ be a point on X ′ with φ(P ′) ∈ suppD. Since D has µ-growth
with respect to a subspace V ⊂ H0(X,O(D)), for the point φ(P ′) ∈ suppD, let
B a basis of V such that ∑

s∈B
ordE s > µ ordE D (7)

for all irreducible component E of D passing through φ(P ′). Let B′ =
{α(s ⊗ 1) | s ∈ B}; it is a basis for V ′. Let E′ be an irreducible component
of D′ passing through P ′. For each irreducible component E of D passing through
φ(P ′), let nE be the multiplicity of E′ in φ∗E. Then, for s ∈ H0(X,O(D)),

ordE′ α(s⊗ 1) >
∑
E

nE ordE s

and
ordE′(D

′) = ordE′ α(sD ⊗ 1) =
∑
E

nE ordE sD =
∑
E

nE ordE D,

where sD is the canonical section, i.e. (sD) = D. Note that the strictness in the
first inequality may arise if E′ is exceptional for φ and s vanishes along prime
divisors containing φ(E′) that do not occur in D. Thus, using (7),∑

s′∈B′
ordE′ s

′ >
∑
E

nE
∑
s∈B

ordE s > µ
∑
E

nE ordE D = µ ordE′ D
′. �

Corollary 2.4 (see [Vojcm], Corollary 20.3). Let X be a normal projective
variety over a field k, let D be a Cartier divisor on X, let L be a field containing
k, let XL = X ×k L with projection φ : XL → X, and let DL = φ∗D. If D has
µ-growth with respect to a subspace V ⊂ H0(X,O(D)), then DL also has µ-growth
with respect to the corresponding subspace of the same dimension.
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Proof. Note that (6) is an isomorphism because L is flat over k (see [Har77] III
Prop. 9.3). Thus the corollary follows from Proposition 2.3. �

Corollary 2.5 (see [Vojcm], Corollary 20.4). Let φ : X ′ → X be a proper bira-
tional morphism of normal projective varieties over a field, and let D be a Cartier
divisor on X whose support doesn’t contain φ(X ′). If D has µ-growth with respect
to a subspace V ⊂ H0(X,O(D)), then φ∗D also has µ-growth with respect to the
corresponding subspace of the same dimension.

Proof. Note that (6) is an isomorphism because φ∗OX′ = OX (see [Har77], proof
of III Cor. 11.4 and III Remark 8.8.1). Thus the corollary follows from the
Proposition 2.3. �

We also recall some properties of Weil functions.

Lemma 2.6 (See Theorem 8.8 on page 140 in [Vojcm]). Let X be a pro-
jective variety over a number field k. Then the following properties hold.

(a) Additivity. If λ1 and λ2 are Weil functions for Cartier divisors D1 and
D2 on X, respectively, then λ1 + λ2 extends uniquely to a Weil function for
D1 +D2.

(b) Functoriality. If λ is a Weil function for a Cartier divisor D on X, and if
f : X ′ → X is a morphism of k-varieties such that f(X ′) 6⊂ SuppD, then
x 7→ λ(f(x)) is a Weil function for the Cartier divisor f∗D on X ′.

(c) Normalization. If X = Pnk , and if D = {x0 = 0} ⊂ X is the hyperplane at
infinity, then the function

λD,υ([x0 : · · · : xn]) := log
max{‖x0‖υ, . . . , ‖xn‖υ}

‖x0‖υ

is a Weil function for D.
(d) Uniqueness. If both λ1 and λ2 are Weil functions for a Cartier divisor D

on X, then λ1 = λ2 + OMk
(1) (for the definition of the Mk-boundedness,

see [Lan87]).
(e) Boundedness from below. If D is an effective Cartier divisor and λ is a

Weil function for D, then λ is bounded from below by an Mk-constant.
(f) Principal divisors. If D is a principal divisor (f), then − log ‖f‖υ is a Weil

function for D.

Lemma 2.7 ([Lan87], Ch. 10, Prop. 3.2). Let λ1, . . . λn be Weil functions for
Cartier divisors D1, . . . , Dn, respectively, on a projective variety X over a number
field k. Assume that the divisors Di are of the form Di = D0 +Ei, where D0 is a
fixed Cartier divisor and Ei are effective for all i. Assume also that

suppE1 ∩ · · · ∩ suppEn = ∅.

Then the function
λ(x) = min{λi(x) : x 6∈ suppEi}

is defined everywhere on (X\ suppD0)(Mk), and is a Weil function for D0.
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Finally we recall the following (generalized) version of Schmidt’s Subspace The-
orem from [Voj97].

