AN OPERATOR SPACE CHARACTERIZATION OF FRÉCHET SPACES NOT CONTAINING l^1

Wolfgang M. Ruess

Dedicated to the memory of Susanne Dierolf

Abstract: The classes of Fréchet spaces not containing l^1 , of Gelfand-Phillips spaces, and of dual Gelfand-Phillips spaces are characterized by (pre)compactness criteria for sets of bounded linear operators transforming bounded sets into precompact sets.

Keywords: Locally convex spaces, no-containment of l^1 , limited sets, precompact operators.

1. Introduction

For Banach spaces X and Y, the following compactness criterion for subsets of the space K(X,Y) of compact linear operators from X into Y has been established in [6, Theorem 1]:

If X does not containing (an isomorphic copy of) l^1 , then a subset H of K(X,Y) is relatively compact in operator norm if and only if

- (i) $Hx = \{hx \mid h \in H\}$ is relatively compact in Y for all $x \in X$;
- (ii) $||hx_n|| \to 0$ uniformly over $h \in H$ for all weak nullsequences $(x_n)_n \subset X$.

The purpose of this note is (a) to extend this result to Fréchet spaces, and, (b) to show that the criterion actually characterizes non-containment of l^1 . Also, the method of proof will be shortcut by reducing the characterization to a simple combination of (a linearized version of) the Arzela-Ascoli Theorem and Rosenthal's characterization of non-containment of l^1 . As a byproduct, the linearized Arzela-Ascoli Theorem (Proposition 2.1 below) also leads to operator space characterizations of the Gelfand-Phillips property for locally convex spaces or strong duals of such.

Notation and Terminology (A). Given a locally convex space X, X_{σ} will denote X endowed with the weak topology $\sigma(X, X')$, while X'_b , respectively, X'_{τ} will denote the dual of X endowed with the strong, respectively, the Mackey topology, and X'_c , respectively, X'_{λ} will denote the dual endowed with the topology

of uniform convergence on all compact convex, respectively, all precompact subsets of X. Given a subset C of X, $C^{\circ} := \{x' \in X' \mid |\langle x', x \rangle| \leq 1 \text{ for all } x \in C\}$ will denote its (absolute) polar in X'.

A subset C of X is called limited if $\langle c, x_n^* \rangle \to 0$ uniformly over all $c \in C$ for any equicontinuous weak*-nullsequence in X'. Obviously, all precompact subsets of X are limited. X will be called a Gelfand-Phillips space (abbreviated by X is (GP)) if, conversely, all limited subsets of X are precompact (9).

(B). Given locally convex spaces X and Y, the basic operator space to be considered here is the space $K_b^b(X,Y)$ of all weak-to-weak-continuous linear operators from X into Y that transform bounded subsets of X into precompact subsets of Y, endowed with the topology of uniform convergence on the bounded subsets of X.

Moreover, we shall also consider the ϵ -product $X \epsilon Y$ of X and Y, which is the space $L_e(X'_c, Y)$ of all weak*-weakly continuous linear operators from X' to Y that transform equicontinuous subsets of X' into relatively compact subsets of Y. Note that, for X and Y complete, the completed injective tensor product $X \tilde{\otimes}_{\epsilon} Y$ is a (closed linear) subspace of $X \epsilon Y$, with equality in case either of X or Y has the approximation property (cf. [10]).

2. Results

The criterion for relative compactness of subsets of K(X,Y) for Banach spaces X and Y with X not containing l^1 alluded to in the Introduction ([6, Thm. 1]) can be extended to the following characterization of Fréchet spaces not containing l^1 .

Proposition 2.1. For a Fréchet space X, the following are equivalent:

- (a) X does not contain an isomorphic copy of l^1 ;
- (b) Given any locally convex (equivalently, any Fréchet, equivalently, any Banach) space Y, a subset H of $K_b^b(X,Y)$ is precompact if and only if
 - (i) H(x) is precompact in Y for all $x \in X$:
 - (ii) $h(x_n) \to 0$ in Y uniformly over all $h \in H$ for any weak-nullsequence $(x_n)_n$ in X.

