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Abstract: In this paper, we study certain density theorems of the zeros of the symmetric square 
L-functions (attached to a holomorphic cuspform defined over the full modular group) to the 
right of the critical line. We also obtain an analogous density theorem of Halasz and Turan for 
the zeros of the symmetric square L-functions. 
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1. Introduction 

A remarkable result of Selberg (see [58]) says that a positive proportion of zeros of 
the Riemann zeta-function are on the critical line. Similar results were obtained 
by Hafner in the case of L-functions attached to cusp forms which are Hecke 
eigenforms (see [12]}. Another important problem is studying the growth of the 
£-functions under consideration. In this connection, in a celebrated paper [28], 
Iwaniec and Sarnak proved certain growth estimates for eigenfunctions of certain 
arithmetic surfaces which break beautifully the bound usually being obtained by 
convexity arguments. This raises the question of proving non-trivial (breaking the 
usual convexity bounds) growth estimates for general £-functions. Of course, this 
is closely related to the problem Lindelof hypothesis. Also we should point out 
here other important works by Iwaniec, Duke, Friedlander and Iwaniec (see [27], 
[9], and [10]) which establish how one can break the convexity bounds in different 
aspects namely Q and r for certain automorphic L-functions of certain degree. 
For an excellent exposition of these results and about further comments we refer 
to [57]. Sometimes the question of studying the difference between consecutive 
zeros on the critical line were considered by various mathematicians (for exam­
ple see [1], [5], [30], [31] and [54]). In [61], Shimura proved that the completed 
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symmetric square £-functions can be continued analytically as an entire function 
on the whole complex plane by establishing the functional equation.In the recent 
times establishing the analytic continuation and the functional equation for various 
symmetric power L-functions is of much interest (see [601). 
We always means= o-+it, z = x+iy. Let f(z) I:~=l ane21tinz be a holomorphic 
cusp form of even integral weight k defined over the full modular group S L(2, Z). 
We assume that an are eigen - values of all the Hecke operators and a1 1. Let 
a:p and /3p be the complex numbers satisfying the equation 

(1.1) 

The Hecke L-function attached to f is defined as 

00 

L(s, f) = L ann-s (1.2) 
n=l 

which is absolutely convergent in a certain half-plane and is continuable analyti­
cally as an entire function on the whole plane. For an arbitrary primitive Dirichlet 
character 1/J, the symmetric square L- function attached to f is defined as 

D(s,f,1/J) =: D(s) 

= II ((1 1/J(p)a:;p-s)(l 1jJ(p)/3;p-s}(l - 'ljJ(p}pk-1-s))-1 
p 

00 

-· '°'a n-s -. L..,; n2 . 
n=l 

(1.3) 

According to the notation in [61], throughout this paper we assume that x ( a Dirich­
let character modulo M) is the trivial character with M = 1 and 1/J (an arbitrary 
primitive Dirichlet character with conductor r) is also the trivial character with 
r 1. Now, D( s) converges absolutely in !Rs > k. Here the critical strip is 
k - 1 ~ u ~ k and the critical line is er = k - 1/2. In fact, 

where a~2 are multiplicative and we also note that from Deligne's work (see [7] 
and [8]), they satisfy the inequality 

la~2I ~ d(n2)nk-1. 

From our definition (1.3), it follows that 

L l2k-2a;;,.2 

l2 m=n 
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and bn are multiplicative. It is not difficult to see that (for j ~ 5) 

j 

I bpi I ~ p1(k-1) L(2a + 1) L 1 ~ pi(k-1) (j + 1)2 = pi(k-1) (d (pi) )2 
a=O 2b+a=j 

since there is utmost one solution b to the equation 2b + a = j for every fixed a. 
For 0 ~ j ~ 4, easy computation shows that the above inequality holds. This 
implies that (in our notation) 

{1.4) 

In fact using the fundamental lemma 3.1 of this paper combined with lemma 3.2 
of [32], it is not difficult to establish a reasonable zero free region. It should me 
mentioned here that the mean values of derivatives of modular £-series had been 
studied earlier by Ram Murty and Kumar Murty in [50]. 
In recent times, the properties of Rankin-Selberg zeta-functions have been studied 
extensively by many authors (for example see [24], [25] and [34]). After normalizing 
the coefficients, the Rankin-Selberg zeta-function is defined as 

CX) 00 

Z(s} = ((2s) L a!nl-k-s L c~n-s (say) (1.5) 
n=l n=l 

which is absolutely convergent in the half plane O' > 1, and it can be continued as 
a meromorphic function to the whole complex plane with a simple pole at s = 1. 
It satisfies a nice functional equation (see [241). For example, in [24], Ivie studied 
mean-value theorems for Z(s) for a certain range of O' and from his result it follows 
that 

for lz(1 + it)l2 dt « r2+€ (1.6} 

for every € > 0. In [34], Matsumoto proved a refined upper bound for the mean­
square of the absolute value of Z(O' + it) (replacing r1c into (logT}0 ) whenever 
½ ~ O' ~ £ and an asymptotic formula with certain error term whenever ¾ < O' ~ 1 
(see theorem 2 of [341}. 
In part-I with the same title (see [551), we improved the mean-square upper bound 
for Rankin-Selberg zeta-functions on any fixed line when ½ ~ O' ~ £ and improved 
the exponent of the error term in the asymptotic formula when ¾ < O' ~ 1. 
In this paper we consider the following fundamental question related to the sym­
metric square £-functions. 
Can we prove certain 'Density Theorems' for the zeros of D(s) ? 

