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INTEGERS REPRESENTABLE AS THE SUM OF POWERS OF
THEIR PRIME FACTORS

JEAN-MARIE DE KoNINCK! & FLORIAN Luca?

Abstract: Given an integer o =2 2, let S5 be the set of those positive integers n, with at
least two distinct prime factors, which can be written as n = E p™ . We obtain general results

pln
concerning the nature of the sets S, and we also identify all those n € S3 which have exactly
three prime factors, We then consider the set T (resp. Tp) of those positive integers n, with

at least two distinct prime factors, which can be written as n = E p®P, where the exponents

pin
ap 2 1 (resp. ap 2 0) are allowed to vary with each prime factor p. We examine the size of
T(z) (resp. To(z)), the number of positive integers n < = belonging to T (resp. Tp).
Keywords: Prime factorization

1. Introduction

Identifying all those positive integers n such that
n=> p° (1)
pin

for some integer o 2 2 is certainly a difficult problem. Since prime powers p©
(with a 2 2) trivially satisfy (1), we shall examine the set S, , namely the set of
those positive integers n satisfying (1) but which have at least two distinct prime
factors.

We first obtain general results concerning the nature of the sets S, . We then
identify all those n € S35 which have exactly 3 prime factors. We further consider

the more general equation
n=2_ p" (2)
pin

2001 Mathematics Subject Classification: 11A41, 11A25
1 Research supported in part by a grant from NSERC.
2 Research supported in part by projects SEP-CONACYT 37259-E and 37260-E.



58  Jean-Marie De Koninck & Florian Luca

where the exponents «, are allowed to vary with each prime factor p. Clearly all
prime powers have such a representation (2). So let us define T' (resp. Tp) as the
set of all positive integers n having a representation (2) with each a, > 1 (resp.
ap z 0) but with at least two distinct prime divisors. We obtain a non trivial
upper bound for the number Ty(z) of positive integers n < x belonging to Tp.

Finally, we give a heuristic argument yielding lower and upper estimates for
T'(x), the number of positive integers n < z belonging to T'.

2. General observations

For each integer n > 2, let w(n) stand for the number of distinct prime factors of
n and let P(n) stand for the largest prime factor of n. We first make the following
observations. Given a > 2 and n € S,, we have:
(i) P(n) < nV/e,
(ii) Letting r = w(n), then r > 3 and r is odd; this is easily established by
considering separately the cases “n odd” and “n even”.
(iii) If o is even, then w(n) cannot be a multiple of 3; one can see this by
considering separately the cases “3|n” and “3 fn”.
(iv) If w(n) = a, then n cannot be squarefree, since otherwise, comparing the
arithmetic mean with the geometric mean of the prime factors of n, we get

n=qq... 0o =qr +q5 + ...+ 05 Z aq1q2... 4o = an,

a contradiction, since o = 2.
(v) If n € Sy, then, in view of (ii) and (iii), r := w(n) is odd, r > 5; moreover:
* if r=>5,then n=50r8 (mod 24),
* if r=7,then n =7, 10, 15 or 18 (mod 24),
* otherwise r > 11.
(vi) A computer search shows that S3 contains at least 6 elements, namely:

3718=2-32.7=2% 433+ 7,
2548 = 22.72.13 =23 + 7% 4+ 135,
2836295 =15-7-11-53-139 = 5% + 7% + 113 4+ 53% + 1393,

4473671462 =2-13-179.593 - 1621 = 2% + 133 + 1793 + 5933 + 16213,

23040925705 = 5-7- 167 - 1453 - 2713 = 5% 4+ 73 4 1673 + 1453° + 2713%,
21467102506 955 = 5-7%- 313 - 1439- 27791 = 5% + 7% + 313% + 14393 4 277913,
(vil) If n € 84, then w(n) =7 or w(n) > 11. To show this, first let r = w(n).
We know from (ii) that r > 3 and odd; but from (iii), it follows that r # 3;

hence, r > 5. But r # 5; indeed, if r = 5, then first assume that 5|n; in
this case, since p? =1 (mod 5) for all primes p # 5,

n=625+4+q+qs+qi+qi=0+4=4 (mod5),
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which contradicts 5{n; on the other hand, if n is not a multiple of 5, then
n =5 (mod 5), again a contradiction. Hence, r > 7. Finally, in view of
(iil), 7 # 9. Hence, we may conclude that r =7 or r > 11.

