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FOURIER COEFFICIENTS OF MODULAR FORMS
AND EIGENVALUES OF A HECKE OPERATOR

NIGEL WATT

Abstract: We prove results analogous to certain theorems of Deshouillers and [waniec [Invent.
Math. 70 (1982), 219-288]. Qur proofs parallel theirs in the use made of the summation formulae
of Bruggeman and Kuznetsov: where they require a lower bound on eigenvalues A; = 1/4 + K?

of the hyperbolic Laplacian operator (using that of Selberg) we need instead upper bounds on
the moduli of the eigenvalues of a Hecke operator, obtaining these from recent work of Kim
and Sarnak [J. Amer. Math. Soc. 18 (2003), 139-183}. Specifically, we give new bounds for
sums ZQ/?«:SQ Z{n]iSK f ZN/2<ngN bnp;(Dn)|?, where (b,) is a complex sequence, and
J indexes the elements, u;(z), of a suitable orthonormal basis of the space spanned by the Maass
cusp forms for the Hecke congruence subgroup Fg(g), while p;(n) is the n-th Fourier coefficient
at the cusp oc for u;(z), and D is a large positive integer. Our bounds are strongest in cases
where every prime factor of D is a small power of D.

One application (briefly discussed in the paper) is a new mean-square bound for the
modulus of a certain multiple sum involving Dirichlet characters module D. It is hoped this will
be useful in the study of Carmichael numbers.

Keywords: Maass cusp form, Fourier coefficient, Hecke operator, eigenvalue, mean value, Klo-
osterman sum, Dirichlet character,

1. Introduction

In this paper we establish two results that are in a certain sense (to be made
clear below) analogous to results obtained by Deshouillers and Iwaniec in [7].
That seminal work of Deshouillers and Iwaniec has served as our guide in the
construction of our proofs. We also take the opportunity to apply a bound for
Hecke eigenvalues that was proved recently by Kim and Sarnak in [16], Appendix
2. The initial motivation for this work has come from its potential applications in
the context of our earlier work with Glyn Harman and Kam Wong in [10].

The objects of primary interest to us will be Fourier coeflicients of modular
forms and Eisenstein series associated with a subgroup I' of the full modular
group SL2(Z). Our work, and this Introduction, relates only to cases in which T’
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is a Hecke congruence subgroup,

r:ro(q)z{(z 2)65‘L2(Z):czo (modq)},

of some given ‘level’ ¢ € N, With apologies to experts, we use the first half of
this section to present some basic information about modular forms and Eisentein
series, just sufficient to put our results (which follow) into some perspective, while
laying out some other facts for later reference. Qur notation is largely identical to
that introduced in [7}, Sections 1.1 and 1.2, and the reader should look there, or
in works such as [4], [12], [14] and [15], for an account of those elements of the
theory that we omit.

The elements of ' (or indeed those of SL2(R)) act on the upper half plane,
H = {z € C : Im(z) > 0}, and on the extended real line R U {co} through the
linear fractional transformations,

az+ b A
'yzzczid (7:(2 Z),zé@U{oo}),
where the usual conventions regarding ‘oo’ are observed. As T' C SLy(Z), the
cusps of I' are just the elements of QU {oo}. An equivalence relation on the set
of cusps is defined by writing a ~ b (‘a is equivalent to b'), or a & b (‘a is
[-equivalent to b’), if and only if the orbits 'a, I'b are equal. For example, one
has 0o ~ 1/q, since there exists v € I' with vz = z/(qz + 1) and (consequently)

vyoo =1/q.
For each cusp a we may choose a ‘scaling matrix’ g, € SLy(R) with

Ta00 = a and a;lraaa:{(é [1]) ZbGZ}, (1.1)

where T’y is the stabiliser subgroup. In the particular case a = co we may take

here
1 0
Coo = (O 1) . (1.2)

Given that k/2 € N, a function f: H — C is a holomorphic cusp form of
weight k with respect to I if and only if it satisfies f(2) = ((d/dz)(yz)) %% f(~z2),
for v € T and 2 € H, and, for each cusp a, possesses a Fourier expansion,

o0

—k/2
(—ad; aaz) [ (oaz) = Z Y(a,m)e(mz), (1.3)

me]

absolutely convergent for z € H.

A function u : H — C is a non-holomorphic modular form of weight zero
with respect to ' if and only if u(z) is an eigenfunction of the hyperbolic Laplacian
operator,

o f 0° 0? R -1
A=y 5}"§+5;§ (z = Re(z), y = Im(2)),
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and is such that u(z) = u(yz), for 4 € I' and z € H. Such a function u(z) is
called a Maass cusp form if and only if, for each cusp a, it has a Fourier expansion

of the form
o0

u(oa2) =y'? Y pa(m)Kix (27m|y) e(mz) (1.4)
iy

(absolutely convergent for z == z + iy with 2 € R and y > 0), where
THKT=A=(Au)/u (1.5)

and K, (z) is the Bessel function conventionally so denoted (see our Lemma 2.3
for an integral representation). Note that since K, (z) is an even function of v,
the Fourier series in (1.4) does not depend upon the choice of x satisfying (1.5).

For any cusp ¢ and s € C with Re(s) > 1, the Eisenstein series E(z) =
= E.(z,s) given by [7], Equation (1.13), is a function E : H — C satisfying
AE = s(1 - 3s)E and E(z) = E(yz), for y € I" and z € H. At each cusp a, there
is a Fourier series expansion,

E (0az,8) = bcaty® + %———ﬂ ©ea(0,8)y 7T+ (1.6)

o0 ;
27;'3177113—1/2
Y TR

+y172 T(s) Pea(m, 5)K,_1/2 (2m|mly) e(mz)

m=--00
m#£0

(see ‘Notations (II)', at the end of this section, for a definition of §., here). All
the Fourier coeflicients .q(m, s) here are holomorphic for s € C — {1} with
Re(s) > 1/2. For such s, and z = z + iy € H as in (1.4), the Fourier expansions
(1.6) are absolutely convergent (see [15], Chapter 6, which gives an account of
Selberg’s approach to the meromorphic continuation of the Eisenstein series). In
fact (1.6) for the cusp ¢ and just one cusp a yields, for 2 € H, a meromorphic
continuation of E¢(z,s) to all of C.

Given ¢ and 3 = 15 +ir, with r € R, the function E(z) = E(z,s) is a
non-holomorphic form of weight zero with respect to I", but, due to the presence
of terms independent of z in its Fourier expansion at cusp ¢, it is not a Maass
cusp form (see (1.6), (1.4) and the comment following [15], Proposition 6.12).
These particular non-holomorphic forms correspond, in respect of the operator A,
to eigenvalues A = s(1 — s) = % + 12, which, as r runs over R, range over the
‘continuous spectrum’ of values satisfying

A€ [1/4,00). (1.7)
For &£/2 € N, the Petersson inner product < f,g >, (defined in {7], Sec-

tion 1.1) makes the space of holomorphic cusp forms of weight & with respect to
" into a finite dimensional Hilbert space, M (I"). Each space MM (I") is equipped
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with a sequence ( ,(1’“)) of Hecke operators, where, for f € M (), n € N and

ze H,
(T(k)f) (z) = Z Z f (az +b) (1.8)

ad=n b modd
(a q)=1

(see [14], Chapter 6). Deligne [6] has, in a setting more general than our own, shown
the eigenvalues of these operators on MM (I") to be of the magnitude predicted by
the Ramanujan-Petersson conjecture.

Theorem 1.1. [Deligne] Let k/2 € N and n € N with (n,q) = 1. If A is an
eigenvalue of T,(lk), then
Al € T(n)nk" D72
where T(n) is the divisor function.
The Maass cusp forms u(z) span an infinite dimensional Hilbert space

LZ2,.,(C\H) with Petersson inner-product < f,g >q. This space too has its Hecke
operators Ty, , where, as in (7], Section 1.2,

THE=7 XX 1(552), (19)

ad=n bmodd
(a,q) i

forneN, feL2,,(T'\H) and z € H. Note that n~'/2T,, would be the operator

T\ given by (1.8). It is conjectured that, for n € N with (n,q) = 1, all the
eigenvalues 7 of T, satisfy |r| € 7(n) (the constant functions being excluded
by virtue of their orthogonality to all Maass cusp forms). This non-holomorphic
Ramanujan-Petersson conjecture has been reformulated in representation theoretic
terms by Satake [21] so as to embrace also Selberg’s conjecture that, in respect
of the space L7, (T\H), all eigenvalues A of A satisfy the same inequality (1.7)
that holds quite trivially in the case of Eisenstein series (both conjectures allowing
' to be any congruence subgroup of the full modular group). Following significant
progress towards one or other of these conjectures by Selberg [22], by Serre (see
[20}), and by the authors of [5] and (18], there has quite recently been striking
further progress on both fronts by Kim and Shahidi [17] and Kim [16]. With
further assistance from methods developed in [7] and [18], Kim and Sarnak [16],
Appendix 2, have achieved the strongest results to date, These include (as a special
case) the following theorem.

Theorem 1.2. [Kim-Sarnak] Let n € N with (n,q) = 1. Suppose that  is an
eigenvalue of T,,, and A an eigenvalue of A, where, in each case, the corresponding
eigenfunction belongs in L2, (T\H). Then

cusp
I7| < 7(n)n? (1.10)

and
- 9%, (1.11)
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where .
Y = 7 (1.12)

By [15], Theorem 4.7, for example, L2, (I'\H) has an orthonormal basis
{u; : j € N} with elements u; that are all Maass cusp forms with respect to I'.
By (1.11) and the Weyl law (see [15], Corollary 11.2), it may be assumed that,
subject to some renumbering, one has here:

1<, and A — 00 as n— 00, (1.13)

where A; = (Au;)/u;. We will take pja(m) to be the coefficient pa(m) in the
expansion of u(z) = u;(z) given by (1.4).

We follow {7] m parameterlslng the eigenvalues of A in terms of the ‘x’ of
(1.5), so that A; = ¢ +n By (1.13) it follows that, for all sufficiently large j € N,
one has

A;21/4  and k; €R. (1.14)

Adding the prefix ‘A’ to the terminology used in [7], we would classify any A; not
satisfying (1.14) as ‘ A-exceptional’. If there are any A-exceptional eigenvalues for
T, then they are finite in number, and (by (1.13) again) must satisfy:

AjE1/4-9%1/4)  and  ixk; € (0,9) (1.15)

(where we allow ourseives to substitute —x; for k; if necessary).

As observed in (7], Section 1.2, the facts that the Hecke operators T), with
(n,q) = 1 are bounded, self-adjoint, and commute with each other and with A,
enable us to assume, additionally, that each element u; of the above basis is an
eigenfunction of all those operators T,:

Thuj =7i(n)u;  (jm €N and (n,9) =1), (1.16)

where the ‘Hecke’ eigenvalues, 7;(n) are real.

Note that another possible basis of L2, (T\H) is the set {v; : j € N},
where v;(2) = u;(—%), for j € N and z € H. This alternative basis inherits all
of the properties that we are assuming the basis of u;’s to have. If we were to
substitute v;(2) for u;(z) (for all j), then the effect (see (1.4) and (1.2)) would
be to change pjo(m) into pjeo(—m), for all 3 and m. Therefore bounds for sums
involving coefficients p;..(m) with positive m (only) will imply corresponding
bounds for sums involving pju.(n) with negative n (only). This explains why we
will not explicitly state any results regarding the latter type of sum.

For k/2 € N, the Hecke operators T,(lk) with (n,q) = 1 are (like the corre-
sponding operators 717, ) bounded, self-adjoint and pairwise commuting. It follows
that we may suppose each space ‘.mk(r) with &£/2 € N to have an assigned or-
thonormal basis, {fjx : 1 € j € Ok(q)}, where every basis element f;x is an

eigenfunction of all Hecke operators T, ,ﬁ ) with (n,q) =1:

T fae = MNe(n)fie (k/2,5,n €N, § < 8k(q) and (n,q) =1).  (1.17)
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As a matter of notational convenience (in stating subsequent results) we
define here
Ask(m) = Age(n) /=172 (1.18)
and also
wik(a,m) = yk(a, m)/mE=D2, (119)
where 1;x(a,m) is the mth Fourier coefficient 4(a, m) in the expansion of f(z) =
= fix(2z) given by (1.3). Note that by Kim and Sarnak’s bound ((1.10) and (1.12)
of Theorem 1.2), and by (1.18) and Theorem 1.1 of Deligne we have now, for
Jj €N,
I () < 7(r)n’  (n €N with (n,g) =1) (1.20)
and, for k/2 € N and 1 <7 < 0k(q),

k(M| € 7(n) (ne N with (n,q) =1). (1.21)

Comparison of (1.16) and (1.17) with the operations of T;, and T,S,k) (indi-
cated by (1.9) and (1.8)) upon the respective Fourier expansions, at cusp a = oc,
of u(z) = u;(z) and f(z) = fjx(2) (shown in (1.4) and (1.3)) leads one to the
following well-known identities (in which j, m,n € N is assumed):

Do (M) (M) = 3 pioe (Tﬂ) (rog) = 1), (1.22)
almom) 99
and, for k/2 ¢ N and 7 =1,...,0:(q),
il mng(m) = 3 vl (oo "E) (ma)=1)
gl{m,n)

(see (1.18) and (1.19) for our notation here). It follows by Mdbius inversion that,
for j,m € N, and n € N with (n,q) =1,

TL m
piooin) = 32 o)t (2) o (7). (1.23)
al{mm) g

and, for k/2€ N, j=1,...,0k(q), m € N, and n € N with (n,q) =1,
. . (1Y . m
sitoormm) = 3 wlo)in (%) vin (. 2). (1.24)
gl{m,n)

As for the Eisenstein series F,(z,s), it is shown in [7], pages 227 and 246,
that their Fourier coefficients, in (1.6), are given by:

@ea(m, s) = Z’y 25..(0,m;7) (Re(s) > 1), (1.25)
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where S,,(0,m;v) is a special instance of the generalised Kloosterman sums that
feature in [7] (see {2.3) and (2.4) for a definition). It is well known, and unsurpri-
sing, given the analogy with the Ramanujan sum S{0,m;¢) =37 . e(am/c),
that quite simple formulae for S.4(0,m;~) exist. These can lead, by (1.25), to
the expression of p.,(m, s) in terms of reciprocals of Dirichlet L-functions (for
characters mod ¢), and so to the meromorphic continuation of E(z,s) discus-
sed earlier (see [11] and [19] for examples). We do not take this path. Instead
we shall, in Section 3, work to exploit the formula for S5 (0,m;7) so as to ob-
tain (in Lemma 3.4) a useful ‘near analog’ of (1.23) and (1.24) for the coefficients
Peoo(mN, 5).

In [7] Deshouillers and Iwaniec obtained ‘large sieve inequalities’ for the follo-
wing three expressions, in which b = (b,) denotes an arbitrary complex sequence,

O (q) 2

8O (b, Ny = N ((Zﬁ‘)kl_)fz > bayi(am)| ,  (1.26)

2<kgK j=1 IN/2<n<N

k even
(@) 2
1
Sa kb, N) = > cosh(7r}) Y bapia(n)| (1.27)
LTI Nj2<ngN
2
S (B, N) = Z / b @ea (n, 5 +ir)| dr (1.28)

K N/2<n<N

(note that, by (1.14), (1.15) and (1.12), the hyperbolic cosine in (1.27) is real
and bounded below by the positive quantity cos{(¥7)). The following theorem is a
restatement of {7], Theorem 2,

Theorem 1.3. [Deshouillers-Iwaniec] Let e, N > 0, ¢ € N and K 2 1. Let
b = (b,) be a comp]ex sequence. Then, when a is a cusp of I' = T'y(q), each of
the three sums Sa k(B N) (i=0,1,2) is majorised by a term

O: (K + p(a)N'") b l3)

where
/p

balp=1{ > 1ol (r>0) (1.29)

Nj2<ngN

and where, for a ~ u/w with w|g and (u,w) =1,
- KPS
pu(a) = (w, w) g . (1.30)

Note that [7], Lemma 2.3 (Lemma 2.1 of this paper), shows the u(a) of
(1.30) to be a well-defined function from QU {oc} into the set {1/|v| : v|q}. Note
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also that Deshouillers and Iwaniec have subsequently been able to replace the
factor N'*¢ in Theorem 1.3 by just N log(2N) (this is reported in [15], Section
8.4). Nevertheless we will find Theorem 1.3 sufficient for our use, since we cannot
prevent other unwanted factors, similar in size to N¢, from entering into our
calculations later on.

In this paper we replace the sequence b = (#,), of Theorem 1.3, by a sequ-

ence b(? = (bS,D)), where D ¢ N and

(D) _ [ bnyp, ifn=0 (mod D),
bn { 0, otherwise. (1.31)
By Theorem 1.3, one has, for i = 0,1, 2,
8¢ 6PV, DN) <, (K2 + p(a)(DN)'*) |lby|3. (1.32)
Here it should be observed that,
® o (k= 1)1 29 ?
8. (PP DN) = Z @1 z: bn¥ik(a, Dn){, (1.33)
2<k< K i=1 |Nj2<ng<N
k even
" (a) ) 2
(D) — S . .
st @ DNy = ¥ s D" bapja(Dn)] (1.34)
Irsi<¥C N/2<ngN
r K 2

8 P DNy =% / Y ban'gea (Dn,§ +ir)| dr (1.35)

¢ K N/i2<ng<N

Note that the sums over n in (1.33)-(1.35) each have only O(N) terms.
Moreover, in cases where (D,q) = 1, so that Lemma 3.4 applies and (1.23) and
(1.24) apply with n = D, the Ramanujan-Petersson conjecture suggests that the
moduli of these O(N) terms tend not to exceed the corresponding moduli in
the case D = 1 by more than a factor O.(D%), where € > 0 is arbitrary. It is
therefore disappointing to have the factor (DN)!'*¢ in the upper bound (1.32). A
natural conjecture is that the offending factor could be replaced with just DEN1+e,
Underpinning some of the work in [10] is the following theorem, which may be
regarded as an approach to the case a = oc of the conjecture just mentioned.

Theorem 1.4. [Harman-Watt-Wong] Let ¢, N > 0, K 2 1, ¢,D € N with
(g, D) =1, and take b = (b,) to be a sequence of complex numbers. Then

8. k(6P DN) <, D*r4(D) (K + ¢"'N'**) |by|3 (1.36)
and, for i € {0,2},

8 k(D) DN) <. 74(D) (K2 + ¢~ N'*¢) ||by]f3. (1.37)
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Section 3 gives details of the proof of this result, which was only briefly
sketched in [10].

For comparison of Theorem 1.4 with (1.32), note that as oo ~ 1/¢q we obtain
p#(o0) = (g,1)/q = 1/q from (1.30).

Theorem 1.4 is clearly less generally applicable than Theorem 1.3 of Desho-
uillers and Iwaniec, for it only gives information relating to Fourier expansions
about the cusp a = co. Nevertheless, if ¢ is a cusp such that the generalised Klo-
osterman sums Scc(m, n;y) and Saoso(m, 1;7y) are identically equal (and therefore
defined for the same set of positive v), then, as was observed by Iwaniec in [13],
the ‘Kloosterman sum’ side of the identity given by the Bruggeman-Kuznetsov
summation formula (Theorem 2.4 of Section 2) is the same for a = b = ¢ as it
is for a = b = oo, so that (through the implied invariance of the sum J; + J2 in
Theorem 2.4) it follows by Theorem 1.4 itself that substition of ‘¢’ in place of the
subscript ‘oo’ in (1.36) would not invalidate that result. This situation occurs if
(for example) ¢ = 1/s and ¢ = rs with (r,s) =1 (see [24], page 195, and, for an
application, [24], page 204).

In view of the phenomenon just discussed, and since we consider results
concerning the Fourier coefficients of holomorphic forms and Eisenstein series to
be of secondary interest (here), we have felt it reasonable in this paper to limit
ourselves to working with the Fourier coefficients from expansions about the cusp
o0. This also means that we avoid some distractions from the main ideas.

We are interested in bounding the average value of Sg)yq,K(b(D),DN) as
the ‘level’, g, runs over integer values in an interval (Q/2,Q]. Deshouillers and
Iwaniec introduced the idea of averaging over the level in [7], Section 8.2. Progress
beyond what Theorem 1.4 implies, would follow (by (1.23) for n = D) if one had
better bounds for sums

Sox(B.N;Dy= Y o} .(b,N;D), (1.38)
Q/2<q<Q
where (0.0)=1
(@ . . 2
oik(b,N;D)= ) m(ﬂ(D)) D bapis(n) (1.39)
jn, <K 4 Nj2<ngN

with the asterisk indicating that summation is further restricted to 7 € N such
that

1 < (15(D)/7(D))* < D*. (1.40)

Such progress is our goal in this paper.

Note that, since 7;(D) is always real, the bound (1.20) implies that the
rightmost inequality of (1.40) holds whenever (g, D) = 1. By analogy with (1.15),
any 7;(D) satisfying (1.40) may be regarded as a ‘Tp-exceptional’ eigenvalue, in
that it would provide a counterexample to the Ramanujan-Petersson conjecture
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in respect of the Hecke operator Tp . Indeed, the entire sum Sf, (b, N; D), given
by (1.39) and (1.38), may be seen as analogous to the sum

2

SQY, N0y = ) Z V)’ Y anpiee(m)|

Q<qxleQ  j21 N<ng2N
Aj<l/4

considered by Deshouillers and Iwaniec in [7], Section 8. Note that in view of
(1.15) the factor 1/ cosh(mk;), present in (1.39), would make little difference if in-
serted into the sum S(Q.Y, N:0). In respect of this sum, Deshouillers and Iwaniec
observed (see [7], Theorem 8) that (1.15) implies

1< (Y") <v?  (JeN, N <1/4), (1.41)

given that ¥ > 1 (the non-trivial case in (7], Section 8.2). As (1.40) and (1.41)
have such an apparent similarity in respect of their implications regarding the
sums that they relate to, the analogy between S§ (b, N; D) in (1.38)-(1.39) and
the sums S(Q,Y, N;0) of [7] appears strong.

Cur main idea in this paper has been to extend the above analogy so that
it encompasses certain proofs and results in {7] (especially the work of [7], Sec-
tion 8). As this suggests, the real concern in our work is with the possibility of
Tp-exceptional eigenvalues (the A-exceptional eigenvalues will play only an inci-
dental part in what we do). At the same time we have tried to take full advantage
of the leverage granted by Kim and Sarnak’s results (of which (1.10) is the most
relevant): the best analogous result available when [7] was written being Selberg'’s
bound A; > 3/16 (corresponding to the inequality 0 < ixk; < 1/4 in place of
(1.15)).

)Although the sums defined in (1.39) and (1.38) are helpful in explaining our
main ideas, we have found them rather awkward to use in some of our arguments
(though doubtless those difficulties could be overcome). We have preferred to do
all our work with the slightly different sums:

| To@ : 2
ok (b,N:D,y) Z / b nl("+y)¢p(m(Dn,%+ir) dr+ (1.42)
K N/2<n<N

(9} 2

+ Z cosh1 Z ban® pjoo(D)|

[k <K ) N/2<ngN
and .
Sqx(b,NiDyy) = 3 oqk(b,N;D.y), (1.43)
Q/2<q<Q

where the real parameter y is a essentially a technical convenience (one could
restrict y throughout to being O ((QDN)®) for arbitrary € > 0). By (1.22) and
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{1.23), there exists a close connection between the sums in (1.39) and (1.38) and
the sums in (1.42), (1.43). The latter sums are easier to work with, and are also
more directly related to the sum bounded in {1.36) of Theorem 1.4 (the result all
our work aims to improve on). Specifically, by (1.42), (1.31) and (1.27) and (1.28),
we have:

ok (b, N;D,y) = oq.x (b(y), N; D,0) = (1.44)
= oqi (b (), ND;1,0) =

1 L o2
= 8001 07 W), DN) + — 88 (617 (y), DN),
where, given y € R and v = (v,), the sequence v(y) = (vn(y)) is given by:
vn(y) = von' (n e N). (1.45)

Note the ambiguity as to whether it is vi¥iniv or o (n/k %W that should be the

value of v:f)(y): so long as one chooses consistently (for all n) the difference is
immaterial here, since the two alternatives differ by a factor £'¥ and since all we
ever require in our work is that sums of the form

ZZwm ol (y Yol ()

be well-defined. Therefore we may sometimes use v‘* (y) = (i nv), while at
other times using v*(3) = u(®  where u = v(y). A similar excuse can be made
for the ambiguity in the compound notation v{k}(y), where, for gg € N and
b = (b,), the sequence bi%!} is given by (1.52) below.

Through the Bruggeman-Kuznetsov summation formula [7], Lemma 4.7 (The-
orem 2.4 in Section 2), the sums o4 x(b, N; D,y) in (1.42) are bounded in terms
of sums of Kloosterman sums:

agu(b,N;D,y) = (1.46)
_ iy L1 4nDymn
S°S bnba (T-”-) 'Y ey S(Dm, Dn; qf)
n gt qf
Nf2<m ngN £=1
and
Aqu(b,N;D,y) = w(g/Q)aqu(b, N;D,y), (1.47)

where, for H > 0,

(e o

Gpy(x) = H%/sin(a:cosh(&))f tanh(f)e"”g)gdg, (1.48)
0
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while the ‘classical’ Kloosterman sum S(a,b;c) is as in (2.8), and w(x) is some
infinitely differentiable real function satisfying:

w(x) 2 {(1)’ lofttéfwgis:, st and w(z)=0 (¢ (1/4,2)). (1.49)
The new parameter H here is strongly linked to the ‘spectral’ parameter K in
(1.42)-(1.43): in effect, we work throughout with H satisfying 1 < H « D*K,
for some arbitrarily small positive absolute constant € (see Lemma 4.9 and its
applications in the proofs of Lemmmas 5.3 and 8.1).

In Section 4 we treat these sums of Kloosterman sums almost by a formal
manipulation (analysis playing a supporting part). Through Lemmas 4.6-4.8 we
escape the constraints resulting from the condition (n,q) = 1 in (1.20), (1.23),
(1.24) (and from the condition (D,q) = 1 in Lemma 3.4). Our first significant
result (the proposition below) is then a quite straightforward consequence of (1.20),
(1.23) and Lemma 3.4.

Proposition 1.1. Let € > 0 and ¥ = 7/64. Then for K 21, Q,N >0, y ¢ R,
any complex sequence b = (b,), D € N and any D; € N with D,|D, one has

1

1
K2 SQ‘K(by ]V; D', y) e =5

N D, D\t
S plee} 2. 220 = ,
G2 QI,G( ’go glsy) (Dl)

for some G > 1 and some Q1, gg, g1 and sequence bl%} satisfying:

Q
<
5D /D, < Q1 <Q, (1.50)
D D
=1 emmn —_ .
ma €N (@0.0) =L w5 af(FD) (1.51)
and

bloet = by (nEN), (1.52)

Proposition 1.1 is proved in Section 5. It should be regarded as the analog
for the simpler of the two processes by which Deshouillers and Iwaniec transform
their sum S(Q,Y,N;0) (or related sums S(Q,Y, N;it)) in [7], Section 8: corre-
sponding, in fact, to their application of Selberg’s result that 0 < ix; < 1/4 for
A-exceptional eigenvalues. The next proposition is our analog of Deshouillers and
Iwaniec’s other transforming process [7], Lemma 8.1, which (like our proposition)
allows the swapping of one set of ‘levels’ (g) for another such set (hence the ‘swap-
ping of levels’ referred to in a couple of our section headings).

Proposition 1.2, Take C' 2 647 to be a sufficiently large absolute constant. Let
€>0 and j € N with j 2 2. Then, for K 21, Q,N >0, y € R, any complex
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sequence b = (b,), and D € N, one has

1
So.k(b,N;D,y) < ;

K?
DN 71 dt
X, (DN)® (Q+—+N) bN /'—-SL,Gb,N;D, P —
for some G 2 1 and some L satisfying
0<L<CQ'DN. (1.53)

For our proof of Proposition 1.2 we utilize (in Section 6) a ‘smooth par-
titioning’ of the sums ag x(b, N;D,y) in (1.46) and (1.47), so that we are re-
duced to considering related sums that are dependent upon a new parameter
Xe{2:jcZ}:

aqHx(b,N;D,y) = (1.54)
. AREA=N! Dy/mn
SN bba ()Y bk (4” )S(Dm Dn; t)
N/2<m,ngN n £=1 qf qf
and
Agux(b,N;D,y) = w(q/Q)agnx(b,N;D,y), (1.55)
q9

where

D x () = Qo(z/X )Py (2). (1.56)

with g : R -— [0, 1] being an infinitely differentiable function such that
D) =0 (z&(1/2,2)). (1.57)

The cases where X < A (a sufficiently small positive absolute constant)
are dealt with in Section 6 essentially by using the Kuznetsov summation for-
mula (Theorem 2.2 in Section 2) to effect a localised reversal of the summation of
Bruggeman and Kuznetsov that gave rise to the sums oy 4 (b, N; D, y) in the first
place.