After Shimura's work (see [611), the answers to the above important fundamental 
question do form the core part for further progress if any. 

Let N*(O', T) denote the number of zeros e /3 + i1 of D(s) with /3 ~ O' 
and hi ~ T. From lemma (3.3), it is clear that N*(J, T} « TlogT provided 
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k-1/2 ~<I~ k 1/2+ 1/(logT). For the Riemann zeta-function ((s), we know 
for example the familiar result of Ingham, namely 

3(1-a) 5 
N ( <I, T) « y.,-:=-;;- (log T) , 

in the case of L- functions an averaging result of Bombieri (see [2]) which states 
that when T ~ Q, 

~ ~* 8(1-cr) 10 
L- L- Nx(<I, T) « TQ~ (logQ) . 
q~Q X 

It is also known that 

N(<I, T) « r¥(1-{7) (logT)100
. 

We also refer to [16J for sharp density results for the zeros of ((s) in certain range 
of <I. The following result is due to Montgomery (see [36]) which we state as 

Theorem A. For T ~ 2, Jet 

M(T) = max l((a + it)I. 
2~t~T 

a;>-½ 

Then for ¾ ~ <I ~ 1, we have 

N(<I, T) « { M(ST) (logT) 6
} (logT) 11

. 

We prove some density theorems for D( s) and discuss their further implica­
tions. In proving theorems 1.3 and 1.5, the central idea is to study how frequent 
certain Dirichlet polynomial being large. This main idea was developed and used 
first by Montgomery and later by many mathematicians (see [16], [17], [201, [26] 
and [29]). In this paper, we prove 

Theorem 1.1. For <I~ k - ½ + lo~T, we have 

N*(u, T) « (logT)°. 

It is not hard to prove the following general theorem. 

Theorem 1.2. Assume the following conditions. 
1. G(s) has meromorphic continuation to the whole complex plane except 

for a simple pole at s = 1. 
2. G(s) and (G(s))- 1 have the Dirichlet series representation namely 

00 00 

G(s) = L ann-s ; (G(s))- 1 L bnn-s 
n=1 n=1 
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in u > 1 with the conditions a 1 b1 1 , an and bn are multiplicative and 

for some fixed positive constant A. 
3. Fort~ 10, we have 

G(l/2 + it) « t0 (log t)°'. 

If NG(u, T, 2T) denotes the number of zeros (! = (3 + i, of G(s) with (3 ~ u(> 
½ ), T ~ 1' ~ 2T, then 

NG(O", T, 2T) « r 2<1+2C)(l-u) (logT)°. 

Remark. Theorem 1.2 is better than the theorem 1.1 whenever C < ½ . Because, 
for k - ½ ~ u ~ k, the inequality 

5 5 
2k - 2u + 1 > 2 > 2(1 + 2C) 

holds only when C < } . However it should be pointed out here that we know only 
C ¾ from (2.20). 

Theorem 1.3. (Halasz Thran Type). Let E be an arbitrarily small positive 
constant and o be any sufficiently small positive constant but a fixed one. If 
D(k - 1/2 +it)« t62 and((½+ it)« t82 for all t ~ to then 

N* ( k - l + i51/2' T) < rco 

where C is a positive constant independent of the parameters o, E and k. 

It is not hard to prove the following general theorem. 

Theorem 1.4. Assume the following conditions. 
l. G(s) has meromorphic continuation to the whole complex plane except 

for a simple pole at s = 1. 
2. G(s) and (G(s))- 1 have the Dirichlet series representation namely 

00 00 

G(s) = L ann-s (G(s))-1 = L bnn-s 
n=l n-1 

in u > 1 with the conditions 

L lanl 2 « x(log x)A L lbnl 2 « x(log x) 8 

n~x n~x 
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3. 

G(~+it)«t
52

; ((1+it)«t
52 

for sufficiently small (but fixed) positive constant 6. Then we have 

Theorem 1.5. Let 

M 1 = M 1 (~,2T) = :z:max I((~ +it)I 
2 ~t~2T 

and 

M2 = M2 (k - ~' 2T) = rmax ID(k - ~ + it)l-
~~t~2T 

Then for k - ¾ < u ~ k, we have 

2(k-o-) 

N•(u, T) « ( Mi ( M? (logT)
261

) ~ (logT)
231

) 

2

0--ZEt1 (logT)5
. 

