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LUCAS PSEUDOPRIMES 
A:\'DRZEJ ROTKIEWICZ 

Abstract: Theorem on four types of pscudoprimes with respect to Lucas sequences are proved. 
If n is an Euler-Lucas pscudoprime with parameters P and Q and n is an Euler pseu­

doprime to base Q, ( n, P) = 1 , then n i8 Lucas pseudoprime of four kinds. 
Let Un be a nondege11en1te L1.1cas sequence with parameters P and Q = ±1, c = ±1. 

Then. every arithmetic progression ax+ b, where (a, b) = l which contains an odd integer no 
with the Jacobi symbol ( _Q_) equal tu c, cont»i ns infinitPly many strong Lucas pscudoprimes no 
n with parameters P and Q = ±1 such that ( ~) = c which arc at the same time Lucas 
pseudoprimcs of each of the four types. 
Keywords: Pseudoprime, Dickson pseudoprime, Lucas pseudoprime, Euler pseudoprime, Lucas 
sequence 

A pscudoprimc to base a is a composite n such that an-l = 1 mod n. 
An odd c·omposite number n is an Euler pscudoprimc to base c if (c, n) = 1 

and c(n-I)/2 =(~)mod n, where (~) is the Jacobi symbol. 
Let D, P au<l Q be int<'gers such that D = P 2 - 4Q I- 0 and P > 0. 

Let U0 = 0, U1 = 1, V0 = 2 aud V1 = P. The Lucas sequences Uk and Vi am 
defined recurnively for k 2 2 by 

For k 2 0, we also have 

where a and /3 are distinct roots of x2 - P:.r + Q = 0. 
\Ve shall consider non-degf'nernte Lucas sequences, i.e. Uk I- 0 if k 2 1 (i.e. 

a/(3 is not a root of unity which is equivalmt with D = P 2 4Q '/= 0, -2Q, -3Q). 
For an odd prime n with (n, QD) = l we have (cf. [2], [7]): 

Un-(ft)(P,Q) = 0 mod n, (1) 
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Un(P, Q) = ( ~) mod n, 

Vn(P,Q) = P mod n, 

Vn-(f) = 2Q( 1-(f))/2 mod n. 

(2) 

(3) 

(4) 

For every positive integer n the congruences (1), (2) and (3) are linearly 
dependent modn: 

We have 

A Un-( f) + B ( Un - ( ~)) + C(Vn - Vi) = 0 

in which 

A= 2a,6, B =-(a+ ,6), C = 1 for ( ~) = 1 

for ( ~) = -1. 

and 

A = -2, B = a+ /3, C = 1 

(5) 

Thus if (n, 2PQD) = 1 any two of the congruences (1), (2), (3) imply the 
other one. 

Now we shall prove the following 

Proposition P. The natural number n, where (n, 2QD) = 1 satisfies (1), (2), 
(3) and ( 4) if and only if either 

(~) =l, an=amodn and /3n=f3modn 

or 

( ~) = -1, an= f3 mod n and ,en= a mod n. 

Proof. Let (~) = 1, (n,2QD) = 1, an = amodn, ,en = ,6modn, then 
an-I - ,en-l = 0 mod n and Un-I = 0 mod n, an - 13n = a - /3 mod n, hence 
(an - ,en)/(a - /3) = 1 mod n, (an - ,en)/(a - /3) = ( ~) mod n; an+ ,en = 
a+ /3 mod n, Vn = P mod n; an-I+ 13n-l = 1 + 1 = 2 = 2Q(t-( f.- ))/2 mod n, 
Vn-(f) = 2Q( 1-(f))/2 modn. 

If(~)= -1, (n,QD) = 1, an= ,6modn and /3" = nmodn, then 
an+l = oJ3 mod n, ,en+I = a/3 mod n, hence (an+l - ,en+1)/(o. - ,6) = 0 mod n, 
Un-( f) = 0 mod n; o,_n - ,en = /3- a mod n, hence (an - /371 )/(o,_ - /3) = -1 = 
(~)mod n, Un= (~)mod n; o,_n +,en= f3 + o,_ mod n, Vn = P mod n; o,_n+l + 
,en+l = ,6o,_ + 0./3 = 2af3 = 2Q(1-( f ))/2 mod n, vn-( f) = 2Q(1-( f ))/2 mod n. 
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Conversely, if n, where (n, 2QD) = 1, satisfies the congruences (2) and (3) 
then for ( .!j;-) = 1 we have nn+;3n = o:+/3 mod n, (o:n - /3 72 )/(a - /3) = 1 mod n, 
hence o:" + /3 11 = n + /3 mod n, on - ;3n = o: - {} mod n, 2o:n = 2a mod n, 
2/3n = 2;3 mod n and since (n, 2QD) = 1 we have o:" = a mod n, /3n = fJ mod n. 

