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Abstract: We introduce a Laplace transform for Laplace hyperfunctions valued in a complete
locally convex space X. In this general case the Laplace transform is a compatible family of holo-
morphic functions with values in local Banach spaces. Especially interesting is the case where
X = Lb(E, F ) is the space of operators between locally convex spaces. In the forthcoming paper
[6] this will be applied to solve the abstract Cauchy problem for operators in complete ultra-
bornological locally convex spaces (like spaces of smooth functions and distributions) extending
results of Komatsu for operators in Banach spaces.
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1. Introduction

The solution of the abstract Cauchy problem is a classical part of the theory
of differential equations. A standard approach to this problem for operators in
Banach spaces is the use of Laplace transform for operator valued (generalized)
functions. This has been developed in several settings of generalized functions,
the most general being the approach of Komatsu (see [9, 10]) in the framework of
Laplace hyperfunctions.

Though many standard operators of analysis are naturally defined on locally
convex spaces like holomorphic functions, C∞− functions or spaces of distribu-
tions, a solution of the abstract Cauchy problem for operators in locally convex
spaces by means of conditions on the resolvent (and using the Laplace transform
as the relevant tool) is missing, perhaps since a corresponding reasoning was con-
sidered to be impossible because of simple examples like the following:

Let C : H(C) → H(C) be the multiplication operator defined by C(f)(z) :=
zf(z) for f ∈ H(C). The L(H(C))−valued continuous function T : [0,∞[→
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Lb(H(C)), T (t)(f)(z) := etzf(z), clearly gives an (at most exponentially increas-
ing) solution F (t) := T (t)f of the following abstract Cauchy problem:

{
F ′(t) = CF,

F (0) = f.

Nevertheless the operator λ−C : H(C) → H(C) is for no λ ∈ C surjective, hence
the resolvent set is void, and moreover the Laplace transform

L(T )(λ)(f)(z) :=
∫ ∞

0

e−λtT (t)f(z) dt =
f(z)
λ− z

is not defined as an operator in H(C). Similar examples are also given in [1, p. 164]
(C := x d

dx in the Schwartz space S(R)) and in [3, p. 125] (C := d
dz in H(C)).

In spite of these examples we will develop in the present paper a suitable
notion of Laplace transform for Laplace hyperfunctions valued in a complete (ul-
tra)bornological locally convex spaces (which becomes especially transparent for
Fréchet spaces and which can also be applied to the simple example above).

In this way we will modify and extend the approach of Komatsu to cover
operators in spaces typical for analytic applications: various spaces of smooth
functions or distributions.

The results of the present paper are used in the forthcoming paper [6] to pro-
vide a solution of the abstract Cauchy problem for operators in complete ultra-
bornological locally convex spaces using a suitably general notion of a resolvent
for operators in locally convex spaces.

Unlike Komatsu [10] (who used boundary values of exponentially increasing
holomorphic functions) we will define Laplace hyperfunctions by duality, i.e., as
the dual space of a natural space of holomorphic test functions. We then in-
troduce a Laplace transform for these Laplace hyperfunctions with values in a
complete locally convex space X which is the projective limit of its local Banach
spaces (Xγ)γ∈Γ. The appropriate notion of Laplace transform then is a family of
holomorphic functions (Lγ(T ))γ∈Γ with values in Xγ satisfying a suitable compat-
ibility condition and some exponential growth condition on sectorial domains in
the complex plane.

Since we precisely describe the Laplace image of our space of test functions,
we can also prove a Laplace inversion formula for Laplace hyperfunctions in our
general setting. In this way we completely characterize the Laplace transforms of
vector valued Laplace hyperfunctions (see Theorem 2.4 and Corollary 3.5).

This provides a full extension and improvement of Komatsu’s results [9, 10]
on Laplace transform of operator valued Laplace hyperfunctions in Banach spaces
to our general setting which is required in applications to spaces of smooth or
analytic functions as well as to various spaces of distributions and will be explored
in the forthcoming paper [6].

Our Laplace transform also provides a general frame for the study of the
Laplace transform for vector valued weighted generalized functions. The case
of weighted vector valued distributions is treated in Section 4, where also many
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more examples are given which are connected to semigroups of operators provid-
ing solutions of the Cauchy problem for certain differential operators with variable
coefficients. It is worth noting that a theory of vector valued hyperfunctions of
Sato type is developed in [5].

