CONVEXIFIÉE D'UNE TOPOLOGIE D'ALGÈBRE A – P-NORMÉE A. EL KINANI & M. CHAHBOUN

Abstract: We show that the convexified topology of a locally bounded algebra can be determined by an explicit A-semi-norm. We also exhibit relationship between some properties of A-p-normed algebras and the associated A-semi-normed algebras obtained by convexification.

Keywords: A-p-norme, algèbre A-p-normée, Q-algèbre, algèbre advertiblement complète, convexifiée d'une topologie.

1. Introduction

Dans [1], nous avons étudié les algèbres A-p-normées, 0 . Ce sontexactement les algèbres localement bornées non nécessairement complètes. Pour 0 , ces algèbres ne sont pas, en général, localement convexes ([1]).Par ailleurs, dans un espace vectoriel topologique quelconque (E, τ) , on peut toujours considérer la topologie, notée $\hat{\tau}$, dite convexifiée de τ . L'existence et des propriétés de $\hat{\tau}$ sont étudiées dans [3]. Dans le cas particulier d'un espace p-normé, la topologie $\widehat{\tau}$ peut être définie par la jauge, notée $\|.\|_c$, de l'enveloppe convexe de la boule unité. Dans ce travail, nous ne considérons que les algèbres A-p-normées, 0 . Nous commençons par déterminer la convexifiée dans denombreux exemples. Nous passons ensuite à l'étude de la semi-norme ||.||c dans une algèbre A-p-normée $(E, \|.\|_p)$, $0 . Ainsi nous montrons que <math>\|.\|_c$ est une A-semi-norme donnée par $\|x\|_c = \inf \sum_{i=1}^n \|x_i\|_p^{\frac{1}{p}}$, où l'inf est pris sur toutes les décompositions $x = \sum_{i=1}^n x_i, x_i \in E$. Nous prouvons que $(E, \|.\|_c)$ est une algèbre A-normée si, et seulement si, le dual topologique E', de $(E, \|.\|_p)$, sépare les points de E. Si $(E, \|.\|_p)$ est une Q-algèbre commutative, nous montrons que $(E, \|.\|_p)$ est aussi une Q-algèbre. De plus, dans le cas non nécessairement commutatif, nous établissons que $\varrho(x) = \overline{\lim_{n}} \|x^{n}\|_{c}^{\frac{1}{n}} = \overline{\lim_{n}} \|x^{n}\|_{p}^{\frac{1}{n}}$, pour tout $x \in E$. Nous nous intéressons ensuite à des algèbres A-p-normées advertiblement complètes. Dans ce cas, on a $\max\{\chi(x): \chi \in M(E, \|.\|_p)\} \leq \overline{\lim_n} \|x^n\|_c^{\frac{1}{n}} \leq \overline{\lim_n} \|x^n\|_p^{\frac{1}{np}} \leq \varrho(x),$

pour tout $x \in E$, où $M(E, \|.\|_p)$ désigne l'espace des caractères non nuls continus sur $(E, \|.\|_p)$. Enfin, dans une algèbre A-p-normée advertiblement complète, nous montrons qu'il existe toujours une semi-norme d'algèbre $\|.\|$, plus fine que $\|.\|_c$ et telle que $(E, \|.\|)$ soit une Q-algèbre

2. Preliminaires

Soient E une algèbre complexe et $\|.\|_p$, 0 , une <math>p-norme (resp. p-semi-norme) d'espace vectoriel sur E. On dit que $\|.\|_p$ est une A-p-norme (resp. A-p-semi-norme) si, pour tout $x \in E$, il existe M(x) > 0 et N(x) > 0 telles que $\|xy\|_p \le M(x)\|y\|_p$ et $\|yx\|_p \le N(x)\|y\|_p$, pour tout $y \in E$. Si $\|.\|_p$ est une A-p-norme (resp. A-p-semi-norme), on dit que $(E,\|.\|_p)$ est une algèbre A-p-normée (resp. A-p-semi-normée). Rappelons qu'une algèbre est dite p-normée (resp. p-semi-normée) si elle est munie d'une p-norme (resp. p-semi-norme) d'espace vectoriel telle que $\|xy\|_p \le \|x\|_p \|y\|_p$, pour tous $x, y \in E$. Signalons que les algèbres p-normées considérées ici ne sont pas nécessairement complètes comme c'est le cas dans [7] et [8]. Une algèbre p-normée complète sera dite p-Banach.