In cases where X > A we borrow from Deshouillers and Iwaniec (see [7], page
272) their idea of swapping the roles of the variables ¢ and £ in (1.54) and (1.55),
so that the Kuznetsov summation formula is applied for I' = g (£), rather than for
I’ = [g(q). Technical preparation (concerned with the Bessel transforms defined
in (2.15) and (2.16) of Theorem 2.2) is carried out in Section 7. We complete the
swapping process (and so prove Proposition 1.2) in Section 8.

Using Selberg’s bound for exceptional eigenvalues, together with their own
transforming process [7], Lemma 8.1, Deshouillers and Iwaniec proved the following
result, which is [7], Theorem 6.
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Theorem 1.5. [Deshouillers-Iwaniec] Let € > 0 and Y,Q, N > 1. Then, for any
complex sequence b = (by),

2
(q)
i\ 4 £
S0 ()Y bupie(n)| < (@N)(Q+ NY) w3
CES I >3 N/2<n€gN
Aj<1/4

With the help of Propositions 1.1 and 1.2, and the ‘initial result’ (9.1) (a
direct corollary of Lemma 5.1) we are able to prove, in Section 9, the following
analog of Theorem 1.5.

Theorem 1.6. Let £ > 0, 9 = 7/64, ¢ = 29 and ( = 1 — 4. Then there exist
sufficiently large constants, My(e) 2 1, Cy(€) 2 1, depending only upon ¢, such
that the following is true. If

M 2 My(e), (1.58)
then, for @ >0, K21, DeN,
N e (0, M], (1.59)
P 2 max d, (1.60)
4D
r(d)g2

y € R, and any complex sequence b = (b,,), one has

1

72 Se.x(b.N:D,y) € (1.61)

< Cy(e)(QDN)E <Q + DM + (PDN)Q(min (Q, «E\‘r))c) [by!

2
9

As we now seek to explain, the analogy with Theorem 1.5 may be seen in
the result itself (not only in its proof). In view of the close connection already
noted between Sg g (b, N; D,0) and the sum Sé,K(b» N; D) of (1.38)-(1.39), and
of the analogy between (1.40) and (1.41), we hope the reader is persuaded that an
appropriate analogy of Theorem 1.5 in our context might be the bound:

Sk (b, N:D,0) <. (QN)* (@ + NVD) bull; K2, (1.62)

where D = Y? (we assume that Y2 € N, and are also not really concerned with
the dependence on K'). In cases where N > Mp(e) and no prime factor of D
exceeds D¢, the application of Theorem 1.6 with M = N, P = Df yields a
bound:

So.x (b, N: D,0) <, D®(QN) (Q +NDe ¢ v’ND) ball? K2,
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Discounting the ‘slowly growing’ factor D?¢, Theorem 1.6 appears, in this instance,
to be significantly stronger than (1.62) (the suggested analog of Theorem 1.5). In
a sense, however, it is simply the ‘updated’ version of that analog, since the term
NDe in our last bound would have been ND'/? had we been working with the
bound |7| < 7(n)n'/* (analogous to Selberg’s bound A > 3/16) in place of Kim
and Sarnak’s bound (1.10).

In (7}, Theorem 7, it was shown that [7], Theorem 6, could be improved for
some sequences b = W of the form

(n €N), (1.63)

g L N <n<N,
"7 10, otherwise,

where N| > 0. The following result is equivalent to [7], Theorem 7.

Theorem 1.7. [Deshouillers-Iwaniec] Let ¢ > 0 and Y,Q,N > 1. Then, for
€ (N/2,N],

()] 2

S ) Y pie(n)| <. (@QN) (Q +N+ \/NY) N

q<Q =21 N;<ngN
A <1/4

The proof of this (in [7], Section 8.3) required an ‘initial result’ derived from
the bound:

>0 > S(m,mt)] K (TMN)T(T + MN)
TimgMngN

t<

(for €,T,M,N > 0), which is [7], Theorem 14. This bound does not provide the
kind of ‘initial result’ that might help us to improve on Theorem 1.6, so in Section
10 we work to establish a suitable substitute (Lemma 10.12). In Section 11 we
obtain the desired ‘initial result’, (11.7), essentially as a corollary of Lemma 10.12.
We are then able to employ Propositions 1.1 and 1.2 so as to deduce the following
analog of (7], Theorem 7.

Theorem 1.8. Let £, ¥, p and { be as in Theorem 1.6. Then there exist suffi-
ciently large positive constants, M,(¢), Ci(¢), depending only upon ¢, such that
the following is true. If

M 2 M(¢g), (1.64)

then, fory e B, K 21, @ >0, D € N, N satisfying (1.59), P satisfying (1.60),
and any sequence ¥ = (V) given by (1.63) with

Ni € [N/2,N), (1.65)
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one has
1
(1+y2) K?

< Cl(s)(QDN)E(Q + M + (PDM)® (mm(Q, v/b"ﬁ) + M)C)N.

So.x(¥,N;D,y) (1.66)

To confirm that this result does represent an analog of Theorem 1.7, we begin
by recalling our remarks before and after (1.62). These suggest that an appropriate
analog of Theorem 1.7 in our context might be the bound:

Sq.x(¥,N:D,0) < (QN) (Q+ N+ VND) NK?, (1.67)

where D = Y? (as was the case in (1.62)) and ¥ = (¥,,) is any sequence given by
(1.63) with Ny € (N/2, N]. Supposing that N > M;(c), and that no prime factor
of D exceeds D°, our Theorem 1.8 would imply (in place of (1.67)) the bound:

So.x(¥, N; D,0) <. D*(QN)* (Q + N+ (DN)V2 ¢ D"N"’") NK?Z.
Since 2p = 49 = 7/16 € (0,1), we have here
. 20
N+ (DN)Y/2 3 N1-2% (\/DN) = DeN'"?,

so that, in this instance, Theorem 1.8 is indeed essentially equivalent to (1.67), the
proposed analog of Theorem 1.7 (we discount the ‘slowly growing’ factor D%).
It seems that Kim and Sarnak’s bound (1.10} does not lead to a bound superior
o (1.67), but it can shape the result given by Theorem 1.8 in cases where Q7 =
= o(DN), or where D has some ‘large’ prime factors (so that P in (1.60) must
be greater than D¢ for some positive absolute constant c).

Note the homogeneity with respect to K of our bounds for Sg (b, N; D, y}
and Sq.x (¥, N;D,y) in Theorems 1.6 and 1.8. Comparison of those bounds with
the bounds of Theorem 1.4, which are not homogeneous in K, leads us to expect
that it should be possible to replace (1.61) and (1.66) with similar (but not so
homogeneous) bounds that would be sharper for large K. As this homogeneity in
K arises from our use of Propositions 1.1 and 1.2, which oversimplify conclusions
reached in their direct antecedents, Lemmas 5.3 and 8.5, it might therefore be
possible to achieve the suggested improvement by instead working directly with
the latter pair of lemmas.

As mentioned at the beginning of this Introduction, we have undertaken this
work motivated by issues raised in our paper [10] with Harman and Wong. That
paper was concerned with upper bounds for the mean-value

Z /]L +14t,x)| Zanx n”*| dt, (1.68)

xmodD ngN
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where L(s,x) is Dirichlet’s L-function for the Dirichlet character y, while a =
= (an) is an arbitrary complex sequence. A possible application of our work arises
in connection with the proof of the proposition in [10], Section 3, where it is
necessary to bound an average of certain sums,

(rs)

bra= 3 (Y"™) |3 a(h)B(k)ojee (DRE) Y w(€)p;1/s(0)
jz1 h.k ¢
Aj<i/4

(with or without the complex-conjugation shown). There would be an extra layer of
complexity in such an application: one would have to be concerned with T -except-
ional eigenvalues, 7;(D), for which the corresponding A; was A-exceptional.

Qur results have a simpler, more direct, application to the problem of ob-
taining a good upper bound for a ‘pure character’ variant of the mean-value in
(1.68):

2

4
Ip(f M. N) = 2o 3 |3 fmAxm)| | Y anx(a)

x mod D jm<M ng<nN
X#Xo

where f : R —-» C is assumed to be infinitely differentiable and supported in
[1/2,1]. The cases of particular interest are those where M = O(D'/?), but D =
= o(M?N). Using only Theorem 1.4 one can, in such cases, obtain essentially the
best possible upper bound for Ip(f, M;a,N) if N = O(DU1~2)/4), This gives
another approach to one special case of a result first proved in Section 5.2 of
[3] (that special case being an upper bound for a mean-value similar to (1.68),
but without the averaging over ¢). In cases where the greatest prime factor of
D is a sufficiently small power of D Theorems 1.6 and 1.8 enable one to obtain
an essentially best-possible upper bound on Ip(f, M;a, N) for even larger N:
detailed results are to appear in [26]. A further improvement would follow if one
could establish a suitable analog of [24], Theorem 2.

Theorems 1.6 and 1.8 are unlikely to be useful in applications where D might
have a relatively large prime factor. Nevertheless we believe that, through their
application to the mean-value Ip(f, M;a, N) (above), these theorems will lead to
an improved lower bound for the number of Carmichael numbers less than a given
positive number z (see [1] and [9]).

Acknowledgement. The author is indebted to Prof. Glyn Harman, both for his
encouragement to work on the questions addressed in this paper, and for pointing
out the relevance of bounds for Ip(f, M;a, N) to the Carmichael number problem.

Notations (I): special definitions and conventions. Throughout this paper
¥, o and ¢ are asin (1.12) of Theorem 1.2 (and in Theorems 1.6 and 1.8), so that
9=7/64, p=29=7/32 and =1 — 49 = 9/16,
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Qutside of the Introduction (where it may refer to the hyperbolic Laplacian
operator) A denotes a ‘sufficiently small’ positive absolute constant. More preci-
sely, we assume that A € (0,1/2], and is small enough for the penultimate step
in the proof of Lemma 6.5 to go through. We take C to be any absolute constant
satisfying C 2 327/A. We consider A and C as given from the start, and at no
point will either change its value.

In statements or proofs of lemmas, propositions and theorems, ¢ always
denotes an arbitrarily small positive constant (only permitted to change its value
between lemmas, propositions, or theorems, or at certain other points where we
indicate and discuss the change).

To standardise w(x) and Qp(x) in (1.47), (1.49), (1.55) and (1.56), (1.57),
we suppose given, once and for all, an infinitely differentiable function Q(x) such
that

1 ifzr<l,
() = {0 2> 2 (1.69)

and
Y@x) <0 (r e R). (1.70)

For z € R, the values of w(z) and Qo(z) are given by:
w(z) = Q(z) — Q4x) and Qo(z) = Qz) — Q(2x) (1.71)

(these choices ensuring that (1.49) and (1.57) both hold). The function Q(z) proves
useful in its own right in Section 7, where (also) we define several other functions
(4 (x), a(u) and F(u)) in terms of it.

We have some special notations, ||byl|, , b(P? b(y) and bis} relating to
sequences b = (b,,): see (1.29), (1.31), (1.45) and (1.52), respectively, for the rele-
vant definitions (and note the discussion of the compound notation b‘?}(y) under
(1.45)). The sequences denoted by ¥ or (¥,) have a special form, being given
by (1.63) for some choice of N > 0 and N; € [N/2, N} (although in Section 10
and in Lemma 11.1 we work with the definition (10.18), which differs superficially
from that given in (1.63)).

For the definition of S(Iq (b,N) (for ¢ = 0,1,2), see (1.26), (1.27) and
(1.28); for ogk(b,N;D,y) and SQ k(b,N;D,y) see (1.42) and (1.43); for
aq.n(b,N;D,y), Ag, H(b N;D,y) and Py (z), see (1.46)-(1.48) (and note that
Lemma 4.4 reconciles (1.48) with the alternative definition of ®g(x) in (4.3));
and for ag g, x(b,N;D,y), Ag.ux(b,N;D,y) and ®y x(x), see (1.54)-(1.56).
The function Ry (r), given by (4.2) of Lemma 4.2, is a transform of the function
H(r,t) defined in (2.17) of Theorem 2.4. The terms A.(g) and &,(H,, H), defined
in (6.14) of Lemma 6.4 and (4.27) of Lemma 4.8 (respectively), are also dependent
upon the parameters b, N, D, and (in the case of the latter) y. Sums impor-
tant in Section 10 are Hg x (b, N;D,0) and B(é) (¥, N; D, 0) and V(Ds; A/cr)
defined in (10.3), (10.4) and (10. 19) 10.21) and (10 23)-(10.26), respectively.

Notations (II): definitions for ‘Kloostermania’. Most of our notation here is
borrowed from [7], Sections 1.1-1.3, although we introduce some small innovations
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in our notation for the Fourier coefficients of holomorphic forms and Eisenstein
series.

The multiplicative group of 2-by-2 matrices with real entries and determinant
1 is denoted by SLy(R). By I' we mean a Hecke congruence subgroup ['y(q), where
q € N. Not far into our Introduction we defined I'g(q) as a subgroup of SLy(Z),
the multiplicative group of 2-by-2 matrices with integer entries and determinant
1. There we also defined: the upper half-plane H, the action of ' and SLy(R)
on H (and on R U {cc0}), the cusps a (for T'), and the equivalence relation ~
(T-equivalence) on the set of cusps. The function p(a), defined on the set of cusps
for ', is given by (1.30) (Lemma 2.1 also being relevant).

We have two distinct ‘Dirac delta' notations, 8., and dgzp (distinguishable
from one another by their subscripts, since the symbols a, b, ¢, oo, or non-integer
rationals, always signify cusps): both these notations are defined in Theorem 2.3.

Following a brief discussion of the relevant cusp forms (and of the hyperbolic
Laplacian A), the definitions of the spaces M (') and L, (TC\H) are made in
the paragraphs before and after Theorem 1.1 (see [7], Section 1.1, regarding the
Petersson inner-product < f,g >x). The orthonormal bases {u; : j € N} and
{fix :+ 1 € j < 6k(q)} are introduced and discussed in the paragraphs between
(1.12) and (1.17): note that A; and &; relate to u;(z) (and to each other) as do
A, & and u(z) in (1.5); that the u;’s are ordered so that (1.13) holds; and that
K, is chosen to satisfy (1.14) or (1.15) (whichever is appropriate), with the sign of
x; being left unspecified in the former case.

The eigenvalues 7;(n) and Ajx(n) are given by (1.16) and (1.17), in terms of
the relevant Hecke operators in (1.9) and (1.8) (respectively). We define v, (a, m)
and p;a(m) under (1.18) and (1.19) (where our own special notations, A.(n)
and ¢} (a,m), are introduced). See [7], Equation (1.13), for a definition of the
Eisenstein series F(z,s). The coefficients ¢.q(m,s), from the Fourier expansion
of E.(z,s) in (1.6), are explicitly defined in (1.25): note that sums involving a
generalised Kloosterman sum Sgp(m,n;y) (such as (1.25), or the first sum in
Theorem 2.2) are sums over exactly those 4 > 0 for which that Kloosterman sum
is defined (see (2.3) and (2.4) for the definition of Sqs(m,n;7), and (1.1), (1.2)
and Lemma 2.2 regarding the relevant scaling matrices o,, o). The classical
Kloosterman suimn S(m, n;c) is given by (2.8).

A superscript ‘0k(q)’, *(q)’, ‘T, ‘T'o(g) ' above a summation sign (as in The-
orem 2.2, for example) indicates that the terms being summed are defined with
reference to the group ' = [p(g). In (2.15), (2.16) of Theorem 2.2 we define the
transforms ¢(f) and $(r). See Lemma 2.3 regarding the standard Bessel functions
Ju(z), Ku(z); see (2.18) for the function D, (x).

Notations (III): standard definitions. By alb we mean that a divides b. We
use (a,b) to denote the greatest common divisor of the integers a,b. The sum
> 4n L is the divisor function, 7(n). The Mobius function, u(n), should not be
confused with either the ‘ u(a)’ of (1.30), or the plain ‘ i sometimes used to denote
a variable.
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The greatest integer not exceeding x is [z], and the distance from z to the
nearest integer is ||z}l = min(z — [z}, [] + 1 —z). By log(x) we mean the natural
logarithm, log,(z), which is the inverse of the exponential function exp(z) = e*.
For £ € R and i = /—1 we write exp(2miz) as e(x). By ['(2) we denote the
standard Gamma function (so that I'(n) = (n—1)!). For z € C we use Re(z) and
Im(z) to denote the real and imaginary parts of z, so that z = Re(z) + ilm(z).

In sums where a runs over the residue classes mod b, we may indicate
restriction of a to classes for which (a,b) = 1 by placing an asterisk just after
the relevant summation sign. In expressions such as ‘@ (mod b)’, ‘e(ca/b)’, or
|8+ ca/bll, it is implicit that (a,b) =1, and we take ‘@’ to denote a solution, T,
for the congruence az =1 (mod b). In other contexts ¥ may simply denote the
complex-conjugate of y.

The o(z) and O(z) notation is standard. We use a < b (or b > a) and
a <X b tomean a = O(b) and a « b « a, respectively. The constants implicit
in such notations depend (at most) upon parameters explicitly declared to be
absolute constants, or upon parameters appended to the notation as subscripts.

For any function ¢ : R — C we have (when they are defined) the standard
norms: [[glloo = sub,eg [4(x) and ol = [ |p(x)ldz.

The symbols ‘=" and ‘4>’ mean ‘only if’ and ‘if and only if’ (respectively).

Where we have reproduced a noteworthy result due to other authors, we try
to indicate this, either explicitly, or by including their name(s), or some keywords
(e.g. ‘Bessel functions'’), in the heading of the relevant lemma, proposition, or
theorem.

2, Summation formulae of Bruggeman and Kuznetsov

Theorem 2.2 in this section gives a restatement of one case of [7], Theorem 1, the
Kuznetsov summation formula for I' = I'g(g) (Deshouillers and Iwaniec being the
first to establish this result for cases other than ¢ = 1). Two precursors to that
theorem, [7], Lemma 4.7, and [7], Equation (4.4), are presented here as Theorems
2.3 and 2.4. Note that we ascribe Theorem 2.4 to Bruggeman and Kuznetsov, al-
though our source is {7] and the result is not quite what Bruggeman and Kuznetsov
actually achieved.

As a preface to Theorems 2.2, 2.3 and 2.4 we will begin with some relevant
results and definitions relating to Kloosterman sums and Bessel functions.

At the end of the section we have a lemma giving bounds (from [7], Lemma
7.1) for the Bessel transforms ((2.15) and (2.16)) of Theorem 2.2. There is also a
very simple lemma on the Gamma function (needed for the proof of Lemma 6.2).

Lemma 2.1, Every cusp of I is equivalent to one of the form u/w, where
u,w e N, wlg and  (w,w)=L1 (2.1)
Moreover, for cusps u/w, ui/w, of this form, one has u/w ~ u; /w; if and only if

wy = w and uy =u (mod (w, g/w)). (2.2)
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Proof. This is merely a restatement of [7], Lemma 2.3. |
Suppose that each cusp a for I' has been assigned a scaling matrix o, €

€ SLz(R) such that (1.1) holds. Let a and b be cusps of I". Then, for m,n € Z,
and vy > 0 such that there exists a matrix

a -
(7 5) € o, 'Taoy, (2.3)
we define
* o )
Sap(m,n;7y) = Z e (m— + n—~) , (2.4)
§(mod +2) v

where the summation is over §’s (modulo 4Z) for which it is possible to find
a, B satisfying (2.3) (with the a of (2.4) being any one of the instances of « in
(2.3)). The correctness of this definition is verified in [7], Lemma 2.2, Our next
lemma summarises remarks from [7], Section 2.1, concerning the dependence of
the Kloosterman sum upon the choice of scaling matrices, and the behaviour of
the sum under a permutation of cusps that leaves fixed the equivalence classes
(modulo T').

Lemma 2.2. Let a,a’ and b,b’ be I'-equivalent pairs of cusps, with a given
choice of 04,04 ,0p, 0, and take any 1y,72 € [ such that mia’ = a, % =b. If
07 'noe = py and o, 'Ta0p = py, then

m:((l] '(il) and P2=((1) %) (2.5)

where 3,32 are some real numbers, and
Sare (M, n;y) = e (—mpBy + nBz) Sav(m, n;7), (2.6)

for m,n € Z and y > 0 (both sides of the last equation being defined for the same
set of v’s).

Proof. By (1.1) both p, and pz2 must fix oo. It is moreover the case that
P Toopr = 0 1 'Tamiog = 0,,'Tar0a = oo (see (1.1)-(1.2)), and (similarly)
that pglFoopz = [eo. Therefore the p; are upper triangular matrices from SL2(R)
satisfying [oopi = pilao (i = 1,2), which is only possible if they have the form
shown in (2.5). Since o_,'Tow = p; ' 'm0, towps = py (07 'Top)pz, the re-
sult (2.6) follows from (2.5) and the definition of the Kloosterman sum given in
(2.3)-(2.4). n



48  Nigel Watt

Given (1.2), it is immediate from the definition in (2.3)-(2.4) that

.y [ S(mn;n), ify/geN,
Soaco(m, ;) = {undeﬁned, otherwise, o0

where

S(m,n;c) = z* e(mhéc_—{-ng) (2.8)

d mod ¢

(the classical Kloosterman sum). In respect of this last sum we have at our disposal
the following important result.

Theorem 2.1. [Weil’s bound] For m,n € Z and c € N,

1S(m, n;¢)] < (myn,c)' /221 (c).

Proof. This is a corollary of A. Weil’'s bound for S(m,n;p) with prime p. See
[14], Section 4.3, for some of the details. [ |

Lemma 2.3. [Bessel functions] Let z > 0. If v € C, then

1)€ 284y
Jol) = Zf‘l‘f+1+u)< ) ' (2.9)

and if, moreover, |Re(v)| < 1, then

Ju(x) = %/sin (zcosh(€) — Zv) cosh(v€)dE (2.10)
0
and -
W = %} /cos(z cosh(&)) cos(iv€)dE. (2.11)
2
0
If k ¢ N is even, theu
e /2
Jk-1(z) = —-t—r- / e~ =V sin (£ cos(n)) dn. (2.12)
—f2

IfteR and z € C with Re(z) > 0, then

[o. 9]

Kou(z) = / e~ eosh(8) cog(2t€)d¢, (2.13)
0
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and if, moreover, t # 0, then

Ko (2) =

|

/ e~ 2¢h(8) ginh (€) sin(2t€)dE. (2.14)
g

Proof. For (2.9) see [27], page 359. Result (2.10) is the Mehler-Sonine formula of
[8], page 82, and directly implies (2.11), since

sin (6 — Fv) — sin (6 + Zv) = 2cos(f) sin (—Fv) = 2i cos(8) sinh (§iv).

Formula (2.12) follows from Bessel’s integral,
1 w
J. —_ -(k-l)iﬂ-}—i:sin(ﬂ)da
e-1(z) 27 /e
-

(see [27], page 362), on writing sin(f) = cos(# — §), then substituting 0 - § =7,
fo< 8 mad@~%5 =n-m,if -7 <6 < 0, and then, finally, using

e'?  elk=1)in=iz — 2igin(z) (with z = z cos(n) = —z cos(n — 7)).
Formula (2.13) is from (8], page 82, and implies (2.14) through integration
by parts. |

Theorem 2.2. [Kuznetsov-Deshouillers-Iwaniec] Let ¢ be a three times continu-
ously differentiable function, with compact support in (0,00). Let a and b be
cusps of . Then, for m,n € N,

r

1 4m ./
Z;Sab(mam’ﬁéf)( il mn) =Ko + X1 + Xz,
"

Y
where;
Bk(q) ke
1 1k~ Yl | j
Ko=g- kz FZI TamyEet Vil MY (b, )k — 1),
(q) 1 N
xl = Z ija(m),ﬂ]b(ﬂ)ﬁb(ﬁﬂs
izl
r oo )
1 ™m —17"—*—“’—"—‘—“.—- . n
Xz = ; Z / (HT“L“) "Pca(m» % + zr)"PCb(n’ % + zr)d)(r)dr,
with oo
- d
30 = [ sewo L (2.15)

0
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and
o

> JQ'Lr J—-2u‘($)
o(r) smh('frr / ¢z )_ (2.16)
0

Theorem 2.3. [Petersson] Let a and b be cusps of ', m,n € N and k/2 € N.
Then

r
1
Jo = BabGmne (Bapn) + 2mi* Z ;Sab(m, 7)ot (4W\/’Tmn) ,

v

where
9}: (Q)

41r’°"“ Z Jkamwjkbn)

P ifa~b,
ab 0, otherwise,

5 = 1, ifm=n,
™R 10, otherwise,

and (4 is a real number satisfying

Bap =0 ifa=b and g, = 0.

Theorem 2.4. [Bruggeman-Kuznetsov] Let a and b be cuspsof ', m,n € N and
t € R. Then

8400 U 4nmn AnJmn
di + 32 = ——b"n—"'l“e(ﬁnb”) + Z W’szﬂ Sna(m,n;'y)'Dm( il ,Tmn) s
¥

7 sinh(rt)

where 84y, Omn and Bg, are as in Theorem 2.3,
(9)

hi=)Y iju(m)mb(n),

ey cosh(mk;)
1 ,
Z / T el T+ i) pe(n,  +in)H(r, ),

7 cosh(rr)
cosh(w(r — t)) cosh(n(r +t))

H(r,t) = (2.17)
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and

2it i dv
®2it($) = —M/Kgit(xu)-; (218)

(with integration along the contour {exp(if) : —m/2<8 < 7/2}).
Lemma 2.4. [Bessel transforms| Let 6, X,Y,F > 0. Suppose that ¢(z) is a

complex-valued function of a real variable, possessing a continuous second deriva-
tive,-and vanishing outside of the interval [X,8X]|. Suppose also that

[Blloo <F,  fl¢'lh<F and [¢"[L <FYX™ (2.19)
Then Pl loz(X
3(r), d(n) < TLLF 1108l ) (reR, neN), (2.20)
14+ X
and, for re R,
é(r) if r| 21,
(1 + XY YR~ { (2.21)
o(r) if reN.
Moreover, if r € R with
0<Ir| < % -5, (2.22)
then
2 (671 4+ min (|r|~Y, [log(X)))FX 2, if X €(0,1],
olin) < {J—lpx-l, if X>1. (2:23)

Proof. The bounds in (2.20) are, in the case F' = 1, bounds given by [7], Lemma
7.1: the cases where F # 1 following by linearity of the transforms.

The bounds of (2.21) would follow from the slightly stronger results in {7},
(7.4). However, as has been noted on page 7 of {3], there is reason to doubt {7},
(7.4) in cases where |r| = o(X). According to the authors of (3] these doubtful
cases of [7], (7.4) are never actually used in 7], so their loss is not significant there,
but does leave us needing an alternative justification for (2.21).

For the bound on qhﬁ(r) in (2.21) we argue as Deshouillers and Iwaniec did for
the bound on f(r) in [7], (7.4) (see [7], page 266), but with the line of integration in
the Mellin-Barnes integral moved to o = —3/2 rather than o = —1 (no extra pole
being encountered). Following the two integrations by parts (with respect to ),
one obtains the desired bound on ¢(r) by appealing to the bound [¢"|| < FY X!,
and bounds of the form:

IT(z + iy)| Za,a (1 + |y])* /2 e (r/2)sl

(valid for a <z < 8 and y € R if {a, 5] NZ C N).
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With regard to the bound on r,’B(r) in (2.21), we begin by remarking that
the argument used in [7], page 267, to justify a bound f(r) < r3XY, ac-
tually only supports the weaker conclusion that f(r) & r XY, for r = 2,
3,4,... . Nevertheless, this does permit us to conclude that cj}(r) < FYXr2
for r = 2,3,4,... . Moreover, for r = 3,4,5,... , one can modify the argument
slightly, by starting it with the Mellin-Barnes integral along the contour from
—2 - 100 to —2 -+ ioo (see (8], page 21). The modified argument then shows that
¢(r) « FYX?r~3 for r = 3,4,5,... . By the last two bounds it follows that
é(r) < FY min(Xr~2, X?r=3) < FYX3/?r-5/2 for r = 3,4,5,... . If r € {1,2},
then one has |Jy(z)] <1 for £ € R (see Bessel’s integral in [27], subsection 17.23)
and [|¢lloc < @'l € X|¢'lc < X||¢"]l1, s0 it follows from (2.15) and (2.19)
that [6(r)] < ||6lleo log(8) < X|l¢”|i < FY <« FYr~5/2, We conclude that ¢(r)
does satisfy (2.21) for all r € N.