Theorem 2.8. Let k be a number field and S ⊂ Mk be a finite set containing
all archimedean places. Let H1, . . . ,Hq be hyperplanes in Pn defined over k̄ with
corresponding Weil functions λH1

, . . . , λHq . Then there exists a finite union of
hyperplanes Z, depending only on H1, . . . ,Hq (and not k, S), such that for any
ε > 0, ∑

υ∈S
max
I

∑
i∈I

λHi,υ(P ) 6 (n+ 1 + ε)h(P )

holds for all but finitely many P ∈ Pn(k) \ Z, where the maximum is taken over
subsets I ⊂ {1, . . . , q} such that the linear forms defining Hi, i ∈ I, are linearly
independent.

Proof of Proposition 2.1. From the assumption, D has µ-growth with respect
to V ⊂ H0(X,O(D)). Let Φ : X → Pm−1 be the canonical rational map associated
to V where m = dimV .

We may assume that Φ is a morphism. Indeed, let X ′ be a desingularization
of the closure of the graph of Φ. Replace X with X ′ and D with its pull-back. By
Corollary 2.5 the pull-back still has µ-growth with respect to the corresponding
vector space of the same dimension. Moreover, by functoriality of Weil functions,
the corresponding Weil function and height function all keep.

Denote by σ0 the set of all prime divisors occurring in D, so we can write

D =
∑
E∈σ0

ordE(D)E.

Let
Σ := {σ ⊂ σ0 | ∩E∈σ E 6= ∅}.

For each subset σ ∈ Σ, write

D = Dσ,1 +Dσ,2

where
Dσ,1 :=

∑
E∈σ

ordE(D)E, Dσ,2 :=
∑
E 6∈σ

ordE(D)E.

Pick a Weil function for each divisors D, Dσ,1 and Dσ,2. We first claim that there
exists a Mk-constant (Cυ)υ∈Mk

, depending only on X and D, such that

min
σ∈Σ

λDσ,2,υ(x) 6 Cυ.

for all x ∈ X(Cυ) and all υ ∈ Mk (for the definition of the Mk-constant, see
[Lan87]). Indeed, the definition of the set Σ implies that

∩σ∈Σ suppDσ,2 = ∅,
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since for all x ∈ X the set σ := {E ∈ σ0 | x ∈ E} is an element of Σ, and then
x 6∈ suppDσ,2. Our claim then follows from Lemma 2.7, since Σ is a finite set.

Now for each σ ∈ Σ, since D has µ-growth with respect to V , let Bσ be a basis
of V that satisfies ∑

s∈Bσ

ordE(s) > µ ordE D (8)

at some (and hence) all points P ∈ ∩E∈σE. Since Σ is finite, {Bσ | σ ∈ Σ} is a finite
collection of bases of V . Thus, the distinct hyperplanes in Pm−1 corresponding to
elements of the union ∪σ∈ΣBσ is finite, say they are H1, . . . ,Hq in Pm−1. Choose
a Weil function λHj ,υ for each Hj , 1 6 j 6 q and υ ∈Mk.

For an arbitrary x ∈ X, from the claim above, pick σ ∈ Σ for which

λDσ,2,υ(x) 6 Cυ. (9)

Let J ⊂ {1, . . . , q} be the subset for which {Hj , j ∈ J} are the hyperplanes
corresponding to the elements of Bσ. Then (8), when applying to Bσ, implies
that, ∑

j∈J
ordEΦ∗Hj > µ ordED

for all E ∈ σ; and therefore, by the “boundedness from below” property of the
Weil functions for effective divisors,∑

j∈J
(ordEΦ∗Hj)λE,υ(x) > µ(ordED)λE,υ(x) +OMk

(1)

for all E ∈ σ. Now, since

D =
∑
E∈σ

(ordED) · E +Dσ,2,

(9) gives
λD,υ(x) =

∑
E∈σ

(ordED)λE,υ(x) +OMk
(1).

Hence ∑
j∈J

λHj ,υ(Φ(x)) >
∑
j∈J

∑
E∈σ

(ordEΦ∗Hj)λE,υ(x) +OMk
(1)

> µ
∑
E∈σ

(ordED)λE,υ(x) +OMk
(1)

= µλD,υ(x) +OMk
(1).