Acknowledgement. The author is highly thankful to the referee for making 
some useful comments. 

2. Notation and preliminaries 

The letters C and A (with or without suffixes) denote effective positive constants 
unless it is specified. It need not be the same at every occurrence. Throughout 
the paper we assume T ~ T0 where T0 is a large positive constant. We write 
f(x) « g(x) to mean 1/(x)I < C1g(x) (sometimes we denote this by the 0 
notation also). Let s = u + it, and w = u + iv. The implied constants are all 
effective. In any fixed strip a ~ u ~ b, as t --+ oo, we have 

r(u +it)= to-+it-lf2e-1tf2-it+(i1t/2)(o--l/2)~ (l + 0 (l/t)). (2.1) 

Let 
R(s) = 7f-3s/2q.: )r( + 1 )r(- k + 2)D(s). 

2 2 2 
Then D( s) satisfies the functional equation ( see [61]) 

R(s) = R(2k - 1 - s) 

Also we note that if 

!•-~+ll s - k + 1 R1(s)=1r- r( 
2 

)((s-k+l) 

(2.2) 

(2.3) 

(2.4) 
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then ((s - k + 1) satisfies the functional equation 

(2.5) 

Therefore if D1 ( s) = (( s-k + 1 )D( s), then D1 ( s) satisfies the functional equation 

R(s)R1(s) R(2k -1 - s)R1(2k -1 - s) (2.6) 

and we notice that R(s)R1(s) extends D1(s) as a meromorphic function to the 
whole plane except for a simple pole at s = k. We define 

~(s) = -(s - k)(2k - 1 - s - k)R(s)R1(s). 

Note that 
~(s) ~(2k 1 s). 

We write 
D(s) x(s)D(2k 1 s) 

where 
_ 3 (2k-l) r( 2k-1-s )r( 2k-s )r( k-s+ 1 ) 

x( s) - 1f 2 +3s 2 2 2 
- r(½)r(~)r(s-~±2 ) 

F:rom (2.1) and (2.10), it follows that, for a ( u ( b, we have as t - oo, 

(x( s)) C2( k, u)t ½(6k-6o--3) (-2t )-3it (1 + 0 (1/t)) 
1re 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

where C2 is a certain constant depends only on k and u. We notice that for 
u>k, 

(2.12) 

since 

Now we define a multiplicative function µ*(n) in the following way. 

µ*(n) 

and hence dearly 

if n 1, 
if n = p, 

2pk-l)) if n p2 , (2.13) 

ifn=p3
, 

if n = pa for any integer a ) 4 

(2.14) 
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and for a> k, 
1 

D(s) 

Also we define µi in the following way. We note that 

((s 

1 { (a; pk-1) (p2k-2 + pk-1(a2 
+ l)D(s) - I] 1 ___,__p_s __ + p2s P 

{ 
pk-1} 

. 1--­
ps 

and therefore define 

µj(n) 

and hence clearly 

and for a> k, 

1 
-a2 

p 

2pk-1 ( a; _ pk-1 )) 

if n 1, 
if n = p, 

if n = p2 , 

ifn=p3, 

if n = p4, 
-p2k-2a; 
p4k-4 

0 if n = pa for any integer a ~ 5 

((s 
1 ~ µi(n) 

k + I)D(s) = ~ --;;;;-· 

From maximum-modulus principle and the functional equation, one has 

uniformly for k - ½ ~ a ~ k, ltl ~ 10. 

3. Some lemmas 

Lemma 3.1. (A Fundamental Identity) We have 

g(s) =: ~ a!n-s = (2(s k + 1) w(s) 
~ ((2s - 2k + 2) 
n=l ' 

where 
w(s) = II (1 + 2pk-1-s 2 -s I 2k-2-2s)-l apP -- p . 

p 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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Proof. See for example lemma 3.1 of [55]. For the sake of completeness, we 
reproduce the proof here. 

We note that an is multiplicative and satisfy the following equations 

(3.1) 

and 
(3.2) 

Therefore we can write first 

g(s) (3.3) 

From these two equations (3.1) and (3.2), we observe that (3.1)2 -pk-1(3.2) 2 

gives the relation 

a2 -{a2-pk-l}a2 +Pk-l{a2-pk-l}a2 -p3(k-l)a2 =0 p:,. p p>.-1 p p>.-2 p>.-3 • (3.4) 

Now, we write 

= {(a;_ Pk-_l)p-s _ Pk-1-2s(a; pk-1) + P3(k-1)-3s} (ta~) 
j=O pJ 

-(a; pk-1)p-s -a;(a;-pk-1)P-2s +(a;-pk-1)pk-l-2s_ (3_5) 

We also find that 

1 + a;p-s +a;2P-2s -(a; -pk-1)p-s 

-a;(a; -pk-1)p-2s + (a;- pk-1)pk-1-2s. = l +pk-1-s, 

Let 
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and 
y = {(a;_ pk-1 )p-8 pk-l-2s(a; _ pk-1) + p3(k-1)-3s}. 