The result (2.23) is only slightly different from the corresponding result of
[7], Lemma 7.1. We prove it here by first noting (as is explained on [7], page 265)
that one can use (2.11), (2.19) and (implicitly) (2.22) to show:

o0
o(ir) < F/eﬁlrlfmin (1, X 'e™¢) de.
0
For X > 1 this bound simplifies to:

X0
$(iry « FX™! /e-“*?ifﬂfdg =
0

so that (2.23) follows by (2.22). For 0 < X < 1, the bound becomes (after evalu-
ation of integrals):

&(ir)«F(Ell?'(<%>2|ri*1>+m(%)2lri)<<

< FX A (7t 4 671
(by (2.22) again). There is another option here, since
log(Ll/ X)

w((2)7 1) [ a2 ()7

showing that the last bound for ¢(ir) will hold with log(1/X) substituted for the
bracketed term {r|™! in that bound (exactly as claimed in (2.23)). n

Lemma 2.5. [Gamma function] For n € N and r € R with r # 0,

T 1/2 n

F
(1 -2rhX’

27T e
Y s — -+ 24 .
sinh(277) T!_:[l fm + 24r]
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Proof. By the functional equation [’(z + 1) = 2['(2), it suffices to consider
|['(2ir)]. Now, for r as given,

[T(2ir)|? = T(2ir)[(-2ir) =

L(2ir)[(1 - 2ir) s _ T
B ~2ir  sin(7(26r))(—~2ir)  2rsinh(277)’
which is all that we need to complete the proof. [ ]

3. Multiplicativity: proving Theorem 1.4

Using the multiplicativity expressed in (1.23), (1.24) one may effectively extract, as
a certain factor, the dependence on D of the terms in the sums Sﬁ?z,K(b(D),DN)

and S'(J]’I)I‘K(b(D),DN) shown in (1.33), (1.34). That factor can then be estimated
through (1.21) and (1.20), yielding the cases ¢ = 0,1 of Theorem 1.4. Fuller details
of these steps, and a treatment of the case 1 = 2, are given at the end of the section,
where we prove Theorem 1.4.

We begin with a discussion of Fourier coefficients, ¢ (n, s), for Eisenstein
series E(z,5) (see (1.6), (1.25)), leading up to Lemma 3.4, which plays a rdle
analogous to that of the multiplicativity relations, (1.23), (1.24).

Given (1.25) and Lemma 2.2 it at first appears that ¢ o (n, s) might depend
on both the cusp ¢ and the choice of scaling matrix o, (see (1.1) and (1.2)). Our
next lemma addresses the extent of this dependence.

Lemma 3.1. Let n € N and s € C with Re(s) > 1/2. Then, given our fixed choice
of 0o in (1.2), the Fourier coeflicient ¢¢oo(m,s) is a function of the equivalence
class of ¢ modulo T.

Proof. As the relevant cases of (2.6) will have m = 0 and (by (1.2)) 82 = 0,
Lemma 2.2 shows that the terms Scoc(0,n;y) in (1.25) would be unaltered by
the mere substitution of a ['-equivalent cusp for ¢. This proves the lemma for
Re(s) > 1. The remaining cases, where 1/2 < Re(s) < 1, follow by the meromor-
phic continuation discussed under (1.6). |

In light of Lemmas 2.1 and 3.1, we may assume that the cusp ¢ is of the
form u/w (satisfying (2.1)) and follow [7], Section 3.3, in taking

~ fu q/(w?, q) 0 B 31
"‘“"“/w"<wmw2—,q> (warwma) ) G

Lemma 3.2. Let u/w be as in (2.1), with 0o and oy, given by (1.2) and (3.1).
Then the set,

{—%: v>0 and (: g)EU,Jf}wFaoo forsomea,ﬁ}w



54  Nigel Watt

is identical to the set of rational cusps BfA X u/w:

{% : AeN,BeZ,(AB)=1,(A,q)=w, AB = uw (mod (w2,q))} ,

with a one-to-one correspondence given by the relation

S_ax_ a4
B A YV (wq)

Proof. This follows by [7], Lemma 3.6, and the argument immediately preceding
it in [7], Section 3.3. u

By Lemma 3.2, (2.3)-(2.4), (1.2) and (3.1), it follows that S.5(0,7n;7) (where
¢ = u/w) is defined only if ¥ = A\/q/(w?,q) with A € N and (A,¢) = w, and, in
such a case, it is given by

Seoo(0,157) = § e (—»ng—) (neZ). (3.2)
B mod A
(B,A)=1

ABz=uw (mod (w?,q))

By (2.1), we may rewrite the conditions necessary and sufficient for the definition
Of Stoo(ms ;5 ry) as

v=4¢/qu/(w,q/w) with £e N and (¢ q/w)=1. (3.3)

Lemma 3.3, Let ¢ = u/w be as in (2.1), with 0o, o, given by (1.2), (3.1). Then,
for n € Z and v satisfying (3.3), one has

Seoo(0,1;7) = > u(r)te< (/. )(”/f) )

ri=fw/(w,q/w)
tin

where it is an implicit condition of the summation that (r,(q/w,w)) = 1.

Proof. On noting that (3.3) implies A = fw in (3.2) (so that (A, q) = w({,q/w) =
= w), we rewrite the sum over B there, using

AB=uw (mod (w?, q)) & fwB =uw (mod (w?,q))
& {B=u (mod (w, g/w))

el B=f—"y (mod fw).

(w, q/w) (w,q/w)

The sum in (3.2) then appears in the form

2 w u w .
Crw (E (w.a/w)’ g(w,q/w)’ n) , (3.4)
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where . a
abhkb= Y e (Xk) . (3.5)
ab=h " Tmad A)

This sum occurs in {24], Lemmas 2.3 and 2.4, and is there found equal to:

3" ulrite ({’%(k/t)(h/v)) =y u(r)te(A // (k/2)( h/v)) (3.6)

rit=v ri==vy
tik tik

subject to a condition
(B, AN) = (h,A)=v (3.7)

(which, when met, defines v). By (3.4)-(3.5), we have

¢ 14
6= (g ) = @ (4 2) - G

(see (3.3)), and

¢
() = (w2 ) = (o (0. 2)) oo,

so that, by (2.1), the condition (3.7) is met with v = éw/(w,g/w). The lemma
therefore follows by (3.6) with A, b, h and k as indicated by (3.4)-(3.5). [ ]

By (3.3), Lemma 3.3 and (1.25) one has, for ¢ = «/w asin (2.1), n € Z and
Re(s) > 1,

peon(n,s) = 28/ Z D DG (o1 V) BERS

q*w? w,q/w)
@ q/ rt= Ew/i(nw ./ w)

Lemma 3.4. Let ¢ = u/w be as in (2.1). Let n € N and let D € N satisfy
(D,q) = 1. (3.9)

Then, for Re(s) 2 1/2,

WCOO Dn 5 Z Z g)(fg)l‘2sﬂoc(f,g)oo(n/gv3)! (310)

gl{D.n) f1(D/g)

where

(D/f9)fu _ usg
w T ow

«(f9) = (say). (3.11)
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Proof, Both sides of (3.10) are functions of s analytic on the strip 1/2 € Re(s) <
< 1 (for Re(s) = 1/2 in fact). It therefore will certainly suffice to establish (3.10)
for all s lying in the open half plane where Re(s) > 1/2. By (3.8),

bt Drs) = SN ST S ete (s (Dnfou).

q*w® w, q/w)
£= )
() wl)=l rt é’utjl/l()z:;l,q/w)

with absolute convergence of the sum over ¢ here guaranteed by the condition
t|Dn (given that Dn # 0 and Re(s) > 1/2). We may therefore write

Geoo(Dn, 5) = (40" Y %, (3.12)

<I7f = Z f_gs Z ,u,(r)te (_-(TL‘U_;%T;/{U_)- (Dn/t)u) . (313)

£=1 t=£ .
=1 T t:l/l()t: q/w)
(t,D):j

Here we write t = t,f, D = D;f, so that
(tl, Dl) =1 (314)
and the condition t|Dn becomes just t,|n. The condition rt = fw/(w, ¢/w) beco-

mes 1ty f = fw/(w,q/w). As f|D and wlq, it follows by (3.9) that one must have
f1€ in this last condition on r and t,, so that

w
¢ = ft; (say) and Tty :glm'
In (3.13) we now have
S _far o,
(w,gq/w) SEL ,Q/ (fDin/ftr)u = “m (n/t1) Dru,
80 that
g i
O = f1-2 Z 02 Z ,u,(r)tle(»«%_-_(n/t )Dlu)
(e arw)=1 m:&ﬁ/lf(lw’q/w) (w-a/e)

(t1.D1)=1

(note that (f¢;, g/w) =1« (&, g/w) =1, since f|D and (3.9) holds).
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The next step is to make implicit the unwanted condition (3.14), by attaching
to each term of the sum the coefficient 3_ ., p,y #(g). We then have

o0 i,
-2 6r
@y :fl—zs E :/J’(g) E , £12 E ﬂ(r)tle(“(—wf-‘i/‘“m—i (T’l/h)D]u).
gty £;=1 riy=bw/(w,q/w) +d
(€1,q/w)=1 tiln

t1=0 (mod g)

We put t; = gty. Clearly t;|n implies g|n, so we make this a condition upon g
and rewrite the condition t;|n as t2f(n/g). We also have

t) o=l s grty =
rty = rip =
1 l(w, q/w) grip l(w, q/w)’

and here g|D;, Dy|D and w|q, so that it follows from (3.9) that g must divide
¢,. Therefore we write £; = gf,, making the condition become:

w

(w,q/w)’

Tty = €5

As ¢ is aways a factor of D, the assumption of (3.9) means that a condition
(g9, ¢/w) =1 is superfluous and

b= Y we)fe) "y, (3.15)
gl(D/f,m)

where, since gg = 1 (mod (w,q/w)) and (w,q/w)|w

- —_
- fotor  (n/g
o= Y &% Y e (P2 i) = e
£=1 rta=fw/(w,q/w) e 2
(f2,9/w)=1 t2l{n/g)
o —
N fHr)u n
)
a1 rta=éyw/(w,q/w) 4 2
(£2,q/w)=1 t2{(r/g)

Reporting this last result in (3.15), and (thence) in (3.12), we obtain

Peoa( D1, 5) Z Z fgl 2”\;[! 1,95

fiD gl(D/f,m)

where, by comparison of (3.16) and (3.8),

¥, = (w,q/w)’ o

qow’ g~ V’c(f‘g)oo(n/g, -9)
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(note that ¢(f,g) of (3.11) is always a rational of the form (2.1)). Although this
completes the proof, we think it interesting to observe that, with regard to (3.11),
@, in (3.16) only depends on the residue class of f modulo (w,q/w). Almost
the same conclusion follows from Lemmas 2.1 and 3.1, which show that there is
no change in (3.10) when f (in (3.11)) is replaced by any integer coprime to w
and congruent to f modulo (w,q/w). |

Proof of Theorem 1.4. As (¢, D) = 1 is assumed, we may apply (1.24) to the
case a = 0o of the sum over n in (1.33). This shows

5 e o= T 5 () (03]

Nj2<ngN N/2<ngN  g{(n,D)
= Sutonse (2 ) X vt
glD N/2g<n€N/g

Bounding the last sum through the Cauchy-Schwarz Inequality and {1.21) (Deli-
gne'’s bound), we have

2
3" bal (00, Dn) Z-r?(h Youa)| Y bentloo, n)|
N/2<ngN gD N/2g<ng<N/g
which, by (1.33) and (1.26), leads us to conclude that
800,k (B!P DN) < 73(D) Y u(9)8%), (B9, N/g),  (3.17)

g|D

where b,(lg} = bgn for n € N. Therefore Theorem 1.3 of Deshouillers and Iwaniec
applies, showing (since u(oo0) = 1/g):

8 s (0P, DN) e 73(D) 3 (K? + ¢ (N/)' ) B I3
alD

The case 1 = 0 of (1.37) now follows trivially, since N/g < N and ]b(g) 2
< {{bnll2 (see (1.29) and (1.52)).

The bound (1.36) follows along very similar lines (using (1.23), the Cauchy-
-Schwarz inequality, {1.20) and the case i = 1 of Theorem 1.3). The only novelty is
the factor nY in Kim and Sarnak’s bound (1.20), which leads to the upper bound
being weaker by a factor of D?? than the corresponding upper bound in (1.37).

We turn now to the remaining case of the bound (1.37), in which i = 2. By
(1.35) (with & = 00), Lemmas 2.1 and 3.1, we are led to consider the sum

L.;('I‘) = Z bnnir'ﬁocoo (Dn,% + iT') (318)
N/2<ngN
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in cases where ¢ = u/w is of the form (2.1). Therefore, Lemma 3.4 may be applied
to rewrite L.(r) as

> TN e (f9) w100 (/90 & i),

Nj2<ngN gl(Dn) fi(D/g)

where ¢(f,g) is given by (3.11). By bringing the summation over n inside the
other summations, we find that

2
ZPQ)Q Z 7L c(jg) (),
giD fi{D/9)

where

ng)(r) = Z bor () Paoe (n', 15 + ir) } (3.19)
N/2g<n’'<N/g

By the Cauchy-Schwarz inequality (and some trivial bounds) it follows that

Ll <D Y0 B | (3.20)

9lD fi(D/9)

Given f,g € N with fg|{D , consider, with (3.11) in mind, two cusps ,

D f D T
alfog) = LU g gy = PO 5
wh wy
where u;/w; = a and up/wy = b are both cusps of the same form as u/w
in Lemma 2.1. Here, by our assumptions, (uj,w;) = (u2,w2) = 1, wy,wlq,

(D,g) =1 and f|D, so that both the rationals shown in (3.21) are, as they stand,
well-defined reduced rationals of the same form as the rationals u/w in Lemma
2.1. Therefore (2.2) of Lemma 2.1 shows that a(f, g) ~ b(f,g) if and only if

wp=w and  (D/fg)fuz = (D/fg)fur (mod (wi, g/wy)).

On multiplying through by (D/fg)f, the latter of these two conditions reduces
to just uz = u; (mod (wy, g/w,)), and so, after referring once more to (2.2) of
Lemma 2.1), we have

a(f,9) ~b(f,g) & a~b.
By this and Lemma 3.1, it follows that

r
o) g)]2 =% lLﬁg)r (f.g € N with fg|D). (3.22)
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Applying (1.35), (3.18) and (3.20), and making a straightforward change to
the order in which the summations and integration are carried out, we deduce
from (3.22), (3.19), (1.35) and (1.28) that

s K(b(D),DN) < (D) Y k2 (g)r(D/g)s® (b{g},N/g) . (3.23)
q|p

where b9} = bgn, for n € N. Bounding the right-hand side here, by an appeal to
Theorem 1.3 (and trivial bounds), we complete our proof of Theorem 1.4. a

4. Bruggeman-Kuznetsov summation and a form of reduction

In this section we furnish ourselves with several lemmas useful in subsequent sec-
tions: the last three of these enabling us to work around the condition (n,q) =1
(or (D,q) = 1) attached to the results (1.24), (1.23) (or Lemma 3.4), which
are our means to exploit the multiplicative nature of the relevant Fourier coefli-
cients. As Theorems 2.2 and 2.3 are indispensable for certain proofs, it is expedient
not to give separate consideration to each of the sums 8(1) (P DN) and

3‘; . x(bP DN). We work instead with the ‘combined’ sum aq k(b,N;D,y) of
(1. 42) The surplus parameter y in o, (b, N; D,y) anticipates a technical step
in the proof of Lemma 8.2,

Lemma 4.1. Let M >0, g € N and take a = (an) to be any complex sequence.
Then, for H >0,

cosh(1/H
:_—_-..,.._z;;nhg(g/};) wile T amanz EH(

M/2<mn<M

j

) S(m, n; q¢),

where
& (q)

Jo = Z E:’Tr) ~EhA Z Z an@’i’;k(ooxn)

k even i=l IM/2<ngM

and, for x > 0,
z) =2m Y (—1)(2r - Ve N/ H gy (4rx).

Furthermore, for H,z > 0. one has here

Eu{r) eR and |Ex(z)| < 4m%z cosh(2r7x) exp ((27r:r)2) . (4.1)
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Proof. The first part of this lemma is a result established within the proof of
[7], Proposition 4, essentially by multiplying both sides of the result of Theorem
2.3 by (k- 1)e"*~Y/Hg, a,, and then summing over m,n € NN (M/2, M| and
positive even k. Here we need only the case a = b = oo, so that an appeal to (2.7)
shows that the relevant Kloosterman sums are just the classical ones found in our
lemma.

For the second part of the lemma we employ the series representation (2.9)
for the Bessel functions that appear in the definition of Ey(z). Following that by
a change in the order of summations, we obtain

_ ”i (*"‘;)e (2rz)2 i ((—1)r(27" - 1)6*(2“1)/”(27@)%-11
£=0 ’

— (E+or—1)!

which implies (for both choices of sign),

a0
+Eq(z) € dnige~VVH (Z 27r:r ) (

=0

> 2mz \ 22
Z 27‘—- el/H

r=1

yielding (4.1) as an immediate consequence. [ |

Lemma 4.2, Let M >0, g € N and take a = (a,) to be any complex sequence.
Then, for H 2 1

1 4r
T = e fay Vi SY amanz Ly (T %) s(om,nsg0)
4w M/2¢< i q¢
mng<M 2=
where )
(9) 1
hy = ZRH(HJ') m Z anpPjoo(n)
jzl M/2<ngM
2
Z / Ry(r 4, Peoo (n, %+'ir) dr,
1\/[/2(11<M
and, for {Im(r)| < 1/2 and = > 0,
o0
Ry(r) = / tsinh(mt)e™ ¢ K (r, t)dt (4.2)
-0
and -
T 2
Sy(z) = —— Dot ()t sinh(mt)e~ ¢/ H) dt, 4.3
#(x) = —= [ Daelajtsinh(r) (4.3
- 00

with H(r,t) and Doy, (x) given by (2.17) and (2.18) of Theorem 2.4.
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Proof. Repeating the first steps (on (7], page 260) in the proof of [7], Theorem 2,
we apply Theorem 2.4 for cusps a = b = oo, multiply all terms in the result by

tsinh(wt)e”(t/‘q)zﬁman,

sum over m,n € NN(M/2, M|, and integrate over ¢ € (—00,o0). The lemma then
follows by (2.7) and evaluation of the simplest of the resulting integrals. |

Lemma 4.3. Let 0 <6< 1. Then, for H > 1 and r € C satisfying
2 > —(6/4)?, (4.4)

one has o
(Ir] + 1) e UV <5 Ry(r) < (|r| +1)e  FM/A.

Proof. We note first that, by (2.17),

2m cosh(7r)

H = .
(r.) cosh(27r) 4 cosh(2nt)

If r € R, then it follows immediately that
54(r, £) x &=t +Ii=IrID) (4.5)
If r # R, then (by (4.4)) ir € R and 0 < |r| € §/4, so that
cosh(2nr) = cos(2mir) € {cos(dn/2),1] C (0,1]

and, similarly, cosh(nr) € (1/v/2,1]. Therefore, even if r ¢ R, we still obtain (4.5),
provided that we allow the implicit constants there to depend upon §. Using this
conclusien in (4.2), we find

o0
Ry(r) =5 /t tanh (rt)e~ &/ B -mle=Irllgy (4.6)
0
If |7] < 2, then (4.6) shows:
1
Ru(r) s /t2dt > 1,
0
confirming the lemma’s lower bound on Ry (r). That bound also holds for [r| > 2,

since (4.6) then implies

r{
RH(T‘) >>6 / te—(t/H)z-ﬂ'('flmt)dt 2 (I,rl — 1) 6_(11-;/”)2—"‘

fr]-1
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To establish the upper bound on Ry(r), it suffices to note that (4.6) implies

il oo
Ry(r) s e‘"‘ﬂ/te“(tm)z*'”dt+ e"*r‘/te'“/mz"”dt <
0

|7

Irl/2 Irl
1 e~(lr|/2H)’+1rIr[) + eI/ (1] L 1) <

< (|| + ( §|r|+e~(1r1/zu))

fri/2 | )
N{T)[TI [ ewtdt_'_ e—(lr]/ZH)2/ errtdt +err]r (|TI/H)2/ te—rrtdt <
¢}

where Z|r| > |r|/H. [

Lemma 4.4. Let H > 0. Then, in respect of the domain (0, 00), Equations (4.3)
and (1.48) define the same function, ®y(x), and this function satisfies:

Py(zx)eR and [®y(z)] € —\ﬁ—;z (r>0).

Proof. These are results found, and used, in the proof of [7], Theorem 2. Here we
shall merely expand on points covered in [7], p. 260. We shall start from (4.3) and
deduce (1.48).

The first step is to observe that, by (2.18) and a bound (derived trivially
from (2.13)) for {K2,(e*)], the definition (4.3) may be rewritten:

d—1--

&y (x) = lim ——/f Koy xu)—q—tg —(/HY gy

where

C(8) = {e? : ~dm/2 <0< on/2}.

The restriction from €(1) to €(4) (where § < 1) makes the integral in the expres-
sion given for Ko (xv) by (2.14) uniformly absolutely convergent, so that, on
applying (2.14) in the last expression for ®y(z), we may change the order of
integration to obtain:

o0

2
‘I)H(:L') = EI{I_ 2\/_ IJ 1‘ £)JH(t)smh( )d{,

where

o0

Ig(m;{)mfe(é) eTeosh@vyqy  Ju(6) = /sin(ztg)te"(‘/”>’dt.

0
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Integrating by parts and applying a result discussed in [2], Exercise 10.22,
o
Ju(€) = H*¢ / cos(2t€)e~ /M’ 4t = rHIge(HO?

The factor e~‘H6)” here helps with convergence, so that the bound
(i)~ @O < § |dv] = (1~ 5),
€(1)~€(4)

allows the limit, in our last expression for ®4(x), to be taken inside the integral
there. The proof may then be completed by noting that 2iz~"sech(€) sin(z cosh(&))
= I (x;£), so that, given the evaluation of Jy(§), the last expression we had for
® 1 (x) reduces to (1.48).

By (1.48), ®y(z) is real-valued for z > (. Using trivial bounds for factors
in the integrand in (1.48), one also finds:

e < e [0

for £ > 0, which reduces to the bound claimed by the lemma. [ ]
Lemma 4.5. Let ¢, f €¢ N and m,n € Z. Then

S(fm, fn; fe) = ¢e(f)S(m,nic),

where . ;
¢ (fy =1 H (1 - 5) = Z u(g)—é. (4.7)
p prime alf
p'fv (p,C)=1 (g‘c)=l

Proof. By (2.8) and cancellation of common factors,

. d . d d .
S(fm, fn; fe) = Z e(mé—f-ng) = Z e(m—+n—) Z 1.
dmod fc ¢ ¢ d mod ¢ € ¢ x mod fec
r=d {mod c)

The sum over z is, for d coprime to c,

S Y we= ) we D, L

z mod fc g|(f.x) alf z mod fc
z=d (mod ¢) (g.c)=1 r=d [(mod c)
=0 (med g)

This last sum is ¢.(f) (see (4.7)), which does not depend on d. The lemma
therefore follows, using (2.8) for the sum over d. ]
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Lemma 4.6, Let A € R, §, N; > 0 and take c = (cn) to be any complex sequence.
Suppose also that E(z) is a real-valued function with domain (0, ), and is such
that

:c’%"‘sE(:r) — 0 as z—0+4. (4.8)

Then the equation,

atey =+ 3N cmcnzx,_, (BL) stumymsze), (49)

Ni/2<m.ngN,

defines a real-valued function ot : N x N — R such that, for ¢, D € N,

g
-y ue Zu ot (¢ £, D) = (4.10)
gl(q.D)
{g.4")=1
2 1
= Yy a+(q'f,D’)E—-f(—D~ IT (1--), (4.11)
fliq.D) p prime p
(f\q})*l pl(qu)
(psfql)zl

where ¢’ = q/(q,D), D' = D/(q, D), and it is moreover the case that
a*(q,D) < a*(g., D.), (4.12)

for some pair q,, D, € N satisfying

\q. and (¢, D.) =1 (4.13)

(q,

"¢, D)

Proof. From (4.8) and the Weil bound, Theorem 2.1, one easily finds that, for
given z,y,m,n € N,

#12E (»3’-’-——-—';;”1) S(ym,yn;zl) — 0 as £ — oo,

which shows, by a comparison with the series Y g, £71-9/2  that the sum over
¢ in (4.9) converges. As the sum over m and n there is finite, it follows that
the right-hand side of (4.9) is defined. As the coefficients ¢,,c, are the only
factors on the right-hand side of (4.9) that might not be real, one can immediately
observe (using S(a,b;c) = S(b,a;c)) that the expression there is invariant under
complex-conjugation, so that (4.9) does make a*(z,y) a real valued function on
the domain N x N.
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Suppose now that g, D € N. Lemma 4.5 shows that, for m,n,f e N,

S(Dm, Dn; gt) = S(D'm, D'my0)(q, D) 3. &
den) I
(9.9'8)=1

where ¢, D’ are as under (4.10)-(4.11). Using this last result in (4.9) and cancelling
some common factors, we may rewrite a¥(q, D) as:

1(9) . = 1 (Dymn e
A+ Z g ZZ CanZ (—1’7E .7 S(D'm, D'n; ¢'t).
gl(¢.D) N1/2<m,ngN) £=1
(9.4")=1 (69)=1

We next attach an extra coefficient 3, . u(f) to each term of the last sum
over £, which does not change the value ofg the sum, but does make the explicit
condition (£, g) == 1 superfluous. Since

Z E_(.@Z#(f)AzA“_(l}le, (4.14)
(gi(q.)D) flg
9.¢')=1

one obtains (4.10) on bringing the summations over m, n and £ inside the sum-
mation over f and recognising that ¢’'f, D’ and £/f take the places of z, y and
£ in (4.9).

To show that (4.11) follows from (4.10) we first observe that, for any function
H:N—C,

9 u(g)
> 1S unpan = X wnan Y B
¢i(g.D) flg fI(a,D) al(q,D)
(g»q')=l (frq,):l (thl)zl
9=0 (mod f)
u(fg’)
= > uNHG) D, i
fl(‘LD) g’l(Q/st/f)
(f.¢")=1 (¢4 )=1
(1) u(g')
DI DV
e, D) q'|(q.D)
(f,q4")=1 (¢'.fq')=1

Observing that the last sum over ¢’ is equal to the product over primes p in
(4.11), we obtain (4.11) on choosing H(f) = a* (¢’ f, D'). The last observation also
informs us that, in the last ssammation over f of (4.15), the non-zero coefficients
of H(f) are all positive. One can evaluate the sum of these positive coefficients
by applying first (4.15), for H(f) identically equal to 1 (say), and then the case
A =1 of (4.14). This reveals that the non-zero coefficients sum to 1, so that, given
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their positivity and the fact that a*(z,y) is real valued, we deduce from (4.10)
and the case H(f) = a*(¢'f,D') of (4.15) (or from (4.11)) that

a*(g,D) < , max a*(¢'f, D),
J squarefree

fl(q,D)
(f.q')=1

sa that
a+(q1D)<a+ (QI,DI), (416)

for some pair g1, D) € N satisfying

D
" (¢.D)’

qilg and D (4.17)

q
(g, D)

Applying (4.16)-(4.17) in an iterative fashion, we augment (4.16) by a sequence of
inequalities,

at (g1,01)< ... £ at (gr, Di) < at (gk+1, Dr41) < ... (4,18)
(say), where

Dy,

q.
Diyp = —2k
17 (gk, Dr)

._N__m(qk"bk) (k € N). (4.19)

gk+1lgr  and

By (4.19) and (4.17) we have (for k € N) Dy|Dy_1| ... |D2|D1 = D/(q, D), so
that

D
Dyl — ke N). 4.20
D) ( ) (4.20)
By this and by (4.19),
Qk D
N3 —~|(qx, D) | Dyl —= k € N),
et | B0 POy (M)

so that, as (q/(¢, D), D/(q. D)) = 1, we must have

(71%:—1’ (_q“,“qu)“) =1 (keN)

Therefore, starting from the premise that ¢/(q, D) is a factor of g, (for which
see (4.17)), one can show by induction that (g/(q, D))|(q1,...,4x). This, together
with (4.17), (4.19) and (4.20), permits us to conclude that

q

d D
@.D) gklg  an k

(k € N).