Note that, since {Hj , j ∈ J} are the hyperplanes corresponding to the elements of
Bσ, we see that {Hj , j ∈ J} are in general position. Thus, for any x ∈ X,

λD,υ(x) 6
1

µ

max
J

∑
j∈J

λHj ,υ(Φ(x)) +OMk
(1)

 .
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Summing over the places υ ∈ S, noting that h(Φ(x)) = hD(x), applying Theo-
rem 2.8, we obtain Proposition 2.1. �

Proof of the Main Theorem. (a) For every ε > 0, from the definition of Nev(D)
there exists N such that

dimVN
µN

< Nev(D) + (ε/2)

with some pair {µN , VN}, where VN ⊂ H0(X,O(ND)) is a subspace with
dimVN > 2 such that, for all P ∈ suppD, there exists a basis B of VN with∑

s∈B
ordE(s) > µN ordE(ND)

for all irreducible component E of D passing through P . Applying Proposition 2.1
to the divisor ND, we get that

mS(r,ND) 6

(
dimVN
µN

+ (ε/2)

)
hND(x) < (Nev(D) + ε)hND(x)

holds for all x ∈ X(k) outside a Zariski closed subset Z of X. Since mS(x,ND) =
NmS(x,D) +O(1), hND(x) = NhD(x) +O(1), this proves (a).

For (b), for any x ∈ X, take a normal open subscheme U of X such that π is
an isomorphism over U . Then we apply (a) to X̃ (which is normal) and π∗D (or
more precisely on π−1(U)), we get, for every ε > 0,

mS(π∗x, π∗D) 6 (Nev(π∗D) + ε)hπ∗D(π∗x).

Now, since π : X̃ → X is a morphism, the “functoriality property” for the Weil
function and height function implies that mS(π∗, π∗D) = mS(x,D) + O(1), and
hπ∗D(π∗x) = hD(x) +O(1). Thus (b) holds. �

3. Computation of the Nevanlinna constants

In this section, we compute the Nevanlinna constant Nev(D) in various cases in
order to apply the Main Theorem. We note that all results in this section have
been contained in [Ru15] (by replacing the field of complex numbers C with the
number field k). We include the proofs here for sake of completeness.

Proposition 3.1. Let X be a normal projective variety of dimension n and D =
D1 + · · ·+Dq be a sum of very ample effective Cartier divisors in general position
on X, both defined over a number field k. We further assume that Di ∼ Dj for
1 6 i, j 6 q. Then

Nev(D) 6
dimX + 1

q
.
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Proof. From assume that Di ∼ Dj for 1 6 i, j 6 q and Dj is very ample for
all j = 1, . . . , q, we write Di ∼ A for i = 1, . . . , q where A is a (fix) very ample
divisor. Then φA : X → Pu, the canonical map associated to A, is an embedding.
Let Q1, . . . , Qq be the linear forms in (u+1)-variables such that Di = φ∗A{Qi = 0}.
Let

ψ : X → Pq−1, x 7→ [Q1(φA(x)), . . . , Qq(φA(x))].

Let Y := ψ(X) ⊂ Pq−1. By the general position assumption for D1, . . . , Dq, ψ is
a finite morphism from X to Y .

On Pq−1, we have for all N ∈ N a short exact sequence

0→ IY (N)→ OPq−1(N)→ OY (N)→ 0.

The beginning of the corresponding long exact sequence reads

0→ H0(Pq−1, IY (N))→ H0(Pq−1,OPq−1(N))
τ→ H0(Y,OY (N))

→ H1(Pq−1, IY (N))

where τ denotes the restriction map. SinceH1(Pq−1, IY (N)) = 0 forN big enough,
we have, for N big enough,

H0(Y,OY (N)) ∼= H0(Pq−1,OPq−1(N))/ ker(τ) (10)
∼= H0(Pq−1,OPq−1(N))/H0(Pq−1, IY (N))
∼= k[Y0, . . . , Yq−1]N/(IY )N ,

where k[Y0, . . . , Yq−1]N denotes the set of those homogeneous polynomials of degree
N and (IY )N denotes the set of those homogeneous polynomials of degree N
vanishing on Y . We now estimate the Nevanlinna constant by letting, for Ñ = N

q
where N is a multiple of q and big enough,

VÑ := ψ∗H0(Y,OY (N)) ⊂ H0(X,O(
N

q
D)) = H0(X,O(ÑD)).

Since ψ : X → Y is a finite surjective morphism, by using (10)

dim(VÑ ) = dimH0(Y,OY (N)) = dim (k[Y0, . . . , Yq−1]N/(IY )N ) = HY (N),

where HY (N) is the Hilbert function of Y .
To continue, let P ∈ suppD. The condition that D1, . . . , Dq are in general

position implies that P ∈ ∩lt=1

(
φ∗N0A

{Qit = 0}
)
for some distinct Qi1 , . . . , Qil ∈

{Q1, . . . , Qq} with l 6 n. Without loss of generality, we can assume that
l = n (otherwise we just add more polynomials). Let ~c = (c1, . . . , cq) be the
q-vector whose ij-th entry (1 6 j 6 n) is 1, with all other entries being 0.
Let ~y~a