Specifically, let E and F be locally convex spaces , where E is bornological
with system BE of bounded absolutely convex subsets (and corresponding normed
spaces EB , B ∈ BE) and where F is complete with the topology defined by a semi-
norm system {‖ · ‖α, α ∈ A} (with corresponding local Banach spaces Fα, α ∈ A).
Let X = Lb(E, F ) be the space of continuous linear operators from E to F .
Then Lb(E,F ) = proj(B,α)∈BE×A L(EB , Fα), that is, the local Banach spaces for
X = Lb(E,F ) are provided by the projective spectrum (L(EB , Fα))(B,α)∈BE×A of
spaces of operators on Banach spaces. Thus the Laplace transform of a Laplace
hyperfunction with values in X = Lb(E,F ) is a family of holomorphic functions
with values in L(EB , Fα), (B,α) ∈ BE × A. The Laplace transform of Lb(E, F )−
valued Laplace hyperfunctions essentially simplifies in the important case where E
and F are Fréchet spaces (or, dually, E and F are (DFS)−spaces, respectively),
e.g. if E and F are the space of holomorphic functions or C∞− functions or
tempered distributions (see Corollaries 2.9, 2.10 and 3.6).

We provide several examples where our Laplace transform exists and is calcu-
lable while the Laplace transform in the classical sense (i.e. as one holomorphic
function defined on a fixed open set in C with values in Lb(E)) does not exist.
Nevertheless, in many cases, our generalized Laplace transform is a very natural
”true” Laplace transform given by an integral over [0,∞).

For the theory of hyperfuntions see [14], [15], [8] as well as [12] and [13]. For
non-explained notions from functional analysis see [11].

2. A general Laplace transform and Laplace hyperfunctions

In [10] Komatsu introduced a general definition for the Laplace transform of gen-
eralized functions valued in Banach spaces. In this section we will extend and
modify this definition (which was based on boundary values) in two ways: we will
consider generalized functions defined on a natural space of test functions (instead
of vector valued boundary values) which seems to be more natural in the present
context, and moreover the values will be taken in a complete locally convex space.
As it turns out, the Laplace transform is a compatible family of holomorphic
functions defined on a directed family of domains in C containing large angular
domains rather than on a single domain (see Theorem 2.4). This crucial notion is
introduced as follows:

Let X be a complete locally convex space defined by a projective spectrum
X := (Xγ)γ∈Γ of locally convex spaces (Xγ , ‖·‖γ) with linking maps κγ : X → Xγ

and κγ
ν : Xγ → Xν for γ > ν. Correspondingly, let G := (Gγ)γ∈Γ be a directed

family of domains in C, that is,

∅ 6= Gγ ⊆ Gν if γ > ν.
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Definition 2.1. Let X = (Xγ)γ∈Γ and G = (Gγ)γ∈Γ be a projective spectrum of
locally convex spaces and a corresponding directed family of domains in C, respec-
tively. A family S = (Sγ)γ∈Γ is called a spectral-valued (or X -valued) holomor-
phic function (denoted by S : G → X ) if

(i) Sγ : Gγ → Xγ is holomorphic;
(ii) (compatibility) ∀ γ > ν : κγ

ν ◦ Sγ = Sν

∣∣
Gγ

.

We will show that the natural definition of a Laplace transform for a large
space of X−valued generalized functions will lead to an X − valued holomorphic
function L : G → X .

To motivate the definition of Laplace hyperfunctions given below we remark
that the local Banach spaces of the corresponding space of test functions should
at least contain the functions

fλ(z) := exp(−λz)

for λ in some angular domain in C. Moreover, to obtain the largest class of Laplace
hyperfunctions on [0,∞[, the test functions should be defined on small angular
neighborhoods of [0,∞[. These observations lead to the following definition of the
test function space:

H := ind
K

(proj
k

HK,k) = ind
K

HK

where

HK,k := {f ∈ H(ΩK) : ‖f‖K,k := sup
z∈ΩK

|f(z)| exp(k Re z) < ∞}

and

ΩK :=
{

z ∈ C : | Im z| < Re z

K
+

1
K2

}
.

