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1. Introduction

The aim of this note is to provide an asymptotic formula for fUT Ex(t) dt,
where E»(T") is the error term in the asymptotic formula for the fourth moment
of £ (% + it)]. The asymptotic formula for the fourth moment of the Riemann
zeta-function ¢{(s) on the critical line is customarily written as

T
f IC(5 +it)'dt = TPy(logT) + Ea(T), (1.1)
0
where ,
Py(z) = Z a;z’. (1.2)
=0

It is classically known that a4 = 1/(27%), and it was proved by D. R. Heath-Brown
(1] that
az = 2(4y — 1 —log(2m) — 12¢'(2)7~)n"2.

He also produced more complicated expressions for ag,a; and a2 in (1.2) (y =
0.577... is Euler’s constant). For an explicit evaluation of the a;’s the reader is
referred to |4].

In recent years, due primarily to the application of powerful methods of
spectral theory (see Y. Motohashi’s monograph [13] for a comprehensive account),
much advance has been made in connection with E3(T). We refer the reader to
the works [5]-[9], [11]-[13] and [16]. It is known now that

Es(Ty = O(T*Plog™ T), Ey(T) = TV, (1.3)
T T
/ Ex(tydt = O(T??), f EZ(tydt = O(T?log®* T), (1.4)
JO 0
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with effective constants Cj, Cs > 0 (the values C; = 8,y = 22 are worked out
in [13]). The above results were proved by Y. Motohashi and the author: (1.3)
and the first bound in (1.4) in [3], [8]. [13] and the second upper bound in (1.4)
in [7]. The omega-result in (1.3) (f = Q(g) means that f = o{g) does not hold,
f = Qi(g) means that limsup f/g > 0 and that liminf f/g < 0) was improved
to E2(T) = Q4 (TY?) by Y. Motohashi [12]. Recently the author [6] made further
progress in this problem by proving the following quantitative omega-result: there
exist two constants A > 0, B > 1 such that for T > T > 0 every interval [T, BT
contains points 77,75 for which

Eo(Ty) > AT}?. Eo(Ty) < —ATY/?. (1.5)

There is an obvious discrepancy between the O-result and Q-result in (1.3),
and it may be well conjectured that Ey(T) = O(T?/?*%) for any given ¢ > 0
(e will denote arbitrarily small constants, not necessarily the same ones at each
occurrence). This bound, if true, is very strong, since it would imply (e.g., by
Lemma 7.1 of [3]) the hitherto unproved bound ((3 + it) < t'/8+%. The upper
bound in (1.3) seems to be the limit of the existing methods, since the only way
to estimate the relevant exponential sum in this problem. namely (see [3],[8] and

[13])
S aHN L) exp (mj log (%)) 1< K<TY? (16

K<, <2K J
appears to be trivial estimation, coming from the bound

DOREY

Kang<2K

H.?(%ﬁ < K'lg" K (C>0). (1.7

This follows by the Cauchy-Schwarz inequality from the bounds (see [13])

> o HI (Y < KPlog K. Y a;HNE) < K?log'® K (1.8)

w; <K ki SK

with C' = 8 in (1.7). Here as usual {X; = x% + §} U {0} denotes the discrete
spectrum of the non-Euclidean Laplacian acting on SL(2,Z) —automorphic forms,
and a; = |p;(1)]*(coshmr;)~"!, where p;(1) is the first Fourier coefficient of the
Maass wave form corresponding to the eigenvalue A; to which the Hecke series
H;(s) is attached. It is precisely the presence of H ;(%) in (1.6) which makes the
sum in question very hard to deal with. and any decrease of the exponent 2/3 in
the upper bound for Ey(7T) in (1.3) will likely involve the application of genuine
new ideas.

