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INTEGERS REPRESENTABLE AS THE SUM OF POWERS OF 
THEIR PRIME FACTORS 
JEAN-MARIE DE KONINCK 1 & FLORIAN LUCA 2 

Abstract: Given an integer a ~ 2, let S0 be the set of those positive integers n, with at 

least two distinct prime factors, which can be written as n = L p°'. We obtain general results 

vln 
concerning the nature of the sets Sa. and we also identify all those n E S3 which have exactly 
three prime factors. We then consider the set T (resp. To) of those positive integers n, with 

at least two distinct prime factors, which can be written as n L p°'P, where the exponents 

vln 
av ~ l (resp. av ~ 0) are allowed to vary with each prime factor p. We examine the size of 
T(x) (resp. To(x)), the number of positive integers n ~ x belonging to T (resp. To). 
Keywords: Prime factorization 

1. Introduction 

Identifying all those positive integers n such that 

(1) 

for some integer a ~ 2 is certainly a difficult problem. Since prime powers p0 

(with a ~ 2) trivially satisfy (1 ), we shall examine the set S0 , namely the set of 
those positive integers n satisfying ( 1) but which have at least two distinct prime 
factors. 

We first obtain general results concerning the nature of the sets So:. \Ve then 
identify all those n E S3 which have exactly 3 prime factors. We further consider 
the more general equation 

n= LlY.p, 
pin 

2001 Mathematics Subject Classification: 11A41, 11A25 
1 Research supported in part by a grant from NSERC. 
2 Research supported in part by projects SEP-CON ACYT 37259-E and 37260-E. 

(2) 



58 Jean-Marie De Koninck & Florian Luca 

where the exponents O:p are allowed to vary with each prime factor p. Clearly all 
prime powers have such a representation (2). So let us define T (resp. To) as the 
set of all positive integers n having a representation (2) with each D'p ~ 1 (resp. 
D'p ~ 0) but with at least two distinct prime divisors. We obtain a non trivial 
upper bound for the number To(x) of positive integers n ~ x belonging to To. 

Finally, we give a heuristic argument yielding lower and upper estimates for 
T(x), the number of positive integers n ~ x belonging to T. 

2. General observations 

For each integer n ~ 2, let w(n) stand for the number of distinct prime factors of 
n and let P(n) stand for the largest prime factor of n. We first make the following 
observations. Given a ~ 2 and n E Sa, we have: 

(i) P(n) < n 1/a. 
(ii) Letting r = w( n), then r ~ 3 and r is odd; this is easily established by 

considering separately the cases "n odd" and "n even". 
(iii) If a is even, then w(n) cannot be a multiple of 3; one can see this by 

considering separately the cases "31 n" and "3 Jn". 
(iv) If w( n) = a, then n cannot be squarefree, since otherwise, comparing the 

arithmetic mean with the geometric mean of the prime factors of n, we get 

n Q1 Q2 • •• Qa = qf + qfi + ... + q~ ~ D'Q1 Q2 ••. Qa = an, 

a contradiction, since a ~ 2. 
(v) If n E S2, then, in view of (ii) and (iii), r := w(n) is odd, r ~ 5; moreover: 

* if r = 5 , then n = 5 or 8 ( mod 24) , 
* ifr=7,then n 7, 10, 15or18 (mod24), 
* otherwise r ~ 11. 

(vi) A computer search shows that S3 contains at least 6 elements, namely: 

378 = 2 · 33 
· 7 = 23 + 33 + 73

, 

2548 = 22 
· 72 

· 13 = 23 + 73 + 133
, 

2 836 295 = 5 · 7 · 11 · 53 · 139 = 53 + 73 + 113 + 533 + 1393, 

4 4 73 671462 = 2 · 13 · 179 , 593 · 1621 = 23 + 133 + 1793 + 5933 + 16213
, 

23 040 925 705 = 5 · 7 · 167 · 1453 · 2713 = 53 + 73 + 1673 + 14533 + 27133
, 

21467102 506 955 = 5 · 73 
· 313 · 1439 · 27791 = 53 + 73 + 3133 + 14393 + 277913

. 