(1)

, . . . , ~y~a
(HY (N))

be monomials such that their equivalence classes in
k[Y0, . . . , Yq−1]N/(IY )N give a basis and such that

SY (N,~c) =

HY (N)∑
i=1

~a(i) • ~c,
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where SY (N,~c) is the N -th Hilbert weight and the bullet denotes the usual dot
product. Recall that the N -th Hilbert weight of Y with respect to the weight ~c is
given by

SY (N,~c) = max

HY (N)∑
i=1

~a(i) • ~c,

where the maximum is taken over all sets of monomials ~y~a
(1)

, . . . , ~y~a
(HY (N))

whose residue class modulo IY form a basis of k[Y0, . . . , Yq−1]N/(IY )N .
For ν = 1, . . . ,HY (N), and N a positive multiple of q, let

sν = (Q
a
(ν)
1

1 . . . Q
a(ν)q
q )|φN0A

(X).

These functions form a basis for VÑ understood as a subspace of H0(X,O(ÑD)).
We recall the following key lemma which is due to J.-H. Evertse and R. Ferretti

(see [EF08], also see the combination of Theorem 2.1 and Lemma 3.2 in [Ru09]).

Lemma 3.2. Let Y ⊂ Pl be an algebraic variety of dimension n and degree 4. Let
m > 4 be an integer and let ~c = (c0, . . . , cl) ∈ Rl+1

>0 . Let {i0, . . . , in} be a subset
of {0, . . . , l} such that

Y ∩ {yi0 = 0, . . . , yin = 0} = ∅.

Then

1

mHY (m)
SY (m,~c) >

1

(n+ 1)
(ci0 + · · ·+ cin)− (2n+ 1)4

m
·
(

max
i=0,...,l

ci

)
.

We now continue our proof. For any irreducible component E in D with
P ∈ suppE. We assume that E is contained in φ∗N0A

{Qj0 = 0}. With our chosen
~c and ~a(i), using Lemmas 3.2 (notice the condition that D1, . . . , Dq are in general
position on X), and the symmetry property of the ~a(1), . . . ,~a(HY (N)),

1

ordE D

∑
ν

ordE sν =

HY (N)∑
ν=1

a
(ν)
j0

=
1

n

HY (N)∑
ν=1

~a(ν) • ~c

=
1

n
SY (N,~c) >

1

n

1

n+ 1
NHY (N)(

n∑
j=1

cij ) +O(HY (N))

=
1

n+ 1
N(HY (N) + o(HY (N))).

Thus ∑
ordE sν >

q

n+ 1
(HY (N) + o(HY (N)) ordE

(
N

q
D

)
=

q

n+ 1
(HY (N) + o(HY (N)) ordE(ÑD).
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Therefore, from the definition of Nev(D) (see (1)), we have

Nev(D) 6 lim inf
Ñ→+∞

dimVÑ
q

n+1 (HY (N) + o(HY (N))

= lim inf
N→+∞

HY (N)
q

n+1 (HY (N) + o(HY (N))
=
n+ 1

q
.

Proposition 3.1 is thus proved. �

Under the assumptions in Theorem A, there exist an ample divisor A on X
and positive integers dj such that Dj ∼ djA. Thus Theorem A can be obtained by
applying Proposition 3.1 together with the Main Theorem to the divisors N0

dj
Dj

with N0 being a positive integer divisible by di, 1 6 i 6 q, and such that N0A is
very ample.

Next, we consider the case that the given divisors (more precisely the multiple
of the divisors) are not necessarily linearly equivalent on X. Denote by h0(D) :=
dimH0(X,O(D)).

Definition 3.3. Divisors D1, . . . , Dq with q > l on a projective variety X are said
to be in l-subgeneral position if any {i1, . . . , il+1} ⊂ {1, . . . , q}, suppDi1 ∩ · · · ∩
suppDil+1

= ∅.

Following Levin [Lev09], we introduce the concept of “equidegree” for the divi-
sor D = D1 + · · ·+Dq, where D1, . . . , Dq are Cartier divisors.

Definition 3.4. Let X be a projective variety of dimension n. Let D =
∑q
j=1Dj

be a sum of effective Cartier divisors on X. We say that D has equidegree with
respect to D1, . . . , Dq if

Di.D
n−1 =

1

q
Dn, for i = 1, . . . , q.

We say that D is equidegreelizable with respect to D1, . . . , Dq if there are some
real numbers ri > 0 such that D′ :=

∑q
j=1 rjDj has equidegree with respect to

r1D1, . . . , rqDq (where we extend intersections to DivX⊗R in the canonical way).