In [6] the author proved that there exist constants A > 0 and B > 1 such
that, for T'> T, > 0, every interval [T. BT| contains points £;. t2 for which

t1 ty .
/ Ex(tydt > At / Ey(tydt < —AtY”. (1.9)
0 8]
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This result, of course, implies that fOT Ex(t)ydt = Qu(T%?). It was also
used in [6] to prove a lower bound result, whose special case a = 2 gives
T
/ Ei(tydt > 17 (1.10)
0

thus sharpening (1.8) and showing that the upper bound in (1.4) is very close to
the true order of magnitude of the mean square integral of Ex(T).

The main aim of this paper is to prove a result, which gives an asymptotic
formula for the integral of Fy(t), thereby sharpening the first bound in (1.4). This
is the following

Theorem 1.1. Let

T = (logT)>*(loglog T) /%, (1.11)

[= IS 1iﬁh) ?
Rilky) = f’~<2"‘”‘"‘———~——2——~) T'(2¢kp) coshimry ). 1.12
1(kn) V2 T T dirn) (2ikn) cosh(men, (1.12)

Then there exists a constant C' > 0 such that

T Tk
= 3 l j
/0 Ey(tydt = 2T {Z“ H;(3) (3 +ir)(2 +iky) 1(KJ)} (1.13)

+O(TEe=OnT)y,

N'W

From Stirling’s formula for the gamma-function it follows that Ri(k;) <«

“12 hence by (1.7) and partial sunmation it follows that the series on the right-
hand side of (1.13) is absolutely convergent, and it can be also shown (see [3], [5].
[6]) that Re {...} is also Q4(1). Thus from Theorem 1.1 we can easily deduce all
previously known Q-results for FEy(T). The error term in (1.13) is similar to the
error termn in the strongest known form of the prime number theorem (see e.g., [2.
Chapter 12]). This is by no means a coincidence, and the reason for such a shape
of the error term in (1.13) will transpire from the proof of Theorem 1.1, which wili
be given in Section 3.

2. A mean square result

We shall deduce the proof of Theorem 1.1 from a mean square result for the
function

Zo(s) = /136 IC(3 +ix)['a " dx (Res =0 >1). (2.1

It was introduced and studied in [12], [13, Chapter 5], and then further used
and studied in [5], [6] and [9]. Y. Motohashi [12] has shown that Z,(s) has
meromorphic continuation over C. In the half-plane Res > 0 it has the following
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singularities: the pole s = 1 of order five, simple poles at s = % +in; (k) =
VA; —1/4) and poles at s = 1p, where p denotes complex zeros of {(s). The
residue of Zy(s) at s = § + ik, equals

3

| NS D
R(kp) = @(Q‘“‘"%) ['(2iky) cosh(mky) Z ang(%)

K=Ky
and the residue at s = %— ik, equals R{kp). The function Z;(s) is a natural tool
for investigations involving o (T') (see (3.3) and (3.4)). Its spectral decomposition

(see [12] and [13, Chapter 5]) enables one to connect problems with E3(T) to
results from spectral theory. We shall prove the following

Theorem 2.1. Let
1
7 =5=C8(V). §(V) = (logV )" loglog V)73, (2.2)
where C > 0 Is a suitable constant. Then
2V
/ 1Zy(0 + iv)|Pdv <. Ve, (2.3)
\/.’

Proof. We note that in [9] the bound (2.3) was shown to hold for 3 < ¢ < 1. but
it is the region ¢ < § that is more difficult to deal with. As in [9] we write

Z5(s) :[@ 1(T.A)T'Sdf’+/ (J¢(5 +iT)* - (T, A)T ™ dT

(24)
= Z21(8) + Z22(s),
say, where
4. t\2 ¢ 1 1
I(T.A)= \/HA/ L4+ iT + 1)l exp(—(—zg))dt (A=T53<6<3).
(2.5)

Before we pass to specific bounds, we shall discuss the method that will be
used. Let us suppose that we want to obtain an upper hound for