If, in Proposition 2.1, we replace non-containment of l^1 in X by X'_b being (GP), we get the following variant for just any locally convex space X.

Proposition 2.2. For a locally convex space X, the following are equivalent:

- (a) X'_b is a Gelfand-Phillips space;
- (b) Given any quasi-complete locally convex (equivalently, any Fréchet, equivalently, any Banach) space Y, a subset H of $K_b^b(X,Y)$ is precompact if and only if
 - (i) H(x) is relatively compact in Y for all $x \in X$;
 - (ii) $h''x_n'' \to 0$ in Y uniformly over all $h \in H$ for any equicontinuous $weak^*-null sequence\ (x_n'')_n\ in\ X''\ (=(X_b')').$

As an aside, we thus deduce indirectly from a combination of Propositions 2.1 and 2.2 that, for a Fréchet space X, non-containment of l^1 implies that the strong dual X'_b is a Gelfand-Phillips space. This extends the corresponding result for Banach spaces of [3, Cor. 5].

In turn, Proposition 2.2 specializes to the following Banach space result.

Corollary 2.3. For a Banach space X, the following are equivalent:

- (a) X^* is a Gelfand-Phillips space.
- (b) Given any Banach space Y, a subset H of K(X,Y) is relatively compact in operator norm if and only if
 - (i) H(x) is relatively compact in Y for all $x \in X$;
 - (ii) $||h^{**}x_n^{**}|| \to 0$ uniformly over all $h \in H$ for any weak*-nullsequence $(x_n^{**})_n$ in X^{**} .

Finally, with regard to the Gelfand-Phillips property for a locally convex space X (rather than for its strong dual), we note the following operator characterization corresponding to the ones above.

Proposition 2.4. For a locally convex space X, the following are equivalent:

- (a) X is a Gelfand-Phillips space;
- (b) Given any locally convex (equivalently, any Fréchet, equivalently, any Banach) space Y, a subset H of $X \in Y$ is precompact if and only if
 - (i) H(x') is precompact in Y for all $x' \in X'$;
 - (ii) $hx'_n \to 0$ in Y uniformly over all $h \in H$ for any equicontinuous $weak^*-null sequence\ (x'_n)_n$ in X'.

Obviously, for X and Y complete locally convex spaces, this result also yields a characterization of X being (GP) by the corresponding criterion for relative compactness of subsets of $X \otimes_{\epsilon} Y$.

As a further special case, we consider the Banach space C(K, X).

Corollary 2.5. If K is a compact Hausdorff space, and X a Banach space with the Gelfand-Phillips property then a subset $H \subset C(K,X)$ is relatively compact if and only if

- (i) H is equicontinuous on K with respect to the weak topology of X;
- (ii) $||x_n^* \circ h||_{\infty} \to 0$ uniformly over $h \in H$ for all weak nullsequences $(x_n^*)_n \subset X^*$.

3. Proofs

All of the results of section 2 will follow from the subsequent linearized version of the Arzela-Ascoli theorem, teamed with suitable known results.

Given locally convex spaces X and Y, and a family S of bounded subsets of X that cover X, we consider the space $K_S(X,Y)$ of all weak-to-weak continuous linear operators from X into Y that transform the sets $S \in S$ into precompact

subsets of Y, endowed with the topology of uniform convergence on the $S \in \mathcal{S}$. The space X' endowed with the topology of uniform convergence on the $S \in \mathcal{S}$ will be denoted by $X'_{\mathcal{S}}$. For subsets $H \subset K_{\mathcal{S}}(X,Y)$ and $A \subset Y'$, the subset $\bigcup \{h'(A) \mid h \in H\}$ of X' will be denoted by H'(A).