(vii) If n E S4 , then w(n) 7 or w(n) ~ 11. To show this, first let r = w(n). 
We know from (ii) that r ~ 3 and odd; but from (iii), it follows that r :/- 3; 
hence, r ~ 5. But r :/- 5; indeed, if r = 5, then first assume that 5ln; in 
this case, since p4 = 1 (mod 5) for all primes p :/- 5, 

n 625+qi+qj+q!+qt 0+4 4 (mod5), 
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which contradicts 5!n; on the other hand, if n is not a multiple of 5, then 
n 5 (mod 5), again a contradiction. Hence, r ~ 7. Finally, in view of 
(iii), r =J. 9. Hence, we may conclude that r = 7 or r ~ 11. 

(vii) It is not known if T is an infinite set. However, if there exist infinitely many 
2k + 3l 

primes p of the form p 
5 

, then #T +oo, the reason being that 

in this case, we have 2 • 3 • p 2k + 3l + p. 

(viii) Using a parity argument, it is clear that any number n E T has an odd 
number of distinct prime divisors. One can check that the smallest element 
of T is 30; in fact, 30 has two representations of type (2), namely 

30 = 2 · 3 · 5 2 + 3 + 52 = 24 + 32 + 5. 

Letting T(x) #{n ~ x: n ET}, a computer search shows that T(lO0) = 
6, T(103

) = 42, T(104) = 109, T(105) = 321 and T(106) 973. On the 
other hand, the smallest odd element of T is 915, in which case we have 

915 3 · 5 · 61 = 36 + 53 + 61. 

3. Identifying those n E Sa with w(n) = 3 

Theorem 1. If n E S3 and w ( n) 3, then n = 2 • 33 
• 7 or n = 22 

• 72 • 13. 

Proof. We prove this in 9 steps. 
1. Write x < y < z far the three distinct prime factors of n. Nate that the given 
relation forces zjy3 + x3 , so that zjy + x or zly2 - yx + x 2

, and similarly ylz + x, 
or ylz 2 zx + x2

, and xlz + y, or xjz2 
- zy + y2

. 

2. Assume zjy + x. Since y + x < 2y < 2z, this is possible only when z y + x. If 
x > 2, then y+x is even, and so it cannot be an odd prime. Thus, x = 2, z = y+2, 
but then 

x 3 + y3 + z3 = 8 + y3 + (y + 2) 3 = 16 (mod y), 

which is impossible. Thus, z AY + x, and zjy2 
- yx + x 2

• Since z > 3, we also 
conclude that z = 1 (mod 3), because the relation y2 yx + x 2 = 0 (mad z) 

implies that (2y- x)2 = -3x2 (mod z), which means that ( ~
3

) = 1, which is 

equivalent to the fact that z = 1 ( mod 3). Here, and in what follows, for an odd 

prime p and an integer a we use ( ~) for the Legendre symbol of a in respect to p. 

3. Assume that z2 jn. In this case, we then get z2 ly3 + x3 , and by the previous 
arguments, it follows that z2 iy2 -yx+x2 . This is impossible because y2 -yx+x2 = 
y2 - x(y - x) < y2 < z2

• Thus, zl!n. 
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4. Assume that yjz + x. Write z := )..y - x, with some positive integer ,\, Clearly 
,\ ~ 2. We then get x = ,\y (mod z). Since we also have y2 - yx + x2 = O 
(mod z), we get y2 - y(>.y) + (,\y)2 = 0 (mod z). Thus, zjy2(1- ,\ + >.2 ), and 
therefore zll -,\ + >.2 • If,\ 2, we get zll- 2 + 22 = 3, which is impossible. If 
,\ = 3, we get z 11 - 3 + 32 = 7. Thus, z = 7, and therefore 7 = 3y - x. Since y 
is odd, we get x = 2 and therefore y = 3, which does give the solution 

23 + 33 + 73 = 2 . 33 
• 7 

mentioned in the statement of our theorem. 

Assume now that ,\ ~ 4. Then, 

z = >.y 
).. - 1 3,\y 

x > ().. - l)y = ,\y • -).- ~ 4 . 

Since zl 1 - >. + >.2 , we also get 

and therefore that 

Thus, 

3>.y 
)..2 > 1 - ).. + ,\2 >- z > -

1/ 4 1 

3>.y 9y2 

z > 4 > 16. 