2T | b 2
I::/ / glzyz™" dz
T a

where g(z) is a real-valued, integrable function on [a, b], a subinterval of [1, o0)
(which is not necessarily finite), and which satisfies g{z) « ¢ for some C > 0.
Let @(z) € C*(0.00) be a test function such that @(z) > 0, p(z) = 1 for

dt  (s=o+it, T >Ty>0), (2.6)
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T<z<2T, plx)=0for e < 1T or 2> T (T > Ty > 0), p(x) is increasing
in [%T ,T] and decreasing in 27" %T] Then we have, by r integrations by parts,

5T/2 N e [ ey
/T;Q @(t)(r) dt = (—1) /m 2O Groatarmy

<<r T1~r

ioggi— <« T4
T

for any fixed A > 0 and any given ¢ > 0, provided that |y — x| > 27! and
r = r(A.¢) is large enough. Recalling that g(x) < x® and using (2.7) it foliows

that
5T/2 I b 2
I S/ ;)(t)\/ g{xyz™% dx| dt
T/2 a
b 5T/2 u
f f 2)9(y)(zy) "/ fp(ﬂ(g) dt dz dy (2.8)
T/2 T
5T/2 b SR A
<1+ [ Too [l [ gl dyds e
T/2 a e

and the problem is reduced to the estimation of the integral of g(x) over short
intervals: here actually g(x) does not have to be real-valued. In (2.8) we may
further use the elementary inequality |g(z)g(y)| < 3(¢*(z) + ¢%(y)). and thus
reduce the problem to mean square estimates.

In the expression for Z(s) in (2.4) we denote by I;(s. X) the integral in
which T < X, and by I2(s, X) the remaining integral, where X (« V¢) is a
parameter to be chosen later. We have (s = o +it)

2v 2V | X 2
/ |11 (s. X);?dt<<] / (3 +iT*T~*dT| dt
v v
2V log V 2 2
/ / (3 +iT+)|*T~*dTe™™ du| dt
— log V'

+ 1

Both mean square integrals above are estimated analogously. The first one is, by
using (2.8),

2v zrVETL
&, 1 +f / 3 +iz) "/ IC(% + i)'y~ dyda
x

—rie—1

v (2.9)
< 1+ f / IC(3 + i)z~ (aVEt 4 2ot ) dr dt
v 1

L VEXT2 4 V4 VX2 « V(X + VXY,
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Here we used (1.1), (2.2) the weak form of the fourth moment of |((5 + iz)| and
the bound (see (1.3))

EyT) <. T°F° (j<c<?

WeN

2), (2.10)

To estimate the contribution of /5(s, X), note that from (9, (4.10)] we have
that the relevant part of I5(s, X) is, on integrating by parts,

/Ob /Xx Ey(n)f(r,a)dr da
:o(sgpmg()()f(xa) // Eu(r ‘mT 019 i e,

where b > 0 is a small constant, and f(7,a) is precisely defined in [9]. It was
shown there that, for 0 < ¢ < %.tf < V', we have the estimates

flr.a) &« 727 og® 1 + Vieg T + V) log® 1
and

af(r.a)
or

We use (2.5), (2.9), (2.10) and the above estimates to obtain, if o satisfies (2.2).

< 77379V 10g® 7(log® T + Vlog T + V).

7

2V >
/ (s, X)[2 dt <. VO x2oHe—a-20 /6 / E3(ryr* =072 dr
. X
& VE(VEXIHIED | 6 yie—ty

It follows that

2V
/ | Zao (o + it)|? dt
SV

e VI(VXT 4 X + VIXPAIT L yoxied (2.11)
o VE(VH e d) | pr(abemdg)(dhemdg) Ly (15e=5) /(14— 48)

&, yldBe—18)/ (44e—4g)+e

with X = V%/U+e=18) gince in view of £ < 1, 1 <c¢ < 2 we have

5<44+6c—4E. 15¢c—5<446¢c— 4L

Then with £ = % which we henceforth assume, we obtain

2V
[ §222(0' —}-Z"l»‘)|2 dv e V,Q%'S,
v

JV
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so that (2.3) will follow from

v
/ |Zor(o +iv)2dv <. Ve (2.12)
1

7

It was shown in [9] that the major contribution to Z2(s) comes from (s =
o+it, V<t <2V and o satisfies (2.2))