Obviously, if D1, . . . , Dq are linearly equivalent on X, then D =
∑q
j=1Dj has

equidegree with respect to D1, . . . , Dq.

Lemma 3.5 ([Lev09], Lemma 9.7). Let X be a projective variety and D1, . . . , Dq

be big and nef Cartier divisors on X. Then D :=
∑q
i=1Di is equidegreelizable with

respect to D1, . . . , Dq.

Lemma 3.6 (See [Laz04], Corollary1.4.41). Suppose D is a nef Cartier divisor
on a projective variety X with dimX = n. Then

h0(ND) =
Dn

n!
Nn +O(Nn−1). (11)

If particular, Dn > 0 if and only if D is big.
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We recall a lemma from Autissier [Aut1].

Lemma 3.7 (See [Aut1], Lemma 2.1). Suppose E is a big and base-point free
Cartier divisor on a projective variety X with dimX = n > 2, and F be a nef
Cartier divisor on X such that F − E is also nef. Let β > 0 be a positive real
number. Then for any positive integers N,m with 1 6 m 6 βN , we have

h0(NF −mE) >
Fn

n!
Nn − Fn−1.E

(n− 1)!
Nn−1m

+
(n− 1)Fn−2.E2

n!
Nn−2 min{m2, N2}+O(Nn−1)

where O depends on β.

Proposition 3.8. Let X be a normal projective variety with dimX = n > 2. Let
D = D1 + · · · + Dq be a sum of big, nef and base-point free Cartier divisors on
X in l-subgeneral position. Assume that, for any ε > 0, there are positive integers
ai > 0 such that

(aiDi).D
′n−1 6

1

q
D′n + ε for all i = 1, . . . , q

where D′ :=
∑q
i=1 aiDi. Then, for

ε < min

{
D′n, (n− 1) min

{
2nl

3q
,
q2

4n2l2

}(
min

16j6q
a2
j (D

′n−2.D2
j )

)}
,

we have
Nev(D′) <

2l dimX

q
.

Proof. For P ∈ suppD′, denote by D′P =
∑

i:P∈suppDi

aiDi, and consider the fil-

tration, for N big enough,

VN := H0(X,O(ND′)) ⊃ H0(X,O(ND′ −D′P )) ⊃ H0(X,O(ND′ − 2D′P ))

⊃ · · · ⊃ H0(X,O(ND′ −MD′P )) ⊃ H0(X,O(ND′ − (M + 1)D′P )) = {0}.

Choose a basis for VN according to the above filtration. With this basis B, we
compute µ appeared in (2) of the definition of the µ-growth. Let E be an irre-
ducible component of D′ such that P ∈ E. Notice that ordE s > m ordE D

′ for
any s ∈ H0(X,O(ND′ −mD′P )), therefore we have

1

ordE D′

∑
s∈B

ordE s >
∞∑
m=1

m
(
h0(ND′ −mD′P )− h0(ND′ − (m+ 1)D′P

)
(12)

=

∞∑
m=1

h0(ND′ −mD′P ).
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Applying Lemma 3.7 with F = D′, E = D′P and β = D′n

nD′n−1.D′P
, and denote

A := (n− 1)D′n−2.D′2P , yields

∞∑
m=1

h0(ND′ −mD′P ) (13)

>
[βN ]∑
m=1

(
D′n

n!
Nn − D′n−1.D′P

(n− 1)!
Nn−1m+

A

n!
Nn−2 min{m2, N2}

)
+O(Nn)

=

(
D′n

n!
β − D′n−1.D′P

(n− 1)!

β2

2
+
A

n!
g(β)

)
Nn+1 +O(Nn)

>

(
β

2
+

A

D′n
g(β)

)
D′n

Nn+1

n!
+O(Nn)

=

(
β

2
+ α

)
Nh0(ND′) +O(Nn)

where α := A
D′n g(β) and g : R+ → R+ is the function given by g(x) = x3

3 if x 6 1
and g(x) = x− 2

3 for x > 1. Now from the assumptions that

(aiDi).D
′n−1 6

1

q
(D′n + ε) ,

and that the intersection of any l + 1 distinct Dj is empty, we have

D′n−1.D′P = D′P .D
′n−1 =

∑
i,P∈suppDi

(aiDi).D
′n−1 6

l

q
(D′n + ε)

Hence
β =

D′n

nD′n−1.D′P
>

q

nl

D′n

(D′n + ε)
. (14)

Thus, from (12) and (14),∑
s∈B

ordE s >

((
q

2nl

(
D′n

D′n + ε

)
+ α

)
Nh0(ND′) +O(Nn)

)
ordE D

′

>

((
q

2nl

(
D′n

D′n + ε

)
+ α

)
h0(ND′) +O(Nn−1)

)
ordE(ND′)

From the definition of Nev(D′), we have

Nev(D′) 6 lim inf
N→+∞

h0(ND′)(
q

2nl

(
D′n

D′n+ε

)
+ α

)
h0(ND′) +O(Nn−1)

=
2nl

q

(
D′n + ε

D′n + 2nlα
q (D′n + ε)

)
<

2nl

q

(
D′n + ε

D′n + 2nlα
q D′n

)
,
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so if
ε <

2nlα

q
D′n, (15)

then
Nev(D′) <

2nl

q
.