Since we also have z I y2 - yx + x 2 , we get that 

y2 yx + x2 o=-----
z 

is a positive integer. However, 

y2 16 
J<-<-<2 

z g ' 

therefore J = 1, and so 
z y2 

- yx + x2
• 

Thus, 

n = x3 + y3 + z3 (y + x)(y2 - yx + x2
) + z3 = z(y + x) + z3

, 

therefore 
n =y+x+z2. 
z 
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Looking at this last relation modulo y, we get x + z2 0 ( mod y) . Since yjx + z, 
we also get z = -x (mod y) and therefore z2 = x2 (mod y). Thus, x2 + x = O 
(mod y); hence, ylx(x + 1). This is possible only when y = x + 1 and x = 2. 
Thus, x = 2, y 3, z = 32 - 2 • 3 + 22 7, so that >. = 3, contradicting the fact 
that >. ~ 4. 

5. From now on, we may assume that y )'z + x and therefore that ylz2 - zx + x2 . 

If y 3, then x = 2, in which case zi23 + 33 = 35; hence, z = 7 (because z = 1 
(mod 3) ), which is a case already treated. Thus, we may assume that y > 3, and 
since yjz 2 - zx + x2 , an argument similar to the one employed at step 2 tells us 
that y = 1 (mod 3). 

6. Here, we observe that x = 2 (mod 3). Indeed, for if not, we must either have 
x = 3, which is impossible because then 3ln, but x3 + y3 + z3 = 2 (mod 3), or 
x 1 (mod 3), therefore 3 )' n, while x3 + y3 + z3 = 0 (mod 3). 

7. Write n := x 0 yf3z. Since we already know that x = 2 (mod 3) and y = z = 1 
(mod 3), we reduce the relation 

x3 + y3 + z3 = x 0 y/Jz 

modulo 3 to get 1 = 2° (mod 3). This shows that o: is even. 

8.1. Assume that x = 2. We first show that o: 2. Indeed, for if not, we would 
first get 8 I y3 + z3 and hence that 8l(z + y)(z2 zy + y2 ). Since z2 

- zy + y2 is 
odd, we get Bly+ z. Thus, (y, z) E { (1, 7), (7, 1), (3, 5), (5, 3)} (mod 8). 
We know that ziy3 + 23 , and ylz3 + 23 . In particular, -2y = (4/y) 2 (mod z), and 
so 

(-:y) = 1, 

and in a similar way one deduces that 

Hence, we have 

l= (-!) (~1) (~) (~) (~) (~) =(-l)(z21+9)+('
2

8-i+y
2

8-!)+((y-l~•-1)) 

(-1)1+0+0 -1, 

a contradiction. Therefore, o: = 2. 

8.2. Here, we show that .8 E {2, 3}. If ,8 = 1, we get 

4yz = 23 + y3 + z3 > 3(2 • y · z) = 6yz, 

which is impossible, the above inequality following from the ACM-inequality. Using 
now the fact that zly2 yx + x 2 (see step 2), together with the fact that y2 

-

xy + x2 = y2 - x(y - x) < y2 , we learn that z < y2
. Since 

3z3 > x3 +y3 + z3 = 4yf3z, 
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we get 
3z2 3y4 

Y/3 < - < - < y4 
4 4 ' 

and therefore that /3 < 4. 

8.3. Assume that /3 3. Rewrite the equation 

as 
z3 + 8 

3=--
y 4z -1 

Let D := 4z- l. Thus z 4-I (mod D). Since we also have z 3 +8 = 0 (mod D), 
we get 4-3 +8 = 0 (mod D) and therefore that Dl1+8 •43 = 513 = 33 • 19. Thus, 
DE {1, 3, 32, 33, 19, 3· 19, 32 • 19, 33 

• 19}. Since z must be at least the second prime 
number which is congruent to 1 modulo 3, we have that D ~ 4 • 13 - 1 = 51, and 
since we also have that D = 1 (mod 4), it follows that in fact only the instance 

D + 1 32 · 19 + 1 
D = 32 

• 19 is possible. Therefore z -- - ---- 43. However, for 
4 4 

z3 + 8 433 + 8 . 
this value of z, the number 

4
z _ 

1 4 
. 