(vii) It is not known if T is an infinite set. However, if there exist infinitely many
k 3[

primes p of the form p = , then #T = +o00, the reason being that

in this case, we have 2-3-p =2% 4+ 3¢ 1 p,

(viil) Using a parity argument, it is clear that any number n € T has an odd
number of distinct prime divisors. One can check that the smallest element
of T is 30; in fact, 30 has two representations of type (2), namely

30=2.3-5=24+34+5=2%4+3245.

Letting T'(z) := #{n < 2 : n € T}, a computer search shows that T'(100) =
6, T(10%) = 42, T(10%) = 109, T(10°%) = 321 and T(10°%) = 973. On the
other hand, the smallest odd element of T is 915, in which case we have

915=3-5.61 =23% 4+ 5% 461

3. Identifying those n € §3 with w(n)=3

Theorem 1. If n € S5 and w(n) =3, then n =2-3%.7 or n = 2%.7%.13.

Proof. We prove this in 9 steps.

1. Write < y < z for the three distinct prime factors of n. Note that the given
relation forces z|y® + z3, so that 2]y +x or 2}y?® — yz + 2%, and similarly y|z 4+,
or ylz? — 2z + 22, and z|z + y, or z]2% — 2y + y?.

2. Assume zly+z. Since y + 1z < 2y < 2z, this is possible only when z = y 4+ . If
x > 2, then y+x is even, and s0 it cannot be an odd prime. Thus, z =2, z = y+2,
but then

P+t + 22 =8+ +(w+2)°%=16 (mody),

which is impossible. Thus, z fy + =, and z|y? — yx + z2. Since z > 3, we also
conclude that z = 1 (mod 3), because the relation 3% — yr + 2 = ( (mod 2)

implies that (2y — r)* = —32% (mod z), which means that — ) =1 which is

equivalent to the fact that z = 1 (mod 3). Here, and in what follows, for an odd
prime p and an integer a we use <%) for the Legendre symbol of a in respect to p.

3. Assume that 2z%|n. In this case, we then get z%|y® + 2%, and by the previous
arguments, it follows that z%|y?—yx+2?. This is impossible because y*—yzr+z2% =
y* — z(y — x) < y* < 22. Thus, z|n.
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4. Assume that y|z + z. Write z := Ay — x, with some positive integer A. Clearly
A > 2. Wethen get £ = Ay (mod z). Since we also have 3> —yz + 22 = 0
(mod z), we get ¥2 — y(My) + (\y)* =0 (mod 2). Thus, z|y*(1 — A + A?), and
therefore z|1 — A + A%, If A = 2, we get z|1 — 2 + 22 = 3, which is impossible. If
A=3, weget z|]1 —3+3% =7, Thus, z = 7, and therefore 7 = 3y — z. Since y
is odd, we get * =2 and therefore y = 3, which does give the solution

234334 73=2.3%.7

mentioned in the statement of our theorem.

Assume now that A 2 4. Then,

—1 _ 3A
z:Ay»m>(A—1)y:,\y.A—:\—>§f.

Since z|1 ~ A + A2, we also get

A
,\2>1~,\+,\2>z>3—f,
and therefore that
A>3
1
Thus,
3y _ 9y?
AT

Since we also have z|y? — yz + 2, we get that

2 2
— YT + T
gy T
z
is a positive integer. However,
2 16
4 < ¥ < — <2
z 9

therefore § = 1, and so
z = y2 — YT + x?.

Thus,

n=2+3P+2° =y +z)(y’ —yz+ %)+ 22 =2(y+2) + 2,

therefore
n 2
‘; =Y +xr+ 2"
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Looking at this last relation modulo y, we get z+22 =0 (mod y). Since y|z+z,
we also get z = —z (mod y) and therefore z2 =22 (mod y). Thus, 22 + 1 =0
(mod y); hence, ylz(z + 1). This is possible only when y = £+ 1 and z = 2.
Thus, ¢ =2, y=3, z=32-2-3+422 =7, so that A = 3, contradicting the fact
that A > 4.

5. From now on, we may assume that y fz + z and therefore that y|z% — zz + z2.
If y =3, then z = 2, in which case z|2® 4+ 3% = 35; hence, z = 7 (because z = 1
(mod 3)), which is a case already treated. Thus, we may assume that y > 3, and
since y|z2 — zz + 7%, an argument similar to the one employed at step 2 tells us
that y =1 (mod 3).

