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Let 7x(n) denote the number of positive integer solutions of the equation
ning...ny = n, k> 1. Let us define the function Ri(z), 2 > 1, by the equality

Ri(x) = Z Ti{n) —zP._1{log ) ,
I<n<z
where

.’I‘Pkwl(l()g;r) = }}f}s (Cf\(,s)fsi) .

and ((s) is the Riemann zeta - function. L. Dirichlet proved in 1848 that Ry(x) =
Ozt * logh=?% 7).

In [4], on the basis of the method of trigonometric sums of I. M. Vinogradov
(see [13], [14]), the estimate

|Ri(2)] < ' (cr logr)* | (1)
ak =ck™3 (2)
with absolute positive constants ¢ and ¢; was obtained.

Let us notice that the first result here is due to H. Richert [11] (after classical
works by Dirichlet-Voronoi-Hardy-Littewood-Landau), who proved the inequality:

|Ri(x)] < xt=alh)te x> a(e) >0, (3)
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where ¢ is on arbitrary small fixed positive number. Afterwards this result was
repeted by the author [5]. I was informed kindly about the paper [11] of H.
Richert by Professor A. Ivi¢. The subsequent research on this theme—in particular
computing the constant ¢ from (2)—followed the scheme of [4] and [5] (cf. [6], [1],
[2], [3], [10]). The possibility of obtaining estimate the type (1) or (3) was stated
also in [15] (cf. [7], pp. 127-130).

The uniform estimates of the type (1) make it possible to obtain results
about a boundary for the zeros of the Riemann zeta-function. Let us note that
the estimate (3) and even the Lindelof hypothesis cannot be successfully applied
in order to obtain any bound for the zeros of the Riemann zeta-function.

The aim of the paper is to establish a connection between the estimates of
the type (1) and the problem to give a boundary for the zeros of the Riemann zeta-
function and to estimate zeta-sums as well. Results of this type were obtained by
the author in [8], p. 112, Problem 1.

In this paper the standard notation will be used; in particular:

— s=o0+it, i? = —1, where ¢ and t are real numbers,

— ['(s) is the Euler gamma-function,

— ¢, c1, ¢2,... are absolute positive constants which may differ in the different
statements,

—- constants implied by the O-symbols are absolute,

— Py_1(z) denotes a polynomial of z of the degree <k -1,

— [z] = integral part of x,

— {z} = fractional part of z.

The following lemma is basic for all the paper.

Lemma. Let a(y) be an arbitrary real function of the real variable y, y > 2,
such that y~! < a(y) < % Let ¢ > 2 and k be a natural mumber > 2. Suppose
that for all x > 2 the estimate

IRy (2)] < 2'7*W(clog ) (4)
holds. Then for all t > 2 and % >0 >1-a(k) the following inequality holds:

IC(o +it)| < 8ckt/* (o + a(k) — 1)~k (5)

Proof. For Res > 1 we have

¢kF(s) = ;Tk(n)n_s = Nﬁlfx (1 + Z Tk(n)n_"') . (6)

1<n<N

Using partial summation we find that

A,?\T
Sy = Z n(n)n"* = s Cr(wyu™* du + CL(NIN™° | (7)

l<ngN 1
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where
Cifu) = Z () = uPy-1(logu) + Re(u) . (8)

l<n<u

From (7) and (8) it follows that

N N
Sy = sf u P (logu)du + s/ Ri(wyu™"ldu+ Cp(N)N™° . (9)
1 1

The polynomial Py (logu) is of the form

1 8
Pi_1(logu) = Zb;, log u)! = ;E{:eis (g‘“(g%—) .

Jj=

The following estimates and transformations are obvious:

N ] log N ]
/ u” ¥ log? udu = / e v ddy
1 0

= / e "™ yddy + O(N~7 log’ N)
0

ox¢
=(s—1)"77! ] e “vidv + O(N ™" log’ N)
0

=T+ -7+ O(N~7 log? N)
=jli(s— 1) L O(N""llog/ N) ,

k—1

N k—1
] w Pea(logu)du =3 jlbi(s =)™ "' + 0 (N Y lbyllog? N) !
1 §=0

i=0
_ N
Sy --SZ_}’ (s — 1)1 +s/ Ry (w)u™*"'du
: 1

(10)
k—1 .
+ O(A}’—U—%—l Z ]b][ 10g] N) + Ck(z?\[) N7

=0

Since ¢ > 1 and Cy(N) = O(N log" N}, we can take the limit in (10) as N — 400
and get the new formula instead of (6):

k—1

g"‘(s):1+st!bj(s—1)‘H+sf Ri(w)u™*"du . (11)
1

=0

By (4), the last improper integral converges for ¢ = Res > 1 — a(k), ie. (11)
holds for Re s > 1 —a(k) by the principle of analytic continuation. Let us estimate