43 1 
= 465 is not the cube of a pnme 

number. 

8.4. Assume that f3 = 2. In this case, 

so that 
z2 < 4y2, 

which implies that z < 2y. But we also have that y2 I ( x3 + z3 ), and since y does 
not divide x+ z, it follows that y21z2 - zx+x2 z2 - 2z +4. Since z = 1 (mod 3), 
we also have that 3lz2 - 2z + 4, ·and since y > 3, we have that y2 1(z2 - 2z + 4)/3. 
Now write 

2 z2 - 2z + 4 
y = 38 ' 

where 8 is a positive integer. We then get 

z2 
8= 

2z + 4 z2 4y2 4 
3y2 < 3y2 < 3y2 = 3 < 2, 

which means that 8 1 . Thus, 3y2 = z2 - 2z + 4. The original relation becomes 

4y2 z = 8 + y3 + z3 = y3 + (z + 2)(z2 - 2z +4) y3 + 3y2 (z + 2), 

so that 
4z y+3(z+2)=3z+y+6, 
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which implies that z = y + 6. Thus, y = -6 (mod z), and since z I y2 -yx +x2 = 

y2 2y+4, we get z I (-6) 2 2(-6)+4 = 52 = 4·13. Thus, z = 13, y = z 6 = 7, 
and we have obtained the solution 

23 + 73 + 133 = 22 . 72 . 13 

mentioned in the statement of our theorem. 

9. From now on, we assume that x > 2. The relation xly3 + z3 implies that 

y3 = -z3 (mod x) and therefore -yz = (z2 /y) 2 

(mod x), and so 

(3) 

In a similar way, using the facts that yix3 + z3 and zlx3 + y3 , one gets 

(-;z) (-:y) 1. 

Thus, 

1) . (~). (;), 
and similarly 

1 1L=.l (X) (z) (-1) 2 • y . y , 
and 

1 = (-1) (~). (;)· 
X 1 1 Z 1 

Write a := -- b ·= , c := . Multiplying the three relations above 
2 ' . 2 2 

side by side and using quadratic reciprocity we get 

which means that 
S := a+ b + c + ab+ ac + be 

must be an even number. Let us notice that it is not possible that all three numbers 
a, b, care even. Indeed, if this were so, then x = y = z = 1 (mod 4), and reducing 
the equation 

x3 + y3 + z3 n 

modulo 4, we would get 3 = 1 (mod 4), which is impossible. Thus, at least one of 
the numbers a, b, c is odd. This, together with the fact that S is even implies 
that all three numbers a, b, c are odd, therefore x = y = z = 3 (mod 4). We 
reduce now the relation 

x3 + y3 + z3 = x°'y!3z 

l 
j 

l 
I 
l 
1 
I 
' 
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modulo 4, and since a: is even ( see step 7), we get 1 3/3+ 1 ( mod 4) and therefore 
that /3 is odd. Thus, we may write our original equation as 

(4) 

where m := xo.l 2y(f3-l)/2 is an integer. Write x + y = 2£. Notice that since 
x = y 3 (mod 4), we have that £ is an odd number. Let p be an arbitrary prime 
divisor of e. Reducing the above equation mod p, y.;e get z3 = m 2y z ( mod p), 

therefore y (zfm )2 (mod p). Thus, 

(t) = 1. 

Since y = -x (mod p), we get that 

1 (~) = (~x) = (-;). (~) = ( 
e=l 1) 2 • 1) ~ - (;) (~), 

where in the above computation we used the quadratic reciprocity law together 
with the fact that x = 3 (mod 4). Since the above formula holds for all prime 
divisors p of £, we get, by multiplying all these relations, that 

In the above argument, we used only equation ( 4) ( which is symmetric in y and z), 
together with the fact that x = y = z 3 ( mod 4) ( which is also symmetric in 
y and z ), but we did not use size arguments (i.e. the fact that y < z ). Thus, an 
identical argument can be carried through to show that 

C:) = I. 