We now find the lower bound of αD′n. First notice that for

ε < D′n, (16)

we have, from (14) β > q
2nl and thus

g(β) > min

{
1

3
,
q3

8n3l3

}
,

so

2nlα

q
D′n =

2nl

q
(n− 1)D′n−2.D′2P g(β) (17)

> (n− 1) min

{
2nl

3q
,
q2

4n2l2

}(
min

16j6q
a2
j (D

′n−2.D2
j )

)
.

Thus if we let, from (16) and (17),

ε < min

{
D′n, (n− 1) min

{
2nl

3q
,
q2

4n2l2

}(
min

16j6q
a2
j (D

′n−2.D2
j )

)}
,

then (15) is satisfied. This finishes the proof. �

4. Important consequences of the Main Theorem

In this section, as an important consequences of the Main Theorem, we establish
a Diophantine inequality for divisors which are not necessarily linear equivalent.

Theorem 4.1. Let k be a number field and S ⊂ Mk be a finite set containing
all archimedean places. Let X be a normal projective variety with dimX > 2 and
D = D1 + · · ·+Dq be a sum of big and nef Cartier divisors in l-subgeneral position
on X, both defined over k. Let ri > 0 be real numbers such that D′ :=

∑q
i=1 riDi

is equidegree (such numbers exist due to Lemma 3.5). We further assume that
the linear system |ND| is base-point free for N > N0 where D = D1 + · · · + Dq.
Then, for ε0 > 0 small enough (which depends explicitly only on the divisors
r1D1, . . . , rqDq),

q∑
j=1

rjmS(x,Dj) <

(
2l dimX

q
− ε0

) q∑
j=1

rjhDj (x)

 ,

holds for all x ∈ X(k) outside a Zariski closed subset Z of X.
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Remark: The condition of nefness of Dj for i = j, . . . , q in the above theorems
is only used to guarantee that D =

∑q
i=1Di is equidegreelizable with respect to

D1, . . . , Dq by Lemma 3.5. In the case when we study the degeneracy of (S,D)-
integral points of X\D, by doing a blowing up, the smoothness condition (or the
normal condition) of X, as well as the nefness condition of Dj , 1 6 j 6 q, can all
be removed. The following is the exact statement.

Lemma 4.2 (Lemma 9.10 in [Lev09]). Let X be a projective variety. Let
D =

∑q
j=1Dj be a sum of effective Cartier divisors on X. Then there exists

a nonsingular projective variety X ′, a birational morphism π : X ′ → X, and
a divisor D′ =

∑q
j=1D

′
j on X ′ such that SuppD′j ⊂ Suppπ∗Dj for all j, every

irreducible component of D′ is nonsingular, |D′j | is base-point free for all j (in
particular D′j is nef), and κ(D′j) = κ(Dj) = dim ΦD′j (X

′) for all j (where κ(Dj)

is the Kodaira dimension of Dj). Also, if X and D are defined over a number
field, then X ′, D′, and π are defined over some number field.

Definition 4.3. Let S ⊂ Mk be a finite set containing the archimedean places.
Let R ⊂ X(k)\ supp(D). The set R is defined to be a (D,S)–integral set of points
if there exists a global Weil function λD,υ such that

λD,υ(x) 6 0 for ∀x ∈ R and ∀υ 6∈ S.

Note that, if set R is a (D,S)–integral set of points, then

mS(x,D) = hD(x) +O(1) for ∀x ∈ R.

Recall that divisors D1, . . . , Dq (with q > n) are said to be in general position
on a variety X with dimX = n if the intersection of the support of any n + 1
distinct Di on X is empty. Let Y ⊂ X. Then it is obvious that, if D1, . . . , Dq are
in general position on X and Di (i = 1, . . . , q) doesn’t contain any component of
Y , then the intersection any n + 1 distinct Di on Y is still empty, so D1, . . . , Dq

are in n-subgeneral position on Y . Thus, from the above discussions, we have the
following Corollary.