From (3.4), (3.5) and the above arguments, we observe that 

X = XY + 1 + pk-l-s, (3.6) 

with the above notion for X and Y. Therefore we obtain 

( 
1 + pk-1-s ) 

g(s) = I] 1 _(a~_ pk-l)p-s + pk-l-2s(a~ _ pk-1) _ p3(k-1)-3s 

= IT { 1 - pk-1-s (1 + 2pk-1-s - a~'D-s + p2(k-1)-2s)}-1 
1 + pk-1-s P' 

p 

(
2 (s - k + 1) 

= ((2s - 2k + 2} \JF(s) (3.7) 

where 
\Jf(s) = IT ( 1 + 2pk-1-s _ a;p-s + p2(k-1)-2s )-l. (3.8) 

p 

This proves the lemma. • 
Lemma 3.2. (Montgomery- Vaughan) If hn is an infinite sequence of complex 
numbers such that Z:::~=l nlhnl2 is convergent, then 

1
T+H oo 2 oo L hnn-it dt = L lhnl2 (H + 0 (n)). 

T n=1 n=l 

Proof. See for example lemma 3.3 of [39] or [46]. • 
Lemma 3.3. If N*(u, T, T + 1) denotes the number of zeros e = {3 + i1 of D(s} 
with {3 ~ u, T ~ 1 < T + 1, then 

Proof. We define 

N* (k - 1,T, T + 1} « K1 logT. 

Fi(s) = D(s) 

I1 (1- ~) e-so 
fl 

where so = k + h + £ and e in the product runs over the zeros of D(s) with 
k - 1 ~ /3 ~ k and T < 1 < T + 1. We note that 

IF1 (so}! ID(so}I 

2 l-~ lan2I 
v L...t nk+t' 

n=2 
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where C is a certain positive constant. This implies that 

C < IFi(so)I 

and hence we obtain the lemma .. 

< max IF1(s)I 
ls-sol=12 

ID(s)I 
< max --.­

[s-so[~12 2N 
re 

< 

Lemma 3.4. Let D(s) L µ:(sn) - 1 = I: ~~, then 
n~X n>X 

• 

Proof. Since an2 and µ* are multiplicative functions, from the definition, Cn is 
a multiplicative function. Therefore it is enough to prove the lemma on prime 
powers. From (2.14), we notice that (with bn ~2) 

lcp=I lb1µ*(pm) + bpµ*(pm-l) + · · · + bp=µ*(l)I 

,; pm(k-1) (t. ( d (pi))' ( d (pm-;)) 3
) 

:::;; Pm(k-1) (f (j + l)2(m _ j + l)3) 
J=O 

:;,;; (d(pm))6 pm(k-1) 

which proves the lemma. • 

4. Proof of the theorems 

Proof of Theorem 1.1. It is enough to prove the theorem for T :;,;; t:::;; 2T. We 
divide the rectangle bounded by the lines with real parts u, 1 and the imaginary 
parts T, 2T into abutting smaller rectangles of width 1. We count the number of 
these smaller rectangles of width l which contain at least one zero and multiply 
by logT to get a bound for N(u, T, 2T). Define the function 

F2(s) = D(s) '°' µ*(n) - 1 = D(s)Mr(s) - 1 = '°' c'n say. (4.1) 
L..t ns L..t ns 
n~T n~T 
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Let 
(4.2) 

Now, select a set of zeros in each of the rectangles which contain a zero and consider 
the integral 

~ 1 G(s) ds the multiplicity of the zero e 
2m s - e 

(4.3) 

R 

(by Cauchy's residue theorem) where the integral being taken over the rectangle 
R defined by (! + x + iy, k - ½ ~ /3 + x ~ k, l'Y + YI ~ (logT)2

• If Y is chosen 
to satisfy log Y « log T, then the contributions from the horizontal sides of this 
rectangle R is O(T-10). Let us denote the vertical sides of R by Vi and V2 so 
that we have 

1 = 0 (logT (/ IF2(s)ldt) y•-\-P + logT (j IF,(s)ldt) yk-P) 

= 0 (iogT (1 + f JF,(s)ldt) y•-\-P 

+logT ( r-10 + [ JF2(s)ldt) y•-•) . (4.4) 

We choose Y such that 

Let 

and 

Note that 

J,(e) = (1 + f JF,(s)ldt) 

J,(e) = ( r- 10 + f IF,(s)ldt) . 

(J1)2 1 ye 
Y = J 2 ~ r-10 +re; Y ~ r-10 

• 
so that the condition on Y is satisfied. Hence we have 

( 

J ) 2(k-/3) 
1:::;; 2ClogT J: J2 ~ 2ClogTJ;(k-f3)Jif3+t- 2k. 