Multiplying these last two relations we get 

1 (;). (:z) = (t). (~) = (~), 

which together with the fact that 

(see equation (3)), implies that 

( ~1) 1, 
contradicting the fact that x 3 ( mod 4). 

This completes the proof of Theorem 1. 
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4. An upper bound for To(x) 

Theorem 2. As x - oo, we have 

T0 (x) ,;; xexp {-(! + o(l)) ~ logx log log x} · 
Proof. First recall the estimate 

'1I(x,y) := #{n ~ x: P(n) ~ y} « xexp{ (1 +o(l))ulogu}, (5) 

where u = logx/ logy (see for instance Tenenbaum [4]). Now let 

y exp { ~ log x log log x} 

and set 

(6) 

logx 
u----- logy -

2 logx 
3 log logx 

so that 
1 

ulogu=(l+o(l)) 6 logxloglogx. (7) 

It follows from (5), (6) and (7) that 

#{n ~ x: n E To, P(n) ~ y} « xexp{-(1 + o(l))ulogu} (8) 

« xexp { (I+ o(l)) ~ logx log log x} · 

We shall therefore assume from now on that P( n) > y. 
Let x be a large number with the corresponding y and u defined by (6) and 

(7). Then, using Stirling's formula, as well as the fact that 

1 Z::- = log logy+ 0(1) 
p~y p 

holds as y tends to infinity, we get 

( ) 

LuJ 

#{n ~ x: w(n) ~ u} ~ L x ~ lxJ' L ~ 
Pt .. · PLuJ U . p 

Pt ... pluJ ~x p~x 

(9) 

(
eloglogx + 0(1)) LuJ 

~ x LuJ 
~ x exp {-(1 + o(l))u logu} 

« xexp { (! + o(l)) ~ logx loglogx}. 
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Hence, from here on we may assume that w( n) < u. 

We now neglect those integers n::;;; x, n E To with P(n) > y and such that 
P(n)21n, since the number of such integers is 

< #{n::;;; x: P(n) > y, P(n) 2 ln}::;;; L ~ 
p>y p 

(10) 

« ~ xexp {- ~ logxloglogx} · 

From here on, we shall therefore assume that Q 
mQ. Now, writing (2) as 

P(n)lln and write n = 

(11) 

where Pt < ... < Pk = Q are the prime factors of n and each bi is non negative, 
we get from ( 11) that 

b1 bk-) " - 0 ( d Q) Pi + • , . + Pk- l + u = mo , (12) 

where o is O or 1, depending if bk > 0 or bk 0. The number appearing on the 
left hand side of (12) depends only on the prime factors of m and does not depend 
on Q, and moreover, each one of these numbers has at most log x factors. Thus, 
we may fix m ::;;; x/y and count how many candidates there may be for a given 
prime number Q. Since n is not a prime power, we have k ~ 2, and therefore 
the left hand side of congruence ( 12) is a positive integer. Since pt• < n ::;;; x, it 
follows that bi « log x + 1. In fact, bi < log x + 1 always holds except when i = 1 
and Pl 2, in which case b1 ~ 10

~;; 
1 

• Thus, the total number of integers which 

can appear on the left hand side of (12) is< (logx+ l)w(n) « (logx+O(l))u « 
exp{(l +o(l))uloglogx}, which means that 

#{n::;;; x: n E To, P(n) > y, P(n)lln,w(n) < u} 
xlogx 

~ --exp{(l + o(l))uloglogx} 
y 

« x exp { I + o(l)) ! logx log logx} · 

Theorem 2 then follows from (8), (9), (10) and (13). 

5. Empirical lower and upper bounds for T(:t) 

(13) 

Although we cannot prove that T is an infinite set, a heuristic argument shows 
that 

exp (~(1 + o(l)) logx ) ~ T(x) ~ x 112+o(l). 
e (loglogx)2 

(14) 
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Our argument goes as follows. First, we will show that, heuristically, 

1 
T(x) = 2 L J(n), 

n~x 

where J(n) := 1 IT llognj' 
n logp 

Pin 

(15) 

from which we will show that (14) follows. 
Indeed, given a positive integer n such that w(n) is odd and writing n = 

qf 1 
••• q:r , then in order to have n E T, we must find a representation of the form 