We also define
H0

K,k := HK
HK,k ⊆ HK,k,

as well as

VK,k :=
{

λ ∈ C : Re λ > k +
| Im λ|

K

}
.

The following conventions will be used throughout the paper:

z = x + iy and λ = η + iζ, where x, y, η, ζ are reals.

Also, the constants C and Cj may change from line to line without further notice.
The following Lemma shows that H satisfies the conditions required above:

Lemma 2.2. Let K > 1, then fλ ∈ H0
K,k for any λ ∈ VK,k.
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Proof. For λ ∈ VK,k let us define

fj,λ(z) := exp
(
−λz − z2

2j

)
.

With the convention for z and λ from above we get for any k ∈ N and z ∈ ΩK :

|fj,λ(z)| exp(kx) = exp
(
−ηx + ζy − (x2 − y2)

2j
+ kx

)

6 exp


−ηx + ζy −

(
x2 − x2

K2 − 2x
K3 − 1

K4

)

2j
+ kx


 .

The right hand side is bounded on ΩK for fixed λ ∈ VK,k and K > 1. Thus
fj,λ ∈ HK . We now get the following estimate for x > 0:

|fj,λ(z)− fλ(z)| exp(kx) = exp(−ηx + ζy + kx)
∣∣∣∣1− exp

(
−z2

2j

)∣∣∣∣

6 exp
(
−ηx +

|ζ|x
K

+
|ζ|
K2

+ kx

) ∣∣∣∣1− exp
(
−z2

2j

)∣∣∣∣ .

If Re λ = η > k + |ζ|
K , then exp

(
−ηx + |ζ|x

K + |ζ|
K2 + kx

)
tends to zero as x

tends to +∞. On the other hand, the term
∣∣∣1− exp

(
− z2

2j

)∣∣∣ is bounded on ΩK

uniformly with respect to j and tends to zero uniformly on

ΩK ∩ {z = x + iy : x 6 x0}

for any x0 as j →∞. Thus ‖fj,λ − fλ‖K,k → 0 as j →∞. ¥

Definition 2.3. A continuous linear operator T : H → X will be called an X-
valued Laplace hyperfunction.

We now define the Laplace transform L (T ) for an X-valued hyperfunction

T : H → X,

where X is a complete locally convex space given by the projective spectrum
X = (Xγ)γ∈Γ of Banach spaces Xγ as above: for any γ ∈ Γ and any K ∈ N we
have continuous linear mappings

κγ ◦ T ◦ iK : HK → Xγ

where iK : HK → H is the canonical embedding. Hence there is k = k(γ, K) such
that κγ ◦ T ◦ iK has a unique continuous extension

Tγ,K,k : H0
K,k → Xγ
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since Xγ is complete. By Lemma 2.2,

Lγ(T )(λ) := Tγ,K,k(fλ) is defined for λ ∈ VK,k.

By the properties of inductive and projective limits we may assume that

k(ν,K) 6 k(γ, J) if γ > ν and J > K. (2.1)

Set
Gγ := ∪K∈NVK,k(γ,K).

Theorem 2.4. Let X be a complete locally convex space defined by the projective
spectrum X = (Xγ)γ∈Γ of Banach spaces and let

T : H → X

be continuous. Let L (T ) := (Lγ(T ))γ∈Γ and G := (Gγ)γ∈Γ be chosen for T as
above. Then G is a directed family of domains in C and L (T ) : G → X is a well
defined holomorphic X −valued function such that

∀ γ ∈ Γ ∀ K ∈ N ∃ k : Gγ ⊇ VK,k and

sup
λ∈VK,k

‖Lγ(T )(λ)‖γ exp
(
−Re λ

K

)
< ∞.

(2.2)

Definition 2.5. The spectral valued holomorphic function L (T ) defined above is
called Laplace transform of T .

Definition 2.6. The set of all holomorphic X −valued maps S : G → X that
satisfy the condition (2.2) is denoted by Hexp(X ).