(4.6) 

(4.7) 

(4.8) 



Fundamental properties of symmetric square L-functions-II 101 

We notice that 

{2T 
lr IMr(k - 1/2 + 1/ logT + it)1 2 

dt 
lµ*(n)l2 L n2(k-1/2+1/logT) (T + O {n)) 

n~T 

(d(n))8n2k-2 
~ L n2k-1 (T + 0 {n)) 

n~T 

« T(logT)c. 

From {i) of theorem 4.1 of {55], we have 

{2T 
lr ID(k - 1/2 + 1/ logT + it)l2 dt « T312 (logT)c. 

Therefore using Holder's inequality, we find that 

{2T 
Jr IF2(k - 1/2 + 1/ logT + it)I dt « T 514 (logT)c 

and using lemma 3.2 (Montgomery - Vaughan Theorem), we have 

{2T 
Jr IF2(k + 1/(logT) + it)l

2 
dt 

T 
~ (d(n))30 ~ (d(n))30 

« L,,; 2+ 2 + L..,,; 1+ 2 
n~T n log'"T n~T n log'"T 

(4.9) 

{4.10) 

« {logTf, {4.11) 

since c'n « d(n)3°nk-l (from lemma 3.4). From {4.10) and (4.11) {using convexity 
arguments), it follows that 

e e 

and so 

(4.13) 

Now we fix W1 = WfT514 .Hence the total contribution from the above exception 
is 

c {T5/4 1 } 
(logT) W1 + Wf . {4.14) 
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From {4.4), for the remaining zeros, we have 

3/4 ~ 2C(logT)W{(k-,8)w;P+l-Zk 

= 2C(logT)w;(k-o-)w;(o--,8)w;o-+l-Zkw;<,8-o-) 

( 
w ) 2(,8-o-) 

2C(logT)Wi(k-o-)w;o-+i-zk w: 

= 2C(logT)W2(k-o-)w,2o-+i-2k 1 
( )

2(,8-o-) 

1 . 2 w2rs/4 {4.15) 

( )

2(,8-o-) 
Let us suppose that W2 > 1/T514 and so w

2
~ 514 < 1. Therefore we get, 

We choose 

3/4 ~ 2C(logT)w;(k-o-)w;o-+l-Zk 

= 2C(logT) ( wJr5/4 r(k-o-) w;o-+1-2k 

2C(logT)T512(k-o-)wJk- 2"°+1 . {4.16) 

logT 1 5tk-.a)/2 
W2 = (--)-~T 2 - 2"+1. (4.17) 

4C 

Clearly W2 > r-5/ 4 . For this choice of W2 , {4.16) implies that 3/4 < 1/2 which 
is absurd and this means that we should count only those zeros in (4.13). Hence 
we get, 

(log T)c 2~<k•·"ir 
N*(u, T, 2T) « w.z « T - 2 " (logT)° 

2 
(4.18) 

which proves the theorem. 

Proof of theorem 1.2. 
immediately that 

From the assumption 2 of the theorem it follows 

L lanl2 « x(logx)2
A 

n~x 

We define 

fx(s) = G(s) '°" bn L..t ns 
n<X 

We observe that 

L lbnl 2 « x(logx)2A. 
n~x 

1 = ~ Cx{n). 
L..t ns 
n=l 

{4.19) 

(4.20) 

Cx(l) = 0 ; Cx(n) = 0 for n < X ; and ICx{n)I ~ d{n){logn)2
A. (4.21) 

Therefore we have, 
L 1Cx(n)l2 « x(logx)4

A+
3 (4.22) 

n:::;;;x 
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and 
L !Cx(~)Cx(n)I « x(logx)4A+3_ 

m<n~x (mn)2(log(';:) 

Now we follow the proof of theorem 9.18 in [62] and obtain the estimates 

IT T lo lfx(l + 6 + it)l2 dt « (X + 1)(6)-(4A+4) 

and 

1T jix( ~ + it)l
2 

dt « T 2c (T + X) (log(T + 2))2c' {log X)2A+l. 

(4.23) 

(4.24) 

(4.25) 

Using convexity theorem and choosing X = CT, 6 = (log(T + X) t 1 
1 we obtain 

IT , Ji- lfx(o- + it)12 dt « (T + X)T4C(l-o-) xl-2o- (log(T + X))12(A+1)+2C 
2 

« y(4C+2)(1-o-) (logT)12(A+l)+2c'. 

This proves the theorem. 

Proof of theorem 1.3. Let e = {3 + i1 , T ~ 1 ~ 2T with {3 > k - 1/4 + 6112 • 

We define ( as before) 

F{s) = D(s) '°' µ*{n) - 1 
L.J ns 

n~T• 

D(s)MT.i(s) - 1 '°' Cn say. L.J ns 
n>T• 

We notice that 
Cn O for n ~ T"; lenl ~ (d(n))3°nk-l. 