Dans [5], S. Warner a introduit la notion "advertibly complete" pour les a. l. m. c. et A. Mallios ([4]) l'a étendue aux algèbres topologiques quelconques. Dans le cas A-p-normé, on a la définition suivante.

Définition 2.1. Soient $(E, \|.\|_p)$, 0 , une algèbre <math>A-p-normée, unitaire et $(x_n)_n$ une suite dans E. On dit que $(x_n)_n$ est advertiblement convergente s'il existe un élément x dans E tel que les suites $(xx_n)_n$ et $(x_nx)_n$ convergent vers l'unité e. L'algèbre E est dite advertiblement complète, si toute suite de Cauchy, advertiblement convergente, est convergente.

Remarque 2.2. Si $(E, \|.\|_p)$, 0 , est une algèbre <math>A-p-normée unitaire qui est une Q-algèbre (i.e., le groupe G(E) des éléments inversibles de E est ouvert), alors $(E, \|.\|_p)$ est advertiblement complète. La réciproque est en général fausse ([1]).

Soit $(E, \|.\|_p)$, 0 , une algèbre <math>A-p-normée. La topologie τ définie par $\|.\|_p$, n'est pas en général localement convexe. Mais il existe, sur E, des topologies localement convexes moins fines que τ . Dans [3], C. Lescarret et J. Moreau ont défini la convexifiée d'une topologie d'espace vectoriel topologique. Par commodité, nous donnons la définition dans le cas p-normé.

Définition 2.3. Soit $(E, \|.\|_p)$, 0 , un espace <math>p-normé de topologie τ . La convexifiée notée $\widehat{\tau}$, de τ , est la topologie la plus fine parmi les topologies localement convexes, qui sont moins fines que τ .

Remarque 2.4. Soit $(E, \|.\|_p)$, 0 , un espace <math>p-normé de topologie τ . On vérifie facilement que $\widehat{\tau}$ peut être définie par la jauge, notée $\|.\|_c$, de l'enveloppe convexe de la boule unité de $\|.\|_p$.

Dans toute la suite, les algèbres seront complexes. Pour tout élément x d'une algèbre unitaire, le spectre de x est l'ensemble $Spx = \{\lambda \in \mathbb{C} : \lambda e - x \notin G(E)\}$. Le rayon spectral de x est $\varrho(x) = \sup\{|\lambda| : \lambda \in Spx\}$. Dans une algèbre A-p-normée $(E, \|.\|_p)$, $0 , on désigne par <math>\||.\|_p$ la p-norme d'algèbre donnée par $\||x\|\|_p = \sup\{\|xy\|_p : \|y\|_p \le 1\}$, pour tout $x \in E$.

3. Exemples

1) Soit W_p , $0 , l'algèbre des séries <math>\varphi(z) = \sum_{n \ge 0} a_n z^n$ définies sur le cercle unité telle que $\sum_{n \ge 0} |a_n|^p < +\infty$. Soit $(\alpha_n)_{n \ge 0}$ une suite décroissante et strictement positive. Pour tout $\varphi \in W_p$, posons $\|\varphi\|_p = \sum_{n \ge 0} \alpha_n |a_n|^p$. Il est clair que $\|.\|_p$ est une p-norme d'espace vectoriel telle que $\|\varphi\psi\|_p \le M(\varphi) \|\psi\|_p$, pour $\varphi, \psi \in W_p$, où $M(\varphi) = \sum_{n \ge 0} |a_n|^p$. Ainsi, pour le produit ordinaire, l'espace $(W_p, \|.\|_p)$ est une algèbre A-p-normée. L'algèbre $(W_p, \|.\|_p)$ n'est pas en général à produit continu. Pour 0 , cette algèbre n'est pas localement convexe. Car sinon, il existerait un voisinage convexe <math>U de l'origine et $\varepsilon > 0$ tels que $\{\varphi \in W_p : \|\varphi\|_p \le \varepsilon\} \subset U \subset \{\varphi \in W_p : \|\varphi\|_p < 1\}$. Pour $n \ge 1$, posons $\psi_n = \frac{1}{n} \sum_{k=1}^n \varphi_k$, où $\varphi_k(z) = (\frac{\varepsilon}{\alpha_k})^{\frac{1}{p}} z^k$. On a $\|\varphi_k\|_p = \varepsilon$, pour tout k. Donc $\psi_n \in U$. Or $\|\psi_n\|_p = \varepsilon n^{1-p} > 1$ pour n assez grand; ce qui contredit le fait que $U \subset \{\varphi \in W_p : \|\varphi\|_p < 1\}$. Soit maintenant $\varphi \in W_p$, $\varphi(z) = \sum_{n \ge 0} a_n z^n$. On a