If n, where (n, 2QD) = 1, satisfies the congruences (2) and (3) then for (~) = -1 we have (nn -/3")/(o: -{3) = -1 mod n, an+ i3n = o: + ,6mod n, 
hence o:" - /372 = /3 - o: mod n, a"+ ff' = ,6 + n mod n, 2n11 = 2/3 mod n, 2{372 = 2a mod n and since (n, 2QD) = 1 we have ct 71 = /j mod n, /fl = a mod n. • 

A composite n is called a Lucas pseudoprime with parameters P and Q if (n, 2QD) = 1 and (1) holds. 
Many results have beeu published about these numbers (see [l], [2], [3], [4], [6], [7], [8], [9]. [10], [ll], [12], [13]). 
Simple examples show that a composite n Sfltisfying one of the congruences 

(1). (2), (3), (4) does not necessarily satisfy the others. It is easy to check that the 
number 323 = 17 · 19 is a Lucas pscudoprime with parameters P = 1, Q = -1 
but does not satisfy the congruences (2). (3) and (4). Hence three other kinds of 
pseudoprimes can be distinguished (see [2]). 

A composite n such that the congruence (3) holds are called Dickson pseu­
doprime with parameters P and Q (see [5], [6]). 

A composite number n such that the congruence (2) holds are called Lucas 
pseudoprime of the second kind with parameters P and Q. 

Yorinaga (sec [14]) proved that there exist infinitely many Lucas pseudo­
primes of the second kind with parameters P = l, Q = -1. He also published 
(see [14]) a table of all 109 such numbers n up to 707000. The least such number 
is n = 4181 = 37 · 113. The number 4181 is also the least composite number n 
which satisfies all congruences (1), (2), (3) and (4) for P = 1, Q = -1. 

A composite number n which satisfies the congruence ( 4) is called Dickson 
pseuduprime of the second kind with paramel.ers P and Q. 
Remark. If D b a square and n is a Carmichael number with (n. QD) = 1 then 
all congruences (1), (2). (3) and (4) hold. Indeed. if Dis a square (n,QD) = 1 and 
n is a Carmichael number then o: and /3 are rational integers #- 0, ( ~) = 1 and 
(0: 11 - 1 - 1r- 1)/(u - /3) = 0 mod n: (o:" - /3")/(n - /3) == (o: - /3)/(a - )) = 1 = 
(~) mod n: 0:"+6" = o:+/3 mod n and n"- 1 +;311 - 1 == 2 = 2Q( 1-( ~))/2 mod n. 

In 1994 Alfor<l, Granville & Pomerance (see [1]) prowd that there are in­
finitely many Carmichael numbers. 

If D is a square, a > 1 is a positive integer, 3 = ±1 that is P = o ± 1, Q = ±n, (n, 2QD) = 1 and n is a Lucas pseudoprime with parameters P and Q 
then o:" = a mod n, /3" = (±1)" == ±1 mod n and hy proposition P the number n satisfies all congruences ( 1), ( 2). (3) and ( 4). 

ThP following problems arise 

Problem 1. Let D be a square, P and Q begivenintPgers, (P,Q) #-(o:±L±n) 
i.e. /3 #- ± 1. 

Do there exist in every arithmetic progression ax + b, where (a, b) = 1 , 
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infinitely many 

a) Lucas pseudoprimes of the second kind with parameters P and Q? 
b) Dickson pseudoprimes with parameters P and Q? 
c) Dickson pseudoprimes of the second kind with parameters P and Q? 

For example: do there exist infinitely many composite n such that 3n+2n = 
5 mod n in every arithmetic progression ax + b, where ( a, b) = 1 ? 

Problem 2. Given integers P, Q -f. ±1 with D = P2 - 4Q not a square, do there 
exist infinitely many 

a') Lucas pseudoprimes of the second kind with parameters P and Q? 
b') Dickson pseudoprimes with parameters P and Q? 
c') Dickson pseudoprimes of the second kind with parameters P and Q? 
d') Arithmetic progressions formed from tlJTee different Dickson pseudoprimes? 

Problem 3. Find a composite n with ( .g) = -1, (n, 2PQD) = 1, Q -f. ±1 
which satisfies all congruences (1), (2), (3) and (4). Do there exist infinitely many 
such composite n? 

An odd composite n is an Euler-Lucas pseudoprime with parameters P and 
Q (see [11]) and 

or 

U(n-(f));2 =0modn if(~) =1 

V( n- ( ~)) 12 = 0 mod n if ( ~) = -1. 

We shall prove the following 

Theorem 1. If n is an Euler-Lucas pseudoprime with parameters P and Q and 
n is an Euler pseudoprime to base Q, ( n, P) = 1, then n satisfies all congruences 
(1), (2), (3) and (4). 