(16) 

Now, for each exponent ai, there are llog n/ log qd possible choices. Hence, if a 
representation of the form (16) is possible, then the exponents ai have been cho­
sen in the interval [1, l log n/ log qd]. Therefore, since there are n~""1 llog n/ log q;j 
possible choices for the right hand side of (16), we should 'expect' that a represen-

tation of the form ( 16) will be possible with a 'probability' equal to 
1 IT l log n j , 
n logp 

pin 

thus establishing (15); note that the factor ½ comes from the fact that a randomly 
chosen number has an odd "w(n)" with a probability½· 

It remains to prove that (14) follows from (15). 

First we prove the lower bound. Let x be a large positive real number and 
let k ~ 1 be an integer. 

Let p1 < ... < Pk be the first k primes. We shall consider only the contri­
bution to T(x) of those positive integers n =Pt .. •PkP ~ x, where p > Pk is a 
prime number. We first get rid of the integer parts. Clearly, if i E { 1, ... , k}, then 

llognj _ logn -{ logn} > logn (l - logpi) > logn exp (-2 logpi) 
log Pi - log Pi log Pi log Pi log n log Pi log n ' 

where in the above inequalities we used the fact that log Pd log n ~ 1 /2 and that 
the inequality 1 - t > exp(-2t) holds for t E (0, 1/2). Together with the fact that 
llogn/logpJ ~ 1, we get 

f( ) (Ilk logn) ( ~ logpi) ( 2)I1k logn (logp)k n ~ -- exp -2 ~ -- > exp - -- ~ ------. 
. logpi . logn . logpi logp1 ... logpk 
•=1 1=1 i=l 

This implies that 

1 --------

(logp)k 

p 

(logp)k 
p 

(17) 
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1 1x/p1 ... Pk (logt)k-1 
>> ------ ---dt 

P1 logp1 ... Pk log pk Pk t 

1 (log(x/p1 .. ,Pk)? » --------------
Pl logp1 ... Pk log pk k 

(kl l ~(l l l ) o(k(logp1+ ... +logpk))) = exp og ogx L.., ogpi + og ogpi + 
1 

· 
~1 ~x 

The above chain of inequalities holds when k is such that 

log(x/p1 .. -Pk) - logpk » log(x/p1 .. ,Pk), 

which in turn is true when 

l logp1 + ... + log pk (l ) 
og Pk + 

1 
= o og x , 

ogx 

which holds when 
klogpk · 

logpk + l = o(logx). 
ogx 

(18) 

We now use the fact that, as k tends to infinity, 

Pk ~ k log k + k log log k - k + o( k) 

(see Theoreme A (v) in [1]), together with the well known estimate 

L logp = L A(n) + O(y1/2) = y + 0 (ex (cJlogy)) = y + 0 ( (lo y )2), 
p,r,;;.y n,r,;;.y p gy gy 

where c is some positive constant and A denotes the von Mangoldt function, to 
conclude that 

k 

LlogPi 
i=l 

Pk +O ((lo:kk) 2 ) ~ klogk + kloglogk- k +o(k). (19) 

Since Pk < 2k log k holds for all sufficiently large k, we also have that 

k 

Lloglogpi ~ kloglogpk ~ klog(logk+log(2logk)) (20) 
i=l 

-::::. kl l k O (kloglogk) ..._, og og + logk 

k log log k + o(k). 
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Introducing inequalities (19) and (20) into (17), we get 

T(x) ~ exp ( k log log x - k log k - 2k log log k + k + o(k) + 0 ( k:~;! k)) (21) 

= exp ( k log ( k(::::) 2 ) + k + o(k) + O ( k::;! k)). 
In order to maximize the main term of the above inequality, we should choose k 

. . ( logx ) versus x m such a way that the expression k log k(log k )2 should be as large 

as possible. Thus, we choose k := U (lo~~~: x) 2 j . We note that k is in the 

acceptable range; i.e., p 1 .. ·Pk < x, that condition (18) is fulfilled, that with this 
choice of k we have 

( 
logx ) 

klog k(logk) 2 =(l+o(l))k, 

and that the error term is 

k
2 

log k = _k_ k(log k)
2 

= O (_.!5_) o(k). 
logx logk logx logk 

Hence, we may replace (21) by 

(
2 logx ) 

T(x) ~ exp (2(1 + o(l))k) exp ;(1 + o(l)) (log logx) 2 , 

which proves the left hand side of inequality ( 14). 