Notice that Hexp(X ) is a vector space canonically.
Since the sets G ⊆ C of the above form will play an essential role later on we

define:

Definition 2.7. An open set G ⊆ C is called conoidal if for every K ∈ N there is
k ∈ N such that G ⊇ VK,k.

Proof of Theorem 2.4. (a) By (2.1) we have for γ > ν

VK,k(ν,K) ⊇ VK,k(γ,K)

and hence
Gγ ⊆ Gν .

Thus, G is a directed family of domains.
(b) We clearly have

‖Lγ(T )(λ)‖γ 6 ‖fλ‖K,k · ‖Tγ,K,k‖L(H0
K,k,Xγ) for λ ∈ VK,k.
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Observe that

‖fλ‖K,k = sup
z∈ΩK

| exp(−λz)| exp(k Re z) = sup
z∈ΩK

exp(−ηx + ζy + kx).

Let |y| < x
K + 1

K2 and λ ∈ VK,k. Thus η > k + |ζ|
K and there is δ > 0 such that

η − δ = k + |ζ|
K .

For x > 0 we have

exp(−ηx + ζy + kx) 6 exp
(
−ηx + |ζ|

(
x

K
+

1
K2

)
+ kx

)

6 exp
(
−δx +

|ζ|
K2

)
6 exp

(
−δx +

η − k

K

)

6 exp
( η

K

)
exp(−δx).

(2.3)

For − 1
K 6 x 6 0 we have

exp(−ηx + ζy + kx) 6 exp
(
−ηx + kx + |ζ|

(
x

K
+

1
K2

))

6 exp
(
− 1

K

(
−η + k +

|ζ|
K

)
+
|ζ|
K2

)

= exp
(

η − k

K

)
6 exp

( η

K

)
.

We have proved that

sup
λ∈VK,k

‖Lγ(T )(λ)‖γ exp
(
−Re λ

K

)
< ∞.

(c) We will prove that Lγ(T ) is holomorphic on VK,k. It suffices to show that
in H0

K,k

lim
µ→λ

fλ − fµ

λ− µ
= gλ ∈ H0

K,k,

where
gλ(z) := −z exp(−λz).

Let us define

I :=
∣∣∣∣
fλ(z)− fµ(z)

λ− µ
− gλ(z)

∣∣∣∣ exp(k Re z)

= |exp(−λz)| exp(k Re z)
∣∣∣∣
1− exp(−(µ− λ)z)

λ− µ
+ z

∣∣∣∣ .
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Clearly, for z ∈ ΩK , x 6 x0, this tends uniformly to zero as µ → λ. For x > x0,
z ∈ ΩK we have |z| 6 Mx. Moreover, by (2.3), we also have if |µ− λ| < δ

2M :

I 6 exp
( η

K

)
exp(−δx)

∣∣∣∣∣
∞∑

n=2

(−(µ− λ)z)n

(λ− µ)n!

∣∣∣∣∣

6 exp
( η

K

)
exp(−δx)

∞∑
n=2

|µ− λ|n|z|n
|µ− λ|n!

6 exp
( η

K

)
exp(−δx)|µ− λ|

∞∑
n=2

|µ− λ|n−2Mnxn

n!

6 exp
( η

K

)
exp(−δx)

∣∣∣∣
(µ− λ)(2M)2

δ2

∣∣∣∣
∞∑

n=0

(
δ
2x

)n

n!

6 exp
( η

K

)
exp

(
−δ

2
x

)(
2M

δ

)2

|µ− λ| → 0 uniformly for x > x0 as µ → λ.

(d) By (c) and the identity theorem, Lγ(T ) is well defined on Gγ if we show
that

Tγ,K,k(γ,K)(fx) = Tγ,J,k(γ,J)(fx)

if J > K and x > k(γ, J). But this is clear since HK,k(γ,J) is embedded in HJ,k(γ,J)

and in HK,k(γ,K) and the respective extensions of κγ ◦ T ◦ iJ and κγ ◦ T ◦ iK are
unique. ¥

Of course our definition of Laplace transform depends on the choice of Gγ (that
is the choice of k(γ,K)). So the Laplace transform should be considered rather
as a family of germs of holomorphic functions defined on domains of the above
type near ]k,∞[ for large k (L (T ) is clearly determined by the values on ]k,∞[
for large k).