3 : —-1, =%
Z ajHj(%)l%-i-mjmsl Ky ?

t—V*S&,ﬁt—%-V“‘ i

/ M*(ky TYTEH= 54T, (2.13)
T{r,)

where
T(r) = rElog P = rilog Pr (D> 0). (2.14)

and A*(r;T) is a precisely defined function from spectral theory which satisfies,
for T'> T(r) (cf. [9, (4.28)]), the bound

M*(ry Ty« rT™2 4 2572673, (2.15)

Thus the major contribution to the integral in (2.13) will therefore be, since
H;(3) > 0 (see Katok-Sarnak [10]),

/QV
Vv

S aHIG) +ing sV

t=VEChy <EHVE

(2.16)

X

. 2
/ M* (kg3 T)TZHiRo = d’f\l dt.
T(V) ‘1

Recall that o is given by (2.2), and that by the zero-free region for {(s) we have
the bound (see [2, Lemma 12.3] and {2.2))

1

— log $)2/3(log log ¢)1/3 >1—8(t). t >ty > 0).
(;(Q+3t)<<(00) (Ooog) (a— () = 0 )

This gives |3 +ir;—s| ™' < logV in (2.16). We use the Cauchy-Schwarz inequality,
(1.8) and the asymptotic formula (see [13})

> oHH3) = (Alog K + B)K® + O(Klog® K) (A >0)

ny, <K

to estimate sums of a; H?(3) inshort intervals. We obtain then that the expression
in (2.16) is, on using (2.9) and the inequality |g(2)g(y)| < 3(¢*(2)+9°(y)). (2.14)
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and (2.15),

2V

& V‘llogQV/' > a;H2(}) > a; HH(3)x
Vo eve<k, <t4Ve tm VL, SEVE
oc 2
X / JM*(;‘;};T)T%‘*”"“?'S dTy dt
(V)
X
<« V*© Z o H"(%)/ IM*(k;: T)T? 2 dT
VeVESh, K2V 4VE W)
=
& V© Z o H (%) / (VAT 4+ VT4 T 4T
VVeE <k, 2V 4V TV
&V 3 o H(3) (VAT2V) + VITH4(Y))
V-VE<h, S2V4VE
< Ve > a; H}(L) < VPTe
V-VEK, <2V 4VE
This establishes (2.12) and thus finishes the proof of Theorem 2.1. ]

3. The proof of Theorem 1.1

In this section we shall prove Theorem 1.1. The starting point is the inversion

formula 1
Kk +in)t = — Zo(s)rs 1 ds, (3.1)
27 J (14e)

where as usual f(c) = iim’r—»xffjf. Namely, if F(s) = fo 2~ 1dz is the
Mellin transform of f(z). y* = f(y) € L}(0, oo) and f( ) is of bounded variation
in a neighbourhood of y = x, then one has the Mellin inversion formula (see [14])

fle+0)+f-0) 1 s
5 =5 o F{s)yz7" ds.

We use this formula with f(z) = 2|¢(5 + £)* for 0 <z <1 and f(z) = 0 for
x > 1, and then change x to 1/x to obtain (3.1).

Now we replace the line of integration in (3.1) by the contour L. consisting
of the same straight line from which the segment [1 +¢ — 14, 1 4+ ¢ + | is removed
and replaced by a circular arc of unit radius, lying to the left of the line, which
passes over the pole s = 1 of the integrand. By the residue theorem we have

I¢(5 +ix)* = zg(e)f Yds + Qa(log 2) (x> 1), (3.2)

270
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where we have, since the coefficients of P4(2) are naturally connected to the prin-
cipal part of the Laurent expansion of Z3(s) at s =1 (see [3] and [13]),

Qa(logz) = Pi(logz) + Pi(logx)

and Py(y) is given by (1.1) and (1.2). If we integrate (3.2) from z =1 tox =T
and take into account the defining relation (1.1) of F»(T), we shall obtain