134 A. A. Karatsuba

the right hand side of (11) for t > 2 and ¢ > 1 — a(k). Estimating it and using
(4) we obtain:

()P <1+ |S|Zj’(b tmi-! S[/ —o—alkb)(clog u) du

(12)
sl f Ry ()= du
1
Let us evaluate
o
J :/ u” " ®) (clogu) ¥ du .
1
Putting loguw = v we successively obtain:
chk/ elmomallvtvykgy = Ko + a(k) - 1)_‘“_1[ e~ “w*dw
0 0
="kl + a(k) — 1)7F1
Next, since Cyp(u) =0 for 1 <wu < 2, we obtain for 1 < u < 2:
k—1 '
RBy(u) = = ) b;(logu)’
§=0
and
2 k-1 2
| Ry (w)|u™ " Tdu < Z|b;,[/ ™" log” udu
1 :
=0
- (14)
<> bl + 1) log 2
Jj=0

Let us estimate |b;|, j=0,1,...,k — 1, from above. From (11) and the Cauchy

residue theorem it follows that
. d
[ -2, (15

[s—1]=4%

Let us use the fact that for Res > 0 we have

1 1 o0 el
p— - . §=1d ,
¢(s) s_ 1 + 5 + 5/1 o{u)u U,

where

ofw) = 5~ (u}
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gl¥ and

tOp

., 0 < p < 2w, so Res >

?

D=

In the formula (15) we have s = 1 +
3 <|s| < 3. Consequently,

1 3 [ s
IC(s)] <24 = 4+ - u 2du =4
2 4/

and ‘
b, < 4ko-i 16
J

!
From (12)-(16), for s = o +it, 2 >0 > 1 — a(k), t > 2 we successively obtain:

k=1
CHF 1+ +aY 4k omd i
§=0
4 t2+4~ck~k!~(a+a(k)—1)""*1
k—1
+VE2 4.y 4R 27 ()7 log 2
j=0

< (8ck)* -t (o +afk)y—1)7F
IC(s)] < 8k -t/ % (o + a(k) — 1)~ VK

The lemma is proved. n

Thorem 1. Let a(y) denote a nonincreasing function of y, y > 2. Suppose that
for all k > 2 condition of the lemma are fulfilled.
Then in the region

o >1-0.5a(logt) , t>e?

the following estimate holds:

I¢(o +it)] < 16e*clog?t . (17)

Proof. Put in the Lemma £ = [logt] and
< t>et, o >1-05ak). (18)
Then we have the inequality:
o+ a(k) —1>05a(k) > 05k~ > 0.5(ogt)"! .
Hence, from (5) we find that

IC(0 +it)| < Belogt - e*(2k)H* . 21ogt < 16e%clog® t .
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Since ¢¢(y) in a nonincreasing function, the theorem follows from the last inequality
and (18). [}

Corollary. If (4) holds for any x > 2 and k > 2, then the function a(y) tends
to zero as y — +oc.

Proof. Let us assume the contrary. Since «fy) > y™' > 0 and afy) ina
nonincreasing function, there exists o > 0 such that (k) > o >0, £k =2,3,....
Consequently, estimate (4) can be replaced by

IRy (z)] < 2! *(cloga)k .

Without loss of generality we can assume that « < 0.5. From the above theorem
it follows that for ¢ > 1 — 0.5a the following estimate holds:

IC(a +it)| < 16e3clog’t,  t>e?. (19)
On the other hand, by the known Q-theorems, for % < o < 1 the following relation
holds: (log )"
. ogt) ¢
= ~ = 2

(compare e.g. [9] or a weaker result in [15], p. 291 and [16]).
For o0 = 1-0.5¢ the estimates (19) and (20) contradict each other. Therefore
our assumption that a(y) 4 0 as y — +00 is not true. The corollary is proved.
u

In what follows we assume that a(y) — 0 monotorically as y — +oc.
Theorem 2. Suppose that the assumptions of Theorem 1 are fulfilled. Then
¢(s) # 0 in the region:

| o, ogt])
-2 ;
log log |¢]

t > e?

o >

Proof. Assume that ¢ > e?. We use the following proposition (cf. [12], p. 57):
Let
(s) = O(e)

as t — +o0 in the region
1-6(t)<o<2, t>e,

where ¢(t) and ©7!(¢) positive nondecreasing functions such that ©(t) < 1,
o(t) — +o0, and

2 _ e

o) - o(e™ "y,
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Then ((s) # 0 in the region

Put here O(t) = a(logt), ¢(t) = 2loglogt. Since a(y) >y~ !, it follows that

e(t) .
Y < gt)l = o(e¥t)) = 2ty .
B (2loglogt)logt = o ) = o(log” t)

It is clear that ¢(t) and ©71(t) are nondecreasing positive functions and ©(t) < 1.
Therefore ((s) # 0 in the region

651 Llost+) e
2loglog(2t +1)

From this the theorem follows. n
Examples. Let us consider some examples of concrete functions a(k) in Theo-
rem 2.