Lemma 3.1. A subset H of $K_{\mathcal{S}}(X,Y)$ is precompact if and only if

- (i) H(x) is precompact in Y for all $x \in X$;
- (ii) $H'(V^{\circ})$ is precompact in X'_{S} for all zero-neighbourhoods V of Y.

This result is well-known, cf. [2, Corollary, section 3] (compare [7] for special cases). We include a short independent *proof: Necessity:* As the $S \in \mathcal{S}$ cover X, (i) follows from continuity of the point evaluations $\delta_x: \{h \mapsto h(x)\}, x \in X$. Next, given a zero-neighbourhood V in Y, and $S \in \mathcal{S}$, by precompactness, there exist $h_1, ..., h_n \in H$ such that $H \subset \bigcup_1^n (h_i + W(S, V))$, with $W(S, V) := \{u \in K_{\mathcal{S}}(X,Y) \mid u(S) \subset V\}$. By polarity, this translates into $H'(V^{\circ}) \subset \bigcup_1^n (h'_i(V^{\circ}) + S^{\circ})$. Noting that $u(S), S \in \mathcal{S}$, being precompact in Y translates into u' being continuous from Y'_{λ} into $X'_{\mathcal{S}}$, and noting that V° is compact in Y'_{λ} , (ii) is now immediate.

Sufficiency: Given $S \in \mathcal{S}$, the set $S_1 = \text{closed}$ absolutely convex hull of S is uniformly equicontinuous (as a set of linear functionals) on $X'_{\mathcal{S}}$, so that the weak topology on X coincides on S_1 with the topology of uniform convergence on precompact subsets of $X'_{\mathcal{S}}$. Thus, given any closed absolutely convex zero-neighbourhood V in Y, by (ii), there exists a weak zero-neighbourhood U_w in X such that $(H'(V^{\circ}))^{\circ} \supset (H'(V^{\circ}))^{\circ} \cap S_1 \supset U_w \cap S_1$. By polarity, this implies that $H(U_w \cap S_1) \subset V^{\circ \circ} = V$. Hence, $H_{|S_1}$ is equicontinuous at $0 \in S_1$, and thus, as S_1 is absolutely convex, uniformly equicontinuous from (S_1, weak) to Y, and so is $H_{|S|}$ from (S, weak) to Y. Teamed with (i), and by noting that the $S \in \mathcal{S}$ are precompact in $X_{\mathcal{S}}$ (being bounded in X), the Arzela-Ascoli theorem [1, Théorème 2, § 2, 5.] reveals that H is precompact in $K_{\mathcal{S}}(X,Y)$, thus completing the proof.

The proof of Proposition 2.1 will be a simple combination of Lemma 3.1 with the subsequent characterization of Fréchet spaces not containing l^1 . We shall call a subset P of the dual of a locally convex space X $weak^*-limited$ if $\langle x',x_n\rangle \to 0$ uniformly over $x'\in P$ for any weak nullsequence $(x_n)_n\subset X$. Notice that, according to [4, Ch. V, § 3.3, Exercise 3], weak*-limited subsets of X' are (a) exactly those that are precompact for the topology of uniform convergence on all subsets B of X with the property that any sequence in B has a weak Cauchy subsequence, and (b) exactly those that are precompact in X'_{τ} in case X is a metrizable locally convex space.

Lemma 3.2. A Fréchet space X does not contain l^1 if and only if every weak*--limited subset P of X' is relatively compact in X'_h .

Proof. It is known that Rosenthal's characterization of non-containment of l^1 ([8]) carries over from Banach to Fréchet spaces, i.e., a Fréchet space X does not contain l^1 if and only if every bounded sequence in X has a weak Cauchy subsequence ([5]). Thus, necessity of the assertion of Lemma 3.2 follows from part

(a) of the above result of [4]. Sufficiency, in turn, follows from part (b) of that same result, in conjunction with the fact (cf. [11, p. 398]) that a Fréchet space X does not contain l^1 if and only if Mackey and strong nullsequences in X' coincide.