Now, from Mellin's tranform we have 

F(s + w)Xwf(w)dw. 

(4.26) 

( 4.27) 

(4.28) 

We note that the truncated integral with (~w k +·1, Iv! ~ (logT)2) gives an 
error o(l). Now, we move the line of integration of the remaining portion to the 
line ~w = -1 / 4. By doing so, the residue contribution coming from the simple 
pole at w = 0 is F( s). We fix throughout this proof X = T 206

• Therefore we 
obtain, (for o- ~ k - 1/4, T ~ t ~ 2T) 

J 
11iw=-1/4, 
[vi ~(log T)2 

F(s + w)Xwf(w)dw + F(s) (4.29) 
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Notice that {for a;;;:: k - 1/4) 

since j > [X(logX)2 ]. Also we have 

n~X(logX)2 

e-i/X 

« 1-e-1/X 

«xe9 
= o{l) as X -+ oo 

1 J 21ri 

Tf.To/2+o2 
F(s + w)Xwr(w)dw « Xl/4 = o{l) 

!Rw=-1/4, 
lvl~(logT) 2 

{4.30) 

{4.31) 

since 1: is arbitrarily small positive constant and fl is _any small fixed positive 
constant. Therefore we get 

Let 

Since e is a zero of D(s), F(e) = -1 and hence, 

IZ1(e) + o(l)I = IF{e)I = 1 * IZ1(e)I > 1/2. 

Let 

where 
lbnl lene-xl ~ (d(n))3°nk-l_ 

Let U be a parameter with T 0 ~ U ~ T2 15 . Now, with U 
j = 0, 1, 2, · · ·, we have 

IZ1{e)I L L :: > 1/2. 
U U~n<2U 

(4.32) 

{4.33) 

(4.34) 

(4.35) 

(4.36) 

2iT0 for 

(4.37) 

Note that j « log T. Divide the width [T, 2T] into abutting sub-intervals of width 
(logT)2 leaving a bit at the top. Call these smaller intervals as Ii, h, • • •. Let 

A= LJ h;-1 {4.38) 
j=l,2,··· 
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and 

B= LJ l2J• {4.39) 
j=l,2,·· 

Let N 1 and N2 be the number of zeros in the sets A and B respectively. We 
first fix any smaller interval / 2jo-1 EA. The total number of zeros in this smaller 
interval I2jo-l is « {logT)3

. For every e E /210 -1 and for every e' E I2j-l (with 
j #- io ), we have clearly 

le - e'I ~ (logT)
2

. 

Let 
A*= {e EA : le e'I ~ (logT)2 fore, e' EA}. 

Let Ni be the number of well spaced zeros e EA. This implies that 

N1 « (logT)
3 Ni. 

Define 

I(U) IS maximum} . 

Now, A* is the disjoint union of I(U). (i.e) LJ I(U) = A*. Also we have a 
u 

surjective map from the set { I(U)} to the set {U} with I(U) is the inverse image 
of U. Similarly the same phenomena is true for B*. 

Since for every e E J(U), we have the sum 

obtain that for every e E I(U), 

~ is maximum, we 
U,s;;n<2U 

'""' bn >-1-. 
L....t ne 2logT 

U,s;;n<2U 

(4.40) 

Therefore 

N* ( k - l + 01l 2
, T, 2T) « (logT)3 {N; + N2}. 

We notice that ( for U ~ n :::;; 2U) 

n e1/ 2 - 1 · e-~(em-1)>-- C 
e2 

(4.41) 

and 

(4.42) 
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We first treat the set A*. From (4.40) we have 

Nt ~ ~ ~ e 
2logT ~ LJ LJ T/e LJ bnn-

U eEl(U) U~n<2U 

~ c-1u-l+k-l+f: L L n~=-l (e-m - e-it) 
U~n<2U eE.A• 

~ c-1u-l+k-l+f: ( L (e-2'1 - e-u)) 1/2 

U~n<2U 

. ( ~ ~ T/e1 ~e2 (e-iu - e-ir)) 1/2 
LJ LJ ne1+e2-2l 

U~n<2U e1,e2E.A• 

~ Du-i+k-l+e.+½L½ (4.43) 

where T/ei and rJe2 are complex numbers of absolute value 1 whenever e1, (!2 E A* ; 
0 otherwise and 

L = ( ~ ~ T/e1~e2 (e-iu _ e-u)) 
LJ LJ ne1+e2-2l 

U~n<2U Ill ,/l2E.A• 

= Le1=e2 + LeFte2 · 

U~n<2U e1=e2, 
ll1 ,e2E.A* 

«: cN;u1-u112 

since {31 + /32 - 2l ~ 2&112
. For (!1 i=- (12, we observe that 

1 
21ri J ((e1 + e2 - 2l + w)f(w){2111 

(4.44) 