D
(¢, D)
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We search through the sequence of pairs, qy,D1, g2, D4, .... , for a pair
g+, D, satisfying (4.13). By our last result above, all we need to look for is any
pair g;, D; with (q;,D;) =1.1f (¢;,D;) > 1 for j =1,...,k (say), then we move
on to examine the next pair, gx4+1, D1 . Since (4.19) then implies Dy < Dy/2,
this search procedure cannot be repeated indefinitely without success, since that
would contradict 1 being a lower bound for {D;,Ds,...} C N. Therefore our
search must eventually succeed. By (4.18) and (4.16), whatever pair (q.,D,) we
find will satisfy (4.12) (as well as (4.13)), so that all the claims of the lemma have
now been shown true. ]

Lemma 4.7. Let N > 0, q,D € N and take b = (b,,) to be any complex sequence.
Then, given H > 2, there exist q.,D. € N satisfying (4.13) and such that

S(O)

oo,q. H o00,qs G

(b<D>,DN) < %73‘0) (b“f’-),D,N) e!=G/Hgq,
2

Proof. We first apply Lemma 4.1 with a = b‘?) and M = DN, so that the sum
Jo (defined in that lemma) must satisfy

Jo > =IO (6P, DN) (4.21)

(see (1.26)). With N; = N, c¢=b, E(z) = Ex(z) and

_ cosh(1/H)

2
~ 2sinh®(1/H) bl (4.22)

Lemma4.1 and (1.31) show Iy = a* (g, D), where a*(z,y) is the function defined
in (4.9) of Lemma 4.6. As (4.1) shows that (4.8) holds with = 1/3, we may appeal
0 (4.12)-(4.13) and (4.9) of Lemma 4.6 for the bound:

(D \/_mn) S(D,m, D.n;q.f),

N/2<m,n€N e=

where ¢,, D. € N satisfy (4.13). From this, (4.22), (1.31) and Lemma 4.1 (once
more), we deduce that the term Jg above satisfies

Gi(qs)

(k- H R
Jo< Y. (4ﬂ)k 1 ALY > by )93 (00, n)

k even =1 D, N/2<n<D.N

As
o0
i/el—G/H 4G = el —K/H _ ((H=1)/H-(k=1)/H_
k
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it follows from (1.26) that the result we are seeking to prove is just what follows
directly from (4.21) and our upper bound for J. [ |

Lemma 4.8. Let N >0, ¢,D e N, y € R, and take b = (b,) to be any complex
sequence. Suppose that D == D\D' where Dy,D' € N, Then, given H H; € R
satisfying

H>2H 21, (4.23)
there exist q., D!, € N satisfying
(ﬁ)—,jlq.{q, D:]u(-(}-%;)- and  (q.,D!)=1, (4.24)
and such that
00
3q(Hy, H) < /o,,‘ (b, N;:D.Dy,y) %e"("/z)G/HdG’ « (4.25)
0

b, N:D_.D,,y)
cGIH

o0
< 0q..11 (b, N: DDy, y) H + / 4.6 (
H

dG,  (4.26)

where

g (Hi, HY=04q.1,(b,N; D, y) + (0q.u(b,N;D,y) — 0q 1, (b, N; D, y))Hy. (4.27)

Proof. We shall consider only the case y = 0, since the first line of (1.44) shows
that the general case follows (no special properties that the complex sequence b
might have being required here). We begin by considering the results yielded by
Lemmas 4.2 and 4.3 when the former lemma is applied for

a=b® and M =DN,

where b{P) is the sequence given by (1.31). In the sums defining J;, J» of Lemma
4.2 one always has

R? > - (7/64) and >0

(see (1.13)-(1.15)), so that, with & = 7/16 € (0,1} (for example) all the relevant
factors of the form Ry (r) (where, in this instance, r may represent «; ) will satisfy
the condition (4.4) sufficient for the application of Lemma 4.3. By that lemma’s
lower bound for Ry (r) (or Ry(k;)), and by our choice of a and M, the sums
J1, J2 must satisfy:

2

> WP pie(n)]

DN/2<n<DN

+1 e (IK’J[/H

(&51
h> ; cosh { 'mcj)




70  Nigel Watt
2
Fo(q) °°

I > Z/ I+ 1) e/ STy Pt (n, § +ir)| dr.

DN/2<n<DN
Therefore, and by (1.27), (1.28) and (4.23), we find that, for j = 1,2,
3> 88, (b1 DN) + (88, 4 (6. DN) - 8%, (b1, DN)) iy,
By (4.27), (1.44) and our non-negative lower bounds for J, and J,

&q(H],H)=O(j])+O(jQ) <y + s, (4.28)

Still considering the application of Lemma 4.2, with a and M as indicated
above, we observe that, by (1.31), it yields:

htda=A+ > Y bnbs qu ( F) S(Dm, Dn; q¢),

N/2<mngN ¢
where )
A= — H*|byl?,  E(z) = Var dy(drz). 4.29
\/E H N“2 ( ) u H( T ) ( )

We may rewrite the last sum of Kloosterman sums so as to conclude that
h+32=a" (g, D), (4.30)

where at(z,y) is the function given by (4.9) of Lemma 4.6, with A and E(z) as
n (4.29), and ¢, N, chosen to satisfy:

c=b{P) and N, = DN, (4.31)

where b¢P1) is defined as in (1.31). By (4.29) and Lemma 4.4 the function E(z)
here satisfies the condition (4.8) with § = 1/3 > 0 (for example). Therefore it
follows from (4.30), (4.31) and (4.12), (4.9) and (4.13) of Lemma 4.6 that

(=9}

h+J2 €A+ Z Z cmc"Z~l—E<D \/—) (DLm, Din;q.t) =

£
Ni/2<mngN; g

- $(Da) 4 (D) .
A+ Z Z b b qu ( )S(m3nvq*e)’
D.N/2<mn<D.N
where D, = D1D., b¢P-) is as in (1. 31), and g«, D!, are some pair of natural

number satisfying (4.24), As ||by|l2 = [)b ”2 for g € N (see (1.29), (1.31)), it
follows from (4.29) that the form of the last bound on J; +J, invites us to make a



Fourier coefficients of modular forms and eigenvalues of a Hecke operator 71

second application of Lemma 4.2 (with a = b{?+) and M = D,N now), following
which we have:

7y 435 <3 498, (4.32)
where

2

ST P pi(n)]

D.N/2<n<D.N

7 = Z Ry (Kj) ————

51 cosh (7m])

2
ru(Qt

Z / Ry(r) S 6PN (n, 4 +ir)| dr.

D.N/2<n<D.N

The upper bound on Ry (r) of Lemma 4.3 shows that, for r satisfying the condition
(4.4) of that lemma,

[o.9]
/9 e 3 6/H 4G > Ry (r).
H
i
This enables us to deduce from (1.44), (1.27) and (1.28) that we have

oo
fa%gaxNJlﬁyge*””W”dc>4Y%+ﬁ”
0

here. As D, = D,D,, this last result, together with (4.28) and (4.32), yields
(4.24)-(4.25) for y = 0. The case y = 0 of the second bound, (4.26), follows trivially
from (4.25), using both the bound ze(!~"/?% < 2/(x - 2) for z = G/H > 1, and
the fact that, by its definition in (1.42), the term o4, ¢(b, N; D.,0) represents a
non-decreasing, non-negative valued, real function of G. |

Lemma 4.9. Let U > 1, N >0, ¢,D €N, y € R and take b = (b,) to be any
complex sequence. Then, for K 21,

g,k (b,N:D,y) < Z U~hg, (UP, UMY,
U ZK
where 4(Hy, H) Is as defined in (4.27) of Lemma 4.8.
Proof. By (4.27),

U%, (U, U = &4(1,U) = 0q,u,(b,N; D,y),
where Ug = U, and, for he N,

U=tg, (UM, UM1) 2 aqu, (b,N; D,y) — aqu,_,(b,N; D,y),
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where U; = U?*! for j € N. These bounds enable a proof by induction that, for

keN,
k—1

S U, (UR UMY 2 000,,(b,NiD,y).

h=0
The lemma follows from the case k—1 = [log;; K] of this bound, since in this case
one has Ug_y = UF > K > 1, sothat k € N and (see (1.42)) oqu,_, (b, N; D, ) =
Zoqk(b,N;D,y). |

5. Multiplicativity revisited

By making use of Lemmas 4.7, 4.8 and 4.9 are able to deal with the sums
oq.x(b,N;D,y) in cases where (g, D) > 1. Results worth noting in their own
right are Lemmas 5.1 and 5.3. Proposition 1.1 is proved at the end of the section,
as a simple corollary of Lemma 5.3.

Lemma 5.1. Let € > 0 and ¥ = 7/64. Then, for N >0, g, D& N, K > 1, and
any complex sequence b = (b,), one has:

sf,o’qK (b<D DN) e r“((q?D)) (K + (q’q )N1+f) Iball3 (5.1)

and, for y € R,

oqx (bN; D, y) < (@f)—m)wf“((—q%-)-) (K"’+-(~9-3;ID—)N‘+E> Ibnlla.  (5.2)

Proof. By the coprimality condition of (4.13), Theorem 1.4 applies to bound the
integrand on the right-hand side of the bound given by Lemma 4.7, so we are able
to conclude that

sgg{q‘,( (b D) DN 1 /05(74 (D.) <G2 + %N”E) nbNug) e" 971 4G,
2

Since {4.13) also shows we have

D q
=—"— and 21—
(g, D) (g, D)

here, the bound (5.1) follows trivially on noting that

Qs (5.3)

e s] [ o]
%I-/Gje‘G/HdG:Hj / the~tdt < jIH!  (§=0,1,...).  (5.4)
2 2/H
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It now only remains to prove (5.2), which is a task that the case U = 2
of Lemma 4.9 enables us to approach through consideration of terms &,(H,, H)
where 2 < H € 2K and H; = H/2. Given such a pair, H, H,, we apply Lemma
4.8 with D; =1, D' = D, obtaining {from (4.26)) a bound,

o0

&,(H/2,H) < Hoy, u(b,N;D.,y) +/aq_,G(b,N; D.,y)e S/HdG, (5.5)
H

where q., D. € N satisfy (5.3). Therefore Theorem 1.4 now applies (via (1.44),
(1.45) and (1.31)), so we have:

O0..a(b, N; Dayy) <o D274 (D.) (G2 + 7 N +/2) b,

for G > H (given that H > 1). From this, (5.3), (5.4) and (5.5), we conclude that

< (o >N(EE%) R [

Summing this last bound over H = 2,4.8,...2!cg Kl+ ', gives a bound for the
sum in Lemma 4.9, and so also for O'q‘}((b N, D y). To see that (5.2) is implied,
note one either has

K<N and  [log, K] +1 <« N¥/2,
or (given that 0 <& <1 and N > 1),

K>N and D iz o k) 1 1)« NPKV2 < K. m
q

Lemma 5.2. Let ¥ = 7/64. Then, for M > 0, G > 0, y € R, any complex
sequence a = (a,,), and Dy, D’,q € N with

(D', q) =1, (5.6)
we have:

gec(a,M;D'Dy,y) £ 57
q
N2 3y 2 (w0} M D
SDYTADY) DT DD Bleeg) oge (al®d = =y

g%lD" gi|{{D',Dy) go 4
(90.,D1)=1

where (%} = @gyn for n € N,

Proof. As in the proof of Lemma 4.8, we need only to establish the case y = 0
here, since all other cases will then follow by the first identity of (1.44) and the
observations made under (1.45). By (1.44) and (1.31),

¢ 1 i
0ac (8, M; D'Dy,y) = 81, & (b0, D'N) + = 88) - (6P, D'N),  (5.8)
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where
b=a™ and N=DM. (5.9)

Now referring back to the proof of Theorem 1.4, the coprimality condition
(5.6) permits an appeal to both (3.23) and the non-holomorphic analog of (3.17)
(a simple consequence of (1.23) and (1.20)). We find that, for i = 1,2,

i ’ ! i N
S(oo).q,G(b(D ), D'N) < (D‘)2ﬂ1-3(D ) z MZ(Q)SQ,Q,G(b{g}’ ;) , (5.10)
gl

where {9} = bgn for n € N (and where 0 may replace ¥ for i = 2). Given g € N,
squarefree and satisfying g|D’, we define

g1 = (g9, Dy) and g0 =g/g1. (5.11)

By (5.9), (1.31), (1.45) and (5.11), we have in (5.10):
s ¢ (b{y}} N/g) =85 ¢ (c®/9, (D, /g1) (M/go))  (i=1,2),

where ¢ = af%!}. The bound (5.7) therefore follows by an application of (1.44)
after both cases (i = 1,2) of (5.10) are used with (5.8): note that each pair gg, g1
given by (5.11) occurs for only one g (i.e. g = gog1) and, given what is assumed
about g above (5.11), the pair will satisfy all the conditions of summation in
(6.7). [ |

Lemma 5.3. Let € > 0 and ¥ = 7/64. Suppose that N >0, y € R, b = (b,)
is a complex sequence and D = DyD’ with Dy, D’ € N. Then, given @ > 0 and
K 21, one has

vore [ D G
Sa.1(b,N; Dyy) . (D) [ e“%sql,c(bwo}, N. Dy y) 4@
go G G

1

(with b,{lgt’} = bgon for n € N), where go,¢1 are some pair of natural numbers
satisfying
go|D’, (9o, D1)=1 and  @|(D', Dy), (5.12)

and Q) is some real number with

Q
7D < Q1 <Q. (5.13)
Proof. In view of (1.43) and the case U = 2 of Lemma 4.9, it is reasonable to
begin by considering the sums &,(H;, H) (given by (4.27) of Lemma 4.8) in cases
where @ < ¢ < 2Q and 1 < Hy; < H € 2K . In such cases Lemma 4.8 gives us the
bound (4.25) for some pair ¢., D, € N satisfying (4.24). As (4.24) implies that the
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hypothesis (5.6) of Lemma 5.2 will hold if one replaces ¢ and D’ there by ¢q. and

DL, so Lemma 5.2 may be applied in the context of (4.25), showing
(5.14)

0g..c: (b, N; D.D1,y) <
N D
AR AR ST o (b(gﬂ} ;=L )g
< (D)) ?(9091) 9., ptiegt’

g|lD.  @i{(D Dl)

(g0,D1)=1
29 N D
SCORECED SND SRS DI LEUP -
gD’ @l(D\Dy)  ailg !
(90,D1)=1 @/(@D'))l

(where we appeal to (4.24) for the last inequality). Given G, gp and gy,
N D
} ! ) <

3 3 ath(b{go,;o;;,y

Q/2<9€Q nlg

(q/(a.D"NMaq
N D
C Y ae(p N2 o)
Q/2D'<q1<Q 90" 1

so it follows from (4.25), (5.14) and (1.43) that

3 s (HyL HY< (DY 4Dy Y. Y Z u(%H;go,gD,

Q/2<q<Q golD’ @l(D',Dy) rf:"O ,
(g0.D1)=1 2" <D

where
XN € e

0
u H: = {8 {90}, T
(R1 }90391) -D/ R.G (b 90" 91 ' Y H
Using this last bound with the case U = 2 of Lemma 4.9 and (1.43) (again), we

deduce:

Soxb NiDp) < @D Y Y 3 v(Fina). G15)

@D (DD r50

(9a,D1)=1 CH
where o
N D dG
V(R:go,q1) = | S bleo} = k(G 5.16
(Ri0,91) O]R.c( ) WkO) g (510
and
i o h
Wk(G)=(1+G)G > 272 3C/%,

h=0
2h< K
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Here Wk (G) <2/(1-1/4) if 0 < G <1, while, for 1 < G < K one has,

! 1
Wi(G) €2G* | Y ————=+ Y | <1,
! hoo 2 (56/2)° 0 i
2" <a 2" >a

and, for G 2 K > 1, there is the bound

> 3!

— - -3
€ G/2K <G lKe QG/K.

These bounds show Wy (G) « e~%/2K for G > 0, so it follows from (5.15) and
(5.16) that, for some go, g1 € N and @, € R satisfying (5.12) and (5.13), there is
the bound

o0 el
So.x(b,N;D,y) < (D')° r5(D') log (2D") /SQ,‘G (b{go}, N, El,y) e R dG

J g0 N 1+G
The result of the lemma now follows quite directly, by virtue of the bounds
T(D') «¢ (D')*/® and log(2D’) <, (D')%/¢, and the observations that e~G/2K /(14
+G) =1 for 0< G <2 (and K 2 1), and that Sg, g(b{%} N/go; D1/g1,y) is a
non-decreasing non-negative real valued function of G (see (1.42), (1.43)). ]

Proof of Proposition 1.1. Proposition 1.1 is a corollary of Lemma 5.3. To see
this we note that, by (1.42), (1.43) and (5.2) of Lemma 5.1,

1 N D,
G) = =5Saq.¢ b1}, — —, )
f(G) G2 Ql,G( ' 90 a1 Y

is (when b, N, D, y, Q1, go and g, are given) a bounded function from (1, o0)
into [0, 00). Therefore, from the result of Lemma 5.3 we have:

Sa.x (b, N; D,y) < (D/D)?°** | f(G)Ge C/* dG <

00

<2(G)(D/Dy)?*+* / ge 9/ dg,

1

for some G > 1. Since the last integral here does not exceed O(K?), and since
(5.12) and (5.13) (with D’ = D/D,} are just the conditions (1.51) and (1.50), this
proves the proposition.
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6. Preparation for the swapping of levels

In this section the primary object of concern is the term &,(H;, H) defined in
(4.27) of Lemma 4.8. This is first bounded in terms of sums of Kloosterman sums.
We then work to show that certain of these sums have no significant influence
on the final outcome (our treatment of the remaining, less tractable, sums be-
ing postponed until Section 8). The first two lemmas provide certain prerequisite
information about the function ®y(z) from (1.48).

Lemma 6.1. Let H > 1. Then
oW (r) «; 27  (0<z<landj=01,..)

where ®y(x) is the real function given by (1.48).
Proof. In view of the general identity

3 . .
L (ef(@) =2/ P(@) + 51U (@)

and the restriction to £ € (0,1}, it will suffice here to establish that f(z) =
=17 ®y(z) satisfies
flr)xz (x>0) (6.1)
and A
fO)<;1 (r>0andj=1,2,...). (6.2)

For (6.1) we employ the bounds |sin(zcosh(¢))] € xcosh(f) € zef and
0 < tanh(§) < £ for factors of the integrand in (1.48). This shows that, for £ > 0,

o0

|f(z)] < HB/IeEEQe'(”E)zdg = /Iti’et/H~t2dt’
0 0

which implies (6.1) (given that H > 1).
For (6.2) we note that, by differentiating (with respect to z) inside the
integral of (1.48), we have the identity:

f(j)(r) =H [T ;(x cosh(&) Etanh(&)coshj(g)e“(ﬁf)’d&
7 )
o

where T;(u) = (d’ /du?) sin(u), so that |T;(u)| < 1 here. Using this, together with
the bounds 0 < tanh(£) < € and cosh(¢) < €, we find:

1f(j)(r)l < Hs/fzey’f—(HE)ﬁdE _ /tzeﬂ/H“zdt,
0 0

which (as H > 1) does yield (6.2), so completing the proof. ]
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Lemma 6.2. Let 0<§<1/2,0< X £1/2 and H > 1. Suppose that g x(z)
is the function given by (1.56), (1.48) and (1.71) (where the function Q(z) is
an infinitely differentiable real function satisfying (1.69)-(1.70)) and denote by
&y x(¢) and &g x(r) the corresponding Bessel transforms defined in (2.15) and
(2.16) of Theorem 2.2. Then ®y x(x) is an infinitely differentiable real function
of x satisfying

Py x(r)=0 (z&(X/2,2X)C(0,1)), (6.3)
and one has:

Sy x(k—1) €« X252 (k=24,6,..), (6.4)

@H,x(r) &« X128 (reCand —(1/2-6)2<r? <), (6.5)

Sy x(r) <; X2r|™I (reR,|ri21andj=0,1,...). (6.6)

Proof. As 0 < X < 1/2, the result (6.3) follows from (1.57) and (1.56). Given
that H > 1, the infinite differentiability of {2o(z), together with (1.56), permit us
to conclude from Lemma 6.1 that, for j =0,1,...,

R> Y (2) <; X7 (ze[X/2,2X]C (0,1)). (6.7)

By (6.3) and (6.7) the conditions for Lemma 2.4 (up to and including (2.19)) do
hold, with ¢(z) = ®y x(z), F = O(X?), Y = 1, and the ‘X’ there equal to
X/2 € (0,1/4]. Therefore (6.4) follows on applying (2.21) with r = k—-1 > 1.
Moreover, for —(1/2~ §)? € r2 < 0 one has r = ir’, where 7/ € R and 0 < || €
< 1/2 -4, so that (2.22) of Lemma 2.4 is satisfied with the ‘r’ there equal to r’.
Therefore, for such r, we may apply (2.23) to obtain:

Dy x(r) <« X* A (67! 4 min (|r[7", log(2/X))) <s
X209 (14 (2/X)8%), it0 <] < 4 (3 -9),

<s
XZ‘Q(%“‘S), if 3 ( §) <Jrf < %- 8,
enabling us to conclude that (6.5) holds in the cases where r ¢ R. The rema-
ining cases of (6.5) follow from the bound (2.20) of Lemma 2.4, since (given that
X €1/2) one has 1 < log(2/X) <5 (1/X)1~%,

It now only remains to prove (6.6). We begin by using the power-series
expansion (2.9) for the Bessel functions Ji2i-(z) in (2.16). This shows that, for
reC — {0, i, £2i,...},

( 1)€ 2! (I/Q)Zir dz _
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where

2‘-21’r$'2¢—1+'2ir 2‘2ir$‘2£~1-2ir
Ter) = Gk / 2i (1*(3 Flt2ir) D(+1- 2ir)> Pax(z)dz
o

(with interchange of integration being justified by the uniform absolute conver-
gence of the series for = € [X/2,2X]). Integration by parts j times here yields:

oc

Fy(r) = (1) /Im 2= Brg2tri-IAArp(9¢ 4 94y (2)dz
sinh{=r) C(£+ 1+ 2ir)[(26 + j + 2ir) 'X

0

We bound the imaginary part here by its absolute value, which Lemma 2.5 shows

to be:
28+5~1 : £
L3 1-]:[ 1 sinh(27r) H 1 <
In + 2ir| 2rr oy Im+ 2]

n==2¢

sinh(27r)

< 201 |gp—€~3
= 2r] 2rr

From this, (6.3) and (6.7), it follows that

2X
1 sinh(277), _ _,_. 28tim p
F ; 9% j +i~1_ 2234
e(r) < sinh(nr) 2rr ! " /m &
X/2

so that, for j = 0,1,...,
Fo(r) <; 127]787 375 X220 (17| 21 and £=0,1,...).
Using this last bound in (6.8) shows that
X2
b x(r) <; r|~(+3) Xz; (E—l') <5
& [7"]'(”%)}{2 exp (X?/8r|),
which contains (6.6) (given that 0 < X € 1/2). This completes the proof. | |

Lemma 6.3. Let N >0, q,D € N, y € R and take b = (b,) to be any complex
sequence. Then, given H, H, € R satisfying

H>2H 21, (6.9)
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we have the bound

G, (Hy, H) < ZI;HC‘ Ibwll3 + aq.u (b, N; D, 1), (6.10)
where the terms on the right and left sides are defined through (1.46), (1.48),

(4.27) and (1.42). Moreover, for W = 2% and Y = 2¥ with u,v € Z such that
W £ 1/2 and

4rDN/q <Y € 327DN/q, (6.11)
we have here
W
Qg o (b, N; D,y) = Z Qg H X (b, JV; D,y) + 0 (-‘;-NzD [}b]ﬂ@) s (612)
reZ

WX, =2"<Y

where g p x(b,N:D,y) is given by (1.54), (1.56) and (1.71) (see also
(1.69)-(1.70)).

Proof. In view of Lemma 4.4, the case y = 0 of (6.10) was already established
in the course of our proof of Lemma 4.8 (see (4.28)-(4.29) and note that the
assumptions made there match up with our current assumptions). The case y =0
of (6.10) implies (6.10) for any y € R, as the substitution of b(y) = (b,n'¥) for b
transforms the former result into the latter (see (1.42) and (1.46)).

In deducing (6.12) (which will complete our proof of the lemma) we must keep
in mind the pertinent definitions: (1.46), (1.69)-(1.70), (1.71), (1.54) and (1.56).
Given (6.11), it follows from (1.69) that one may think of the terms summed in
(1.46) as having an unseen coefficient, Q(4wD+/mn/Yq¢), which equates to 1 for
the relevant values of m, n, ¢ and ¢. We can then replace that coefficient by
another, Q(4rDy/mn/Wqf), through the identity:

v
Qz/Y)-Ya/W) = ¥ (Q (277z) - 0 (2-('"*%)) = Y /X)),
re=u+tl r€Z

W< X, =2"<Y
where the function g(x) is given by (1.71). This identity is valid for = > 0 if
W <Y, which is the only case we need consider (the case W € (Y,1/2] of (6.12)
being an immediate consequence of (6.12) for W = Y').

Following the application of the above identity, and a change in the order of
surnmation, one finds (see (1.54) and (1.56)) that the sum over r on the right of
(6.12) equals agq 4 (b, N; D, y) — a(W), where

o0

(W)= D5 bmbn (gﬁ)_iy > -IEF (W) S(Dm, Dn; q¢),
N/2<m ngN £=1 q q

with F(z) = Q(z/W)® g (). Therefore (6.12) will follow if we can show

a(W) < =MD byl (6.13)
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By (1.69)-(1.70) and Lemma 6.1 we have here (given that W < 1/2),

_ JO@E?, if0<z<2W,
F(=) = {0, if £ 3 2W,

which, together with the trivial bound |S(a, b; ¢)| < ¢, allows us to conclude that

<Y Y nbal 3 (DT) <205 (bl v

N/2<mngN 2D /mn/2qW N/2<mngN

Since (6.13) follows from this by the arithmetic-geometric mean inequality (and
some trivial bounds) our proof of Lemma 6.3 is complete. ]

Lemma 6.4. Let 9 = 7/64, ¢ > 0 and j € N. Then, for N > 0, ¢q,D € N,
HG>21,0<X <1/2, y e R and any complex sequence b = (by,), one has

aqmx(b,N;D,y) < X2 0,6 (b,N; D,y)+
Ac(q)X? (D/X)*
+ 0, ("—q— 1+ Oj —_GJ_ )

Ae(q) =74(D) (a + (@, D)N'*<) b3, (6.14)
and where the other terms are as in (1.54), (1.56), (1.71), (1.69)-(1.70) and (1.42).

where

Proof. We will treat only the case y = 0, since the other cases follow on substi-
tution of b(y) = (byn') in place of b (see the definitions in (1.42) and (1.54)).
By (1.54) and (2.7),

og 1 x(b,N;D,0) = ZZ Db Omns

Nj2<mngN

where
Tolq)

Omn = Z 'I‘Soooo(DmsDn§'Y)q)H,.\' ar (DT”)(DR) .
3 Y

v

By Lemma 6.2 (with any § € (0,1/2)) we see that ¢(x) = &y x () satisfies the
(few) hypotheses of Theorem 2.2, The case a = b = oo of that theorem therefore
applies, showing that the sum .., above is equal to another sum, X + X + X5,
where, for i = 0, 1, 2, the expression X! differs from the corresponding expression
X, (in Theorem 2.2) only in that where X; has ‘m’, or ‘n’, the expression X; has
instead ‘Dm’, or ‘Dn’ (respectively). By (6.4)-(6.6) of Lemma 6.2, Theorem 1.3,
and Weyl’s law (for the discrete spectrum), the sums and integrals defining X3,
X and X are absolutely convergent, so that we may bring the (finite) summation
over m,n inside the other summations, to obtain;

ag,1,x (b, N;D,0) = Ro + Ry + Ra, (6.15)
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where

Bk q) i (k — . ‘ 2
Z Z T@AmET iy Pax (k= 1) z batjx (00, Dn)f
keven j=1 N/2<ngN

(@) 2

1 -
Ry = Zm—)‘bﬁ,x (%) D bapiee(Dn)|

j=1 N/2<n<N
I“o(q 2
= - Z /(I)HX( ) Z b oo (Dn,%+ir) dr.
N/2<ngN

By (1.14)-(1.15) we may apply Lemma 6.2 here, with § = 1/2 — 9 = 25/64
€ (0,1/2) in (6.5). Then, by (6.4)-(6.6) of that lemma, we have

o0
by x(k-1) < X"’/K'm’dK (k=2,4,6,...)

and (given that 0 < X < 1/2),

00

. pei—1
by x (1) « X220 (1+Cj17"j)~1 :X2-20/ﬁwI—L§dK
(1+c;K9)
irl

where c; is some small positive constant (depending only on j), and r can be
any real number, or any value taken by x; in the summation of R;. Applying
these bounds to obtain upper bounds for the absolute values of Ry, Ry and Ra,
and then rewriting the results by combining the outcomes for Ry and Rg, and
bringing all other summations, or integrations, inside the integration over K, we
find (see (1.26), (1.31) and (1.42)):

O
Ro < X / K-7/288) « (b, DN) dK,

oo
> ij_l
Ry + Ry < X220 / I ek (b, N; D,0) dK.

J (L+¢;K9)?

By (5.1) and (5.2) of Lemma 5.1, it now follows that

Ro < X2 D) ||bn / (K"f’/? @.D) N‘+€K"7/2> dK <«
2

< ¢ ' X234 (D) byl (g + (a, D)N‘*E)
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and that, since G 2 1, j € {3,4,5,...}, and o4 k(b, N; D,0) is a non-decreasing,
non-negative real function of K (see (1.42)),

G
jej K71

L+ oK) K

+ TCJKJHOE(D” () (4 BN oy n2)dx)
G

o0 . ]“1
< X*®g5_ (b, N;D,0) /—7-9-’-}{—2 dK+
(]. + CjKJ)

o0

4 (q:D) 1 jX2D2‘9 dK .