Proof. We have (see [10]) 

TT Q(n-I)/2p V, V, 
Vr, + = (n-1)/2 (n+I)/2· 

(6) 

(7) 

Since n is an Euler-Lucas pseudoprime with parameters P and Q we have 

U(n-(~));2 =0modn if(~)= 1 

V(n-(~));2 = Omodn if(~)= -1. 

(8) 

(9) 

Let ( ~) = l. Since n is an Euler pseudoprime to base Q we have Q(n~l)/2 = 
(~) = 1 mod n. 



•,· 

' ' 

By (8) we have U(n-rn-))/2 = 0 mod n, hence 

DU(n-1)/2U(n+l)/2 = 0 mod n, 
and from (6) we get 
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Vn - Q(n-l)/2 P = 0 mod n and since Q(n-I)/2 = 1 mod n 

we have v;., = P mod n and n is a Dickson pseudoprime with parameters P and 
Q, and since n satisfies the congruence (1) and (3), (n, 2PQD) = 1, hence n 
satisfies all congruences (1), (2), (3) and (4), 

If ( ~) = -1, then since n is an Euler pseudoprime to base Q, we have 
V(n-( ~));2 = 0 mod n, hence 

V(n-1)/2 · l/in+l)/2 = 0 mod n. 

Since Q(n-I)/2 = -1 mod n, be (7) we have Vn + (-l)P = 0 mod n and Vn = 
P mod n and n is a Dickson pseudoprime with parameters P and Q, and since 
n satisfies the congruence (1) and (3), hence n satisfies all congruences (1), (2), 
(3) and (4). • 
Theorem 2. If n is an Euler-Lucas pseudoprime with parameters P and Q, 
(n, 2PQD) = 1 and n is a Dickson pseudoprime with parameters P and Q, then 
n is an Euler pseudoprime to base Q. 

Proof. Suppose that n is an Euler-Lucas pseudoprime with parameters P and 
Q. 

Let (~) = 1 then by (8), U(n-(~))/2 = Omodn, hence by (6), Vn -
Q(n-I)/2 P = O mod n and Vn = Q(n-I)/2 P mod n. Since n is a Dickson pseu­
doprime with parameters and Q we have Vn = P mod n. Thus Q(n-I)/2 P = 
Pmodn and since (n,P) = 1 we have Q(n-l)/2 = 1 = (~) modn. 

Since n is a Dickson pseudoprime with parameters P and Q we have Vn = 
P mod n. Thus Q(n-l)/2p = P mod n and since (n, P) = 1 we have Q(n-I)/2 = 
1 =(~)mod n. 

If (~) = -1 then by (9) we have V(n-(~))/2 = Omodn, hence 
\1<n-1)/2 l/in+l)/2 = 0 mod n hence by (7), Vn = -Q(n-I)/2 P mod n. 

Since n is a Dickson pseudoprime with parameters P and Q we have Vn = 
P mod n. Thus -Q(n-I)/2 P = P mod n and since (n, P) = 1 we have Q(n-l)/2 = 
-1 = ( ~) mod n and in the both cases we have Q(n-l)/2 = ( ~) mod n and n is 
an Euler pseudoprime to base Q. • 

R. Baillie and S. S. Wagstaff (see [2], Theorem 5) proved the following the­
orem: 

Suppose (n, 2QD) = 1, Un = ( ~) mod n, and n is an Lucas pseudoprime 
with parameters P and Q. 

If n is an Euler pseudoprime to base Q, then n is an Euler-Lucas pseudo­
prime with parameters P and Q. 

Now we shall prove the following theorem 
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Theorem 3. If a square-free number n is a Dickson pseudoprime of the second 
kind with parameters P and Q, and n is an Euler pseudoprime to base Qi then 
n is an Euler-Lucas pseudoprime with parameters P and Q. 

Proof. If n is a Dickson pseudoprime of the second kind with parameters P and 
Q, then 

an-(~)+ /3n-(~):::::::: 2Q(1-rn))/2 mod n. 

We consider four cases. 
a) If ( ~) = 1 , ( ~) = 1 , then 

an-i + /3n-i:::::::: 2 mod n, 

(
Q(n-1)/2 _ ,6(n-1)/2) 2 

D ------- + 2(a,6)(n-l)/2 :::::::: 2 mod n 
Q - /3 

and since n is an Euler pseudoprime to base Q, Q( n- l) / 2 :::::::: ( ~) :::::::: 1 mod n, 
2(a,6)(n-l)/2 :::::::: 2 mod n. 