Corollary 4.4. Let X be a projective variety with dimX = n > 2, and D =∑q
j=1Dj be a sum of big Cartier divisors on X, located in general position on

X, both defined over k. If q > 2n2, then any (D,S)–integral set of points of
X(k)\SuppD is finite.

For the related results, see [RuW91].
Although in general the positive real numbers r1, . . . rq appeared in Theo-

rem 4.1 may be hard to compute explicitly, in the special case that Di ∼ diA
for i = 1, . . . , q, where A is a fixed big divisor, it is obvious that

D′ =
1

d1
D1 + · · ·+ 1

dq
Dq

is equi-degree. So we can indeed take r1 = (1/d1), . . . , rq = (1/dq). Also, from the
definition, hD′(x) = qhA(x), thus Theorem 4.1 applying to above D′ (i.e. taking
r1 = (1/d1), . . . , rq = (1/dq)) implies the following Corollary.
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Corollary 4.5. Let X be a projective variety with dimX = n > 2 and let
D1, . . . , Dq be effective ample Cartier divisors on X, in l-subgeneral position on
X, both defined over k. We further assume that there are positive integers di > 0
such that Di ∼ diA, where A is an effective Cartier divisor on X. Then, for ε0 > 0
small enough, the inequality

q∑
j=1

1

dj
mS(x,Dj) 6 (2ln− ε0)hA(x)

holds for all x outside a Zariski closed subset Z of X(k).
In particular, if we assume that D1, . . . , Dq are in general position on X (in-

stead of l-subgeneral position), then, for ε > 0 small enough, the inequality
q∑
j=1

1

dj
mS(x,Dj) 6 (2n2 − ε0)hA(x)

holds for all x ∈ X(k) except for a finite number of points.

Proof. When X is normal, it is derived from Theorem 4.1 above. If X is not
normal then we consider the normalization π : X̃ → X and the divisors π∗A and
π∗Di for all i. Notice that π∗Di, 1 6 i 6 q, are still in l-subgeneral position, and,
since A is ample, π∗A is big and the linear system |π∗A| is base-point free for N
large enough, so again Theorem 4.1 implies our result. �

Proof of Theorem 4.1. From the functoriality and additivity of Weil functions
and height functions and by replacing D with N0D if necessary, we can assume
that N0 = 1. From the assumption, we have, for j = 1, . . . , q,

(rjDj).(D
′)n−1 =

1

q
D′n,

where D′ = r1D1 + · · · + rqDq. For small 0 < δ1 < 1 which will be chosen later
(see (19)), choose rational numbers aj , 1 6 j 6 q, such that

|aj − rj | 6 min

{
δ1
4

(
min

16j6q
rj

)
,
qδ1
8nl

(
min

16j6q
rj

)}
,

and, for j = 1, . . . , q,

ajDj .

(
q∑
i=1

aiDi

)n−1

<
1

q

(
q∑
i=1

aiDi

)n
+ δ2,

where δ2 will be chosen below (see (18)). Let D̃ =
∑q
j=1 dajDj , where d is the

product of the denominators of a1 . . . , aq so daj is an integer for 1 6 j 6 q. Notice
that

D̃n >

 q∑
j=1

dajDj

n

>
dn

2n

 q∑
j=1

rjDj

n

>
1

2n
D′n,
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and, similarly, for any P ∈ SuppD,

min
16j6q

a2
j (D̃

n−2.D2
j ) >

1

2n
min

16j6q
r2
j (D

′n−2
.D2

j ).

So if we choose

δ2 < min

{
1

2n
D′n, (n− 1) min

{
2nl

3q
,
q2

4n2l2

}
1

2n

(
min

16j6q
r2
j (D

′n−2D2
j )

)}
, (18)

then, by applying Proposition 3.8 to D̃, we have

Nev(D̃) <
2nl

q
.

Choose δ1 small enough, so that

Nev(D̃) <
2nl

q
− 3δ1

2
. (19)

Thus, applying the Main Theorem to the divisor D̃ (with ε is taken as ε < 2nl
q −

3δ1
2 −Nev(D̃)), we get

mS(x, D̃) 6

(
2nl

q
− 3δ1

2

)
hD̃(x) ‖,

i.e.

q∑
j=1

ajmS(x,Dj) 6

(
2nl

q
− 3δ1

2

) q∑
j=1

ajhDj (x)

 ‖,

here we use ‖ to denote that the inequality holds for all x ∈ X(k) outside a Zariski
closed subset Z of X. Therefore

q∑
j=1

rjmS(x,Dj) 6
q∑
j=1

ajmS(x,Dj) +

(
δ1
4

min
16j6q

rj

) q∑
j=1

mS(x,Dj)


6

(
2nl

q
− (3δ1/2)

) q∑
j=1

ajhDj (x)

+

(
δ1
4

min
16j6q

rj

)
hD(x) ||

6

(
2nl

q
− (3δ1/2)

) q∑
j=1

rjhDj (x)


+ (δ1/4)( min

16j6q
rj)hD(x) +

(
δ1
4

min
16j6q

rj

)
hD(x) ‖

=

(
2nl

q
− (3δ1/2)

) q∑
j=1

rjhDj (x)

+ (δ1/2)( min
16j6q

rj)hD(x) ‖.
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Now
q∑
j=1

rjhDj (x) > ( min
16j6q

rj)

q∑
j=1

hDj (x) = ( min
16j6q

rj)hD(x).