+ 0. (‘r (D) (1 =N +e) b ]kg) X i1
G

Ry + Ry X% ( k(b, N; D,0)dK+

= X>¥4, 6(b,N; D,0)+

+0.(+D) (a+ @ DV owi?) X (2) T IE

As j may be replaced by j + 2 throughout (with the new j lying in N), so this
bound for R; + R2, the last bound for Ry, and the identity (6.15), together yield
the result claimed by the lemma, |

Lemma 6.5. Let J = 7/64 and suppose that A € (0,1/2] is sufficiently small
in absolute terms. Then, for ¢ > 0, j € N, N >0, ¢ D € N, y € R, any
complex sequence b = (b,,), H, H; € R satisfying (6.9), and Y = 2" (withv € Z)
satisfying (6.11), one has an inequality of the form:

(Hl,H)<<O( q“”)( 140, (’;")) LH on]2+ Y agux. (b, N:D.y),

reZ
A<X, =2"gY

where the terms on the left and right sides are defined through (4.27), (1.42),
(6.14), (1.54), (1.56), (1.48) and (1.71) (and see also (1.69)-(1.70)).

Proof. By (6.10) and (6.12) of Lemma 6.3, we obtain

G (L, HY < H¥|balz+ Y agux.(b,N;Dy), (6.16)

reZ
W(Xr=2r\<.y

on choosing W = 2% with W < A and W sufficiently small in terms of N and
D: the O-term from (6.12) being properly accounted for here, as (6.16) omits the
factor 1/4m shown in (6.10).
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Given A € (0,1/2], the case G = H of Lemma 6.4 shows:

> lagux.(b,NiD,y)| < A¥ g, 4 (b, N; D, y)+

TEZL
o(28) (0 (5).

X,=2"€A
where Ac(q) is given by (6.14). As W was chosen with W < A, this last bound
and (6.16) together imply an inequality,

5o (HL, H) < Oy (H3 Ibw (13 + C28% 20, 11 (b, N; D,y)+ (6.17)
A D20
+OE(WE—('](”q_))( +O (HJ ))+ Z athzxr(b’N;Diy))v
A<eriz:l>’<Y

where Cy,C5 > 1 are certain absolute constants, Given that A is chosen sufli-
ciently small, and that H > H; > 1, we will have here:

1
< CiCAT g, (b, N; D, y) < o*qH(b N;D,y) < &q (Hy, H)

(see (4.27) and (1.42)), so that the lemma follows from (6.17). ]

7. Bessel transforms: a special case

In Lemmas 7.1, 7.3 and 7.6, we obtain bounds for Bessel transforms of the function
¢(z) = 0y x (), (7.1)

where t € R, H > 1 and X > A are given (see (1.56), (1.57) and (1.48) regarding
Oy x(z), and (2.15), (2.16) for the transforms). These bounds are needed for our
work in the next section.

Lemma 7.1. Let 0< 0 <1/2, H>1,t€ R and X > A, where A is a positive
absolute constant. Suppose that ¢(z ) is given by (7.1). Then

¢(z) =0  (z¢&(X/2,2X)), (7.2)
and ¢ is an infinitely differentiable function from R into C. Moreover,

$(r), ¢(n) <« (1+[t)) X (1 + Jlog(X)]) (r €R,neN),
S(r) <5 (1+1t)) X (reCand - (-6)°<r2<0), (7.4)
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and, for r € R,

$(r) if |r| > 1,
(L+[t)> X252 > { (7.5)

é(r) if reN.

Proof. The property (7.2) follows by (7.1), (1.56) and (1.57) (the integral in (1.48)
being convergent for all real z). An argument already used in the proof of Lemma
6.1 shows that 2~ 1®g(z) is an infinitely differentiable real function, so that the
infinite differentiability of ¢(x) follows by (1.56), (7.1), (7.2) and the infinite dif-
ferentiability of §29(z) and z'**! on the interval [X/3,3X] (for example).

By (7.1), (1.56), the infinite differentiability of $2y(z), and (1.48), one finds

that
p(z) < X|f(z)l,
¢'(x) < X|f ()| + 1+ [t) | f ()],
¢ (z) < X 1f" (@) + (L+ [t [f'(2)| + (1 + |t)* X f ()],
where f(z) = z7'®y(z). For H 21 and j =0,1,2, one has

o0 o0
] cosh? (£)¢ tanh(€)e™ (HO g < / 294 qe « HY,
[} 4}

allowing us to deduce from (1.48) and the last set of bounds for ¢, ¢’ and ¢" that
19l < X, I¢/ll, € A+t + X)X and [¢"]l, < (L+]t] + X)*.
Therefore Lemma 2.4 applies, with some pair F,Y > 0 satisfying
F(+t|+ X)X, Y <1+t + X,

and with ‘X’ there equal to X/2. By this application of Lemma 2.4 we obtain
results, (2.20), (2.21) and (2.22)-(2.23), which trivially imply (7.3), (7.5) and (7.4)
(respectively), by virtue of the conditions 0 < § < 1/2 and X > A (where
A>1).

Lemma 7.2. Let a<b, V >0 and 0 < M < 1. Suppose that f(z) and g(z)
are infinitely differentiable real functions such that

g(x)=0  (z¢(ab))
and, fora<zx <b,

@) <; M7 (5=0,1,..), (7.6)
@) <; VIM  (5=23,..)
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and
1f(@)| 2 V. (7.8)
Then

/ 9@ Pdr <, (b-a) (VM) (5=0,1,...).

Proof. Substituting u = f(x), and then integrating by parts j times, we find:

o0 f(b) d .
i@ g = [ &) gy o g (E_J_.Eﬂ i
_[o g(z)e!®ldz f(/) f’(a:)e du / T f’(x))e du (7.9)

c

(say), since the relevant integrand at each stage is a function that vanishes at

the boundary points (where £ = @ or £ = b). Here we can observe that, for
k=0,1,...,=12,... and m = 2,3,...,

- 1y,..492 _ 9*+1(x)
ag(k)(ﬂi) = g+ )(m)a =T e
d ’ - ; —€—1 pu dz . f(2)( )
az(f (£)) = —£(f(=)) f (m)a (f o

dz _ fm+1)(g)
du  fl(x)

Therefore it follows by induction that, for j =0,1,... and a < x < b,

gko) () fk) () . flke)
ZZZZ 3 c (mzf (2)... f5)(x)

1+ka+...+kr
r=0ko20 ki2 ka2... 2ke22 (f(x)) ™
ko+...+kr=j+r

a%f("‘” )= flmn) (g 92

for certain coefficients C,(k) € Z depending only on r and k = (kg,...,k,). By
(7.6)-(7.8), we have here (in the above sum):

g(ko)(m)f(kl)(x) . f(k,)(x) | M""O(V/M)r )
(fl(x))l+kn+.“+k,. i lf’($)| Vhot 4k
1 AT (kotr)

T [P@I MRV T [fi@) MV

where j+r=ko+...kr 2 ko+2+... +2=ko+2r,so that j — (r+kg) 2
On using our bound (for all the terms of the above sum), and then recalling that
0 < M <1 (so that M7~("+ko) < 1) we arrive, by way of (7.9) and the related
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observation that |du|/|f'(x)| = |dz|, at the result stated in the lemma. Note that
Cr(k) = O;(1) in all relevant cases. [ |
Lemma 7.3. Let 0<e<1/4, H21,teR and X > A, where A is a positive
absolute constant. Suppose that ¢(x) is given by (7.1). Then,

3
Bk~ 1) < (1+t)"¢ min(XE“/?, XI;{m) (k=2,4,6,...) (7.10)

and, for even integers k satisfying
k 2 10Xt1/2 (7.11)

we have: _ _ .
Bk —1) < (L+ 1) X175 (j=0,1,...). (7.12)

Proof. Let k/2 € N. By (2.15), (7.1) and (1.56),
é(k -1)= /Jk_l(.’IJ).’B“"I‘I)H(.’B)QQ(:E/X)d.’B, (7.13)

where Jx..1(z) can be represented in the form (2.12) (see Lemma 2.3) and where
G (z) is given by (1.48). By (1.57) the integrand here is a function of = with
support in the interval [X/2,2X]. Since (2.12) involves a proper integral over
[~7/2,7/2], and since (1.48) involves an integral that is uniformly absolutely
convergent (for all x > 0), we are justified in appealing to (7.13), (2.12), (1.48),
and then changing the order of integration so as to obtain:

k 7|'
3k -1y = - / [Dectn L) gy, (14
—~x/2 0
with
2X
Dx.i(n,¢) = /sin(:ccos(n))sin(:rcosh({)):c”ﬂg(m/X)d:n, (7.15)
X/2
so that
DO < max [Ex,an (cosh(€) + acos(m)] (7.16)
where

2X
Exu (y) = / ez (/X ) da
X/2
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Integrating by parts j times (and using the bound Q{()j ) (z) «; 1), we find here:
Exu(y) < L+1E) Xy~ (5=0,1,...). (7.17)

For a = =1, n € [-n/2,7m/2] and £ > 0, we have

cosh(§) + acos(n) = cosh(£) — cos(n) =

£ 7 £ n 5 2 2
= fsinh(u)du-{—/sin(@)d@ = /udu+ /-9d9 = %-{— 77__,
T s
0 0 0 0
so that, by (7.16) and (7.17),
Dxe(n.€) <; (L+ 1Y X7 |2 +727 (5=0,1,...), (7.18)

whenever —7/2 < n< 7/2 and £ > 0.
Taking now (z) to be the function of (1.69)-(1.70), and setting

Y = X712, (7.19)

we find that, by (1.69) and (7.18),

/2 oo
I
| [ Pxatn 9 Smele o0 1 gy vianl vy acan <,
-x/2 0
&G (14t Xy~ /gtanh(g)e-<”ﬁ>’d§ <
o

< H™3 (1 +|t))? X1-%¢,

for j=0,1,2,... . Therefore, and by (7.14), (7.15) and (1.69),

$k — 1) = Fy(k ~1) + O, ((1 + 1t X‘"zjf) , (7.20)

_ik 3 an
Frte 1= / /Dx‘t(n,s)“a RO VIOU/Y) gy )

o(HE) 1 (k—Tyinm
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with
w/2

-1k .
Jia@ =2 [ et nsin@eosm) g/ vian, (722
—-n/2

2y
o3, (x) = H3z / ¢ tanh(£)e~ (79" sin (z cosh(£)) €/ Y)dE.
0

By (1.69)-(1.70), we have here (trivially),
Ji(@) <Y (z >0), (7.23)

[o 0]

LACIR mln(/ ezde,/ e dé) <min(HY%,1) (2>0). (129

As Qo(z) <« 1, it follows from (7.21), (7.23), (7.24) and (7.19) that
Fy(k—1) < XY min (HY?, 1) = min (HX%*7, X*+1/2). (7.25)

Since 0 < € < 1/4, X > A and H 2 1, the bound (7.10) follows from this bound
for Fy(k — 1), by way of the case j = [1/¢] of (7.20).

For the remaining result, (7.11)-(7.12), we shall need to improve on the bound
(7.23). Note first that, if A < X < 16, then the bound (7.25) and the case j =0
of (7.20) together imply @¢(k — 1) « X*+1/2 + X « 1, which contains (7.12) (in
cases where X < 16 and 0 < € < 1/4). Therefore we may assume henceforth that
X > 16, so that (by (7.19)),

2Y =2X° 12 <2x "M 1,
As this shows 2Y < 7/2, it now follows from (7.22) and (1.69) that

o
) 1 1
i@l <3| [ ameran), (7.26)

where g(n) = 2(|n|/Y) (an infinitely differentiable real function with support in
[-2Y,2Y]) and f(n) = faxcos(n) — (k — 1)n (with a choice of sign maximising
the right-hand side of (7.26)). Assuming (7.11), we have it by (7.19) that, for
z € [X/2,2X] and 5 € [--2Y,2Y],

f'(m) = Fzsin(n) — (k- 1) < |zn] — k/2 <4XY —5X+Y2 = _ XY

and |fO(n)l < |z| € 2X, for j = 2,3,.... Lemma 7.2 applies, with [a,b] =
= [-2Y,2Y], V = XY and M =Y, showing that, for x € [X/2,2X],
/ gmefMdn «; Y(XY?) I =YX~ (j=0,1,...)

- O
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(see (7.19)). By this, (7.26), (7.24), (7.21) and (7.19), we obtain in place of (7.25)
the bound,

Fy(k'-" 1) & X—er: min (H3X4z—:—1, Xz—:+1/2) < XE+1/2—2jE'

so that (7.12) follows by (7.20) (given that X > 16 and 0 <& < 1/4). [ |
Lemma 7.4. Let 0<e<1/2, H > 1 and X > 0. Suppose that
Y = Xx=-1/2, (7.27)
Then, for X/2 <z <2X and j=0,1,...,
n(z) = @3(x) + 05 (X1759),

where
Y
o3, (z) = Hz / sin (z cosh(£)) ¢ tanh(¢)e~HO Q(2¢/Y)de (7.28)
0

(with §(z) as in (1.69)-(1.70)).

Proof. Suppose that X/2 < z € 2X and j € {0,1,...}. By (1.48), (1.69) and
(7.28),

Qy(r) — dY(z) = Ham/ sin (x cosh(€)) gt?;?)f) a(/Y)dE (7.29)
Y/2
where
a(u) =1—Q(2u), (7.30)

so that (see (1.69)) the function « is real, infinitely differentiable, and satisfies:

a(u) = {O, ifu<1/2, (7.31)

1, ifuz>l.

Therefore, after one integration by parts we find:

[ €tanh()a(e/Y)

— P* g 3
p(z) - Pu(2) H'z e(H8)* 1 sinh(€)

Y/2

s [ (d  EafE)y)
- H%/ (Hzm) cos (z cosh(€)) de
Y/2

d(cos (z cosh(£))) =
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We may repeat this step (integration by parts) any given number of times. Each
iteration involves a division by +zsinh(§), followed by a differentiation with re-
spect to the variable £. With regard to the differentiation, one should note that,
for £ > 0, we have:

d =1 A (HOPY _ o2 - 2(HE?

O =¢ 3¢ o (¢797) = 2% = =0,
d . __cosh(£) et d _ sinh(§) et
& log (sinh(§)) = Sinh(e) < T T3 log (cosh(§)) = cosh(?) <1< 3

and, by (7.31),

d 1 1
S o eIV = —aktD = 0| = |alktD) k=0,1,...).
$aE/Y) = pat e/ =0 (gt e m) (k=0
At any point we can stop the iteration and apply the bounds
a®(E/Y) < 1 (€>0,k=0,1,...),

which hold by virtue of (7.30). The result will be an upper bound for |®y(z) —
—®%(z)| in terms of an integral involving an integrand that is some non-negative
real-valued function of £. The bounds we have given for logarithmic derivatives
show (in respect of our last point) that the k-th iteration alone reduces the final
bound’s integrand by a factor

3 2\ !
Fy >y (%g-ﬁ%}({—g)?) > x€le HE,

Recalling the starting point, (7.29), we conclude that just j integrations by parts
are sufficient to show:

o0
Sy(zr) - Py (r) <5 H3x / €2€-(H6)2 (mfze—He)_j d§ <
Y/2
o0
<, Hz (z¥?) ™ / (O ge - X (XY?) ™7
0
which (see (7.27)) is the result given by the lemma. |

Lemma 7.5. Let 0<d <1/4,0<e<1/2, H21,t€eR and X > A, where
A is a positive absolute constant. Suppose moreover that ¢(z) is given by (7.1)
and that r € C satisfies

2> - (L-6)* (7.32)
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Let
2X
Fy(r) = / Gr(z)®}(z)z" Qo (z/ X)dr, (7.33)
X/2
where Y and ®} () are as in (7.27)-(7.28), Qo(x) is as in (1.71), and
ay
Gr(z) = ~2/cos(m cosh(n)) cos (2rn) Q(n/2Y)dn (7.34)

0
(with Q(x) as in (1.69)-(1.70)). Then

B(r) = Fr(r) + Os; (1 +1HY X1°%%)  (GeN).

Proof. By (2.16), (2.11) of Lemma 2.3, (7.1), (1.56) and (1.57), we have

2X
o(r) = / G (2)®g(z)z" Qo (z/ X )dz, (7.35)
x/2
where -
Gr(z) = -2 / cos (z cosh(n)) cos (2rn) dn (z > 0). (7.36)

0
Applying the second derivative test [23], Lemmas 4.4 and 4.5, one obtains, with
help from (7.32), the bound:

n+6
~1/2,~2n6

H

/ cos (x cosh(n)) cos (2rn) dn « z

n

forz >0,n=0,1,... and 0 < # < 1. From this and (7.36), we find that
Gr(z) = Gra(2) + O (71e™™2712)  (nZ0,1,...), (7.37)

where
n

Grnl(zr) = —2/cos (z cosh(n)) cos (2rn) dn. (7.38)
0

By Lemma 7.4, together with the case n = 0 of (7.37)-(7.38), we find by
(7.35) that, for j =0,1,...,

2X 2X
é(r) — / G, ()@ (2)z"  1o(x/X)dx = O, | X}~ %€ / 617324y
X/2 X/2

=05y (X1/2-2+)
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We take N to be any integer satisfying
N = 4Y. (7.39)

By our last result, and the case n = N of (7.37), and the trivial bound, ®},(z) <
(for which see (7.28)), we have now:

= / Gr.n ()Y (2)" 1 Q(x/X)dz + Os (Xl/z“zjs) + Os (Xl/ze'zN‘s) .
X/2

We may rewrite this in the form
3(r) = Fy (r) + In(r) + Os (XI/MJ‘E) + Os (X*ﬂe'"?"“‘) , (7.40)

where Fy(r) is given by (7.33)-(7.34) and (7.28), while

2X
In(r) = /(G,,N(a:)mc;(a:)) Ot (x)x" " Qo (x/ X)dz. (7.41)
X/2

By (7.34), (7.38), (7.39) and (1.69), we have here:

N
Gyon(z) - G(x) = / cos ( cosh()) cos (2r) B(n/ Y)dn,
2Y

where
Bu) = 2Q(u/2) - 2, (7.42)
which (by (1.69)) is an infinitely differentiable real function satisfying
0, ifu<?2
Blu) = { -2, fux4. (7.43)

Using this and (7.28) with (7.41), we find (after a change in the order of integra-
tion),

N Y
= [ [ Prngycos ) im0/ VIR Vdedn, (7.49)
Y O

2

where
2Xx

Dx(n.& = /cos(a:cosh(n))sm(a:cosh ) 2" Qg (z/ X)dz.
X/2
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Despite this being not quite the same function Dy (n,£) found in the proof of
Lemma 7.3, the argument from (7.15) to (7.17) adapts (on substitution of cosh(n)
for cos(n)), and shows that, for 7 =0, 1,.

Dx(n,6) <; (1+[t])’ X'~7 |cosh(n) — cosh(€)| 7. (7.45)
For n 2 2Y and 0 £ £ <Y, one has

cosh(€) _ cosh(Y)
< = h )
cosh(n) ~ cosh(2Y) cosh(2Y) /sm Jdu
so that
B cosh({) Y?
cosh(n) =~ cosh 2Y) 2COSh(2Y)

which implies

3 cosh(n) vis 3

e nv-QYYE
2cosh(2Y) 7 ¢ '

cosh(n) — cosh(£) 2 1

Therefore, and by (7.32), (7.27), (7.42), (7.43) and (1.69)-(1.70), use of (7.45) in
(7.44) shows that, for j =1,2,3,...,

In(r)<; 1+ It])j X1iy-2 g3 /[ |cos (2rn)| & e‘(Hf)z”j("“Qy)dEdn &

2Y 0
N
< (L+]t) Xl»zje/6(1/2—26)n~jcn-—2v)d,, <
2y

o0
< (L+ [t Xl-“?fer/e-U-l/?)"d,\ < (1 + [t]) x1-%e exp(\/l/X) :
Q

From this and (7.40), we conclude that, for j € N, N € N satisfying (7.39), and
X > A, one has

B(r) = Fy (1) + Os; (14 1t X179¢) 4 05 (X/2e7217).

The implicit constants here do not depend on N, so that the result claimed by
the lemma follows on passing to the limit as N — oc. [ |

Lemma 7.6. Suppose that the hypotheses of Lemma 7.5 up to and including
(7.32) hold. Then

2 . H3
p(r) <s.e (1 + ]t!)l/e min (X6+1/2’ )_(1_4_5_) , (7.46)
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and, if it is the case that
X>1 and |r| 25etxetl/2 (7.47)

then '
d(r) <; (1+t))? X1-%¢  (j €N). (7.48)

Proof. For both (7.46) and (7.48) the first step is to apply Lemma 7.5. Following
that one has only to establish suitable bounds for the functions G} (z) and ®%(z)
in (7.33)-(7.34) and (7.28). With regard to the latter function, we note that sub-
stitution of Y/2 for Y brings the ®}(z) defined (under (7.22)) while proving
Lemma 7.3 into conformity with (7.28) of Lemma 7.4. Therefore, and by (7.27),
the bound (7.24) applies to show:

&} (z) < min (H3x36"1/2, X) (X/2 << 2X). (7.49)

By (7.32), (7.34), (1.69)-(1.70) and (7.27), we also have (trivially):

4Y

|G (z)]| < 2/e(1/2“2")ﬂdn <8Ye?Y « XV 2exp (\/4/){) <« X712, (7.50)
0

for X/2 <z <2X (with X > A).
By (7.33) and the result given by Lemma 7.5, our bounds, (7.49) and (7.50),
show:

&(T) < XE—1/2 min (H3X35"1/2, X) + Oﬁ,j ((1 + ‘tDJ Xl—2j€) .

As H>21,0<¢e<1/2 and X > A, the bound (7.46) follows on taking j =
={1/e} € {2,3,...} here.

The proof of (7.48) requires a non-trivial bound for G} (zx) in (7.33). As
cosh(n) and cos(2rn) are even functions of 7, the definition (7.34) may be rew-

ritten as
1Y

Gh(z) = — / cos (z cosh(n)) cos(2rn) (n/2Y) dn,
-ay

where

h(u) = Q(lu), (7.51)
so that, by (1.69)-(1.70), Qi(u) is an infinitely differentiable real even function,
satisfying

Qi (u) = {(1) ig {Z% ; ; (7.52)
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Assuming (7.47), it follows from the above that
G5 ()] < max / g(n)etf=Man), (7.53)
Q=
—00

where g(n) and fi:(n) are given by

g(n) =Q(n/2Y) and  fa(n) = zcosh(n) - 2ran. (7.54)

Note that, by (7.32) (where 0 < § < 1/4), the condition (7.47) (with ¢ > 0)
can only hold in cases where r (and therefore f,(n)) is real. This frees us to
assume that § = 1/8 (say). As € < 1/2 in (7.27), it also follows from (7.47) that
0<Y 1.

For @ = +1, z € [X/2,2X]| and n € [-4Y,4Y], one has, as a consequence
of (7.47) and (7.27), the bounds:

n
|fL ()] = |z sinh(n) ~ 2ar| = |2r] - I/cosh(u)du >
0

> 2|r| — z|n| cosh(n) > (10e? — 8e'V) XY > 2¢' XY,

and »
79| < zcoshln) < 26°X  (=2.3,...),

Therefore, and by (7.54) and (7.51)-(7.52), our Lemma 7.2 applies, with [a,b] =
= [~4Y,4Y], V = XY and M =Y. Through (7.53) and (7.27), we find that
Lemma 7.2 shows
Gi(z) <, Y (XY?) 7 = x=m1/2-%e (j=0,1,...).
Using this and (7.49) in (7.33), we obtain the bounds
Fy(r) «; XY*e-%  (j=0,1,...),

which directly imply (7.48), by virtue of Lemma 7.5 (with § = 1/8) and the
assumptions about ¢ and X. u

8. The swapping of levels

We give 5 lemmas leading up to a proof of Proposition 1.2 (at the very end).
Lemma 8.5 is stronger than Proposition 1.2, but the latter has a useful simplicity
(and suffices for what we seek to achieve in this paper).
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Lemma 8.1. Let ¥ = 7/64 and suppose that A € (0,1/2] is sufficiently small (in
absolute terms). Then, fore >0, j €N, Q,N >0, K 21, D€ N, y € R and
any complex sequence b = (b,), one has

SQ.K (b‘ N; Da y) <

< O., (DVJ (QK? + N'™¢) |by| )+Z U-h Z Ag.u,.x, (b, N; D,y),

h=0
U< K A<x,=2”<y

where Sg k(b,N; D,y) is as in (1.42)-(1.43),
U=2D¥/"  and Up=U"' (h=0,1,...), (8.1)
Y = 167Q ' DN, (8.2)
and Ag g x(b,N;D,y) is defined by (1.54)-(1.56), (1.48) and (1.69)-(1.71).
Proof. Assume (in addition to the above hypotheses) that
¢ €1Q/4,2QINN. (8.3)

Then (6.11) holds (with ¥ given by (8.2)) and, for h = 0,1,..., the pair H, =
=Uh H = U"*! satisfies (6.9). Therefore Lemma 6.5 applies, showing that, for
h=0,1,...,

L Ac(q) D¥
h h oprhel
U Jq (U U +)<<OE(Uhq)<l+Oj(U(h+l)j +

+ U by3+ U™ Y aquax. (b,N;D,y).

reZ
A<X,=2"gY

Note that here we have D% /U1 ¢ D*/Ui = 277 « 1 (for h 2 0 and
j € N), so that we may apply the above results with Lemma 4.9 in order to
obtain:

oo (b, N D) < Oc; (a7 Ac(9) +0 (KU bu|3) +

+

NgE

v Z Qg x, (B N; D, y).
0

EZ
K A<X, 2"gY

Pl
m

U

As this holds for any ¢ satisfying (8.3), we may now conclude from (1.43), (1.49),
(1.55) and the above, that

So.k (b, N:D,y) <) w(g/Q)aqk (b, N; D,y) <
q

< Y 0.5 (a A@) + 0 (QKUP [by2) +

Q/4<q<2Q

+ Z U™t ). Agu.x. (b,NiD,y).

reZ
U"(K A< Xer=2"KY
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This proves the lemma, as it follows by (6.14), (8.1) and our other hypotheses that

we have here

S oA =T O byl Y (1+—-—(q’qD)N‘+€)<

Q/4<€e€2Q Q/4<q<2Q

< 7(D) |bnllz (Q + T(D)N'*%) <; D' (Q + N'**) ]z,

while U3 « D%/7 < D7 and K > 1

Lemma 8.2. Suppose that the hypotheses of Lemma 8.1 hold, and that ¢ > 0,
JEN, QN>0, K21, DeN, yeR and b = (b,) is some complex sequence.
Let Y, U, Uy and the sequence (Uy) be as defined in (8.2) and (8.1). Then one

either has the bound
Sq,x (b, N;D,y) <¢; DI (QK? + N'*¢) “bNﬂg‘
or there exist
Xe(A Y] and Le[27'YV/X, 2Y/X]

such that, for k = 4,5,6,...,

X oo d
Sq.x (b, N; D,y) <« log(2Y) / ZTLX( " )m’
U"gK
where 2
‘-PL‘X (H,t) — Z ZQ&Q ('eg H,t) s
L/2<egL =0
with
8. (£)
0O EHy= 3 3 | (4 )k : lq&(k | lese)’
k even j=1
1 (€)
AR e H0 =Y s st 1P,
izl
and
Co(£)
9 6 =3 | i) ecrtan

t hle &)

(8.4)

(8.5)

(8.6)

(8.7)

(8.8)

(8.9)

(8.10)

in which the transforms ¢ and ¢ are those of (2.15) and (2.16), applied to the

function '
¢(x) = ¢x He(x) = 2 Bp x(T),

(8.11)
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while
B = D banity (00, Dn), (8.12)
N/2<ngN
Lit)= D ban'lttp,(Dn) (8.13)
N/2<ngN
Le(rit) = Z ban' WO+ o (D, 3 +ir) (8.14)
N/2<ngN

Proof. By Lemma 8.1 we find that either (8.4) holds, or it must be the case that,
for some X € (A, Y], one has

Sq.k (b, N;D,y) < log(4Y) Z U™Aqu.x (b,N;D,y){,  (8.15)
h=
U“gOK
where Ag g x(b,N;D,y) is defined by (1.54)-(1.56), (1.48) and (1.69)-(1.71).
Therefore we may assume henceforth that (8.15) holds.