{4.45) 

We notice that the contribution to the above integral from the portion 1Rw = 
1 + 1:, lvl ~ (log T)2 is u1+e.e-C(logT)

2 
in absolute value. Therefore we get, 

J 
!Rw=l+~, 

[v[)(iogT) 2 

2f + w)f(w)(2111 

(4.47) 
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Note that the zeros are well-spaced. We move the line of integration to R(e1 + {!2 
2l + w) = 1/2 in the remaining portion of the integral and notice that horizontal 
portions contribute a quantity which is « Ni2 T82 u1+ee·-c(logT)

2 
in absolute 

value, since by our assumption ({1/2 + it) « t82 . Now, on the vertical line, we 
find that 

Q2 =: "' l J ((e1 + th 2l + w)r(w)(2w - l)Uwdw 
LI 21ri 

ed-e2, Rw=l/2+2l-!R(e1+e2), 
e1,e2E.A* lvl~(logT)2 

« N;2T.s2 
u1/2+21-/31 -/32 

« N;2r.s2 u112-u112 (4.48) 

since /31,{32 ~ l +<5112 . Therefore from (4.45), {4.47) and (4.48) we find that 

We now fix l k - 1 / 4 and notice that 

c 
2 112 T 2 ue N* T4iu-1+k-1/2+H1/4-.s N* « -----N* « 1 

1 Ul-k+1/4+.s112 1 2(log T)2 

since T" ~ U ~ T 218 , E is any arbitrarily small positive constant and 6 is any 
small but fixed positive constant. Also we notice that 

Therefore we get 

and hence 
Ni« Tc" 

where the implied constant depends on 61 k, E but C is independent of these pa­
rameters. Similar estimate holds for N2 . This proves the theorem. 

Proof of theorem 1.4. Similar to the proof of the theorem 1.3 

Proof of theorem 1.5. Since the proof of this theorem resembles the proof of the 
theorem 1. 3 up to some extent, we only skectch the proof here: Let e = f3 + i,y, T ~ 

1 ~ 2T with f3 ~ a > k - 1/4. Let X and Y are two parameters which satisfy 
X{logX)2 ~ Y ~ TA. We define {as before) 

L µ*(n) I: en F(s) = D(s) -- - 1 = D(s)Mx(s) -1 = - say. 
ns ns 

n~X n>X 
{4.50) 
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We notice that 
{4.51) 

Now, from Mellin's tranform {after truncating the integral at (~w = k + 1, lvl ~ 
{log T)2

) which gives an error o{ 1)) by moving the line of integration of the remain­
ing portion to the line ~(s + w) k- ½, we find that {for a > k- ¼, T ~ t ~ 2T) 

en " I: -e-v + 
ns ns 

X~n~Y(logY)2 n>Y(logY)2 

Cn + o{l) 

1 J F(s + w)Ywr(w)dw + F(s). { 4.52) 

Rw=k-½-o-, 
lvl~(logT)2 

Notice that (for a> k -1/4) 

{4.53) 

since j > [Y(logY)2]. We note that 

1 (d(n)) 30nk-l 1 30 

IMx(k - - + ir)I ~ L k 1 ~ 2X 2 (logX)2 
. {4.54) 

2 n~X n -2 

Therefore we have 

J 
!Rw=k-½-t,, 
lvl~(logT) 2 

F(e +w)Ywr(w)dw 

max ID(k - ½ + ir)Mx(k - ½ + ir)I 
< 

2 
T-(logT)2 ~r~T+(logT) 2 

yo--(k-½) 
1 1. 230 M2(k- 2 , 2T)X2 (logX) 

< 4 ( 1) yo-- k-2 

We choose Y such that 

Let 

1 
10· 

(4.55) 

{4.56) 

(4.57) 
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Since e is a zero of D{s), F{e) -1. Therefore from {4.52), {4.53), (4.54), (4.56) 
and {4.57), we get 

1 
IZ2{e) + o{l)I > IF{e)I -

10 
=> IZ2{e)I > 1/6. {4.58) 

Let 

{4.59) 

where 
{4.60) 

Let U be a parameter with X ::;;; U ::,;; Y {log Y) 2 • With U = 2j X for j 1, 2, • • • 
{note that j « logY), we have Now, 

{4.61) 

As in the proof of the theorem 1.3, we obtain 

LJ hj-1 (4.62) 
j=l,2, .. 

and 
B1 = LJ hi- (4.63) 

i=1,2, ... 

At= {e E A1 : le - e'I ~ {logT)2 fore, e' E Ai}. 

We define 

I(U)= {eEA1*: L :: 
U!:i;n<2U 

Now,A1* is the disjoint union of /{U). {i.e) LJ I(U) A1*. Also we have a 
u 

surjective map from the set {l(U)} to the set {U} with I(U) is the inverse image 
of U. Similarly the same phenomena is true for B1 * . Clearly 

where Nt1 and N;2 be the number of zeros in the sets Ai and B1 respectively. 