$$\|\varphi\|_{c} \leq \sum_{n\geq 0} |a_{n}| \|z^{n}\|_{c} \leq \sum_{n\geq 0} \alpha_{n}^{\frac{1}{p}} |a_{n}|.$$

D'où $\|\varphi\|_c = \sum_{n\geq 0} \alpha_n^{\frac{1}{p}} |a_n|$, vu que $\|.\|$ définie par $\|\varphi\| = \sum_{n\geq 0} \alpha_n^{\frac{1}{p}} |a_n|$ est une norme moins fine que $\|.\|_p$.

2) Soit E l'algèbre des fonctions complexes f mesurables sur [0,1] et qui sont de la forme $f = \sum_{i=1}^{n} \lambda_i \chi_{A_i}$, $n \in \mathbb{N}^*$ et $(A_i)_{1 \leq i \leq n}$ une partition de [0,1] tels que $mes(A_i) > 0$, pour tout i = 1, ..., n. On munit E de la p-norme d'espace vectoriel définie par $||f||_p = \int_{[0,1]} |f(t)|^p dt$, $0 . L'algèbre <math>(E, ||..||_p)$ est alors A-p-normée. Pour $0 , cette algèbre n'est pas localement convexe ([1]). Soit maintenant <math>f \in E$. Considèrons la partition $0 = t_0 < t_1 < ... < t_m = 1$, de [0,1], telle que $t_j - t_{j-1} \leq \frac{1}{m^{2p}}$, pour tout $1 \leq j \leq m$, où $m \in \mathbb{N}^*$. Comme $f = \sum_{j=1}^{m} f \chi_{B_j}$, avec $B_j = [t_{j-1}, t_j]$, on a

$$||f||_c \le \sup\{|f(t)|\sum_{j=1}^m ||\chi_{B_j}||_c : t \in [0,1]\} \le \frac{1}{m}\{\sup|f(t)| : t \in [0,1]\}.$$

Par passage à la limite en m, on obtient $||f||_c = 0$.

3) Soit (Ω, m) un espace mesuré. On note par $L_p(\Omega)$ l'espace (des classes d'équivalences) de fonctions complexes m-mesurables telles que $\int_{\Omega} |f|^p dm < \infty$,

 $0 . Pour <math>f \in L_p(\Omega)$, posons $\|f\|_p = \int_{\Omega} |f|^p \, dm$. L'espace $\left(L_p(\Omega), \|.\|_p\right)$ est un p-Banach. Il n'est pas nécessairement une algèbre pour le produit ponctuel. Soit $L_p^b(\Omega) = \{f \in L_p(\Omega) : f \text{ est bornée}\}$. L'espace $\left(L_p(\Omega), \|.\|_p\right)$ est une algèbre A-p-normée. Pour $0 , elle n'est pas, en général, localement convexe ([1]). Si <math>\Omega$ est du type continu, alors $\|.\|_c$ est nulle. En effet, soit $(A_i)_{1 \le i \le n}, \ n \in N^*$, une partition de Ω telle que $mes(A_i) \le \frac{1}{n^{2p}}$, pour tout i=1,...,n. Comme tout élément $f \in L_p^b(\Omega)$ peut s'écrire $f = \sum_{i=1}^n f \chi_{A_i}$, on a

$$\|f\|_c \leq \sup\{|f(x)|\sum_{i=1}^n mes(A_i): x \in \Omega\} \leq \frac{1}{n}\sup\{|f(x)|: x \in \Omega\}.$$