6. Here, we observe that £ =2 (mod 3). Indeed, for if not, we must either have
z = 3, which is impossible because then 3|n, but z% + y* + 2% = 2 (mod 3), or
z =1 (mod 3), therefore 3 f n, while 23 + y3 + 23 = 0 (mod 3).

7. Write n := 2%y?z. Since we already know that =2 (mod 3) and y=2=1
(mod 3), we reduce the relation

:173 _+_y3 + 23 — Iayﬁz
modulo 3 to get 1 = 2% (mod 3). This shows that a is even.

8.1. Assume that £ = 2. We first show that a = 2. Indeed, for if not, we would
first get 8 | ¥ + 23 and hence that 8|(z 4+ y)(22 — zy + ¥?). Since 22 — zy + y? is
odd, we get 8|y + 2. Thus, (y,2) € {(1,7),(7,1),(3,5),(5,3)} (mod 8).

We know that z|y®+ 23, and y|z3+ 23, In particular, —2y = (4/y)* (mod 2), and

50 9
() -1
r4

and in a similar way one deduces that

-2
<__z) =1.
y ‘
Hence, we have

- (:—1> (i) (g> (E) (g) (E) = (—1) R TR (D)
z y Yy F4 V4 Y

= (=)0 =
a contradiction. Therefore, o = 2.
8.2. Here, we show that € {2,3}.If 8 =1, we get
dyz =224+ y3 +2° > 3(2-y 2) = 6yz,

which is impossible, the above inequality following from the AGM-inequality. Using
now the fact that z]y? — yz + 22 (see step 2), together with the fact that y? —
zy+ 22 = y? — z(y — ) < y*, we learn that z < y%. Since

323> 23 + y3 + 28 = 4yﬁz,
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we get

and therefore that 3 < 4.
8.3. Assume that = 3. Rewrite the equation

8442+ 2% =42

g 23+8

VE o1
Let D :=4z—1. Thus z = 47! (mod D). Since we also have 2%+ 8 = 0 (mod D),
we get 473 + 8 = 0 (mod D) and therefore that D{1 +8-4% = 513 = 33.19. Thus,
D e{1,3,32,3%,19,3-19,3%.19,33.19} . Since z must be at least the second prime
number which is congruent to 1 modulo 3, we have that D 2 4.13~1 = 51, and

since we also have that D = —1 (mod 4), it follows that in fact only the instance
D 32.1 1
D = 32 .19 is possible. Therefore z = : L f+ = 43. However, for

z23+8 433 +38
4z -1 4.43-1

this value of z, the number == 465 is not the cube of a prime

number.

8.4. Assume that [ = 2. In this case,
23 <ad + 33 + 28 = 4y*z,

50 that

22 < 4y2,
which implies that z < 2y. But we also have that y?|(z® + 2%), and since y does
not divide =+ z, it follows that y?|z? — zz+1z% = 22— 22 +4. Since z = 1 (mod 3),
we also have that 3|22 — 2244, and since y > 3, we have that y?|(2% — 224 4)/3.

Now write
o 22-2z+44

v = 35
where J is a positive integer. We then get

22-22+4 22 47 4
b= e & < e = = <2,
3y? 3y? " 3y? 3
which means that § = 1. Thus, 3y? = 2% — 2z + 4. The original relation becomes

Wl =8+P +28 =¥+ (2 +2)(22 - 22+4) = + 3% (2 + 2),

so that
dz=y+3(z+2)=3z2+y+6,



Integers representable as the sum of powers of their prime factors 63

which implies that z = y + 6. Thus, y = —6 (mod z), and since z | y* —yz + 1% =
y2—2y+4, weget z | (—6)2—2(—6)+4=52=4-13.Thus, z =13,y =2—6 =17,
and we have obtained the solution

28 73 1138 =22.7%.13

mentioned in the statement of our theorem.
9. From now on, we assume that z > 2. The relation z|y® 4+ z® implies that

. 2
y® = -2 (mod z) and therefore —yz = (zQ/y) (mod z), and so

(Zﬁ) =1 (3)

T

In a similar way, using the facts that ylz3 4+ 23 and z|z3 + y3, one gets
()2
() () Q-0 () ()
and similarly
1= ()4 (E) . (5) ,
¥ y

=R () (2)