( 
(n-1)/2 ('1('1-1)/2)2 Thus since n is squarefree and (n, D) = 1, from n I D °' °'=f3 

we get n I U(n-l)/2 = U(n-( ~ ))/2. (~) = 1 and n is an Euler-Lucas pseudoprime 
with parameters P and Q. 

b) If(~)= 1, (~) = -1, then 

an-l + /3n-i :::::::: 2 mod n, 

(a,6)(n-l)/2 = ( ~) :::::::: -1 mod n, 

(o:<n-l)/2 + 3(n-l)/2)2 - 2(a,6)(n-l)/2 :::::::: 2 mod n and since n is an Euler pseudo­
prime to base Q, Q(n-l)/2 :::::::: (~):::::::: -1 mod n, hence -2(a,6)(n-l)/2 :::::::: 2 mod n. 

Thus since n is squarefree from n I (an-l)/2 + t3(n-l)/2) 2 we get that 
n I o/n-l)/2 + 3(n-l)/2 , (~) = -1 and n is an Euler-Lucas pseudoprime with 
parameters P and Q. 

c) If ( ~) = -1. (~) = 1. then 

an+l + ,en+l = 2 mod n, 

(
a(n+l)/2 _ 3(n+l)/2) 2 

D a_ 8 + 2(0:B)(n+l)/2 :::::::: 2a,6 mod n 

and since n is an Euler pseudoprime to base Q, (~) = 1 we have Q(n-l)/2 :::::::: 
(~) = 1 mod n. hence 2(a,6)(n+l)/2 :::::::: 2af3 mod n. 

( 
(n+I)/2 ,~(n+l)/2 )2 

Thus since n is squarefree (D, n) = 1. n I D °' °'=~ we get 

n I U(n+l)/2 = U(n-(f ));2 , (~) = 1 and n is an Euler-Lucas pseudoprime with 
parameters P and Q. 
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d) If ( f) = -1 , ( ~) = - 1. then 

O:n t-I + jjn+I = 2nd mod n, 

( O'.(n+l)/2 + .3(n+I)/2) 2 _ 2(0:;J)(n+IJ/2 = 20'.(j mod n. 

Since n is an Euler pseudoprime to base Q with ( ~) = -1 we have ( nf3)(n-l l/2 = -1 mod n, hence -2(0:(J)(n+I)/2 = 2n(j mod n. 
Thus since n is squarefree from n I 

n I n(n+I)/2 + in-(f,-))/2 = v(n-(~))/2' (~) 

(a(n+I)/2 + 3(11+1)/2)2 wc get 

= -1 and n is an Euler-Lucas 
pseudoprime with paramPtNs P and Q. • A compositP n is called a strong L'Ucas pseudoprime with parameters P and Q (see [11]) if (n, 2QD) = 1, n - ( ~) = 25 • r, r odd and either 

Ur== 0 mod n or Vi,r = 0 mod n for some t, 0 :S:: t < s. (10) 
In the joint paper [13] with A. Schinzcl wc proved the following theorem T. 

Theorem T. Given integers P, Q witl1 D = P 2 - 4Q i- 0, -Q, -2Q, -3Q and E = ±1, every arithmetic progression ax+ b, where (a, b) = 1 wbich contains an odd inte!rer n0 with ( l2) = E contains infinitPly many strong Lucas pseudoprimes ,.___, ,nu 
n witl1 parameters P and Q Sucb that ( ~) = i::. The number N( X) ofsucb strong µseudoprimes not exceeding X satisfies 

logX N(X)>c(P,Q,a,b,c) 1 l X' og og 
wl1ere c(P. Q, a, b, c) is a positive constant depending on P, Q, a. b, c 

EvPry strong Lucas pseudoprime with parameters P and Q is an Euler-Lucas pseudoprime with parameters P and Q (see [2]) and Q(n- 1)/ 2 = ( ~) mod n for n odd and Q = 1 , or Q = -1, thm; from theorem 1 and theorem T it follows the following 

Theorem 4. Let U 11 be a nondegenerate Lucas sequence with parameters P And Q = ±1. Tben, every arithmetic progression ax+ b, wbere (a, b) = 1 which contains an odd integer no with (:!a) = E contains infinitely many strong Lucas pseudo primes n witl1 parameters P and Q = ±1 sucl1 that (~) = E, whicl1 satisfy congruences (1), (2), (3) and (4) simultaneously and the number N(X) of stro11g pseudoprimes not exceeding X satisfies 

logX N(X)>c(P,a,b) 1 l 
og og 

where c(P, a, b) is a positi.-e constant depending on P, a, b. 
The above theor<'m extends the theorem 2 of my paper [10] that if a and b arc fixed cop rime positive integers, Q = ± l. ( P, Q) i- ( 1. 1), D = P 2 - 4Q 
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then in every arithmetic progression ax + b there exist infinitely many composite 
n such that we have simultaneously 

Un-(~)::==:0modn, Un=(~)modn, Vn::==:Vimodn. 
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