Par passage à la limite en n, on obtient $||f||_c = 0$. Si maintenant $\Omega = \{x_n : n \ge 0\}$ est un ensemble discret et infini, en écrivant $f = \sum_{n \ge 0} f \chi_{\{x_n\}}$, on obtient

$$||f||_c \le \sum_{n\ge 0} ||f\chi_{\{x_n\}}||_p^{\frac{1}{p}} = \sum_{n\ge 0} |f(x_n)|.$$

De plus, cette dernière expression définit une norme, sur $L_p^b(\Omega)$, moins fine que $\|.\|_p$. Donc $\|f\|_c = \sum_{n\geq 0} |f(x_n)|$.

4) Soit $E = \mathbf{C} \times L_p(\Omega)$ muni de la p-norme $\|(\alpha, f)\|_p = |\alpha|^p + \|f\|_p$. Pour le produit donné par $(\alpha, f)(\beta, g) = (\alpha\beta, \alpha g + \beta f)$, l'algèbre $(E, \|.\|_p)$ est p-Banach non localement convexe. En utilisant l'exemple 3, on montre que si Ω est de type continu, alors $\|(\alpha, f)\|_c = |\alpha|$. Si $\Omega = \{x_n : n \geq 0\}$ est un ensemble discret et infini, on a

$$\left\|(\alpha,f)\right\|_{c}=\left|\alpha\right|+\sum_{n\geq0}\left|f(x_{n})\right|.$$

Plus généralement, soit $(F,\|.\|_p)$, 0 , un espace <math>p-normé. On munit $E = \mathbf{C} \times F$ de la p-norme suivante $\|(\alpha,f)\|_p = |\alpha|^p + \|f\|_p$, $(\alpha,f) \in E$. On définit sur E, le produit par $(\alpha,f)(\beta,g) = (\alpha\beta, \alpha g + \beta f)$. L'algèbre $(E,\|.\|_p)$ est p-normée telle que

$$\|(\alpha, f)\|_c = |\alpha| + \|f\|_c$$
, pour tout $(\alpha, f) \in E$.

5) Soit $E=\mathbf{C^{(N)}}$ l'algèbre des suites complexes nulles à partir d'un certain rang. Soit $(\alpha_n)_n$ une suite strictement positive et bornée. On munit E de la p-norme donnée par $\|(x_n)\|_p = \sum_{n\geq 1} \alpha_n |x_n|^p$, $0 . L'algèbre <math>(E,\|.\|_p)$ est A-p-normée. Pour $0 , elle n'est pas localement convexe ([1]). Soit maintenant <math>(x_n)_{n\geq 1} \in E$. En écrivant $(x_n)_n = \sum_{n\geq 1} x_{(n)}$, où $x_{(n)} = (0,...,x_n,0,...)$, on a

$$\|(x_n)\|_c \le \sum_{n>1} \|(x_{(n)}\|_p^{\frac{1}{p}} = \sum_{n>1} \alpha_n^{\frac{1}{p}} |x_n|.$$

Comme la norme $\|.\|$ définie par $\|(x_n)_n\| = \sum_{n\geq 1} \alpha_n^{\frac{1}{p}} |x_n|$, pour tout $(x_n)_{n\geq 1} \in E$, est moins fine que $\|.\|_p$, on a $\|(x_n)\|_c = \sum_{n\geq 1} \alpha_n^{\frac{1}{p}} |x_n|$, pour tout $(x_n)_{n\geq 1} \in E$. 6) Soit $C_b(\mathbf{R})$ l'algèbre des fonctions continues et bornées sur \mathbf{R} . Une façon naturelle de construire une A-p-norme sur $C_b(\mathbf{R})$ est de considérer, pour $0 et <math>\psi \in C_b(\mathbf{R})$ fixés, $\|f\|_p = \sup\{|f(x)|^p |\psi(x)| : x \in \mathbf{R}\}, f \in C_b(\mathbf{R})$. On serait tenter de montrer que cette algèbre n'est pas localement convexe pour $0 . En fait l'expression de <math>\|.\|_p$ ne détruit pas la convexité. En effet, on vérifie facilement que

$$||f.||_c = \sup \left\{ |\psi(x)|^{\frac{1}{p}} |f(x)| : x \in R \right\}, \text{ pour tout } f \in C_b(\mathbf{R}).$$
 Donc $||.||_c^p = ||.||_p$.