-1 -1
Y CZ=Z

Thus,

and

-1
Write a ;= ?—2—, b= . Multiplying the three relations above

side by side and using quadratic reciprocity we get

2 3
1 = (_l)a+b+c+ab+ac+bc,

which means that
S:=a+b+cH+ab4ac+ be

must be an even number. Let us notice that it is not possible that all three numbers
a, b, ¢ are even. Indeed, if this were so, then £ =y = z = 1 (mod 4), and reducing
the equation

3+ y3 +2=n

modulo 4, we would get 3 = 1 (mod 4), which is impossible. Thus, at least one of
the numbers @, b, c is odd. This, together with the fact that S is even implies
that all three numbers a, b, ¢ are odd, therefore z = y = 2 = 3 (mod 4). We
reduce now the relation

IS +y3 +23 =$ayﬁz
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modulo 4, and since a is even (see step 7), we get 1 = 3°+1 (mod 4) and therefore
that - is odd. Thus, we may write our original equation as

o + 3 + 23 = miyz, 4)

where m := z2/2y(B-1/2 i5 an integer. Write z + y = 2¢. Notice that since
z =y = 3 (mod 4), we have that £ is an odd number. Let p be an arbitrary prime
divisor of ¢. Reducing the above equation mod p, we get 23 = m?yz (mod p),

2
therefore y = (z/m) (mod p). Thus,

Since y = ~z (mod p), we get that

=0 -GG G e e ()= ()

where in the ahove computation we used the quadratic reciprocity law together
with the fact that z = 3 (mod 4). Since the above formula holds for all prime
divisors p of ¢, we get, by multiplying all these relations, that

1=(2)= (W28 = () (D) - () - ()

T \g/ T T T \z T B T “N\z /)
In the above argument, we used only equation (4) (which is symmetric in y and z),
together with the fact that £ = y = z = 3 (mod 4) (which is also symmetric in

y and z), but we did not use size arguments (i.e. the fact that y < z). Thus, an
identical argument can be carried through to show that

()=

Multiplying these last two relations we get

() ()- () () (%)

which together with the fact that

(see equation (3)), implies that

-1
()
T
contradicting the fact that £ = 3 (mod 4).
This completes the proof of Theorem 1.
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4. An upper bound for Ty(z)
Theorem 2. As = — oo, we have

To(z) < zexp {—(1 +0(1))4/ é logmlogloga:} .

Proof. First recall the estimate
V(z,y) = #{n <z: P(n) <y} K zexp{-(1+o0(1))ulogu}, (5)

where u = logz/logy (see for instance Tenenbaum [4]). Now let

3
Yy = exp { 5 log z log log z} (6)
and set
2 1 1
U= izi; =1/3 logolgo::r so that ulogu = (1+ 0(1)) 6 logzloglogz. (7)

It follows from (5), (6) and (7) that

#{n<z:neTy Pn) <y} < zexp{—(1+o(1)ulogu} (8)

1
&K Texp {—(1 +0(1))4/ —élogmloglogm} .

We shall therefore assume from now on that P(n) > y.
Let z be a large number with the corresponding y and u defined by (6) and
(7). Then, using Stirling’s formula, as well as the fact that

1
Z - = loglogy + O(1)
P<yp

holds as y tends to infinity, we get

N

(u]
T T 1
#{n <z:wn) > u) mmp%@ P1. .. Plul < [u]! (g 5) (9)
(elog logz + O(l)) L]

)
L zexp{—(1+o0(1))ulogu}

< :cexp{-(l + 0(1))3/%log:r,loglog:r} .

N

T
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Hence, from here on we may assume that w(n) < u.

We now neglect those integers n < , n € Ty with P(n) > y and such that
P(n)?|n, since the number of such integers is

T

<#{n<z:P(n)>y, P(n)’ln} < =

P>y

T 3
L4 g =$exp{-\f-2-log:cloglogz}.