So we have

q∑
j=1

rjmS(x,Dj) 6

(
2nl

q
− (3δ1/2)

) q∑
j=1

rjhDj (x)


+ (δ1/2)

 q∑
j=1

rjhDj (x)

 ‖

=

(
2nl

q
− δ1

) q∑
j=1

rjhDj (x)

 ‖.

This proves Theorem 4.1. �

Acknowledgment. The author wishes to thank his colleague, Professor Gordon
Heier, for many helpful discussions. Also thanks to the referee for many helpful
comments and suggestions.

References

[Aut1] P. Autissier, Géométrie, points entiers et courbes entières, (French)
[Geometry, integral points and integral curves], Ann. Sci. Éc. Norm
Supér (4) 42 (2009), 221–239.

[CZ02] P. Corvaja and U. Zannier, A subspace theorem approach to integral
points on curves, C. R. Math. Acad. Sci. Paris 334 (2002), no. 4, 267–
271.

[CZ04a] P. Corvaja and U. Zannier, On a general Thue’s equation, Amer.
J. Math. 126 (2004), no. 5, 1033–1055.

[CZ04b] P. Corvaja and U. Zannier, On integral points on surfaces, Ann. of Math.
(2) 160 (2004), no. 2, 705–726.

[EF02] J.-H. Evertse and R. Ferretti, Diophantine inequalities on smooth pro-
jective varieties, Int. Math. Res. Not. 25 (2002), 1295–1330.

[EF08] J.-H. Evertse and R. Ferretti, A generalization of the Subspace Theorem
with polynomials of higher degree, in Diophantine approximation, vol-
ume 16 of Dev. Math., pages 175–198, SpringerWienNewYork, Vienna,
2008.

[Har77] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977,
Graduate Texts in Mathematics, No. 52.

[HR12] G. Heier and M. Ru, Essentially large divisors and their arithmetic and
function-theoretic inequalities, Asian J. of Math. 16 (2012), 387–407.



On a general Diophantine inequality 163

[Lan87] S. Lang, Fundamentals of Diophantine Geometry, Springer-Verlag, New
York, 1983.

[Laz04] R. Lazarsfeld, Positivity in algebraic geometry I, Springer-Verlag, Berlin,
2004.

[Lev09] A. Levin, Generalizations of Siegel’s and Picard’s theorems, Ann. of
Math. (2) 170 (2009), no. 2, 609–655.

[Lev14] A. Levin, On the Schmidt subspace theorem for algebraic points, Duke
Math. Journal 163 (2014), 2841–2885.

[Ru04] M. Ru, A defect relation for holomorphic curves intersecting hypersur-
faces, Amer. J. Math. 126 (2004), no. 1, 215–226.

[Ru09] M. Ru, Holomorphic curves into algebraic varieties, Ann. of Math. (2)
169 (2009), no. 1, 255–267.

[Ru15] M. Ru, A defect relation for holomorphic curves intersecting general
divisors in projective varieties, Journal of Geometric Analysis, to appear.

[RuW91] M. Ru and P.M. Wong, Integral points of Pn − {2n+ 1 hyperplanes in
general position}, Invent Math 106 (1991), 195–216.

[Voj87] P. Vojta, Diophantine approximations and value distribution theory, vol-
ume 1239 of Lecture Notes in Mathematics, Springer-Verlag, Berlin,
1987.

[Voj97] P. Vojta, On Cartan’s theorem and Cartan’s conjecture, Amer. J. Math.
119 (1997), no.1, 1–17.

[Vojcm] P. Vojta, Diophantine Approximation and Nevanlinna Theory, CIME
notes, 231 pages, 2007, Lecture Notes in Mathematics 2009, Springer-
Verlag, Berlin Heidelberg, 2011, pp. 111–230.

Address: Min Ru: Department of Mathematics, University of Houston, 4800 Calhoun Road,
Houston, TX 77204, USA.

E-mail: minru@math.uh.edu
Received: 29 July 2015; revised: 27 April 2016