\Ve now prove the upper bound. 

Fix a large number k and write 

'"' 1 II logn '"' 1 II logn T(x) < L.t - -
1 

- + L..t - -
1 

- = T1(x) + T2(x), 
n,:,x n pin ogp n,:,x n pin ogp 

w(n)<k w(n)p>k 

(22) 

say. We have 

I: 1 (l )w(n) L (log nt (log xt+
1 

T1(x) ~ ogn ~ --- « k · 
n n · + l 

n~x n~x 
w(n)<k 

(23) 

In particular, 
Ti (x) < (log x)k+I (24) 

holds if k is sufficiently large. 
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In the sequel, we shall be using the fact that, if k is sufficiently large, then 

k 

IJlogpi > (logkt. 
i=l 

Indeed, since Pi ~ i logi holds for all i) 2 (see [3]), one gets 

log Pi ) log i + log log i . ( i ) 3). 

(25) 

(26) 

The inequality log(l + t) > t/2 holds for all t E (0, 1/2). The function t r--> 

loglogt/logt is decreasing fort> ee and its value at ee is 1/e < 1/2. Hence, 

log(log i + log log i) ( 
log log i) 1 log log i 

log log i + log 1 + l . > log log i + 
2 

l . 
og i ogi 

(i > ee ::::::; 15.2). 

We thus get 

k k 

L log log Pi ) L log (log i + log log i) + 0(1) 
i=l i=l6 

~ ~ og ogz k k ( l 1 ·) 
= i~loglogi+i~log 1+ logi +O(l) 

k 1 k lo lo i ) L log log i + 2 L t ; + 0( 1) 
i=16 i=l6 g 

f k 1 ft log log t 
~ log log tdt + - I dt + 0( 1) 

16 2 16 og t 

l

t=k ft 1 1 ft log log t 
=tloglogt - -

1 
-dt+- l dt+0(l) 

t=l6 16 ogt 2 16 ogt 

> k log log k, 

where the last inequality follows for large enough k due to the fact that the function 

t (! 10f log t -
1
-) dt tends to infinity with k, thus establishing (25). J 16 2 og t log t 

Using (25), we have 

~ 1 (lognl ~ 1 ( logn )w(n) 
T2(x) ~ ~ ;;_ f11~~) log pi ~ ~ ; logw(n) (27) 

w(n);;,k w(n);;,k 

Using the fact that 

w(n) :-,:: logn + (l + (l)) logn 
"' loglogn ° (loglogn)2 
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(see Pomerance [2]), together with the fact that the function t -

increasing for t ~ log n, it follows, from (27), that 
(

logn)t . 
-- lS 
logt 

where 

L 1 O(logn,lo,loglogn) 
T2(x) ~ · n · e log ogn 

n 
n~.r: 

w(n);;,k 

A( ( ) {o (logxlogloglogx)} ~ JVk x exp 
1 1 

, 
og ogx 

Nk(x) = #{n ~ x I w(n) ~ k}. 

It is easy to see, using Stirling's formula, that 

In particular, combining (28) and (29), for large x and k, we have that 

,..,., ( ) . ((loglogx)
3
1
2)k {o (logx logloglogx)} 

.r 2 x < x k exp l l . og ogx 

(28) 

(29) 

(30) 

ll logx j . . . We now choose k such that k := -
1 

l . It 1s clear that k 1s m the accep-
2 og ogx 

table range; i.e., k w(n) for some n ~ x. Furthermore, inequality (24) shows 
that 

T1 (x) < xl/2+o(l)' 

while inequality (30) shows that 

( 
3 ( log x log log log x) ) 

T2 (x) < xexp :/logloglogx klogk O loglogx 

_ . (- logx O (logxlogloglogx)) xl/2+o(l)_ 
- xexp 2 + 1 l og ogx 

Using (31) and (32) in (22), we obtain the upper bound in (14). 

(31) 

(32) 
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