From here on, we shall therefore assume that Q := P(n)||n and write n =
m@. Now, writing (2) as

(10)

nzmQ:p'{‘+...+pi", (11)

where p1 < ... < pr = @Q are the prime factors of n and each b; is non negative,
we get from (11) that

Pt +6=0 (mod Q), (12)

where § is 0 or 1, depending if b > 0 or b; = 0. The number appearing on the
left hand side of (12) depends only on the prime factors of m and does not depend
on (), and moreover, each one of these numbers has at most logz factors. Thus,
we may fix m < z/y and count how many candidates there may be for a given
prime number Q. Since n is not a prime power, we have & > 2, and therefore
the left hand side of congruence (12) is a positive integer. Since p* < n < z, it
follows that b; < logx + 1. In fact, b; < logz + 1 always holds except when i =1
and p; = 2, in which case b; £ @ﬁ—z}l . Thus, the total number of integers which

can appear on the left hand side of (12) is <« (logz + 1)“™ « (logz + O(1))* «
exp{(1 + o(1))uloglogz}, which means that

#{n <z :n €Ty, P(n) >y, P(n)||n,w(n) < u} (13)

< rzlogzx

exp{(1 + o(1))uloglogz}

& Texp {—(1 +o(1))\/élogzloglog$}.

Theorem 2 then follows from (8), (9), (10) and (13).

5. Empirical lower and upper bounds for T(z)

Although we cannot prove that T is an infinite set, a heuristic argument shows
that
logx

exp (-2(1 + O“”W) < T(z) < /2o, (14)
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Our argument goes as follows. First, we will show that, heuristically,

T(z) = %Zf(n), where f(n) := ;IH llog "J , (15)

e oin L1OBP

from which we will show that (14) follows.
Indeed, given a positive integer n such that w(n) is odd and writing n =
q3' ... ¢%, then in order to have n € T', we must find a representation of the form

n=gr' +...+¢." (16)

Now, for each exponent a;, there are {logn/logg;| possible choices. Hence, if a
representation of the form (16) is possible, then the exponents a; have been cho-
sen in the interval [1, [logn/logg;]}. Therefore, since there are []7_; [logn/ logg;]
possible choices for the right hand side of (16), we should ‘expect’ that a represen-

1 1
tation of the form (16) will be possible with a ‘probability’ equal to — H t o8 nJ ,

n logp

pln
thus establishing (15); note that the factor § comes from the fact that a randomly
chosen number has an odd "w(n)” with a probability 32-
It remains to prove that (14) follows from (15).

First we prove the lower bound. Let z be a large positive real number and
let £ = 1 be an integer.

Let p; < ... < px be the first & primes. We shall consider only the contri-
bution to T'(z) of those positive integers n = py...pxp < T, where p > pi is a
prime number. We first get rid of the integer parts. Clearly, if 7 € {1,...,%k}, then

logn ~ logn [ logn S logn (l 3 logp,;) S logn exp (_210gpi) ’
logp;| logp: log p; log pi logn log p; logn
where in the above inequalities we used the fact that logp;/logn < 1/2 and that

the inequality 1 —t > exp(—2t) holds for ¢ € (0,1/2). Together with the fact that
[logn/logp| > 1, we get

k k k k

logn log p; logn (log p)
n) = expt —2 > exp(—2 > )
fn) (H logpi) p( ZT logn p( )H logp; © logpi...logpy

FE=g| t==1

This implies that

o k
T(z) = % IO ! (log ) (17)

p1logpi...pelogpe  p

ngx Pl PEPE®
P>PE

T pid .. Dkl
pl ngl pk ngk pk<p<:c/p1...Pk p

k
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1 z/p1-..Px 1 k—1
plogpr...pklogpy Jp, t
S 1 (log(z/p1 ... px))"
p1logpr.. . pelogpx k
_ : k(logpy + ... + log px)
=exp | kloglog z — Z(logpi +loglogp;) + O or 7 .
=1

The above chain of inequalities holds when & is such that

log(z/p1...pk) — logpx > log(z/p1 ... k),
which in turn is true when

logp +... + logps

log px + g s = o(log z),
which holds when €l &
0]
log px, + logg:fk = o(log x). (18)

We now use the fact that, as &k tends to infinity,
pr € klogk + kloglog k — k 4 o(k)

(see Théoreme A (v) in [1]), together with the well known estimate

orp = n /2y _ I S Y
Y logp= Y A(n) +0(y'/?) y+0<exp(c x—logy)) y+0<(1ogy)2)’

Py ngy

where c is some positive constant and A denotes the von Mangoldt function, to
conclude that

k
Zlogpi:pk +O((1T1g)km) < klogk + kloglogk — k 4+ o(k). (19)

i=1

Since pr < 2klog k holds for all sufficiently large k, we also have that

k
Z loglog p; € kloglogpx < klog (log k + log(2logk)) (20)
i=1
kloglogk
< ——— v
L kloglogk + O ( logk )

