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LUCAS PSEUDOPRIMES
ANDRZEJ ROTKIEWICZ

Abstract: Theorem on four types of pseudoprimes with respect to Lucas sequences are proved.
If n is an Euler-Lucas pseudoprime with parameters P and @ and n is an Euler pseu-
doprime to base @, {n, P) = 1, then n is Lucas pseudoprime of four kinds.
Let U, be a nondegenerate Lucas sequence with parameters P and @ = %1, ¢ = &1,

Then. every arithmetic progression ax + b, where {a,b) = 1 which contains an odd integer ng
with the Jacobi symbol (%) equal to £, contains infinitely many strong Lucas pseudoprimes

n with parameters P and @ = 41 such that (%) = ¢ which are at the same time Lucas
pseudoprimes of each of the four types.
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A pseudoprime to base a is a composite n such that ¢! = 1 mod n.

An odd composite number n is an Euler pseudoprime to base ¢ if (¢,n) =1
and ¢(®~D/2 = (£) mod n, where (%) is the Jacobi symbol.

Let D, P and Q be integers such that D = P2 —4Q # 0 and P > 0.
Let Uy =0, U; =1, V3 =2 and Vi = P. The Lucas sequences U, and Vj are
defined recursively for £ > 2 by

Up = PUpy — QUi s, Vi = PV — QVi .
For k£ > 0, we also have

k — f k
U= S22 v=ak g,
a—p
where  and 3 are distinct roots of 22 — Px 4+ Q = 0.
We shall consider non-degenerate Lucas sequences, i.e. Uy #0if k> 1 (ie.
a/B is not a root of unity which is equivalent with D = P2 —4Q # 0, —2Q, ~3Q).
For an odd prime n with (n,@D) =1 we have (cf. [2], [7]):
U (Q)(P,Q)EOIIIOd n, (1)

n—
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U (PG = (g) mod n, (2)
Vo(P,Q) = P mod n, (3)
V, 2y =200 ()2 mod n (4)

For every positive integer n the congruences (1), (2) and (3) are linearly
dependent modn:
We have

AU,_ )+ B(Un - (g)) +CV, = V) =0 (5)

in which

and

A=-2, B=a+3 C=1 for (—I-)-)=—1‘

Thus if (n,2PQD) = 1 any two of the congruences (1), (2), (3) imply the
other one.
Now we shall prove the following

Proposition P. The natural number n, where (n,2QD) = 1 satisfies (1), (2),
(3) and (4) if and only if either

D
(—-):1, a"=amodn and F" = Fmodn

7

or
D

(_> =-1, a"=pfmodn and 3" =a modn.
n

Proof. Let (%) =1, (n,2QD) = 1, ¢" = amodn, 3" = Bmodn, then
ol — 3"l = 0modn and Up—; = 0modn, a® — A" = o — S mod n, hence
(@" = 8" /(a=3) = 1lmodn, (¢" - ")/ (a—-4) = () modn; o™ + 5" =
a+pgmodn, V, =Pmodn; " 1+ 3" l=14+1=2= QQ(l‘(%))/z mod n,
Vn_(g) = QQ(I_(gD/Q mod n.

It (%) = -1, n,QD) =1, &" = fmodn and 5" = amodn, then
' = af modn, 3"t = af mod n, hence (a"*! — 371} /(a — 3) = 0 mod n,
Un_(g} =0modn; " - 3" = 3 —amodn, hence (o™ — ") /(e —3) = ~1=

[

(D} modn, U, = (%) modn; "+ 5" =3+amodn, V, = Pmodn: a"t! 4+

n

gl =Ba+af=208= QQ(“(%))’/Q modn, V. _ py = QQ(l"(%))/z modn.
n—(2)
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Conversely, if n, where (n,2QD) = 1, satisfies the congruences (2} and (3)
then for (£) =1 we have a"+3" = a+S mod n, (" - 8")/(a — 3) = L mod n,
hence a” + 3" = o+ Smodn, o — 3% = a - Smodn, 2¢" = 2a mod n,
263" = 23 mod n and since (n,2QD) =1 we have " = amod n, 3" = Fmod n.