By (1.49), (1.57) and (1.56), the variables m, n, £ and ¢, that index the
summations defining Ag g x (b, N;D,vy), are effectively constrained to satisfy
m,n € (N/2,N|, q € (Q/4,2Q) and X/2 < 4rD/mn/qf < 2X. These con-
ditions imply that £ € (273Y/X,2Y/X). Therefore it follows from (8.15) that, for
some L € {271Y/X, 273Y/X,...,2Y/X}, one has

Sq.x (b, N;D,y) < log(2Y)| Y. U™AY . x (Un)], (8.16)
U"L':sor{
where (see (1.54)-(1.55)):
AS L x(H)= > af x(tH), (8.17)
L/2<egL
—iy
a5 xtH) =" S b (..,,) X (8.18)

N/2<mngN

and

= Zw q/Q) ll? (471'1)(]}(%) S(Dm, Dn; ¢¢). (8.19)

In order to rep]a.ce the factor w(g/Q) in (8.19) with a function of z =
= 4w D+/mn/qf, we shall follow the procedure of (7], page 272, in our use of the
Mellin transform

Y(s) = | z* tw(z)dz (s € C).
/
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First we note the identity,
1 o0
o) = = [ weiy e (y>0) (8.20)

where, by (1.49) (or (1.69)-(1.71)),

2

[v(2it)] < /x“lw(:r)d:c & /%:E <1
0

1/4

and (through repeated integrations by parts)

pit—1+k (k) (:27)

2
2t-~ lk -k/ k—1 -k
W(2it) = (— )/(n TR (t_1+1)dx<<k[t[ 7 dr <t 77,
1/4

for t # 0 and k € N, so that
PY(2it) < L +Jt)™*  (teRand £=0,1,...). (8.21)

Then, with © = 4nD/mn/qf, we have q/Q = 4n(D/Q)(/mn/zf), so that by
using (8.20), for y = ¢/@, with (8.16)-(8.19), we can obtain:

Sq,x (b,N; D,y) < log (2Y )/ P(2it) Z U™hAL x (Un,t)|dt,  (8.22)

U"<K

where '
Y Pty (6H ), (8.23)

Lj2<egL
ax(GH ) =Y Y bpm 00 ni6tgr (8.24)

N/2<mng<N
and (see (2.7))
Co(€)
47D (Dm, Dn; q¢ 1 47 D/mn

—Z¢( ) SO DD 52 e D, i) o g ),

Y

with ¢(z) = ¢x,m,(x) given by (8.11). In view of (7.1) and Lemma 7.1 (with 2¢
substituted for t), the above makes it possible to apply Theorem 2.2 (with m and
n there replaced by Dm and Dn, and with cusps a = b = 00}, so as to obtain the
identity, o, = Ko + Xy + X2, stated there. Bringing the summations of (8.24)



Fourier coefficients of madular forms and eigenvalues of a Hecke operator 101

inside the summations and integrations occurring in the definitions of the X;’s,
we find:

2
ax (G H 1) =Y RY (4 H, 1),  (8.25)
i==0
where
. 0x (£) *(k
R ( £Ht)- -2 Z i )k ; T Uk DEG (L5 (1),
keven 7=1
(£)
R (G H ) = ) s () L5045 (-0),
izl
T‘o(f)
R (6 H,b) = / SN Eem L (r; —t)dr,

with ¢(z), L3,(t), £;(t) and L(r;t) given by (8.11)-(8.14). By the arithmetic-geo-
metric mean inequality and (8.7)-(8.10), we have here

2
E E I:RS? (¢ H’t)l € Prx(H,t)+ P x (H 1),
L/2<€<L i=0

so that (8.6) is a direct consequence of (8.21)-(8.23) and (8.25). [ |

Lemma 8.3. Suppose that the hypotheses of Lemma 8.1 hold, and that € > 0,
X>A, LLN>0, H>21,DeN, yt € R and b = (b,) is some complex
sequence. Let P x(H,t) be given by (8.7)-(8.14) of Lemma 8.2. Then

00
Prx(H,t) < (1 +}t1)2 X9/2</SL,G (by,N; D,y +1¢) G ?dG+ (8.26)
1

O(r(D) (L + r(D)N™*) nbmli))

and, for F 20,

Prx(H,t) =Prxr(H,t)+ (8.27)
XQ/‘Z D‘219+s Nl+s 2
O+t —=—=—(L+-—=]|b ,
ro(aa i B (1 555 ) i)
where \
Prxr(H )= > Y 0Qu(tH1) (8.28)

L/2<€<L i=0
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and
(0) Bk(l) N
of th)-—kgjve”Zl W Eo ok - jen@l . ©29)
(1) &
0P (& H, 1) = ; mi‘l’ (r3)| 15 (8)%, (8.30)
fnj!/<F

ro(y

08 H t) = Z/ )| 1L

with ¢(z) = ¢xme(z) as in (8.11) and L}, (t), L;(t) and Lc(rit) as in
(8.12)-(8.14).

Proof. Suppose that F' > 0 and £ € N. By (8.11) and (1.13)-(1.15), we may apply
the case § = % — v of Lemma 7.1 (with ‘¢’ there replaced throughout by *2t’).
Given that X > A, it then follows from the results (7.3)-(7.5) that one has, in
(8.8)-(8.10):

(r; t){ dr, (8.31)

Bk —1) < (1 +]t])* X*/2% %2, (8.32)
& (x5) < (1+ [¢))% X/ (max (1, |x;])) "> (8.33)

and
$(r) < (1 + ()% X*/2 (max (1, [r[)) %>, (8.34)

Clearly these bounds are similar in shape (especially when one notes that
k = max(1, k) for positive even k). We shall focus on how (8.34) is used, since the
corresponding applications of (8.32) and (8.33) are very similar.

Comparing (8.31), (8.10) one finds that the difference QE‘?)(E;H, t) —

-Q()?‘)F(é; H,t) can be written as a sum of integrals, similar to that in (8.31),
but with r (the variable of integration) running over (—oo, —F] U [F, 00) instead
of [~F, F]. After applying (8.34) to bound this sum, we may rewrite our bound

using
o0

5

(max (1, [r{)) %% = 5 G717 dG.

max(1, {r|)
The result is a bound involving a summation over cusps ¢ (as in (8.31)), an in-
tegration over r € (—oo, ~F] U [F,00) and the integration over G > max(1, |r|).
Bringing the surnmation and the other integration inside the integration with re-
spect to G, we obtain (see (8.14)) a result containing the case ¢ = 2 of the bound

QW4 H 1) — 0P p(6 H, 1) < (8.35)

o0
i dG
<@+ x [ 80,6(bPw +0.0N) 57,

max(1,F)
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where the term in the integrand is as in (1.28), with b(?) being the sequence
given by (1.31) and b,(,D)(u) = bPni for n € N and u € R. The cases i = 0 and
i =1 of (8.35) follow by arguments similar to those used above, but involving the
bounds (8.32), (8.33) and the definitions (8.8), (8.9), (8.12), (8.13), (8.29), (8.30),
(1.26) and (1.27). As this is easily verified, we do not give further details.

Combining the cases i = 1 and ¢ = 2 of (8.35) through (1.44), and recalling
the definitions made in (8.7) and (8.28), we conclude that

Prx(H.t) - Prx.p(H 1) < (8.36)
< (1+ [t)2x9? / G~7/%x
max(1,F)
x ( > (8Q0a(bP(y+1),DN) +ae,G(b,N;D,y+t))) dG.
L/2<e<L

For (8.27) we apply both (5.1) and (5.2) of Lemma 5.1 here (the result then follows
trivially). To obtain (8.26) from (8.36) we first note that, in view of the definitions
(8.28)-(8.31), one has Py x p(H,t) = 0 if F = 0. The result (8.26) is therefore
a straightforward consequence of the case F' = 0 of (8.36), the bound (5.1) of
Lemma 5.1, and the definition of Sg,x (b, N; D, y) given in (1.43). |

Lemma 8.4. Suppose that the hypotheses of Lemma 8.1 hold, and that 0 < ¢ <
<1/4, LLN >0, H>1, D €N, y,t € R and b = (b;) is some complex
sequence. Suppose moreover that

X = DE, (8.37)
Then

4/e? . H?
:PL,X(Hr t) e (1 + ttl) min E’ Xl-ds x

% (818 (b, N; Dy +1) + (D) (LE? + (D)N**)|lby )

where

E = 5et Xe+1/2, (8.38)
and Py x(H,t) is as given by (8.7)-(8.14) of Lemma 8.2.
Proof. By applying (8.27) of Lemma 8.3 with

F = D49+ x9 (8.39)

we obtain:

21 x(H.0) = P () + O (141607 (L + T ) Wbl
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with Py x r(H,t) given by (8.28) (see also (8.29)-(8.31) and (8.11)-(8.14)). By

(8.37)-(8.39) and our hypotheses,
_ H . T(D)N+¢ NI+
min (E W) (LE* + r(D)N'") 2 L + —(XZ—_2~ Lt —5 (8.40)

Therefore, comparing the last O-term above with the bound for Py, x(H,t) given
by the lemma, we conclude (given that 4/¢? > 64) that either the bound given by
the lemma holds, or one must have

':PL‘x(H,t) <<':PL,X'F(H,t). (8.41)

Accordingly we assume (8.41) for the remainder of the proof.
Suppose now that £ € N. Applying Lemmas 7.3 and 7.6 to bound the factors

k- 1), &)(nj), #(r) in the sums Q(,?{F(E; H,t) of (8.28)-(8.31), we find that, for
i=10,1,2 and 7 € N,

AV (6 H ) < (8.42)
3 .
<O, ((1 +1t)* min (E y?:r) 5%, 5(b® (v +1), DN)) +

0, (1 +1)’ X'~ 5%, o (6P (y +1), DN)),

(see (8.11), (8.12)-(8.14), (1.26)-(1.28), (1.31) and (1.45), and note that, by (1.15),
(1.12), we may take § = 1/4 — 7/64 = 9/64 in (7.32) and (7.46)). By (1 44) and
the cases i = 1,2 of the above,

el Hot) + QPR (6 H 1) <
e . H3
& OE ((1 + lt})l/ mln(E, —XT:E) O'&E(b, N,D,y + t)) +
0; (1 + 1ty X' "00,m(b, N; D,y +1))
Therefore, it follows by the bound (5.2) of Lemma 5.1 that
QP p(l H t) + QD (6 H 1) <

HS
) ")”("i"_“,j‘s‘) ope(b, N D,y + 1)+

29 4
F ) D (#2 4 BN o,

Applying the bound (5.1) of Lemma 5.1 to both the O-terms on the right of (8.42)
(in the case i = 0), we find that

(6 H. 1) <
E__. H3 e D .
e ((1 + M)U min (E’ X1~4£) <E2 ( ; )N1+ )

+(1+ 'tl) |y 1-2je ( (f eD)N1+s))T4(D) “bNﬂg )

e (14 {t})lf‘E min(E
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By (8.28), the last two bounds above, and (1.43), we conclude that

. H?
Prx r(Ht) < e (1+ [t{)]/ min (E, -5(-7-_-4—5) SLe(b,N;Djy+1t)+

+ ((1 + [tNY€ min (E “X?;“) (LE? + T(D)N'*+%) 4

D2 (LF? + 7(D)N1+e
+ (1 gy ZEEA TN ) o) o
Taking j = [4/£2], we will have here
2je~1>2(4/e? —=1) —1=8/e— 2 —1>15/(2) +1 - 2. (8.43)

Moreover, by (8.37) and (8.39),
D* (LF? + 7(D)N'*¢) < D*F? (L + 7(D)N'**),
where (given that 0 < ¢ < 1/4),
D2 = Dl0t+ie X 18 DB Y18 o ¥ 18+3/c  x15/(2€)
so that, by (8.43) and (8.37),
D F?/xue-1 ¢ X~(1-2) < 1,

This, with (8.40), shows that the lemma follows from (8.41) and the case j = [4/¢?]
of the bound found for Py x p(H,t). |

Lemma 8.5. Suppose that A € (0,1/2] is sufficiently small (in absolute terms).
Let 0<e<1/4,Q,N>0, K 21, DeN, y € R. Suppose also that b = (b,,)
is a complex sequence, and that Y > 0 is given by (8.2). Then either

Sa,x (b,N; D,y) <. (DN)* (QK? + N) b3, (8.44)

or there exists
Le[27°D7°Y, 2A71Y] (8.45)

such that, for k = 2,3,4,...,

¢(b,N;D,y+t) = dG
(1+1t)* G/

00 00
S
S0,k (b,N;D,y) ¢k (DN)5E// L + (8.46)
1 ~o0

+(DN)* (Y + N) |[bwl3,
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or there exist X, L satisfying (8.37) and (8.5) such that, for k = 2,3,4,...,

xX\'7T :
) /SL’E(b’N’D‘yH) dt+ (8.47)

S0,k (b, N; D, y) <¢x (DN)® (1 + =5
) K? (1+eh*

-1
+ (DN)% (1 + %) (Y +N) libwllz,

where
E =5e'X*t1/? « (DN)*VX. (8.48)

Proof. We may assume @, N > 1, since otherwise it follows trivially from (1.42)
and (1.43) that S (b, N; D,y) = 0. Therefore, and by (8.2),

Y <16nDN  and  log(2Y) <. (DN)*/2. (8.49)

We apply Lemma 8.2 with
j=[l/el +1. (8.50)

As (8.4) with this ;7 would imply (8.44), it follows by Lemma 8.2 that we may
henceforth take as given a pair X, L satisfying (8.5) for which (8.6) holds.

Now suppose the pair X, L has X < D¢. Then (8.45) follows by (8.5), while
the bound (8.26) of Lemma 8.3 shows that

Prx (Unt) €

<« (1+[t])*D@De ([SL,G (b,N; D,y + t)ad% + OE((DN)E(L +N) nbNu;)) ,
1

for h = 0,1,... (with Uy given by (8.1)). Since the bound here is independent
of h, and since Y ;o U™" < 2, the bound (8.46) follows, by (8.45), (8.49) and
substitution of ‘k + 2’ for ‘k’, after using the bound for Pr x (Un,t) with (8.6) of
Lemma 8.2.

It remains for us to consider the cases where (8.37) holds (that is, where the
pair X, L has X > D#). In such cases Lemma 8.4 applies, showing that

e? . U@
PrLx (Un,t) e (1 + [t!)fl/ Qmm(E, }T—%e) X (8.51)

x (85.5(b,N; D,y + 1) + (DN)* (LE* + N) [bul})

for h = 0,1,.... The only factor here dependent on h is the ‘U’ in the minimum,
and, by (8.1) and (8.38),

U3 Xe+1/2  [r2h+3 X 2e+1772h+3 1/3
-k . h . .y
U™"min (E 7{:3“) <« min ("’"’fﬁ" ﬁr) < (W) = X",
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where U/ > 2, so that
U3
Z U~h min ( s Xis 45) < X*U.
heZ
We also have here

o o
U3 U2h+3 UBKZ
“h o h
Y. U™ min (E' X1-4s) <) xicEe < Yicee

UhgK UK

so it may be concluded that

[o o] U3 X —1
> U""min( T 45) < U3X4 (1+-ﬁ) ,

UhgK

where, by (8.1), (8.5), (8.49) and (8.50),
U3x4s < 8D619/jy4s & Dl/’j(DN)4E < (DN)SE

Therefore, by using (8.51) with (8.6) and (8.49), we obtain a result from which
(8.47) follows directly, on noting that (8.48) is implied by (8.38), (8.5) and (8.49),
and itself implies LE? « (DN)%*Y (given (8.5)). (]

Proof of Proposition 1.2. In view of (1.42)-(1.43) and the statement of Pro-
position 1.2, we need only complete the proof for those cases where @, N > 1
and 0 < ¢ < 1. We shall show that in such cases the proposition is a corollary of
Lemma 8.5, applied with A = 327/C, and with £/9 substituted for .

Note first that, if (8.44) holds, then it follows trivially from (1.42) and (1.43)
that the bound given by the proposition holds with any choice of G, L € (0, 00).
As the choice G = 1, L = DN/Q makes (1.53) and the inequality G 2 1 hold,
we therefore are left only needing to consider the second and third of the three
cases described in Lemma 8.5. Before moving on to consider these two cases in
isolation from one another, we may note here that they both involve a parameter
L satisfying (1.53) (for this see (8.45), (8.5) and (8.2), while recalling that A =
= 32m/C). Moreover, as k, in (8.46) or (8.47), is in either case an arbitrary element
of the set {2,3,4,...}, we may now commit ourselves to the choice k = j.

In the former of the two cases we find, by (8.46) and (8.2),

oo
dG DN
Sonx (0N D) ey (DN [ Fi@rGeg + (G + ) bwll ] 52
1

where
o0

dt

—o
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Since j > 2, this function F;(G) is (like f(G) in the proof of Proposition 1.1 at
the end of Section 5) a bounded function from [1, co) into [0, c0). Therefore

o

T dG }
| P05 < 2R0) [ 40 < F(G),
1 1

for some G > 1. As K > 1 this shows that (8.52)-(8.53) is at least as strong as
the result given by Proposition 1.2.

Finally, in the last of the cases described in Lemma 8.5, we deduce from
(8.47)-(8.48), (8.2) and (8.37) (with £/9 substituted for € and j for &) the bound:

SQ‘K (b, N;D,y) L (DN)2E/3K2_X—1E2FJ-(E) + (DN)E (%‘N_ + .N) “bN“g,

where F;(E) is as in (8.53)(with E substituted for G ) and 5e < E < (DN)*/%X |
Since we have here £ > 1 (as well as K > 1) and

(DN)*/3X1E? « (DN)*/% < (DN)E,

it therefore follows that the bound just given for Sg (b, N;D,y) implies that
the bound stated in the proposition holds with G = E > 1 (see (8.53) and recall
our previous observation that L there satisfies (1.53)). As we have reached this
same conclusion in all the three cases allowed by Lemma 8.5, this completes the
proof of Proposition 1.2,

9. Proving Theorem 1.6

By Lemma 5.1 and (1.43) it follows that, for ¢, N,Q >0, D € N, K > 1 and any
complex sequence b = (b,), one has

So.x (b,N;D,y) <. D¥74(D)||byll; > (K2+§5’-:EIQ’.N1+E) < (9.1)

Q/2<9<Q
<. 2o+ (QK2 + N1+5) “bNHg i

We take the rest of this section to prove Theorem 1.6. The proof uses Pro-
positions 1.1 and 1.2, and (as an ‘initial result’) the bound (9.1).

Proof of Theorem 1.6. Since the case ¢ = gq (say) directly implies all
cases with ¢ > g9 (cases with DN < 1 being trivial, by (1.42), (1.43)), we may
assume £ € (0,1/2) henceforth. There are several points in this proof where we
shall require that an implicit constant depending only upon &€ be bounded above
by one or other of Co(s); Mo(e). As there are only finitely many instances of such
a requirement (and as no form of self-reference is involved in any instance), we
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may henceforth assume that Cp(¢), Mo(¢) have been chosen (once and for all)
sufficiently large to simultaneously satisfy all such requirements.

Given that Cy(¢) was chosen sufficiently large, the ‘initial result’ (9.1) esta-
blishes (1.61) for those cases relevant to Theorem 1.6 in which one has 0 < Q' <
< M (note that cases with Q <1 or N < 1 are trivial).

We now fix on a choice of M satisfying (1.58) and suppose that R > 0 is
such that (1.61) fails for Q@ = R (with the given choice of M, and some K, y,
D, b, N and P satisfying the conditions stated in the theorem). Since (1.61) has
been shown to hold if 0 < Q'~¢ < M, we must have

R'"¢> M. (9.2)

By (1.42) and (1.43) it is clear that if (1.61) fails at @ = R, then it fails also at
Q = [R]. Therefore we may take R to be the least integer for which (1.61) can fail
with @ = R (and with M as chosen). This means that we may assume in what
follows that (1.61) holds for 0 < @ < R (with the fixed choice of M, and any
K, y, D, b, N and P satisfying the conditions stated in the theorem). We shall
need to appeal to this last point on several occassions, and shall refer to it as our
‘inductive hypothesis’.

Now suppose that K, y, D, b, N and £ are given, and satisfy the condi-
tions stated in the theorem. We shall show that this supposition, combined with
the prior assumptions concerning €, M and R, is sufficient to deduce (1.61) with
Q@ = R. Since there are no conditions upon the choice of X', y, D, b, IV and P,
other than those imposed in the theorem, we shall therefore obtain a contradiction
with our original assumptions about R. This will show that no R exists satisfying
those original assumptions, so that there is no counterexample to the theorem with
the given choice of M. This will prove the theorem, since the choice of M was
restricted only by the hypothesis (1.58).

Before proceeding as just outlined, we recall our earlier comments that (1.61)
is trivial for N < 1. Therefore N > 1 may be assumed in what follows. By (1.59)
and (9.2), these last assumptions restrict us to cases where R > M > N > 1, For
use in what follows, we define a new dependent variable: = €2/3.

Suppose first that
DN < R*=. (9.3)

Then, by Proposition 1.2 with Q@ = R, j = 2 and 7 substituted for ¢, we find
that

o
SL,G(baN;Dsy_i_t)
G2 (14 |t])*

Sr,x (b,N;D,y)
K2

< (DN)"|R|lbxll; +

for some G > 1 and some L satisfying

DN _ DN
< C—— —_— .
0<L<CH < (9.4)
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By (9.3), (9.2) and (1.58),

DN e R R

R o) < T 95)

(given that My(¢e) is sufficiently large in terms of €). Since (9.4) and (9.5) imply
L < R, we may therefore apply our inductive hypothesis to Sp.q(b, N; D,y + 1),
in order to deduce from the above application of Proposition 1.2 that
1
ESR,K (b,N;D,y) <« (9.6)
<e (DN)" [lbyll3 x

¢
x (R + Co(e)(LDN) (L + DM + (PDN)® (min(L, \/DN)) )) .
Since L < R we have only to note here that, by (9.4), (9.9), (9.3), (9.2) and (1.58),

(LDN)*/(RDN)¢ = (L/R)* « R™%" < (Mo(c))™" (DN)™"

and

(DN)" < (DN)e = R™5(RDN)* < (Mo(e)) " (RDN)F,

in order to conclude that the bound (9.6) will imply (1.61) for @ = R (given that
My(c) was chosen sufficiently large in terms of €).

The above concludes our treatment of the cases where (9.3) holds. For the
remainder of the proof it may be assumed that

DN > R*7¢, (9.7)

As it follows from (9.7), (9.2) and (1.59) that D > R?*"%/N > M/N > 1, the
bound (1.60) therefore implies that we may choose D,|D to satisfy

R2—3e R2—35
<
Py <Dis—g

(9.8)

(note here that D > 1 implies P > 2, and that we have no reservations about
choosing D) = 1 when (9.8) permits 1t). For later use, we note that this choice of
D, ensures

e
<£) R <« (pDN)QRl-£~(2~3s)a = (PDN)QRC”%E < (PDN)QR(]—-E/?)C

D,
(9.9)
and that, by (9.7), we have here

R'“/? < min (R, \/'D‘N) . (9.10)
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By Proposition 1.1, we find

Srx(b,N;D y) N D, D\ 2"
: ’ =8 biged —. 2 — 11
K? Gz G % 9\ D ’ (6-11)

for some G 2 1, some

R, € (0, R], (9.12)

and some gq, g; and sequence b{%!} satisfying (1.51) and (1.52).
We will treat first the cases where

R¥"¢ < D|N. (9.13)
Given (9.13), it follows by (9.8) that
Rl < R(2-«3£)/(2»s) - R1—2E/(2—E) < Rl—E’ (914)

so that R; < R and we are therefore able to apply our inductive hypothesis on

the right-hand side of (9.11). As 0 < N/go < N < M and [|b{s) |2 < ||bl3,

while D;/g; is a factor of D; (and therefore of D}, it follows from (9.11) and the
inductive hypothesis that
1
—}?ESR’K (b,N;D,yJ <, (915)
€ CQ(E) (RlDlN)E X

x (Rl + DOM + (PDlN)"<min (Rl, \/D—lﬁ) )c) Ibal (,’l)m <

< Co(e) (RiD1N)* x "
(Rl (1?1) + DM + (PDN)‘-’(mm (R \/‘—)) ) bl (gl )ﬂ.

By (9.14), (9.9) and (9.10), we have here

R (7?)9 < (PDN)? (min (R, s/’DTv'))(

1

and DA D
(RiDN)* (E) <(R1""ED1N) (—D~

1

) = R (RDN)",

so that, by (9.2) and (1.58), the bounds of (9.15) imply (1.61) for @ = R.
It remains to consider the cases where (9.13) is false, so that

R?>°¢> DN, (9.16)
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In such a case we apply Proposition 1.2 after (9.11)-(9.12), obtaining the bound:

—_Srx (b, N;D,y) <« (9.17)

e+n
K¢ ("‘DL")‘) (.D]JV)'rJ X

1

) 7 wr N N Dl w
X ((R1+N)ﬂbN“2+/SL‘H(bg "9 0 y+t) (1+M)2),

K2

for some H > 1 and some L satisfying 0 < L < CD1N/R; <« D1 N/R; (and with
Ri, g0, ¢ and bi%} as in (9.12), (1.51) and (1.52)). Therefore, and by (9.16)
and (9.12), we have here

L« R <R, (9.18)

which (see (9.2), (1.58)) implies L < R, given that My(c) was chosen sufficiently
large in terms of €. This enables us to apply the inductive hypothesis with (9.17),
S0 as to obtain (given (9.12) and given that R > M > N):

1
WSR,K (b, N;D,y) <. (9.19)

e (R+Co(5) (LDiN)® (L+DQM +(PDiN) (mm(L m)) ))

x (%)M(DIN)" TN

< Co(e)(LDN)Y* (DyN)" x
x (L (DD—> + D®M + (PDN) (mm(R \/““)) ) b2 +

1

+R(2) 0Ny onlE.

By (9.7) we have here

R (EQ;)Q(DN)” <R (%)g (DRJ:’)E = R™(RDN)’ (DBI)QR‘—E,

while by (9.18) and (9.8)-(9.10),
(LDN)® (D1N)" < (R EDN) R®" = R™"(RDN)*
and

L (-DI%)Q < (;) R!=¢ < (PDN)® (min (R, v’b_ﬁ))(
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so that (1.61) for @ = R follows from the bounds of (9.19) by virtue of (9.2),
(1.58) and the choice of My(e).

Having fulfilled our promise (that we would deduce (1.61) for @ = R in all
relevant cases), the reasoning set out half a paragraph below (9.2) now permits us
to conclude that the theorem is proved. [ |

10. A special sum of Kloosterman sums

This section is concerned with the sum of Kloosterman sums Ag g x(b, N; D, y),
defined in (1.54)-(1.56), (1.48) and (1.69)-(1.71). We establish a chain of lemmas,
with the last of them (Lemma 10.12) being a bound for Ag y,x(¥,N;D,y) that
is valid for sequences ¥ of the same form as in (1.63). We need this bound in the
next (final) section of this paper, where it enables us to prove Lemma 11.1, and
so to obtain the ‘initial result’, (11.7), in the proof of Theorem 1.8.

We think it worth noting that the bound given by Lemma 10.12 is indepen-
dent of both @ and X (so long as X > A).

In Lemma 10.5 we arrive at sums V(Dj; A/c1) involving terms with a fac-
tor vn(Ds; A/c1) that invites an analysis by the method of stationary phase (see
(10.25), (10.26), and, for an application of the stationary phase method [23],
Lemma 4.6). The error terms that arise in such an anlysis turn out to be si-
gnificant, so we resort to a careful ‘deconstruction’ of the stationary phase method
(see Lemmas 10.6, 10.7 and 10.8).

Our first and third lemmas link up somewhat late with the others (the former
being needed for the proofs of Lemmas 10.9 and 10.10, while the latter helps to
complete the proof of Lemma 10.12).