= kloglog k + o(k).
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Introducing inequalities (19) and (20) into (17), we get

k?log k
T(z) > exp (k loglogz — klogk — 2kloglogk + k+ o(k) + O ( lol;g )) (21)
T

log ¢ 5 k?log k
=exe (11 (g ) #4440 (57 ))

In order to maximize the main term of the above inequality, we should choose k

log =
W) should be as large

. We note that k£ is in the

versus = in such a way that the expression & log (

‘ 1t logz
as possible. Thus, we choose k := ‘_e (loglog )2

acceptable range; i.e., p1...px < , that condition (18) is fulfilled, that with this
choice of ¥ we have

log x
and that the error term is

k?log k k  k(log k)? k
= = O
log logk logzx

Hence, we may replace (21) by

T(z) > exp (2(1 + o(1))k) = exp (%(1 +0(1))zl—5glo'T§§$—)2) ,

which proves the left hand side of inequality (14).
We now prove the upper bound.

Fix a large number & and write

Z Hlog" Z Hlog”- D)+ To(z),  (22)

logp Iz non logp
u(n)(k u(n))k
say. We have
1 w(n) (logn)*  (log z)*+!
Ti(z) < D (logn)"™ < )= « S (23)
ngx ns:
win)<k
In particular,
Ti(z) < (log z)**! (24)

holds if k is sufficiently large.
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In the sequel, we shall be using the fact that, if k£ is sufficiently large, then

H logp; > (logk)*. (25)

Indeed, since p; > ilogi holds for all i = 2 (see [3]), one gets
logp; = logi+loglogi ~ (i = 3). (26)

The inequality log(l +¢) > t/2 holds for all t € (0,1/2). The function t -—
loglogt/logt is decreasing for t > e® and its value at e® is 1/e < 1/2. Hence,

. . . log logi 1loglogi
1 = lo
log(logi + loglog¢) = loglogi + log (1 g ) >loglogi + = 5 logi
(i >e® = 15.2).
We thus get
k k
D loglogp; > ) log (logi + loglog ¢) + O(1)
o i=16
u 5 log log i
- Z loglogi + Z log (1 + log i ) + O(1)
i=16 i=16
log logt
Z loglogi + = Z ogi o)
1=16
k
“loglogt
P loglo tdt+ dt +O(1
16 B8 2 J1 logt (1)
t1 1 ftloglogt
= ——dt + = dt+ 01
tloglogtlt 16 16 logt + 2[15 logt +00)
> kloglogk,

where the last inequality follows for large enough k due to the fact that the function

k
/ (llog logt ) dt tends to infinity with k, thus establishing (25).
16

2 logt iogt
Using (25), we have

0g N win)
Tyz)< Y. = 1_(logm)® ¥ %( log ) ‘ (27)

nee HW(ﬂ) log pi ngx log w(n)
win)zk win)zk
Using the fact that
logn logn
< 1 1))————e
win) < progm + W) qo0g e
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1 t
(see Pomerance [2]), together with the fact that the function ¢ —— (S’;T;) is

increasing for t < logn, it follows, from (27), that

D)< ¥ Lon o) 28)

ngx

win)zk

1 loglogl
< Ni(z)exp< O 0BT 0B OB 0BT .
loglog

where

Ne(@) = #{n <z | w(n) = k}.
It is easy to see, using Stirling’s formula, that

k

1 z 1 z [eloglogz + O(1) k
< <77 - —= — - (2
Ne() I; @ g K ng < \/;;< p (29)

qy QKT

In particular, combining (28) and (29), for large = and &, we have that

k
(loglog x)*/? logz logloglog x
Ty(z) <z ( P exp< O oz log 7 . (30)

1 logzx

We now choose & such that & = [ J . It is clear that k is in the accep-

§log log z
table range; i.e., k = w(n) for some n < z. Furthermore, inequality (24) shows
that

Ti(z) < o1/2He), (31)

while inequality (30) shows that

log log 1
Ty(z) < zexp ( Sklogloglogz — klogk — O ( 28Zio8loglog ™ (32)
9 log log

~ Texp ﬁlog:c 40 log zlogloglogx _ p1/240(1)
2 loglog =

Using (31) and (32) in (22), we obtain the upper bound in (14).
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