If n, where (n,2QD) = 1, satisfies the congruences (2) and (3) then for
(2) = =1 we have (" — g")/(e— ) = —1modn, a® + 3" = « + 3mod n,
hence " ~ ' =F—amodn, "+ 3" =F+amodn, 20" =25 mod n, 27" =
2ce mod n and since (n,2QD) = 1 we have a" = Jmodn, 4" =amodn. n

A composite n is called a Lucas pseudoprime with parameters P and Q if
(n,2QD) =1 and (1) holds.

Many results have been published about these numbers (see [1], (2], [3]. [4],
[6]. (71, [81. 91, [10], [11], [12], [13}).

Simple examples show that a composite n satisfying one of the congruences
(1), (2), (3), (4) does not necessarily satisfy the others. It is easy to check that the
number 323 = 1719 is a Lucas pseudoprime with parameters P =1, @ = —1
but does not satisfy the congruences (2), (3) and (4). Hence three other kinds of
pseudoprimes can be distinguished (see [2]).

A composite n such that the congruence (3) holds are called Dickson pseu-
doprime with parameters P and Q (see [5], [6]).

A composite number n such that the congruence (2} holds are called Lucas
pseudoprime of the second kind with parameters P and Q.

Yorinaga (see [14]) proved that there exist infinitely many Lucas pseudo-
primes of the second kind with purameters P = 1, 3 = —1. He also published
(see [14]) a table of all 109 such numbers n up to 707000. The least such number
is n = 4181 = 37 - 113. The number 4181 is also the least composite number n
which satisfies all congruences (1}, (2}, (3) and (4) for P=1, @ = -1.

A composite number n which satisfies the congruence (4} is called Dickson
pseudoprime of the second kind with parameters P and Q.

Remark. If D is a square and n is a Carmichael number with (n. QD) =1 then
all congruences (1), (2). (3) and (4) hold. Indeed. if D is asquare (n.QD} = 1 and
n is a Carmichael nurober then o and 3 are rational integers # 0, (%) =1 and
(@' = 3" Y/ {a-pB)y=0mod n: (a" -3 /(a—B) =la-B)/la-H=1=
(%) mod n: a"+4" =a+Fmodn and " 145 = 2= 2Q(=(3))/2 mod n.

In 1994 Alford. Granville & Pomerance (see [1]) proved that there are in-
finitely many Carmichael numbers.

If D is a square, o > 1 is a positive integer, J = 41 thatis P=a +1,
Q= zta, (n,2QD) =1 and n is a Lucas pseudoprime with parameters P and @
then o” = amod n, 37 = (£1)" = £1 mod n and by proposition P the number
n satisfies all congruences (1), (2}, (3) and (4).

The following problems arise

Problem 1. Let D be a square, P and @ be given integers, (P, Q) # {(a*x1, ta)
le. g# x1.
Do there exist in every arithmetic progression ax + b, where (a,b) = 1,
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infinitely many
a} Lucas pseudoprimes of the second kind with parameters P and Q7

b) Dickson pseudoprimes with parameters P and Q7
¢) Dickson pseudoprimes of the second kind with parameters P and 7

For example: do there exist infinitely many composite n such that 3" +2" =
5 mod n in every arithmetic progression ax + b, where (a,b) =17

Problem 2. Given integers P,Q # +1 with D = P? — 4Q not a square, do there
exist infinitely many

a’) Lucas pseudoprimes of the second kind with parameters P and Q7

b"y Dickson pseudoprimes with parameters P and Q7

¢") Dickson pseudoprimes of the second kind with parameters P and Q7

d’) Arithmetic progressions formed from three different Dickson pseudoprimes?

Problem 3. Find a composite n with (2) = -1, (n,2PQD) =1, Q # *1
which satisfies all congruences (1), (2), (3} and (4). Do there exist infinitely many
such composite n?

An odd composite n is an Euler-Lucas pseudoprime with parameters P and
@ (see [11]) and

_ o (€
U(n_(%))p:Omodn if (5> =1

or
V(,L_(%))/Q =0modn if <g> =1,

We shall prove the following

Theorem 1. If n is an Euler-Lucas pseudoprime with parameters P and () and
n is an Euler pseudoprime to base @), (n, P) = 1, then n satisfies all congruences
(1), (2), (3) and (4).