In applications of this paper in [6] we are mainly interested in the case where X
is the space Lb(E,F ) of continuous linear operators between locally convex spaces
endowed with the topology of uniform convergence on bounded sets: let E and F
be locally convex spaces, where F is complete and hence

F := proj
α∈A

Fα

with local Banach spaces Fα. Let E be bornological, i.e.

E = ind
B∈BE

EB

where BE is the system of bounded closed absolutely convex subsets of E and
EB := span(B) endowed with the gauge norm corresponding to B. Then Lb(E, F )
is complete and we have the topological identity

Lb(E, F ) = proj
(B,α)∈(BE ,A)

L(EB , Fα), (2.4)
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i.e. the local Banach spaces for Lb(E,F ) are the spaces L(EB , Fα) of continuous
operators endowed with the operator norm and the index system in Theorem 2.4
is Γ := BE × A. To prove (2.4) we notice that the natural inclusion of Lb(E, F )
into proj(B,α)∈(BE ,A) L(EB , Fα) is surjective since E is bornological.

If the spectrum X = (Xγ)γ∈Γ is very big it looks as if the Laplace transform
is a hopelessly complicated object with huge families (Gγ)γ∈Γ and (Lγ(T ))γ∈Γ.
Fortunately, for typical cases, even though Γ is uncountable it might happen that
the families (Gγ)γ∈Γ and (Lγ(T ))γ∈Γ consist of countable many objects if J below
is countable.

Proposition 2.8. Let X = projj∈J Xj where Xj = indn∈NXj,n are LB-spaces
with Banach spaces (Xj,n, ‖ · ‖j,n). Assume that Xj = projγ∈Γj

Xγ for Banach
spaces Xγ and define projective spectra representing X by

X := (Xγ)γ∈⋃
j∈J Γj

and Y := (Xj)j∈J .

For every Laplace hyperfunction T : H → X there are a directed family of
conoidal sets U := (Uj)j∈J and a Y −valued holomorphic function

L = (Lj(T ))j∈J : U → Y ,

such that

∀ j ∈ J ∀ K ∈ N ∃ k, l ∈ N : Uj ⊇ VK,k

and ∀ γ ∈ Γj ∃ C : sup
λ∈VK,k

‖Lj(T )(λ)‖γ exp
(
−Re λ

K

)
6

C · sup
λ∈VK,k

‖Lj(T )(λ)‖j,l exp
(
−Re λ

K

)
< ∞

and such that the Laplace transform L (T ) : G → X satisfies:

∀ j ∈ J ∀ γ ∈ Γj : Gγ = Uj and Lγ(T ) = ijγ ◦ Lj(T ),

where ijγ : Xj → Xγ is the standard linking map for γ ∈ Γj.

Proof. For every K ∈ N

ij ◦ T ◦ iK : HK → Xj = ind
n∈N

Xj,n

is continuous since HK is bornological. Since HK is a Fréchet space, by Grothendieck
factorization theorem, there is l such that

ij ◦ T ◦ iK : HK → Xj,l

is continuous. Hence for some k := k(j, K) we get a continuous extension:

Tj,K,k : H0
K,k → Xj,l ↪→ Xj .
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As in the proof of Theorem 2.4 this provides a holomorphic function

Lj(T ) : Gj :=
⋃

K∈N
VK,k(j,K) → Xj

satisfying all the requirements of the Proposition. ¥

The above result is especially useful for the so-called PLS-spaces X (i.e., projec-
tive limits of sequences of duals of Fréchet-Schwartz spaces = DFS-spaces [4]) since
then J is countable and thus the Laplace transform is a sequence of holomorphic
functions defined on a decreasing sequence of domains. This is so, for instance,
for X being the space of distributions or the space of real analytic functions [4] or
X = Lb(E,F ), E, F DFS-spaces [5, Prop. 4.3].