Remarque 3.1. Soit $(E,\|.\|_p)$, 0 , une algèbre <math>A-p-normée non nécessairement unitaire. Alors l'algèbre $E^1 = \mathbf{C} \oplus E$ obtenue par adjonction d'une unité à E munie de la p-norme $\|\alpha + x\|_p = |\alpha|^p + \|x\|_p$, pour $\alpha \in \mathbf{C}$, $x \in E$, est une algèbre A-p-normée telle que $\|\alpha + x\|_c = |\alpha| + \|x\|_c$, pour tous $\alpha \in \mathbf{C}$ et $x \in E$.

4. Convexifiée d'une topologie d'algèbre A-p-normée

La convexifiée d'une topologie d'algèbre A-p-normée peut être définie par une A-semi-norme dont la forme explicite est donnée par le résultat suivant.

Proposition 4.1. Soient (E, τ) une algèbre localement bornée et $\|.\|_p$, $0 , la semi-norme définissant <math>\tau$. Alors

1) la convexifiée peut être définie par la semi-norme donnée par ||x||_c = inf ∑_{i=1}ⁿ ||x_i||_p¹, où l'inf est pris sur toutes les décompositions x = ∑_{i=1}ⁿ x_i, x_i ∈ E,
2) de plus l'algèbre (E, ||.||_c) est A-semi-normée.

Preuve. Tout d'abord, par la remarque 2.4, $\|.\|_c$ est la jauge de l'enveloppe co-

- nvexe de la boule unité de $\|.\|_p$.
- 1) Soit maintenant $x = \sum_{i=1}^{n} x_i$, $x_i \in E$, une décomposition quelconque de x. Alors $||x||_c \leq \sum_{i=1}^{n} ||x_i||_c \leq \sum_{i=1}^{n} ||x_i||_p^{\frac{1}{p}}$. D'où $||x||_c \leq \inf \sum_{i=1}^{n} ||x_i||_p^{\frac{1}{p}}$. Pour $x \in E$, posons $||x|| = \inf \sum_{i=1}^{n} ||x_i||_p^{\frac{1}{p}}$; c'est une semi-norme d'espace vectoriel telle que $||x|| \leq ||x||_p^{\frac{1}{p}}$, pour tout $x \in E$. Comme $\{x \in E : ||x|| \leq 1\}$ est convexe, on a $||x|| \leq ||x||_c$, pour tout $x \in E$. D'où $||x||_c = \inf \sum_{i=1}^{n} ||x_i||_p^{\frac{1}{p}}$.
- 2) Il reste à montrer que, pour tout $x \in E$, il existe M(x) > 0 tel que $\|xy\|_c \le M(x) \|y\|_c$, pour tout $y \in E$. Soient $x = \sum_{i=1}^n x_i$ et $y = \sum_{i=1}^m y_i$, $x_i, y_i \in E$. Pour tout i = 1, ..., n, il existe $M(x_i) > 0$ tel que $\|x_iy_j\|_p \le M(x_i) \|y_j\|_p$, pour tout j = 1, ..., m. Donc

$$\begin{split} \|xy\|_c & \leq \sum_{i=1}^n \sum_{j=1}^m \|x_i y_j\|_p^{\frac{1}{p}} \leq M(x) \sum_{j=1}^m \|y_j\|_p^{\frac{1}{p}} \leq M(x) \|y\|_c, \\ \text{où } M(x) & = \sum_{i=1}^n M(x_i)^{\frac{1}{p}}. \end{split}$$

Remarque 4.2. Si $(E, \|.\|_p)$, 0 , est une algèbre <math>p-normée, alors $(E, \|.\|_c)$ est une algèbre semi-normée. Dans ce cas $\|.\|_c$ n'est autre que la pseudo-norme support introduite dans [6].

Si $(E, \|.\|_c)$ est une algèbre A-normée, il est clair que le dual topologique E', de $(E, \|.\|_p)$, sépare les points de E. La réciproque est également vraie.