Lemma 10.1. Let § € (0,1). Then, for X,Y > 0 and A,B € Z with A#£0,

, ( HBE “) {XY if A|B,
Z min{ Y, = <4

sxXoex/s (X +1]A|/(A,B))log|A| otherwise.
(A,0)=1

Proof. The bound in the case A|B is trivial, since there are no more than X/é
integers ¢ € (0, X/6]. Suppose now that A is not a factor of B. Then we may
write B/A = By/A, where (A1,B1) =1, A; € N- {1} and B, € Z — {0}. The
sum we wish to bound is

TR | TS |
BIC B]C
min{ Y, || — < — =
> w(x|5] )< = %
X << X/6 5X<e<X/6
(A,c)=1 (A1,¢)=1
-1
.
= > A, > L.
-~ A1 /2<Tr< A, /2 8 X<egLX/8
(A],C)=l

B é=r (mod Aj)
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As (A;,B;) =1 and A; > 2, we may bound the last sum above by

A Aj X
> ?—; > IR [r{(1+5A1)<<6

iri<a2 T sx<e<x/s 0<Irl<A/2
{Ay,r)=1 c=Bi¥  (mod A1)
Ay
<5 (X+A1)Z < (X + A1) log|Ay],
r—l
which proves the lemma, since A, = |A}/(4, B). |

Lemma 10.2. Let b = (by) be a complex sequence. Let 0 < e < 1/2, Q,N > 0,
DeN, H>1 and X > A, where A € (0,1/2] is an absalute constant. Suppose
that

= (NX)eX—V/2, (10.1)

Then, for some 0 satisfying
1<0<1+0(2%), (10.2)
one has
Ag.rix (b,N; D,0) < O, (D ||bN;|§) + H?Z3|Im(Bg.x (b, N: D,0))|,

where
Bg,x (b,N;D,0) = (10.3)
> 2.
N/2<mn<N
q/Q 4nD\/mn 20D/mn o
E D, (D) (DY) .,
with
gx (z) = a8l (z/X) (10.4)

and with w(z) and Qp(x) as in (1.49), (1.57) and (1.71) (see also (1.69)-(1.70)).
Proof. Let

Bé’x (b,N;D,0) =Im(Bg,x (b,N;D}G))' (0 eR). (10.5)
As w(x), gx(x) and S(a,b;c) are real valued, it follows from (10.3) that
Bg x (b N;D,§) = (10.6)

(BQX (b,N;D,8) — Bg.x (b, V; D,o)) =

Z Z binbn x

N/2<m n<N

N ZZ Q/Q (41rD\[——) (@%@E) S(Dm, Dn; qt),

g=1 £=1 qe
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for 6 € R. By (1.54)-(1.56) and (1.48), (10.6) and (10.4),

7 £tanh
AQ,H,X (ba N; D»O) = Ha %@Bé,x (bvN! D,@(E))df, (107)
0
where
6(&) = cosh(§). (10.8)

In view of (10.6), it follows from (10.7) that we may henceforth assume that N > 1
(the lemma being otherwise trivial). By (10.6), (10.4), the bound |S(Dm, Dn; gf)] <
< g€, (1.49) and (1.57), it follows that, for 6 € R,

Bix (b, N;D,O) < D S fbmba| DD %—g}!« (10.9)

Nf2<m,ngN 9€(Q/4.2Q)
1 Xqt
3< 41rD::,l;mn <2

<« DN |by|} < DN? [[byl;.

Therefore, given that H > 1, the bound tanh(§) < |¢| allows us to conclude that,
for U >1,

it Z?EE)(P B} x(b,N; D,6(£)) d€ < DN?||by |3 / e2e€de < (10.10)
U U

<Ue ™V’ DN?(buif3.

On the other hand, it follows from (1.54)-(1.57) and Lemma 7.4 that, for
je{0,1,...},

AQ,H,X (b) N; -D1 O) =

o0

_ ZZ meniz W(Q/Q)x

14
N/2<mm<N g=1e=1 9

<00 (P) (o3 () + 00 ) stom. Dt

so that, by (7.28), (1.69)-(1.71) and (10.6), we find that, with Y as in (7.27), and
6(¢) as in (10.8),

|Ag,n.x (b, N; D,0)| < (10.11)
Y
< H3[|B§ x (b, N; D,0(8))] E—Z%%@
o

d§+0; (X~ DN? [bu3)

(where, in bounding the error term, we essentially repeat what was done to get
(10.9)).



116 Nigel Watt

Let
V = elog(N). (10.12)

If
£2log(N) > max (3, log(X)), (10.13)

then we apply (10.7) and the case U = V of (10.10) (after noting that V > 3/¢ >
1). Note that, given (10.12), (10.13), and given that U = V', we shall have, in
(10.10),

Ue V" = YN~ 1o8(M) < N3 < N2,
If (10.13) does not hold, then

< N < max (exp( e %), X© 2) (10.14)
and we apply (10.11) with j = [¢73] -+ 1. Note that we will have, in (10.11),
O0;(X **DN?|[by|3) = 0;(X %*N*)D| /by,
and if N < exp(3e™2), then
0; (X~5N?) = O, ((1/4)% "+ exp (6c7%) ) = O4(1),
while if N < X<, then (given that N > 1)
0; (XT4EN?) = O, (X% N?) = O(1).

Combining our results for the two complementary cases, (10.13) and (10.14),
we conclude by (10.5) that we have shown, either by (10.11), or by (10.7) and
(10.10), that it is the case that

h
[Aqusx (b, D.0)| < 1 | Im(Ba,x(b, N: D,0(e)] £ ae+0,(D ow3),

with
U {V if (10.13) holds,

Y if (10.14) holds. (10.15)

Since U > 0 here, since

U
3
/“a“h /degz%- (U >0),
0



Fourier coefficients of modular forms and eigenvalues of a Hecke operator 117

and since, by (10.8),
1<0() =cosh(¢) < 1+&%cosh(€) < 14+ U%Y  (0<E<U),

the lemma will follow from the above bound for |Ag 4, x (b, N; D, 0)| (by an appeal
to the first mean value theorem for integrals), provided only that we can show that,
in all relevant cases,

UV « 72,
with Z given by (10.1). To confirm this, note first that if (10.13) holds, then we
certainly have X < N¢/2 and, by (10.15) and (10.12), we also have U = V =
= g log(N), so that

1-2¢ 2
U2V = (elog(N))? N¢ < 16N%/2 < (NE/2/X) N3/2 = z2N—¢" < 72

If it is instead (10.14) that holds, then by (10.15) and (7.27), we have U = Y =
= X¢"1/2 g0 that

U2V = X% 1exp ((l/X)l/z”‘) <SNEX2 oxp (\/17‘5) < 72
u

Lemma 10.3. Let b = (b,) be a complex sequence. Let Q,N > 0, D € N,
0 €R and X > A, where A € (0,1/2] is an absolute constant, and suppose that
Bg,x(b,N;D,8) is given by (10.3), (10.4) and (1.69)-(1.71). Then

Bg.x (b, N;D,0) < log”/*(1 + DN) r(D)DY2N32x1/2 ||by|2.
Proof. By Theorem 2.1 (Weil’s bound) and the hypatheses of the lemma, we have

{Bg.x (b, N; D,8)| < (10.16)
2Xr q@ 1/2
DD lbmbal DY = (Dm,Dn,q)"",
Ni2<mngN Q/4<g<2Q
L/8<2<8L

where L = 4rDN/(X Q) (see (1.49), (1.57)). Therefore,

Box (b,N;D,8) < 818y < D7V2N-1/2X3/28,8,, (10.17)

X
VQL
where,

Si= Y > r@)(De))? <

Q/4<q<2Q L/B<E<8L

1/2 1/2
( Z %(q) Z 72(1?)) ( Z (D,q) Z (D,é)) <

1€g<2Q 1< é<8L 1€g<2Q 1<£<8L

VN

< (1og%(1 + Q) log®(1 + L)QL) " (rA(D)QL)/* <

< (log(1 +Q)log(1 + L))*? 7(D)DN/X
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and

YoX 0 lbmbal(mn)'? <

N/2<m ngN
1/2 1/2
( Z o) (ZZ o)
N/2<mngN
4 nr2 12 1/2 2
< (b fi§ N log(1+ N)) " =log2(1 + NN byl

Since (10.16) shows the lemma to be trivial unless it is the case that Q > 1/2
and L =47DN/(XQ) > 1/8, it may be assumed here that max(Q, L) < 8QL =
= 327DN/X, so that one has

(log(1 + Q) log(1 + L))¥?1og'/?(1 + N) <« log”/?(1 + DN),

(given that X > A and D € N). Therefore (10.17) and the bounds for §; and S;
imply the lemma. |

Lemma 10.4. Let Q, X >0,0 € R and D, N, N, € N with N/2 < N; < N. Let
¥ = (U,) be the sequence given by

_ 1 if N; <n < N,
Yn = {0 otherwise , (neN) (10.18)

and suppose that Bg x(¥,N;D,#) is as given by (10.3)-(10.4) (with ¥ in place
of b) and (1.69)-(1.71). Then

Bo.x (¥,N;D,0) =Y BY) (¥,N:D,0),
8D

where

B (T, N; Do) = Sy 2 "/Q S T S.(D/6, qt/6)  (10.19)

QL/4<qi<2QL b mod qé
(qé,D)=6
with 4rDN
s
L ) 10.20
= (10.20)
while
4nd/mn 20d\/mn b+d
Sb(d, C)— Z Z ( wd ) ( Cmn+dm :— le)’ (1021)
m nE[NI N]

with gx(x) as in (10.4).
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Proof. For (¢¢, D) = §, we may apply (2.8) to write:

. b b Dymb + Dynb
S(Dm,Dnigt) = 3 e(Dm= +Dn—) = ST o LT
qt qf a
b mod gf . b mod gf

where Dy = D/, ¢ = ¢£/§. Upon using this result with the case b = ¥ of
(10.3), we have only to bring the summations over m,n inside the summations
over q, { and b, in order to obtain the result given by the lemma.

Note that the condition QL/4 < ¢f < 2QL in (10.19) is only included for

later reference: it is in fact superfluous, since it follows by (10.21), (10.4) and (1.57)
that 8,(D/4, q€/6) =0 unless X/2 < 47nDN/qf and 47DN,/qf < 2X. [ ]

Lemma 10.5. Let ¢,Q,X >0, 8 ¢ R, and D,§, N,N, € N with §|D, N > 1,
Ny € (N/2,N| and
|9} < N/X. (10.22)

Let the sequence ¥ = (¥,) be given by (10.18). Suppose also that L is given by
(10.20), that Cs, Ds, N, and N* are given by

Cs =QL/s, Ds= D/s, (10.23)
Ny =Ny—3 and N*t=N+1, (10.24)
and that Bg’)x(‘II,N; D, @) is as in Lemma 10.4. Then

BY (¥,N;D,0) <«

7(9) DN el ]
< —J—-DNlog (1 + 'gy) + O 5(QL) Z Z |V (Dﬁ,A/C])l s
Cs/4<c1<2Cs |Aj<N*t e
{c1,D5)=1 (A,c1)=1
where N
D2 An
V(Ds; Aler) = Z e(- 8 )7,, (Ds; A/cr) (10.25)
n=N3
while
N+
dnDs. /un 20Ds./pn A
m (Ds;Alcr) = /gx( svE )e( svE -——-—u)du, (10.26)
C1 (5] Ci
Ny

with gx(z) as in (10.4).

Proof. We first consider the terms 8y(D/§,¢¢/58) in (10.19). Each of these has
the form 8y(Dj,c1), where (b,qf) =1, Dj is given by (10.23) and ¢; = ¢¢/6 € N
satisfies

(c1,D5) =1 and Cj/4 < c; < 2Cs. (10.27)
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Given any such integers, &, Ds and c¢;, suppose that A; is the unique integer
Ay € (—¢1/2,¢1 /2] satisfying

Dsbh=—A; (mod ¢y). (10.28)
As (Ds,c1) =1 = (b,0c1), one then has
(A, 01) =1, (10.29)
so that it follows from (10.28) that
b= -DsA, (modc). (10.30)
By (10.28)-(10.30) and (10.21), we now have
» (D/6,q8/8) = 8y (Ds,c1) =T (Ds; Ar1/c1), (10.31)
where, for ¢,d € N and a € Z with (a,c) =1,

( ) ZZ (47rd\/—) (20d\c/rﬁ_am+d26n)' (10.32)

[
mnGN;

The notation in (10.31) emphasises that 8,(Ds,c;) may be regarded as a
function of A;/c,, rather than as a function of ¢, ¢ and b mod ¢g¢. Given only
Ds,c1 € N (as ahove) and A; € Z, there are no more than 7(dc;) choices for g and
¢ such that g€/ = c,, and certainly no more than gf/c; = § choices for b mod ¢¢
that will satisfy (10.30). Therefore, and by (10.27), (10.29) and (1.69)-(1.71), we
may conclude that, as a consequence of (10.19) and (10.31), one has:

BY), (¥,N; D, o)] S ore)et S T(Ds A
Cs/a<e; <2Cs A1E(~c1/2,¢1/2)
{er,D5)=1 (A1,c1)=1

(10.33)
Suppose now that ¢; and A; are integers satisfying the conditions of sum-
mation shown in (10.33). By (10.32) (and since N,N; € N),

T (Ds; A1/cy) = Z el —

al ( D#Ain
TI.=N1

)un (Da;Al/Cl), (1034)

1

where

Un (Dsi Arfer) = D glm)e(f(m)),

N EmgN+

with Ny, N* as in (10.24), and, for x4 > 0:
drDs\/un
9(p) = gx (——-———Cl ) , (10.35)

20D;./un 5 1_4_1

Ci C1

flu) = (10.36)
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Supposing that n € N1, N|NZ, we have now

, 8Ds/n/p A
F(p) = R 2
C1 c1
which is a decreasing function, and satisfies:

8iDs«/ N/N~
T Pl GUAE PECE T

(u>0),

7 X TR Py L,
Cs/4 3 S TN 5 <
for N7"< g4 < N* (see (10.23), (10.24), (10.20), (10.22) and the hypotheses
relating to N and N ). Therefore, and since || N[ || = [Nt} = 1/2, the case K = 0

of {25], Lemma 5.1, applies with W, = N > 2, showing that, for n = N;,..., N,
we have, in (10.34),

Un (Dg; Ar/e1) = O (‘—/—i‘—’ﬁ-) + Y e (10.37)

N ~N<w<N
where V, denotes the total variance plus maximum modulus of h(u) on the inte-
rval [N, N7}, and
NT

w = [ sl - wp)du
Ny
By (10.36),
28Ds./un A1 +qw
1) = wp = == ~(1CS Ly, (u>0)

so that in (10.37) we have (see (10.26) and (10.35)):

Cw = Tn (DJ;(AI +clw) /Cl)' (1038)
We also have that

Vo+Vy « X+ XN ' X, (1039)

since (10.35), (10.4), (1.69)-(1.71) and (1.57) imply that, for j = 0,1,2 and N
<u< Nt onehas g\ (u) «; XN,

By (10.37), (10.38) and (10.39), we may conclude that, for integers ¢;, A;
satisfying the conditions of summation in (10.33),

Un(Ds; Ar/er) = O(X/N)+ D 7 (Dsi(Ai+caw)/er) (n=M,...,N).
~N<w<N
From this it follows, by (10.34), (10. 24) and (10.25), that

S 3 o -2 (g Atan)

[T (Ds; Ar/cr)| =

~N<w<N n=N, €1
SOX)+ ). (V(DsAla)l,
[Al<NTey

A=A;(mod cy)
for c1, A1 as in the summations of (10.33).
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To complete the proof we need only use the above bound for |T(Djs; A1/c1)]
in (10.33). The lemma then follows by (10.20) and (10.23), since

E T (dc1) E O(X) € 1(5)X Z T (c1) € 7(8) X Cslog (1 + Cs)

(o4
Cs/4<c1<2Cs 1 A11<c1/2 Cs/4<c1<2Cs

and T(Jci)ep ! = 7(dc1)(e1) 1 K. (6C5) 14, for ¢1 € (C5/4,2C5)NZ. ||

Lemma 10.6. Let Q,X,8 > 0 and D,j, NN, € N with §|D, N > 1 and
Ny € (N/2,N). Suppose also that L, Cs, Ds, Ny and N* are as in Lemma
10.5. Let c1, A be a pair of integers satisfying

c1 € (Cs5/4,2C5), (A,a1)=1 and A#0. (10.40)
Then, for some v and N, satisfying
ve [N/64,Nt] and Np€{N,...,N}, (10.41)

one has

¥

N2
3 Fu(me(én)

n=N,

where V(Ds; A/cy) is given by (10.25)-(10.26) of Lemma 10.5, while

V(Ds; Ajey) < X (Nep/| A2

at 4 8.
F,(n)= / e(atg) dt (v>0and neN), (10.42)

a, +B8n

with o = ~A/|A],

o) = /max (N7 ,v) |Al/er, ot = /N¥A]/ar, (10.43)

,Bn = UODJ\/TI/IAICh (10.44)
and 202 -
D2¢* D?4
=28 e 10.
oA o (10.45)

Proof. We begin by considering the factor gx(4wDs,/umn/c1), which occurs in
(10.26). By (10.4) and (1.57), we are able to write

T

s0x(x) = e/ X) = [ (adz yzno(y/X)) dy  (z>0),
0
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so that, for x > 0,

ox(2) = 7 [ Gy, (10.46)
0

where Gx(y) = 2yQo(y/X) + y2 X 'Q4(y/X). Note that, by (1.69)-(1.71) and
(1.57), we have here:

Gx(y)=0 (v¢(-X/22X)) (10.47)

and
GPz)«; X' (z>0and j=0,1,...). (10.48)

By applying (10.46) for x = 4w Ds./un/c1, and then changing the variable
of integration to v, where y = 47 D;s\/vn/c;, we obtain:

(47rDC51\//J_‘n) 2\/@/0

for n € N and p > 0. Therefore, for n € N, we may rewite the definition (10.26)
as:

(47@6\/%) d
1

o (Ds; Afct) = //GX<4”D"‘/E) dv (28D5\//m A ) dp

v\ o N
N+
47w Ds\/rn dv
— Y | E.(n)—, 10.
[ox (M) B (10.49)
0
where
Nt
26
) - L [ o DRV _A ) g
(5] (5] U
N*(v)
with
N*(v) = max (N7 ,v). (10.50)

Suppose now that v > 0 and n € N. By making the change of variable
p=6*D2A"2ny? (where the new variable, y, is constrained to lie in (0,00)), we
obtain:

A
6D 2
E,(n) = ;\/ﬁ e(—— n (y2 + 20y)) dy,
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where 0 = —A/|A],

|A] [N*(v) |A|
Al = — ——* d A= —y—
! 8D n an 8D;
Now,
6°Din , , 6°Din 6°D2n
_— ) = é 2, DiI8
d W H20y) = e mry+ o)+ =
so that, by making the linear substitution,
0D;
\/_(y+ o) =1,
c1|A|

we are able to conclude from the above (and (10.50)) that

)F,,(n) (v >0 and n € N),

272
E,(n) = c1 (?M

m ¢ ClA

where F,(n) is as in (10.42)-(10.44).
Using the last result with (10.25) and (10.49), we obtain:

+

n=N,
C1 dv
\/}:/(ﬂqu me(gn)F, ())—ﬁ,
with
hy(z) = G{W) , (10.51)

and with ¢ given by (10.45). Note that the last integrand is trivially zero for
v € N/64, since it follows by (10.51), (10.47), (10.40), (10.23) and (10.20) that
hu(n) is zero if v/vn < N/8. Therefore, and by an appeal to the bound

Nt

/—\/:<<\/q

N/64

we may conclude that, for some v satisfying (10.41), one has:

N
3 h(me(n)F(n)|.

n=N,

V (Ds; A/c1) & (Ney /| A2
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By (10.51), (10.47) and (10.48), we have (given v > 0):
ho(z) « X and h,(z) < X/N (N/2<z<N).

The lemma therefore follows by partial summation from the last bound for
V(Ds; A/cy). | ]

Lemma 10.7. Let Q,X >0,8>1 and D,§, N,N, € N with §|{D, N > 1 and
Ny € (N/2,N]. Suppose also that L, Cs, Ds, N{, Nt and V(Ds; A/c\) are as
in Lemma 10.5, with c;, A some pair of integers satisfying (10.40), and such that

|4} < Ds/4. (10.52)

).

N AN
+ = min (1+L (14 (6 —1)X)

Then
DA

N
V(Ds; A/ec1) < 7 min (N, (1+6X) || =
1

D2ey
A

-1
6 Ds8’ )

Proof. In view of Lemma 10.6, it will suffice to obtain suitable bounds for a sum

N2
W= )" F(n)e(n), (10.53)
n=N,
where F,(n) and ¢ are as in (10.42)-(10.45), with o = —A/|A|, and where the pair
v, Ny (henceforth taken as given) satisfy (10.41). Note that, by (10.40), (10.41),
(10.43), (10.44) and (10.24), we have

N4l _ 14
< *+ < .
56, S a, <a <N+ 2) o (10.54)
and, for N/2<n <N,
N/2
< < 10.55
o <70 < 0P8y (10.59)
It follows by (10.52) that
ot 24 1
— £ = < € N/2,N|). 10.56
Integrating by parts in (10.42), one finds that, for n = Ny,..., Na,
at+8. + 2 - 2
F.(n)= / t~%e(ot?) dt + clofe +0.)) - o(otez + 6°)
g 4mi at + 0, ay + O

a, +0n
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Using this to rewrite (10.53), we obtain:

=9 (e + _ w-
= I (W* + W - W7},
where
]\'r2 ﬁn+f1+
W* = Z / t~%e(at?) dt e(¢n),
n=N; —
Bntay
N2
Wt = Z (Bn +a+)_le(a (Bn + a+)2 +¢n)
nzN;
and
Al -1 2
W™ = Z (Bn +a;) e(a (Bn +a;) +¢n)
n=Ny

(10.57)

(10.58)

(10.59)

(10.60)

We shall complete our proof by establishing suitable bounds for W*, W+ and

W,
Interchanging summation and integration in (10.58), we obtain:
5++0+ N2
W* = / t~%e(ot?) Z e(¢n) | dt,
P : n=N;y
Amrew t~a* <pa<t-ay
where
+ — - *
= max and = min .
g Ni€nE Ny Bn A Ni<n<N; Bn

It follows trivially from this and (10.54)-(10.56) that

N3

N N . (o
W <<b-b—6 N max .,;v e(¢n)|.

t~at€B.<t—a,

By (10.43) and (10.44),
g _ 0

a
P— [ g— + - oo picd
n Q, 6na 0 and 3 Bn

Bn

-2“7; (TL>O),

(10.61)

(10.62)

so it follows by (10.54)-(10.56) that the sum over n in (10.61) is either empty, or

takes the form:

Na+H H

) e(gn) =e(¢Ns) Y e(gn) =e(sN3)Z  (say),

n=N3 n=0
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where N3 and H are some integers, with

[A[N
<H | )
0 <57 (10.63)

For a non-trivial bound on |2Z|, we first note that, by (10.45),

Die;  (8*-1) D}
¢ = Tt Ac , (10.64)
where @ and 4 (in (10.45)) may be any pair of integer solutions for the equation

AA 4 T = 1. (10.65)

Then, by (10.64), (10.63) and partial summation we obtain:

K-1 -
12| < (1 +Hw) max Z e(ngln) < (1 N (6~ 1)ND,;)

A KeN
C1 € n=0 [84]

TS |
Dgcl

A

(ineffective when A|D?). Using this together with the bound |2| < 1+ H, and
the upper bound of (10.63), we conclude through (10.61) that
-1
) . (10.66)

. [Alan |A|N (8 — 1)NDs
W <« 02D3N min 1+Eé—, 1+ -

We have yet to provide bounds for the terms W* and W~ in (10.57). It
suffices to give only the treatment of W~ , since W+ may be dealt with in the
same way. The first step is to observe that in (10.60) one has

D}ey
A

o (Bn + a;)2 =08 +200na] + 0o (a;’)2 ,

where, by (10.43), a_ is independent of n (as is the a* in (10.59)). Then, by
(10.43) and (10.44), we obtain

0B = 08’ D2n/|Alcr = —6°D3n/Ac,

and

ofna) = 0D5\/max (N[, v)n/cd.
It therefore follows by (10.45) and (10.40) that, for n = Ny,..., Na,

20Ds,/max (N7 ,v)n D¥An

o (Bn+a) +on=0(a;)’ + a a
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Using this in (10.60), we find that

Z Kin ( D(;An)

n=N;

1 ,ZBD‘S max (N{,v)n
k(n) = (5 a0) e - .

By (10.54)-(10.56), (10.43), (10.62) and (10.41), we have, for N/2 < n < N, the

two bounds:
1 1 iA‘C]
10.
kin) <« Bl & 0D5V N (10.68)

. 1 1  8Ds 1 | Aley 6N Dj
k(n)<<fﬁn?<N+ 61)<<9D5 s (L a0 )

Therefore it follows by partial summation from (10.67) that one has

N. —

- 1 lAlCl 9ND,5 d D%An

W e 1 E -
< 0D; N ( t c1 5 ¢ c1

1

W= =

, (10.67)

where

¥

for some N3 € {N;,...,Nz}. As (10.67) and (10.68) also imply the trivial bound,
- [A’ClN
W MIaueY
< ep;
we may now conclude that

w- <, /A (N, (1 + OND“)

DA
02D§ AT Cy

€1

)

With reference to the last bound, to the bound (10.66), and to Lemma 10.6,
we now observe that
N61 %A{C] _ X61
|A| | 2DiN — 6Ds’

and that ¢; < DgN/X, by (10.40), (10.23) and (10.20). The lemma therefore
follows directly from Lemma 10.6, (10.53), (10.57), the bound (10.66), the above
bound for W~ and a similar bound for the sum W* of (10.59). ‘m

Lemma 10.8. Let Q,X >0,8>1 and D,§, NN, € N with §|D, N > 1 and
€ (N/2,N]. Suppose also that L, Cs, Ds, Ny, N* and V(Ds; Ajc,) are as
in Lemma 10.5, with ¢;, A some pair of integers satisfying (10.40), and such that

X

|A] > Ds/4. (10.69)
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Then

V(Ds; Afey) <
< (14 6X)|A| ' DsN x

92XD,5) !

x min| N, (1 + .
( A

Proof. As was the case for our proof of Lemma 10.7, it suffices (by virtue of
Lemma 10.6) that we obtain sufficiently strong bounds for the sum W of (10.53),

where F,(n) and ¢ are as in (10.42)-(10.45), with ¢ = —A/|A| there, and with
v, N2 (assumed given) satisfying (10.41). By partial summation

_1, (1 . 6~ 1[‘)4¢I9XD,5)

D3A
€1

D2y
A

Ny N
W=F, (N2) ) e(¢n) - / F,(€) ( > e(e‘m)) dg, (10.70)

n= Ny Ny Nigng§

where it follows by (10.42)-(10.44), that one has, for £ € [Ny, Ny,

F (&)= (e(a (ot + ,65)2) - e(a (o) + ,35)2)) ;%ﬁg < (10.71)
9,115 6Ds
<l =[] < T

Suppose now that, in place of (10.69), we have the stronger:
|A] > 46D;. (10.72)

Just as in the proof of Lemma 10.7, we have at our disposal the bounds (10.54) and
(10.55). We do not, however, have (10.56): on the contrary, it follows by (10.54),
(10.55) and (10.72) that

‘Bn' < 29D6 sl
oy |A| 2

(n € [N/2,N]).

Therefore the first derivative test [23], Lemma 4.2, applies to F,(N2) (given by
(10.42)), showing that

1 [5]
F, (N — & —
(N2) < - NIA

if |A|>46D; (10.73)
(see (10.43), (10.41)).

If (10.72) does not hold, then we appeal to the second derivative test {23],
Lemma 4.4, in order to establish that

46D
F, (M) <1< T”—" if |A| < 46D;
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(see (10.42)). By this and (10.73) we have the bound

F,(N2)<<(\/;D-5+f)\/’:,

valid whether or not (10.72) holds.
By (10.70), (10.71), our bound for F,(N3), and (10.41), we have

e Ds  N8Dj Ny
W« (( m + \/6) W + “‘————,-.—-—-N]A‘Cl) n;Nl e(¢n) y

for some N3 € {Ny,...,N2}. Since (10.40), (10.23) and (10.20) imply

DsN
X *

we may simplify the above bound for W as follows:

W« \/(%+0+02X) A 12} < (1 +8X) X?A] 12},

(10.74)

] X

where
Z=e(¢N)+ ... +e(¢N;).