Eo(T) = 2—% £32(5)§ ds+0(1) (T >1) (3.3)

A further integration, coupled with the deformation of the contour, enables one
to deduce from (3.3) the formula

T 1 1541

/' Extydt = o [ Za()
0

e s{s+1)

ds+0O(T) (§<c<1,T>1), (34
since in view of the bound (see [9])

T
/ |Zo(0 + i) dt <. T (3 <o <) (3.5)
0

we may take § < ¢ < 1 as the range for ¢ in (3.4). The formula (3.4) is the

key one in the proof of Theorem 1.1. We replace the line of integration in the
integral on the right-hand side of (3.4} by the contour consisting of the segment
[oo — itg. og + ity], and the curve

o =4~ Ca(Jt)). 8(x) = (logz) *3(oglogx) /3, |t > ty, o0 = § — C3(to),
(3.6)
where C denotes positive, possibly different constants. Since Z3(s) has poles at
complex zeros of {(2s) it follows, by the strongest known zero-free region for ((s)
(see [6, Chapter 6]), that the function Z(s) is regular on the new contour. The
residue theorem yields

T X0 3 ik
/ Ez(t)dt = 2Re {Z 12+1.KJ CXJHg(;l-)RI(Ky)}
0 2 T im) (3 +imy) T

+0(T70 (3.7)

+ o(/ T3-Co42|Z,(L — C5(t) + it)| aft)
4

¢

with Ri(x;) given by (1.12). Let n(T) be defined by (1.11) and put

. S ogd’ 3 T —1/5
U = {/’I\T) - eCT;(I‘) — 6( log™"® T(loglog T) i
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Then
e U x o . ,
/ __[ +/ <<T3/2€—CG(D)IOgT+T3/26§6—5 < T3/2€‘C’7(T)_ (38)
to o /

since by Theorem 2.1 we have

2V
/ 1223 = Co(v) + )P dv <. V. (3.9)
v
Namely we split the integral in the O-term in (3.7) into subintegrals over [V, 2V] .
The contour ¢ = 3 — Cé(v) is replaced by o = 4 — C§(V), which is technically

easier. In this process we obtain integrals over horizontal segments whose contri-
butions will be <. V¢ since by (5.10) and (5.24) of [9] (with € = $) we have
the bound

25(5 — C3(v) + iv) <, vt

Finally by the Cauchy-Schwarz inequality for integrals and (3.9) we obtain
=K
/ |Z2(3 — Co(v) + i)™ dv < 1.
1

. )
V

-

thereby establishing (3.8) and completing the proof of Theorem 1.1.
In concluding it may be remarked that, similarly as in [5], one may obtain
quickly from (3.3) the bound (see (1.3))

Ey(T) <. T5e. (3.10)
which is (up to *=") the stongest one known. Namely by [3, (5.3)] we have
T4+H
Ex)T) < CyH™! / Eql(z)f(x)dx + CoHlog! T
g (3.11)
(C1.C2 >0, 1< H<1T),

where f(z) (> 0) is a smooth function supported in [T, T + H], such that
flzy=1for T+ I1H <2 <T+3H. Then from (3.3) we have (§ <c< 1)

e Ci [ Za(s) s : 1
(T < “drd wHlog™ T,
2(T) < 5wl |, s /:r flx)x® dx ds + C2H log

We take ¢ = % + ¢, use (3.5), the Cauchy-Schwarz inequality, and the fact that by
7 integrations by parts it follows that

T4H T+H e "
/T fla)x® de = (1) /T (s+1).~.(s+r)“f (z)dx
Ko TOYVTHITT|E T
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Hence the above integral over s may be truncated at |Sms| = T'**H~! with a
negligible error. and we obtain

pite g1 dt
EX)T) «. T“%‘”*"S/ 122(%+g+ét)]—t—+Hlog4T
1

&.T(TH % + H) « T3+

with H = T%/3. A lower bound for E,(T), similar to (3.11), also holds. and
therefore (3.10) follows as asserted.
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