Proposition 4.3. Soit $(E, \|.\|_p)$, 0 , une algèbre <math>A-p-normée. Si le dual topologique E' sépare les points de E, alors $(E, \|.\|_c)$ est une algèbre A-normée.

Preuve. Montrons que $(E, \|.\|_c)$ est séparé. Soit $a \neq 0$. Il existe $f \in E'$ telle que $f(a) \neq 0$. Par la continuité de f, il existe une constante $\alpha > 0$ telle que $|f(x)| \leq \alpha \|x\|_p^{\frac{1}{p}}$, pour tout $x \in E$. D'où $|f(a)| \leq \alpha \sum_{i=1}^n \|a_i\|_p^{\frac{1}{p}}$, pour toute décomposition $a = \sum_{i=1}^n a_i$, $a_i \in E$. Donc $|f(a)| \leq \alpha \|a\|_c$.

Le résultat suivant concerne la conservation de la propriété Q-algèbre par convexification.

Proposition 4.4. Soit $(E,\|.\|_p)$, 0 , une algèbre <math>A-p-normée commutative qui est une Q-algèbre. Alors $(E,\|.\|_c)$ est une Q-algèbre A-semi-normée et donc $\{x \in E: \|x\|_c = 0\} \subset RadE$.

Preuve. Comme $(E, \|.\|_p)$ est une Q-algèbre, il existe une constante $\alpha > 0$ telle que $\varrho(x) \leq \alpha \|x\|_p^{\frac{1}{p}}$, pour tout $x \in E$. Par ailleurs, pour tout $a \in E$, $Spa = \{\chi(a) : \chi \in M^*(E)\}$, où $M^*(E)$ est l'ensemble des caractères non nuls de E. Donc le rayon spectral ϱ est sous-additif. Soit maintenant $x = \sum_{i=1}^n x_i, x_i \in E$, une décomposition quelconque de x. On a $\varrho(x) \leq \alpha \sum_{i=1}^n \|x_i\|_p^{\frac{1}{p}}$. D'où $\varrho(x) \leq \alpha \|x\|_c$. Par conséquent $(E, \|.\|_c)$ est une Q-algèbre. Enfin si $x_0 \in E$ tel que $\|x_0\|_c = 0$, alors $\varrho(x_0) = 0$ et donc $x_0 \in RadE$.

Comme conséquence immédiate, on a ce qui suit.

Corollaire 4.5. Soit $(E, \|.\|_p)$, 0 , une algèbre p-normée commutative qui est une <math>Q-algèbre. Si E est semi-simple, alors $(E, \|.\|_c)$ est une Q-algèbre normée.

Dans une algèbre p-normée $(E, \|.\|_p)$, $0 , on sait que <math>\lim_n \|x^n\|_c^{\frac{1}{n}} = n \lim \|x^n\|_p^{\frac{1}{n-p}}$, pour tout $x \in E$ ([6]). L'exemple 2 montre que cette dernière égalité ne reste plus valable dans une algèbre A-p-normée. Cependant, on a le résultat suivant.

Proposition 4.6. Soit $(E, \|.\|_p)$, 0 , une algèbre <math>A-p-normée qui est une Q-algèbre. Alors

$$\varrho(x) = \overline{\lim_{n}} \|x^{n}\|_{c}^{\frac{1}{n}} = \overline{\lim_{n}} \|x^{n}\|_{p}^{\frac{1}{np}}, \text{ pour tout } x \in E.$$

Preuve. Quitte à considérer la sous-algèbre pleine engendrée par $x \in E$, on peut supposer que E est commutative. Comme $(E, \|.\|_x)$ est une Q-algèbre, on a $\varrho(x)$

 $\leq \overline{\lim} \|x^n\|_c^{\frac{1}{n}}$ par la proposition 4.4. Par ailleurs on a

$$\varlimsup_n \|x^n\|_c^{\frac{1}{n}} \leq \varlimsup_n \|x^n\|_p^{\frac{1}{np}} \leq \lim_n \||x^n||_{\frac{1}{np}}^{\frac{1}{np}},$$

où $\||x|\|_p = \sup\{\|xy\|_p : \|y\|_p \le 1\}$, pour tout $x \in E$. Enfin, si $M^*(E)$ désigne l'espace des caractères non nuls de E, alors

$$\lim_n ||x^n||_p^{\frac{1}{np}} = \max\{|\chi(x)| : \chi \in M^*(E)\} = \varrho(x).$$

D'où le résultat.