Proof. We have (see [10])

Vi, = QU V2P = DUy 1y j2U(ns1ys2 (6)
Vo + QU2 = Vi 2 Vi 2 )

Since n is an Euler-Lucas pseudoprime with parameters P and () we have

U(n—(%})/z =0modn if (g) =1 (8)

V(n_(§)>/2 =0modn if (%) = —1, (9)

Let (%) = 1. Since n is an Euler pseudoprime to base Q we have QU= 1/2 =
(Q) = 1 mod n.

n

R P O A PP I NS
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By (8) we have U(n_(p_))/Q = 0 mod n, hence

D(/}n_l),ﬁl](n'l'l)f‘? = 0mod n,
and from (6) we get
Ve, - QU 12P=0modn andsince QU 12 =1modn

we have V,, = P mod n and n is a Dickson pseudoprime with parameters P and
@, and since n satisfies the congruence (1) and (3), (n,2PQD) = 1, hence n
satisfies all congruences (1), (2), (3) and (4).

If (%) = -1, then since n is an Euler pseudoprime to base , we have
V(n—(%))/‘z = 0 mod n, hence

Vin-1y72 * Ving1y72 = 0mod n.

Since RQ""1/2 = —1 mod n, be (7) we have V,, + (—=1)P = Omodn and V, =
Pmodn and n is a Dickson pseudoprime with parameters P and . and since
n satisfies the congruence (1) and (3), hence n satisfies all congruences (1), (2},
(3) and (4). ]

Theorem 2. If n is an Fuler-Luces pseudoprime with parameters P and Q,
(n,2PQD) =1 and n is a Dickson pseudoprime with parameters P and @}, then
n 18 an Euler pseudoprime to base (.

Proof. Suppose that n is an Euler-Lucas pseudoprime with parameters P and
Q.

Let (%) = 1 then by (8), U(n_(%})/? = Omodn, hence by (6), V, —
Q" 12P = 0modn and V, = QU 1V/2P modn. Since n is a Dickson pseu-
doprime with parameters and () we have V,, = Pmodn. Thus QU /2P =
Pmod n and since (n, P) = 1 we have QU~D/2 =1= (£) mod n.

Since n is a Dickson pseudoprime with parameters F and () we have V,, =
Pmodn. Thus Q"~1/2P = P mod n and since (n, P) = 1 we have Q("~"1/2 =
1= (%) modn.

If (£) = —1 then by (9) we have Vin-(2y)2 = 0 mod n, hence

Vin-1)/2¥(nt1)72 = 0 mod n hence by (7), Vi, = —~Q"=Y/2P mod n.

Since n is a Dickson pseudoprime with parameters P and ) we have V,, =
P modn. Thus —Q"~1/?2P = P mod n andsince (n, P) = 1 we have Q" 1)/2 =
~1= (%) mod n and in the both cases we have Q("~1)/2 = (%) mod n and n is
an Euler pseudoprime to base Q. »

R. Baillie and S. S. Wagstaff (see [2], Theorem 5) proved the following the-
oren:

Suppose (n,2QD) =1, U, = (%) mod n, and n is an Lucas pseudoprime
with parameters P and .

If n is an Euler pseudoprime to base @, then n is an Euler-Lucas pseudo-
prime with parameters P and Q.

Now we shall prove the following theorem
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Theorem 3. If a square-free number n is a Dickson pseudoprime of the second
kind with parameters P and Q, and n is an Euler pseudoprime to base @, then
n is an Euler-Lucas pseudoprime with parameters P and Q.

Proof. If n is a Dickson pseudoprime of the second kind with parameters P and
@2, then
o (%) 4 g (%) = 200~ (2)72 mod n.

We consider four cases.
a)If (2) =1, (%) =1, then
a1 4 3771 =2 mod n,
an=1)/2 _ gin=1)/2
(==

2
) +2(aB)"" /2 = 2mod n

and since n is an Euler pseudoprime to base @, Q"~1/? = (%) = Imodn,
2(aB) " 1/2 = 2 mod n.