Since for every f! E I{U), the sum I: !';, is maximum, we obtain, for every 
U!:i;n<2U 

e E /{U), 

L bn 1 >---. 
nl! 20logY 

U!:i;n<2U 

{4.65) 
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We notice that (for U ~ n ~ 2U) 

ex:, 

I)e-m - e-u) < 2U. 
n=l 

We first treat the set Ai. From ( 4.65) we have 

~ ~ lb In-I ~ _!lg_ 
"" L...t n L...t ne-1 

U,;;;;n<2U eEAi 

~ c-1/2u-1+k-½(logU)260 ( L 
U,;;;;n<2U 

~ c-112u-1+k-½ (log ul'o L½ 

( 4.66) 

( 4.67) 

where 'Y/ei and T/e2 are complex numbers of absolute value 1 whenever e1, e2 E Ai ; 
0 otherwise and 

since /31 + /32 - 2l ;;;:: 0. For {!1 =/= {!2, we observe that 

ILe1cfe2I ~ L 
(!l'F(!2, 

e1,e2EA~ 

(4.68) 

(4.69) 
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We notice that the contribution to the above integral from the portion !Rw = 
1 + E, !vi ~ (logT)2 is u1+1:e-C(JogT)

2 
in absolute value. Therefore we get, 

I: 
llFF/22, 

121,122EA! 

1 
21ri J 

!Rw=l+<:, 
lvl;;;•-(IogT)2 

(4.71) 

Note that the zeros are well-spaced. We move the line of integration to !R(e1 + tfz-

2l + w) = 1/2 in the remaining portion of the integral and notice that horizontal 
portions contribute a quantity which is « Nt1 

2T 116 u 1+~e-c(IogT)
2 

in absolute 
value, since ((1/2 + it) « t 116

. Now, on the vertical line, we find that 

I: 2:i f 
llFF/22, !Rw=l/2+21-!R(121 +i:fa), 

l21,122EAt lvl~(logT)2 

«N* 2 M (! 2T)U1/2+2l-f11-f12 
11 1 2' 

«N* 2 M (! 2T)U112 
11 1 2' 

since /31,/32 ~ l. Therefore from (4.69), (4.71) and (4.72) we find that 

Nt1 ~ c-1/2u-1+k-½ {logU)z60 
2OlogY 

x N* u + N* 2r-20 + N* 2 M (! 2r)u11z { }

1/2 

11 11 11 12' 

We take l a and notice that 

N* 2r-10 ~ N* 2 M (! 2r)u112 
11 ....,, 11 1 2' . 

Now we choose X such that 

2c-1l 2 M (! 2T x-u+k-¼(logX)260 = 1 . 
( )

1/2 
1 2' 2OlogY 

This implies that 

(4.72) 

(4.73) 

(4.74) 
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and hence we obtain 

(4.75) 

From our choice of X and Y (see {4.74) and (4.56)), we find that 

* ( 2( 4-{ T)261)-=-'"7't:"1c..-{logT)231)2!~:;,:)1 (logT)2. N11 « M 2 Mt log • (4.76) 

Similar estimate holds for Nf2 . Hence the theorem follows. 

Remark. It is easy to see that theorem 1.5 is better than theorem 1.1 whenever er 
is nearer to k. If N z(cr, T) denotes the number of zeros e = f3 + i, of the Rankin­
Selberg zeta function Z(s) with f3 ~ er and 1,1 ~ T, then {after normalizing the 
result of theorem 1.5), from lemma 3.1 (we have Z(s) = ((s)D(s + k - 1)) and 
theorem A, we find that {for er > ¾) 

( 

I 61 
Nz(cr, T) « MJ(Ml (logT)2 ) 

"2(1-.. ) 
{log T)231) 2 .. -1 (log T)s (4.77) 

6a-.5 

whenever M2 > Mi"7- 3 and 

8(1-<>')!3"-2) 

Nz(cr, T) « (M1(logT) 6} C4
"-

3n"- 1l (logT)11 (4.78) 

whenever M2 < M1 . However it should be mentioned here again that all we 
JUL+ JI. know only about M1 and M2 are M1 « Tr.70 e and M2 « T, logT. 

5. Concluding Remarks 

Most of the theorems in this paper automatically hold in the case of Rankin­
Selberg zeta-functions because of the relation from lemma 3.1. It would be much 
more interesting to avoid the condition (( ½ + it) « t62 in the theorems 1.3 and 
1.4, but we do not know how to do it. The general theorem 1.4 may be compared 
with the general theorem 2 of [13]. To prove theorem 2 of [13], Turan's power 
sum method (precisely the second main theorem of Turan's Power sum method) 
plays an important role. However we have avoided this in our proof with slightly 
modifying the assumptions on G(s). 
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