Remarque 4.7. Dans une algèbre A-p-normée commutative $(E, \|.\|_p)$, 0 , qui est une <math>Q-algèbre, l'application $r: x \longmapsto r(x) = \overline{\lim_n} \|x^n\|_p^{\frac{1}{n}}$ est une p-norme d'algèbre. De plus $r^{\frac{1}{p}}$ est une semi-norme d'algèbre moins fine que $\|.\|_p$. Dans le cas particulier d'une algèbre p-Banach, l'application r n'est autre que la p-semi-norme $\|.\|_s$ dite "spectral norm" introduite par W. Żelazko dans [7] et [8].

L'existence d'une algèbre A-p-normée unitaire advertiblement complète telle que $\|.\|_c=0$ montre que le résultat précédent ne reste plus valide dans le cas advertiblement complet. Dans le cas commutatif, on a ce qui suit.

Corollaire 4.8. Soit $(E, \|.\|_p)$, 0 , une algèbre <math>A-p-normée unitaire commutative et advertiblement complète. Alors

$$\max\{|\chi(x)|:\chi\in M(E,\|.\|_p)\}\leq \overline{\lim_n}\,\|x^n\|_c^{\frac{1}{n}}\leq \overline{\lim_n}\,\|x^n\|_p^{\frac{1}{np}}\leq \varrho(x),$$

où $M(E,\|.\|_p)$ désigne l'espace des caractères non nuls continus de $(E,\|.\|_p)$.

Preuve. L'algèbre $(E, \| \|.\|_p)$ est une Q-algèbre vu que $(E, \|.\|_p)$ est advertiblement complète. Donc $\lim_n \| |x^n||_p^{\frac{1}{np}} = \max\{|\chi(x)| : \chi \in M(E, \| \|.\| \|_p)\} = \varrho(x)$.

Remarque 4.9. Dans une une algèbre A-p-normée unitaire advertiblement complète $(E, \|.\|_p)$, 0 , on a

$$\begin{split} \max\{|\chi(x)|:&\chi\in M(E,\left\|.\right\|_p)\}\leq \overline{\lim_n}\,\|x^n\|_c^{\frac{1}{n}}\\ &\leq \overline{\lim_n}\,\|x^n\|_p^{\frac{1}{np}}\leq \max\{|\chi(x)|:\chi\in M(E,\left\|.\right|\right\|_p)\}, \end{split}$$

où $M(E, \||.|\|_p)$ désigne l'espace des caractères non nuls continus de $(E, \||.|\|_p)$.

Si dans la proposition 4.4, l'algèbre $(E,\|.\|_p)$ est seulement advertiblement complète, alors $(E,\|.\|_c)$ n'est pas une Q-algèbre. Elle n'est même pas advertiblement complète. En effet; l'algèbre $(E,\|.\|_p)$ de l'exemple 2 est une A-p-normée advertiblement complète telle que $\|.\|_c = 0$; et par le corollaire III.7 de [1], l'algèbre $(E,\|.\|_c)$ n'est pas advertiblement complète. On peut alors se demander s'il existe une semi-norme $\|.\|$, sur E, plus fine que $\|.\|_c$, et telle que $(E,\|.\|)$ soit une Q-algèbre. Remarquons tout d'abord que l'exemple 2 montre aussi que l'algèbre $(E,\|.\|_0)$, où $\|.\|_0$ est donnée par $\|x\|_0 = \sup\{\|xy\|_c : \|y\|_c \le 1\}$, n'est pas une Q-algèbre. Examinant la situation, on obtient ce qui suit.

Proposition 4.10. Soit $(E,\|.\|_p)$, 0 , une algèbre <math>A-p-normée unitaire, non nécessairement commutative, qui est advertiblement complète. Alors il existe une semi-norme d'algèbre $\|.\|$, plus fine que $\|.\|_c$, telle que $(E,\|.\|)$ est une Q-algèbre; et donc $\{x \in E: \|x\| = 0\} \subset RadE$.