Now recall from (10.45) and (10.64)-(10.65) that

D}A  D3}0* Dz N (6> - 1) D2
) + Ac;, A Acy !

where, by (10.74), we have

D26?  6°XD; (62—-1)D} (6-1)6XDs
Aq < na ond Ao S TN

(given that & > 1). Therefore, either by bounding the, sum Z trivially, or by
bounding it through partial summation and evaluation of a geometric series, we

are now able to conclude that
| (1+(9—1)9XD,5) )

02XD5)

4] 1Al

where T'=(1+6X)D}/*(X|A])~"/2. The lemma follow directly from this last bo-

und, since Lemma 10.6, (10.53) and (10.74) imply V(Ds; A/c1) < N/ X Ds/|A||W].
|}

-1

A
C1

D&C]
A

W <« T min (N, (1+

Lemma 10.9. Let € € (0,1/2), @ >0, 8 > 1 and D,5,N, N, € N, with 8|D,
N >1, Ny € (N/2,N}, and
A<X<N, (10.75)
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where A € (0,1/2] is an absolute constant. Suppose also that L, Cs, Ds, Ny
and N* are as in Lemma 10.5. Let

Bi= ) >, V(D A/, (10.76)

Cs/a<c1 <2C5 ]A;<D5/4
(c1,D5)=1 (A,c1)=1

where V(Ds; A/cy) is as in Lemma 10.5. Then

QLND
62

X L 1+sND1+s LN2D2.~:
By < U log(D) +o€( (@L) o L@ ' )

where

U=1+(0-1)X. (10.77)
Proof. Note first that (10.75), (10.23) and (10.20) imply

Cs =4rDsN/X > 4w Ds > 4, (10.78)

so that, in the summations shown in (10.76), the variable of summation ¢; is
constrained to run over a subset of {2,3,4...}. As those summations require
(A,c1) =1, it follows that the variable of summation A is implicitly constrained
not to equal 0. In view of this, and of the other constraints explicit in the sum-
mations of (10.76), we may conclude that ¢; and A there are summed only over
integer values for which both (10.40) and (10.52) hold. For such ¢; and A, Lemma
10.7 applies (given our other hypotheses), yielding the bound:

pra|! D!
V(DJ;A/01)<<Nmin(N,X cJ )+Nmin(N,U —jl—cl )
1
Using this bound in (10.76), we find that
B, « (XE+UE")N, (10.79)
where .
241
€= E Z ) min(%, DsA ), (10.80)
Cs/a<e1<2Cs |A|<Ds/4 1
(c1,D5)=1 (Ac1)=1
D!
&= ¥ ) min(g, . ) . (10.81)
0£]AIKDs /4 Cs/4<e1<2Cs

(61,A)=]

We shall bound the sum. € of (10.80) in terms of sums

NH)= ) > AH(DEZ) : (10.82)

Cs/4<e1<2Cs  |A|<Ds/4
(c1,D4)==1 {A,c1)=1
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where

1 if x| € H,
An(z) = {O otherwise, (10.83)

and H > 0 is given.
If ¢ € N and A € Z with (A4,¢;1) =1, then

DA
a1

|Bt
¢’

where B is the solution of B = D?4 (mod ¢;) with —1/2 < B/c; € 1/2. There-
fore it follows from (10.82)-(10.83) that, for H > 0,

I SIS > s

Ca/4<c1 <20 BE(—Cl/z,C1/2] lAlng/‘i
(cy,Da)=1 |B|<He _(Ae)=1
D¥A=B (mod ¢;)

)DEEEED DI DI
Cs5/4<c1<2Cs |B|<Hec, [A|<Ds
(c1,D4)=1 AB=D? (mad )

N

Since (10.78) implies ¢; > 1 in the last summation, and since the condition
(Ds,c1) = 1 implies D # 0 (mod ¢y) if ¢; € {2,3,4,...}, it is therefore an
implicit condition of the last summations above that AB not be equal to 0. This
observation allows us to conclude that, for H > 0,

NH)< Y Y 4r(m) <. (HCsDs)* (1 + HD;)Cs. (10.84)
Cs/d4<c1<2Cs 0<m<Hey Dy
'mE:th (mod ¢1)

By (10.82), (10.83) and (10.75), the sum & of (10.80) satisfies

s~ N(H;)
£< Y Hoy

J=0
Hj<1

where ‘
H; =2 X/N (j €Z).

Applying (10.84) to the terms of the last sum, we obtain:
> 1
& <. Z% (H;CsDs)* (FJ + Da) Cs <
A, <1

& (HoCsDs)* Hy'Cs + (CsDs)' ¢ = (4nD}) X 'NCs + (CsDs)'**

(see (10.23) and (10.20)).
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As for the sum &* in (10.79) and (10.81), it follows by Lemma 10.1 and
(10.78) that one has

&< S CNU+ > CsloglAl < 7(DF) U CsN + CsDjslog (Ds) .
0<|A|I< Dy 0<|A|< Ds
A|D}

To finish the proof we note that, by (10.79) and the above bounds for € and
£, we have

B; < O (D25N26‘5 +XN (CJD(;)”E) +7(D?) CsN? + UNC;5D; log(D).

Since 7(D?) <. D* here, one need only recall the definitions of Cs and D;s in
(10.23) in order to verify that the above bound for B, implies the one given by
the lemma. ]

Lemma 10.10. Let Q > 0, 8§ > 1 and D,§, NN, € N, with §/D, N > 1
and Ny € (N/2,N]. Let X € R satisfy (10.75), with A there being an absolute
constant lying in the interval (0,1/2], and suppose also that U € R is given by
(10.77), while L, Cs, Ds, N[ and N are as in Lemma 10.5. Let

Ba= 3. > V(DsAla)l, (10.85)
Cs/4<c1<2Cs Dg/a<|Al<N e,
{c1,D4)=1 (A,e1)=1

with V(Ds; A/c1) as in Lemma 10.5. Then

LND X XQLN?
Bz <« 682U log(N) log(DN) XQ52 (1 + \/ﬁ) +67(D?% _QEW

Proof. Let M be an arbitrary integer with

Me{l, .. N-1} (10.86)
and define )
M~ =M~z (10.87)
Then, for ¢; > Cs/4, we have
Ds <Cs/8<e1/2€< M ¢y and M~ <M<N<NT, (10.88)

since (10.75), (10.23) and (10.20) imply the inequalities (10.78) (noted in the proof
of Lemma 10.9), and since N* = N + 1/2. By (10.88) and (10.85),

By € Ba,1 + Bag, (10.89)
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where

Bay = > > V(D Ala)l, (10.90)
Ds/4<]AIK2MC;s Cs/4<c1 <2C;
(cer)zl

Baa= D S V(D5 Ala)l. (10.91)
Cs/4<e1<2Cs M7 ¢ <|Aj<Nt¢,
{c1,D4)=1 (A,01)=1

Given (10.77), and given that §X > 1, Lemma 10.8 yields the bound

a0,

for ¢i, A € Z satisfying (10.40) and (10.69). Using this bound with (10.90), and
then applying Lemma 10.1, we find by (10.23), (10.86), (10.78) and (10.75) that

N
eU’

A

V(Ds: Ajc1) < Q2UXNDs|A|~ ‘mm(

CsN (Cs + |A)
2UXND; | Y i s Al .
Ba1 K PUXND; . AU + A log [Alf < (10.92)
A|Dj Ds/a<|A|<2MCs

|A]>Ds /4
< B*UXND; (T(DZ) DC“BU (log (g") + M) Cs log(]\«!Ca))

< 67(D?) XN*Cs + 6°U log(N ) log(DN) XN Cs Ds M.

By (10.88) (and given that 6X > 1), Lemma 10.8 also implies that, for
c1, A € Z satisfying (10.40) with (¢;, Ds) =1 and |A] > M ¢, we have

D3A
1

~1

XND 62X D
V(Ds; Afer) < 8 d (1+ ")

4] 14|

(note that (10.88) implies ¢; > 2D, so that ¢;, being coprime to Dgs, cannot
divide D} here). Using this bound with (10.91), we find that

Baz < OXNDsEL) + 03 X2ND3ER),

where

&= X > AT

Cs/4<a1<2Cs M~ ey <fA|<NT¢,
(e1.D4)=1 (A,e1)=1

DZA -

C1
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so that, by (10.24) and (10.86)-(10.88), one has

-1

N - -
DZA
) < -5 2
> (- s %] <
Cd/4<c1<2cd n=M ~c1/2<jA|~nc1 ey /2
(e1,Ds)=1 (A,c1)=1
-1
< ) Z T B/l
Cd/4<cl <2Cy B mod ¢;

<<( Y T log(a) (an)

Cs/4<c<2C;

CZ " log (Cs)log(N) ifr =1,
<
Cilog (Cs) M~ ifr=2.

Therefore, and by (10.23), (10.78) and (10.75), we conclude that
Ba2 « 0XNDsCslog (DN)log(N) + * X>ND}log (DN)M ™.

By the bound (10.92) for B, ;, by the above bound for B33, and by (10.89),
(10.86), (10.77) and our hypotheses concerning NV, X and @, we have now shown
that

2 2 3 X2N D}
By < 0r(D*) X N?Cs + 6°Ulog(N) log(DN)| X NCsDsM + ,

which (see (10.23) and (10.78)) implies:

2 N 2
B, < 0r(D?) XQ;N (93Ulog(1v)IOg(DN)W (M + JN) .

The lemma therefore follows on choosing M = max(1, [X/v/N]) to optimise the
above bound. Note that this choice of M does satisfy (10.86), given that (10.75)
holds, and that N > 2. [ ]

Lemma 10.11. Lete€ (0,1/2),Q >0and D,N, Ny e Nwith N >1 and N, €
€ (N/2,N]. Let X > A, where A € (0,1/2] is an absolute constant. Suppose that
0 > 1 and that @ satisfies (10.22). Let the parameter U and sequence ¥ = (¥,,),
be given by (10.77) and (10.18), respectively. Then the sum Bg x(¥,N;D,8)
given by (10.3), (10.4) and (1.69)-(1.71) satisfies

Bo,x (¥,N; D,0) < (DN)® (8°UX¥2ND +0XN?).

Proof. Note first that (10.22) and our other hypotheses concerning X and 6
together imply that (10.75) holds. Now suppose that § € N with 4§{D. Then, by
Lemma 10.5 and (10.75),

BY), (¥,N;D,0) < (DN’ (DN (3’”32)‘5),

5 T oL
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where By, By and B$y(¥,N;D,0) and L are as given by (10.76), (10.85),
(10.19)-(10.21), (10.4) and (1.69)- (1 71). By Lemmas 10.9 and 10.10, and by (10.75)
and (10.77), we have here:

U X3 2QL(DN)+2 . 6XQLN?D?

Bl +132 <, 52 5 y

so that

DN 63UX3/2(DN)1+2€
5T 5

<« (DN)* (93 UX*2ND + exzv?) :

Bg’)x (P,N; D,f#) <, (DN)E( +6XN2D25) <

Since Lemma 10.4 implies that

Bg.x (¥,N;D,6) <. Df—'ma,x]B(" (W, N; D, e)‘

and since £/4 may be substituted for £ without affecting our hypotheses, we may
therefore conclude that the result given by the lemma is a consequence of the
bound obtained for B('s) (¥, N;D,6). n

Lemma 10.12. Let 0 <e<1/4, Q>0 and D,N, N, € N with N; € (N/2,N].
Suppose that H > 1, and that X > A, where A € (0,1/2] is an absolute constant.
Let the sequence W = (¥,) be given by (10.18). Then

Ag.u x (¥,N;D,0) < (DN)*(D + N)NH>.

Proof. By Lemma 10.2 and (10.18), there exists some # satisfying (10.2) such
that

Aq.u.x (¥,N;D,0) < O(DN) + H*Z*|Bg,x (¥, N; D,8)|, (10.93)

where Z and Bg x(¥,N;D,f) are as given by (10.1), (10.3)-(10.4) and (1.69)
-(1.71). Taking this € as given, we shall complete the proof by obtaining a suffi-
ciently strong upper bound for |Bg x (¥, N; D, 8)|.

Suppose first that N > 1 and that N, X and @ satisfy (10.22) (in addition
0 (10.1)-(10.2)). Then (as observed while proving Lemma 10.11) the condition
(10.75) must hold, so that we have Z < N X ~1/2 and, consequently,

1<0<1+0O(N*XT)

(see (10.1) and (10.2)). Therefore, and since X > A, ¢ > 0 and D,N 2 1, it
follows by Lemma 10.11, (10.77) and (10.75) that
Bo x(¥,N;D,8) <. (DN)2 (1 +(8 - 1)X)(D+N)NX¥? <« (10.94)
<« (DN)'$(D + N)NX3/? <
< (DN)?¢(D + N)N X3/2-3¢,
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The last is the bound we have been seeking. However, in order to reach it,
we had need of our assumptions that N > 1 and that (10.22) holds. We shall next
show that (10.94) holds if one (or both) of those assumptions are false. It will in
fact suffice to show that the falsity of either assumption implies

N« X, (10.95)
since, if N « X, then Lemma. 10.3 and (10.18) imply
Bo,x (¥,N;D,0) <. (DN)D'2N3/2X1/% «
. & (DN): DV/2 N3/2+3¢ x3/2-3¢ (DN DY/2N3/2 x3/2-3¢

(given that € € (0,1/4)), which, by virtue of the arithmetic-geometric mean ine-
quality, is at least as strong as (10.94).

Taking first the cases where one does not have N > 1, we may note that in
such cases N =1 (since n € N), so that the bound (10.95) follows trivially as a
consequence of the hypothesis that X > A, where A is positive and absolute.

In cases where (10.22) is false we have |f| > N/ X, so that (10.1) and (10.2)
imply

N/.X < 1+O(N25X25_1),
which, in turn, implies that either N/X € 2,0r 2< N/ X « N2 X2%-1 As the
former alternative would mean that N < 2X, while the latter would imply that
N <« (NX)* < \/NX/A « VNX (given the lemma’s hypotheses concerning ¢,
N, X and A), we may therefore conclude that (10.95) does hold in all the cases
where (10.22) is false.

Since we showed earlier that (10.94) holds in cases where V > 1 and (10.22)
is true, and since it was also found that the conclusions reached in last two pa-
ragraphs would imply that (10.94) must also hold in all the remaining cases, it
therefore now follows that we are free to use (10.94) with (10.93), and so to obtain:

Ag.ux (¥,N;D,0) <. DN + H*Z3(DN)®(D + N)NX3/273 «
< (DN)®¢(D + N)NH*

(see (10.1) and the lemma’s hypotheses concerning €, N, D and H). The lemma
follows on substitution of £/23 for £ € (0,1/4). ]

11. Proving Theorem 1.8

From our hard won results in the last section we obtain the next lemma, helping
us to get started on the proof of Theorem 1.8 that follows it. Lemma 11.1 is
not likely to be of interest for any applications we have in mind, since it is weak
when D significantly exceeds both ) and N in magnitude. Nevertheless, it is
worthwhile pointing out that this lemma gives a result as good as (or better than)
Theorem 1.8 when D has a prime divisor P such that D < P¢/(0-@ N (where

/(1 — o) =1/25).
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Lemma 11.1. Let 0 < ¢ < 1/2, >0,K 1 and D,N,N; € N with
N, € (N/2,N], and let the sequence ¥ = (¥,) be given by (10.18). Then, for
YyER,

So.x (¥,N;D,y) < (1+¢*) (DN)*(Q + D+ N)NK>.

Proof. We seek first to establish the above bound in cases where y = 0. This
bound is trivial for Q € (0,1) (see (1.43)), so we assume henceforth that Q > 1.
By Lemmas 8.1 and 10.12, and by (10.18),

SQ,K (\Il, N; D!O) <

€ Oc; (D' (QK* + N'**) N) + 0, Z U=t Y (DN)A(D + N)NU |,

rcZ
U"<K A<2TLY

where j is an arbitrary element of N and A € (0,1/2] is an absolute constant,
while U = Up, Y and the sequence (U,) are given by (8.1) and (8.2) (with
¥ = 7/64 there). Therefore, on taking j = [1/¢] + 1, we find that

Sq.x (¥,N;D,0) <. D (QK* + N'**) N + (DN)*/*(D + N)NT,

where

T = i U2h+3 Z 1] «

= reZ
UhgK A<2TgY

< K?U®log (1 + %) =8K*D%/I1og (1 + 167A™'Q ' DN) <. (DN)*/*K?,

since 60 =21/32<2/3,1/7<e,1/A K1 and 1/Q < 1. Given that ¢ > 0 and
that K, N > 1, the bounds just found imply the case y = 0 of the lemma.

In cases where y # 0, we take (see [7], page 277) the road travelled in the
proof of {7], Theorem 7. Given a complex sequence ¢ = (cn), it follows by (10.18)
and partial summation that

N

N N
Z W, nive, = Z enn'¥ = NV Z c,,+iy/a:iy - Z Cn 9}

N/2<ngN n=N; n=N N z<ngN

so that, by the Cauchy-Schwarz inequality, (10.18), and the hypotheses concerning
N and Nj, one has

2 2
N 2 N

dz
) e +2log(2)y2/ Y -

n== Ny Ni zEngN

E V. n%e,

Ni2<ngN
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As this bound can be applied with either ¢ = f, or ¢ = g™, where
fn=pjs(Dn) and gl =n"p. (Dn, 1 +ir) (neN)

(with j, ¢ and r denoting the indices of summation and variable of integration in
(1.42)), we are therefore able to use it with (1.42) and (1.43), so as to obtain:

Sq,x (¥, N;D,y) < (1 +¢*) Sq.x (¥',N;D,0), (11.1)
with, for some z € [Ny, N},

o' _{1 fr€<ng N,

n 0 otherwise, (n €N).

On comparing the definition of ¥’ (in which = > N; > N/2) with the definition
of ¥ in (10.18), it is evident that the hypotheses of the lemma will continue to
hold following the substitution of ¥’ for the sequence ¥. Therefore, by the case
of the lemma already established,

So.x (¥',N;D,0) «c (DN)*(Q+ D+ N)NK?

Using this with (11.1) we obtain the desired result for all ¥ € R, so completing
the proof. | |

Proof of Theorem 1.8. As was the case in our proof of Theorem 1.6, we may here
assume that £ € (0,1/2). See also the remarks concerning Cp(c) and My(¢) in the
first paragraph of Theorem 1.6’s proof: similar considerations apply here in respect
of Ci(e) and M;(g). The constants £, Ci(¢) and M;(¢) are indeed constant,
from the beginning to the end of our proof, and this should be understood at
points where we refer to (1.64) or (1.66). This will not prevent us from sometimes
applying Proposition 1.1 or 1.2 with the constant parameter ¢ of the proposition
replaced by a new constant, . As Ci(¢) and M;(c) must be unvarying for our
arguments to work, we have to keep track of both in any expressions, so as to
avoid overlocking any point in the argument that might require a change in either
constant. Therefore we do not allow implicit constants which might depend on
Ci(g) or M(g) (forbidding ourselves, in particular, from simplifying a bound
such as X <. C1(€)Y to just X <. Y). Before plunging in to the details of the
proof, we mention that, like the proof of Theorem 1.6, it consists of an ‘initial
result’ followed by an ‘inductive step’ (with some intervening explanation).

For our proof of the ‘initial result’ we shall suppose we are given M > 1
and y, K, Q, D, N, P, Ny and ¥ as indicated after (1.64). It then follows
from (1.59), (1.65) and (1.63) that ¥ will satisfy (10.18) if N and N, there are
replaced by the integers N/ = [N] 2> 0 and N{ = [N1] +1 > 1, respectively. By
(1.65) we have N{ > N'/2. Moreover, it follows from (1.63) that, if N{ > N’,
then ¥, = 0 for all n € N. Therefore, and in view of (1.42)-(1.43), one obtains

Sq.x (¥,N;D,y) = Sq.x (¥,N';D,y) < (11.2)
<e (L+4%) (DN (Q+ D+ N)NK?,
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either trivially, or as a consequence of Lemma 11.1. Given that C(g) was chosen
sufficiently large, it follows from (11.2) and (1.59) that (1.66) holds if D < Q+ M
(note that (DN)® < (QDN)® if Q > 1, and that (1.66) is trivial if 0 < Q < 1).
Suppose now that '
D>Q+ M. (11.3)

Since Q + M > 1, it follows from (11.3) and (1.60) that P > 2, and that we can
find D1|D with
(@Q+M)/P<D £Q+ M. (11.4)

By Proposition 1.1 and (1.63), we have

K2 N D D\ %**
Sq.x (¥,N; D, =5 wile} .21 — , 11.
Q.k (¥, N; y) e G2 Q.G ( ) % 91 y) D]) ( 5)
for some G > 1, some @ € (0,Q], some gg,91 € N with g;|D;, and the sequence
¥} given by

1 if Ny <gon< N,
‘I"{‘go} - {O othelrwisge0 (n €N). (11.6)

As (1.63) holds with w{%} N/gy and N;/go substituted for ¥, N and N,
(respectively), it follows that we may apply the bound (11.2) (with appropriate
substitutions), so as to obtain:

N
Sa..c (‘I'{”‘”, p %,y) e (1+y%) (DIN)*(Q+ D1+ N)NG*.
1

By (1.59), (11.4) and (11.5), this enables us to conclude that

Sa.k (¥, N; D,y) e (1 + %) (DN)* (Dﬂl)g (Q+ M)NK?, (11.7)

Moreover, as (11.4) implies

EQ DQ(Q‘}'M) . 2 l-p
(57) @+ 40) < grotsrins = (PD)#(@ + 1)~ =

1-g
— eprs Q
(PDM)?M (1+M) ,

and since (1.66) holds trivially if 0 < Q < 1, it therefore follows (given the
hypotheses regarding C1(¢)) that a sufficient condition for (1.66) to hold is that
Q/M < @°. Recalling our conclusion immediately prior to the assumption of
(11.3), we may now further conclude that, regardless of whether or not (11.3) is
satisfied, the bound (1.66) will hold if Q'~¢ < M. This ‘initial result’ supplies
what is needed for the ‘inductive step’ that comes next.
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For the remainder of the proof M is supposed to satisfy (1.64), and remains
fixed. We suppose that R > 0 is such that (1.66) fails for @ = R (with the given
choice of M, and some y, K, D, N, P, N; and ¥ satisfying the conditions
stated in the theorem). By the ‘initial result’, obtained in the previous paragraph,
we must have the inequality

R'"¢ > M. (11.8)

By reasoning as in the proof of Theorem 1.6 (see the paragraph containing (9.2)),
we may additionally suppose R to be a natural number satisfying the ‘inductive
hypothesis’ that, with the given choice of M , the bound (1.66) holds for 0 < Q < R
andall y, K, D, N, P, N, and ¥ satisfying the conditions stated in the theorem.

Qur aim now is to complete a proof by induction, although we present it
as a proof by contradiction (the idea being to show that our original assumption
concerning R can be ruled out as a possibility). By adapting the logic of the
argument set out in the proof of Theorem 1.6 (half a paragraph below (9.2)), we
find here that what suffices for completion of the current proof is to establish that,
given our assumptions concerning €, M and R, it must follow that (1.66) holds
for @ =R and y, K, D, N, P, N; and ¥ satisfying the conditions stated in
the theorem (but otherwise arbitrary). We therefore now suppose such a choice of
y, K, D, N, P, N; and ¥ to have been given. By (1.42) and (1.43), the bound
(1.66) is trivial for 0 < N < 1, so that NV 2 1 may also be assumed henceforth.
For our later convenience we define two new constants:

d = 12_49 =% and nzégi. (11.9)
We begin the inductive step by considering cases where
DN < R?7%, (11.10)
By Proposition 1.2, and by (1.63), (11.8)-(11.10) and (1.59), we find that
e (\I;éé\[; 0y) & (DN)" | RN + / SL.6 E‘II’;L)%;H ) gt . (11.11)
oo
for some G 2z 1 and some L satisfying
0< L« DN/R< R™/*V/DN < R'™%. (11.12)
By (11.9), (11.8) and (1.64), the last bounds may be assumed to imply
L< VDN <R (11.13)

Therefore our ‘inductive hypothesis’ applies to show that, for ¢t € R,
Scc (¥, N:D,y+t) <
<1+ (y+t)2) Ci(e)LDN) (L + M + (PDM)*(L + M)*)NG* <
< (1+t%) (1 +4%) C1(e)(LDN) (R + (PDM)?(L + M)*)NG?
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(the final bound following by (11.8)). By this and (11.11) it follows that

Ser.x (¥,N;D,y)

1+ 5 K2 < (DN)"Cy(e)(1 + L)(DN)¢ (R + (PDM)?(L + M)¢) N

where, by (11.10), (11.12), (11.9), (11.8) and (1.64),
(DN)(1+ L)* <« R* (R'7%)" = R*™7 < (M, (e)) ™" R°.

Therefore, given (11.9) and (11.13), and given that M,(¢) is supposed sufficiently
large in terms of €, we are now entitled to conclude that in cases where (11.10)
holds we do obtain the bound (1.66) for Q = R.

As our consideration of the cases satisfying (11.10) has reached a satisfactory
canclusion, we shall assume henceforth that

DN > R*7% (11.14)

Given this assumption we have (see (11.9)) the inequality D > R?>~?¢ /N, while it
follows by (11.8) and (1.59) that R>~2%¢/N » R/N > M/N > 1. Therefore, and
by (1.60), we can find D{|D such that

1
BN < D1 = N (11 5)
Then, by Proposition 1.1 and (11.9), we obtain
Sk.x(¥, N;D,y) 1 N D, D\
; ; S \p(go} — 11.1
e <e z3SR1C Pt A8 ,  (11.16)

for some G 2 1, some Ry € (0, R], some gg,91 € N satisfying g,|D;, and the
sequence \I'{QU} given by (11.6).

The size of the parameter Ry in (11.16) determines how we can best proceed.
We consider first the cases in which

R¥™® < DiN. (11.17)
In such cases it follows by (11.15) that
Rl < R(2—2z—:)/(2-r—:) - Rl—s/(2—s) Q Rl-—s/2‘ (11.18)

Therefore Ry < R, so that the ‘inductive hypothesis’ applies (given that (11.6)
implies (1.63) with Ny/go and N/gg € (0, M| substituted in place of N; and N).
Consequently we have

1 N D
— g Pleoy . 21 ) <
1+ G2 ( w o

< Ci(&) (RiDN)* (Ru+ M+ (PDIM)? (R, + M)C) N
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By this, (11.16), and the inequality n < ¢ (see (11.9)), we obtain

1
(1+y%) K?

& C1(e) (RiDN)* ((%)Q(Rl + M)+ (PDM)e (R, + M)‘) N.

SR,K(‘I’,N;D,:U) & (11.19)

Here we can note that, by (11.18), (11.8), (11.9) and (11.14),
Ri+ M < R'™/* < R1=%/2 < nin (R, \/DN) ,

with it following by (11.15) and (1.59) that we have

D\? DQRI-€/2
— M —— . < (PD MRS (1-40)/2
() ks +20< (s < (PDMYR

As 1—4p=46¢ >0 (by (11.9)), and
<
RS-6Ce/2 . p1-6e/2)C (min (R, \/DN))

(by (11.14)), we may therefore conclude that (11.19) shows

SR,K (‘P»Ny Da y)
(1+y?) KN

<& Ci(€) (B DN)* (PDM)? (min (B, VDN))°,

which, by (11.18), (11.8) and (1.64), is sufficient to guarantee that we obtain (1.66)
with Q = R.

As the above succesfully concludes our treatment of the cases in which (11.16)
holds with R, satisfying (11.17), we shall henceforth be assuming that, in addition
to (11.14)-(11.16), it holds that

R:"€ > D|N. (11.20)

Note this implies that R; = 1, and so also that R% = DiN. As the ‘inductive
hypothesis’ may not be available to us in some of the cases we are now considering,
we appeal instead to Proposition 1.2, which, by virtue of (1.63), (1.59), (11.8),
(11.9) and the inequalities D; N/R; < R; < R, provides us with the bound:

1 N D,
@SR]‘G‘(‘I’{QO},%;;’I{) &, (1121)

T 1 N D dt
¢ (DIN)" | RN — Ploo}r 2. 20 gt} —
<o {83+ [ g9, ST ) i
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for some H > 1 and some L, satisfying 0 < L, « D;N/R;. By (11.20), the
upper bound for L;, and the inequality R, < R, we have here

Ly €« R™* < R'"¢, (11.22)

so that (given (11.8) and (1.64)) it may be assumed that 0 < L; < R. Therefore
the ‘inductive hypothesis’ applies to show that, for t € R,

< (1+ (w+1)?) Ci(e) (LD, N)* (Ll + M+ (PDIM)? (L, + M)<) NH?.

By (11.16), (11.21) and the last bound, we conclude (using 7 < €) that

1
(1+y?) K2N

& (DIN)" Ci (e) (LIDN)E((—g—I-)g(Ll + M) + (PDM)® (L1 + M)C) +

Sk (¥, N; D, y) <. (11.23)

+ (DN (—g-l-)gn.

By (11.15) and (1.59), we have here

D QR < DR (PDM)eRSY2es — RE(PDM)?RI=9C (11.24)
Dy (R?-2/PN)? =

Moreover, by (11.22), (11.8), (11.14) and (11.9),

Li+M <« R < min (R, \/DN) , (11.25)
so that, by (11.24),
D\* D\*®
(E_) (Li + M) < (—5) R'"¢ < (PDM)eR(1-9), (11.26)
1 1

Since (11.14), (11.9), (11.15) and (11.22) show
(DN)"Rf < (DN)~“/2(RDN)* < R"¢/>(RDN)*

and
(D1N)" (L DN)* < R*" (R'"DN)* < R"/*(RDN)",

it follows from (11.23) and (11.24)-(11.26) that
o
(1+y?) K?
which, by (11.25), (11.8) and (1.64), may be assumed to imply (1.66) for @ = R.

Sr.x (¥,N;D,y) <. R™/2Cy(¢)(RDN)*(PDM)?R(~<XN,
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As the cases we have considered cover all the possible choices of y, K, D,
N, P, Ny and ¥ satisfying the conditions stated in the theorem, and since we
found that, with Q@ = R, the bound (1.66) followed in all these cases (given the
assuniptions concerning ¢, M and R), we have therefore now met the conditions
earlier deemed sufficient for completion of the proof (see the paragraph ending
with (11.9)). In fact we have obtained a contradiction with our original assumption
that (1.66) failed for Q = R (with some choice of y, K, D, N, P, N; and ¥
satisfying the conditions stated in the theorem). Therefore (1.66) must hold, for
the given fixed choice of M, whenever y, K, D, N, P, N, and ¥ are as stated
in the theorem. This completes the proof, since, aside from the condition (1.64),
our choice of M was arbitrary. [ ]
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