1. Let a(k) =k, 0< o< 1. Then ¢(s) # 0 in the region

€2

1 - t| > e,
- log® |t|loglog |t] ~ t=ze

In particular, putting o = %— we obtain the result of I. M. Vinogradov [13].

2. Let afk) = (logk)™, «a> 0. Then ((s) 3 0 in the region

>1- , iy > e .
oz (loglog [t])ot! tze

3. Let afk) = (loglogk)™™, @ > 0. Then {(s) # 0 in the region

Co .
>1- > g
i (loglog |t])(logloglog |t]) it = e

From Theorem 1 estimates for short zeta-sum can be derived. For t > e? the
following trigonometric sum

S@y=>_n", 0<a<t

n<a

is called a zeta - sum. The number a is called the length of S{a). We say that the
sum S(b) is shorter than the sum S(a) if b < a. The upper estimates for |S(a)|
are closely related to the estimates for |((s)| (compare e.g. [8], [15]).
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Theorem 3. Let the assumptions of Theorem 1 are fulfilled. Then the following
estimate for |S{a)| holds:

1S(a)] < eral=0520 0 (og 1)3 . (21)

Proof. Using the inversion formula (see e.g. [8]. p. 75, [15]. p. 347) we obtain

1 b+2T a[en
S(a) = —/ G(w + it)—duw
b—T w

a® aloga
*O(T@—n)*‘o( T )

where 2 > b > 1. T > 1 and the constants implied by the O-symbols are absolute.
Set here
b=14+(oga) . a>e*. T=05t.

We obtain

. 1 b+ T ' al aloga
S(a) = 57 /b_iT G{w +2t);dm+0< T ) :

Consider the rectangular I' with the vertices b+ T, « 4+ T . where

u=1-0.5a(logt) .

Using the Cauchy residue theorem we find that

9 / Clw + zt)—dw =0.

Consequently.
1 b+ZT auo
— (w + it)—d: ‘ <Hh+ S+ Js 22
T = ER 2)
where
1 u+az i
Jy = 7 / Clu+ifr +1)) dz' .
1 b a-+4T
= e T+t lo| .
J2 5l /. Clo+4(T+ )>a+e‘T(G
1 b a—iT ;
:]‘ = ] _'T { d .
=3 o +i(-T+1)——= 0]
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Let us estimate J;.Jy and Jy from above. Applying (17) to |((s)| we obtain:

T
atdy

——— | = O(a"log’t) .
)\/‘ET) (alog 1)

b
Tdo a
Jo =0 102;5]@ =0(=10g%t) .
? ((g)o T) (F1oe'1)

Jy = O(%logz T) .

J =0 ((]ogzt

From (22) we find that
_ u 3 a 2 _ u 3
S(a) = O(a" log t)+0(?log t) = O(a" log* 1) .

The theorem is proved. ]

Remarks. 1. The estimate (21) is non-trivial if

6loglogt + 2logcy
@ > exp ( a(logt)

From this it follows that the estimates for S{a) obtained in this way are of any
value only if
cologk
k
Let us note that in the classical Dirichlet theorem we have a(k) = 1/k
(compare c.g. [12]: pp. 313-314).
2. Let alk) =%k72. 0 <« < 1. Then (21) is of the form:

alk) >

~0.5(log )™ 1.
A = cLa 0.5(log t) log(}i )

Putting a = 2 we obtain

wing

loga .
A= Cy €Xp (—05w> 1Og3f R (23)

The known estimate of I. M. Vinogradov is of the form:

1S(a)] < ad, .

log®
Ay = ¢y exp (*CQ 002a> . (24)
log™ ¢
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Comparing the estimates (23) and (24) we can easily see that for all a the estimate
(24) is the better one.
Let us finally note that the estimate (23) is nontrival for

a > exp(cs(log®’? t)(loglog ) .
and the estimate (24) is nontrival for

a > exp(ci(logt)®/?) .
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