Preuve. Soit $\| \|.\|_p$ la p-semi-norme d'algèbre associée à $\|.\|_p$. Il est facile de vérifier que $(E,\| \|.\| \|_p)$ est advertiblement complète, et donc une Q-algèbre. D'où $\varrho(x)^p \leq \| \|x\| \|_p$, pour tout $x \in E$. Pour $x \in E$, posons $\| x\| = \| \|x\| \|_c = \inf \sum_{i=1}^n \| |x_i| \|_p^{\frac{1}{p}}$, où l'inf est pris sur toutes les décompositions $x = \sum_{i=1}^n x_i$, $x_i \in E$. Montrons alors que $(E,\|.\|)$ est une Q-algèbre. Pour ce faire, prouvons d'abord que $\lim_{n \to +\infty} \| \|x^n\| \|_p^{\frac{1}{np}} \leq \|x\|$, pour tout $x \in E$. Soit $x = \sum_{i=1}^n x_i$, $x_i \in E$, une décomposition quelconque de x et $n \in N^*$. Alors

$$|||x^n|||_p \le \alpha_1 + ... + \alpha_m = n \sum_{m=1}^{\infty} \left(\frac{n!}{\alpha_1!...\alpha_m!}\right)^p |||x_1|||_p^{\alpha_1} ... |||x_m|||_p^{\alpha_m}.$$

Par un calcul facile, on obtient

$$|||x^n|||_p \le \left(1 \le i \le m \sum |||x_i|||_p^{\frac{1}{p}}\right)^{pn} (1+n)^m.$$

D'où $\lim_{n \to +\infty} ||x^n||_p^{\frac{1}{p^n}} \le 1 \le i \le m \sum_{i=1}^n ||x_i||_p^{\frac{1}{p}}$. Par suite $\lim_{n \to +\infty} ||x^n||_p^{\frac{1}{p^n}} \le ||x||$.

Comme $\varrho(x)^n = \varrho(x^n) \leq \||x|\|_p^{\frac{1}{p}}$, il en résulte que $\varrho(x) \leq \|x\|$. Donc $(E, \|.\|)$ est une Q-algèbre. La semi-norme $\|.\|$ est plus fine que $\|.\|_c$ puisque $\|.\|_c^p \leq \|.\|_p$ et $\|.\|_p \leq \||.|\|_p$. Enfin montrons que $\{x \in E : \|x\| = 0\} \subset RadE$. Soit $x \in E$ tel que $\|x\| = 0$. Pour tout $y \in E$, l'élément z = yx est tel que $\|z\| = 0$. D'où $\lim_{n \to +\infty} \|z^n\|_p^{\frac{1}{np}} = 0$. Donc e - z est inversible; et par conséquent $x \in RadE$.

Remarque 4.11. 1) La semi-norme $\|.\|$ donnée par la proposition 4.6 est en général strictement plus fine que $\|.\|_0$.

2) Le corollaire 4.5. est également vrai dans le cas non nécessairement commutatif.

References

- [1] A. El Kinani, M. Chahboun, M. Oudadess, Algèbres A-p-normées advertiblement complètes, Bull. Belg. Math. Soc. 6 (1999) (A paraître).
- [2] G. Köthe, Topological vector spases I, Springer-Verlag. 1983.
- [3] C. Lescarret, J.J. Moreau, Convexifiée d'une topologie d'espace vectoriel topologique, Séminaire d'Analyse convexe -1- Montpellier (1971), 21-27.
- [4] A. Mallios, Topological algebras. Selected topics, North-Holland. 1986.
- [5] S. Warner, Polynomial completness in locally multiplicatively convex algebras, Duke-Math. (1956), 1-11.
- [6] Xia Dao-Xing (Hsia Tao-Hsing), On locally bounded topological algebras, Acta Math. Sinica 14 N° 2 (1964). Engl. translation: Chinese-Math. 2 (1964), 261-276.

- [7] W. Zelazko, On the locally bounded and m-convex topological algebras, Studia Math. 19, 333-355.
- [8] W. Żelazko, Selected topics in topological algebras, Lecture notes. Series 31(1971), Matimatisk Institut Aarhus Universiet-Aarhus.

Address: Ecole Normale Supérieure B.P. 5118 Takaddoum 10105 Rabat (Maroc).

Received: 12 January 2000