Proof of Proposition 2.1. Condition (b) (ii) amounts to $\langle x', x_n \rangle \to 0$ uniformly over all $x' \in H'(V^{\circ})$. Thus, letting $\mathcal{S} = \mathcal{B}_{\mathcal{X}} =$ all bounded subsets of X in Lemma 3.1, necessity of conditions (i) and (ii) in (b) holds for general X, as $H'(V^{\circ})$ is precompact in X'_b by Lemma 3.1. In turn, in case X does not contain l^1 , sufficiency of (i) and (ii) follows from combining Lemma 3.1 (for $\mathcal{S} = \mathcal{B}_{\mathcal{X}}$) and Lemma 3.2, as (ii) amounts to $H'(V^{\circ})$ being weak* – limited in X'. Finally, the special case of Y = scalars in (b), teamed with Lemma 3.2, shows that (b) implies (a).

Proof of Proposition 2.2. With regard to (ii) of part (b) of Proposition 2.2, notice that, as Y is supposed to be (at least) quasi-complete, the second adjoint of any $u \in K_b^b(X,Y)$ maps back into Y. Other than that, since that same condition simply means that $H'(V^\circ)$ is a limited subset of X_b' for all zero-neighbourhoods V of Y, Lemma 3.1 (for $S = \mathcal{B}_{\mathcal{X}}$) shows that (a) implies (b), while the reverse implication is simply a specialization of Y to the scalars in (b).

Proof of Proposition 2.4. This result is an immediate consequence of Lemma 3.1 for the special case of X being replaced by X'_c , and S being the family of all equicontinuous subsets of X', teamed with the observation that (ii) of part (b) amounts to $H'(V^{\circ})$ being a limited subset of X for all zero-neighbourhoods V of Y.

Proof of Corollary 2.5. This is an immediate consequence of Proposition 2.4, and the isometry $C(K,X) = X \tilde{\otimes}_{\epsilon} C(K)$, given by $\{F \mapsto \{x^* \mapsto x^* \circ F\}\}$, teamed with the scalar Arzela-Ascoli theorem for C(K).

Acknowledgement. The author is grateful to the referee for valuable suggestions.

References

- [1] N. Bourbaki, Éléments de Mathématiques, Topologie Générale, Ch. X; Hermann, Paris 1961.
- [2] A. Defant and K. Floret, The precompactness-lemma for sets of operators; in: Funct. Analysis, Holomorphy and Approximation Theory II (G. Zapata, Ed.), North-Holland Math. Studies 86 (1984), 39–55.
- [3] G. Emmanuele, A dual characterization of Banach spaces not containing l¹,
 Bull. Acad. Polon. Sci. 34 (1986), 155–160.
- [4] A. Grothendieck, Espaces Vectoriels Topologiques, Sociedade Mat. S. Paulo, Sao Paulo, 1964.
- [5] R.H. Lohman, On the selection of basic sequences in Fréchet spaces, Bull. Inst. Math. Acad. Sinica 2 (1974), 145–152.
- [6] F. Mayoral, Compact sets of compact operators in absence of l¹, Proc. Amer. Math. Soc. 129 (2000), 79–82.

- [7] W.M. Ruess, Compactness and collective compactness in spaces of compact operators, J. Math. Anal. Appl. 84 (1981), 400–417.
- [8] H.P. Rosenthal, A characterization of Banach spaces containing l¹, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413.
- [9] Th. Schlumprecht, On limitedness in locally convex spaces, Arch. Math. 53 (1989), 65–74.
- [10] L. Schwartz, Théorie des distributions à valeurs vectorielles (I), Ann. Inst. Fourier 7 (1957), 1–141.
- [11] M. Valdivia, Fréchet spaces with no subspaces isomorphic to l_1 , Math. Japonica **38** (1993), 397–411.

Address: Wolfgang M. Ruess: Fakultät für Mathematik, Universität Duisburg-Essen, D-45117 Essen, Germany.

E-mail: wolfgang.ruess@uni-due.de

Received: 8 February 2011; revised: 22 April 2011