; 2
. . (n=1)/2 __afn-1)/2
Thus since n is squarefree and (n,D) =1, from n | D (“ a_f; )

we get n | Un-1y/2 = U(n_(%))/z. (—Q) = 1 and n is an Euler-Lucas pseudoprime

with parameters P and Q.
b) If (%) =1, (;O;) = —1, then

an,-l + ﬂn—l = 2 mOd T,

()" 1/2 = (Q_) = —1mod n,
n
(@72 4 gn=D/2y2 _ 9(a3)("~1)/2 = 2 mod n and since n is an Euler pseudo-
prime to base @, Q" V/2 = (£} = —1 mod n, hence —Q(Gﬁ)(”“lif’Q =2modn.
Thus since n is squarefree from n | (a" /24 30"=D/2)% we get that
n | al"=1/2 4 gn=1)/2 (%) = -1 and n is an Euler-Lucas pseudoprime with

parameters P and .
o) If (2) = ~1. (£) =1. then

a4 37 = 2 mod n.
D aln+h/2 _ gln+1)/2
a—3

2
) +2(a8)™D/? = 203 mod n

and since n is an Euler pseudoprime to base Q. (—‘2‘) = 1 we have QIn~1/2 =

(£) = 1 mod n. hence 2(a3)("+1/2 = 203 mod n.

AP0/ gindye
a3

2
Thus since n is squarefree (D,n) = 1. n | D( ) we get
n | Ungrye = U(n_(%))/z, (%) =1 and n is an Euler-Lucas pseudoprime with

parameters P and ().
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d) If (B) = -1, (¥) = ~1, then

a4 3" = 208 mod n,

(a(”“)/? + ;3(”‘*‘1)/2)2 ~ 2(a3)" /2 = 208 mod n.

Since n is an Euler pseudoprime to base @ with (%) ~1 we have (ag)(n~1/2 =
~1 mod n, hence —2(a3)**+1/2 = 208 mod n.

Thus since n is squarefree from n | (a("+1)/2 4 ;3(”“)/2)2 we get
n | al®tH/2 4 (N2 V(nw(%))ﬁ, (%) = —1 and n is an Euler-Lucas
pseudoprime with parameters P and €. |

A composite n is called a strong Lucas pseudoprime with parameters P and
Q (see [11]) if (n,2QD) =1, n— (£) =2° .7, r odd and either

U.=0modn or Vo, =0modn forsomet, 0<1<s, (10)

In the joint paper [13] with A. Schinzel we proved the following theorem T.
Theorem T. Given integers P, Q with D = P? —4Q # 0,-Q, —2Q, ~3Q and
¢ = +1, every arithmetic progression ax + b, where (a,b) = 1 which contains an
odd integer ng with (%) = ¢ contains infinitely many strong Lucas pseudoprimes
n with parameters P and Q such that (£} = . The number N(X) of such strong
pseudoprimes not exceeding X satisfies

log X

f\f(X) > C(P, Q,a,b?f)w ,
5

where ¢(P,Q,a,b,¢) is a positive constant depending on P,Q,a.b, <.

Every strong Lucas pseudoprime with parameters P and () is an Euler-Lucas
pseudoprime with parameters P and Q (see [2]) and Q("~1/% = ( —?;) mod n for
noddand @ =1, or Q = —1, thus from theorem 1 and theorem T it follows the
following

Theorem 4. Let U,, be a nondegenerate Lucas sequence with parameters P and
Q = x1. Then, every arithmetic progression ax + b, where (a,b) = 1 which
contains an odd integer ng with (2= "‘? ) = € contains infinitely many strong Lucas
pseudoprimes n with parameters P and Q = +1 such that (Q) = g, which
satisfy congruences (1), (2), (3) and (4) simultaneously and the number N(X) of
strong pseudoprimes not exceeding X satisfies

log X

N(X)> (P aby———— ,
(X) > ¢(Pa, )loglogX
where ¢(P,a,b) Is a positive constant depending on P, a,b.

The above theorem extends the theorem 2 of my paper [10] that if e and
b are fixed coprime positive integers, Q = £1, (P,Q) # (1,1), D = P? - 4Q
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then in every arithmetic progression ax + b there exist infinitely many composite
n such that we have simultaneously

2

D
Un_( =0modn, U,= (E) modn, V, =V, modn.
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