For X = Lb(E, F ) with arbitrary Fréchet spaces E and F the assumptions of
Proposition 2.8 are not satisfied since Lb(E, F ) need not be a projective limit of
LB-spaces, nevertheless we get with the notation from Theorem 2.4:

Corollary 2.9. Let E and F be Fréchet spaces with increasing system (‖ ‖n)n∈N
of seminorms. Let Y := (L(E, Fn))n∈N. Then for every Laplace hyperfunction
T : H → Lb(E, F ) there are a directed family of domains U := (Un)n∈N and a
Y −valued holomorphic function L := (Ln(T ))n∈N : U → Y such that

∀ n,K ∈ N ∃ k,m ∈ N : Un ⊇ VK,k and

sup
λ∈VK,k

‖Ln(T )(λ)‖L(Em,Fn)e
−Re λ/K < ∞. (2.5)

and such that the Laplace transform L (T ) satisfies

∀ B ∈ BE ∀ n ∈ N : G(B,n) = Un and L(B,n)(T )(λ) = Ln(T )(λ) ◦ iB
(2.6)

where iB : EB → E is the canonical inclusion.

Proof. Since E is barrelled, bounded sets in Lb(E, F ) are equicontinuous,
thus Lb(E, F ) = projn∈N Lb(E,Fn) has the same bounded sets as
projn∈N

(
indl∈N L(El, Fn)

)
. Since H is bornological any linear operator from H

is continuous if and only if it maps bounded sets into bounded sets. Thus T :
H → Lb(E, F ) is continuous if and only if

T : H → proj
n∈N

(
ind
l∈N

L(El, Fn)
)

is continuous. Apply Proposition 2.8. ¥

Corollary 2.10. Let E := indn En and F := indn Fn be (DFS)-spaces and let
Y := (L(En, F ))n∈N. Then for every Laplace hyperfunction T : H → Lb(E, F )
there are a directed family of domains U := (Un)n∈N and a Y − valued holomor-
phic function L := (Ln(T ))n∈N : U → Y such that

∀ n,K ∈ N ∃ k, m ∈ N : Un ⊇ VK,k and

sup
λ∈VK,k

‖Ln(T )(λ)‖L(En,F m)e
−Re λ/K < ∞ (2.7)
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and such that the Laplace transform satisfies

∀ n ∈ N ∀ α ∈ A : G(n,α) = Un and L(n,α)(T )(λ) = jα ◦ Ln(T )(λ) (2.8)

where jα : F → Fα is the canonical spectral mapping.

Proof. Observe that Lb(E,F ) can be identified topologically with Lb(F ′, E′) by
taking adjoints. Apply Corollary 2.9 or directly Prop. 2.8 since Lb(F ′, E′) is a
PLS-space [5, Prop. 4.3]. ¥

3. A general Laplace inversion formula

We will show in this section that a natural Laplace transform can be defined on our
test function space H and that Hexp(X ) naturally operates on an (LF )−space
of holomorphic functions which is the Laplace image of H. This will lead to a
Laplace inversion formula for T ∈ Lb(H,X) in our setting (see Theorem 3.4 and
Corollary 3.6).

To start with we study a suitable (anti) Laplace transform Ľ on H. The (anti)
Laplace image of H is in fact a quotient space of holomorphic functions in the
right half plane C+ defined as follows: let

Ĥ := ind
K

(ĤK/NK)

where

ĤK :=

{
f ∈ H(C+) | ∀k ∈ N : |f |K,k := sup

z∈ωK,k

|f(z)| exp
(

Re z

K

)
< ∞

}

for
ωK,k := C+ \ VK,k

and
NK := {f ∈ H(C+) : |f |K := sup

z∈C+

|f(z)| exp
(

Re z

K

)
< ∞}.

Notice that NK is a closed subspace of ĤK since for any f ∈ NK

|f |K = |f |K,1 + sup
z∈VK,1

|f(z)|eRe z/K 6 |f |K,1 + sup
z∈∂VK,1

|f(z)|eRe z/K 6 2|f |K,1

(to see the second estimate we apply the maximum principle on V K,1 to
f(z) exp((1/K − ε)z) for ε > 0).

As it turns out the obvious definition
∫∞
0

eλtf(t)dt of the (anti) Laplace trans-
form is not suitable for our test function space H since it does not take into account
that the functions in H are defined on cones starting left of 0. Instead we define
for f ∈ HK

ĽK(f)(λ) :=
∫ ∞

−1/(2K)

eλtf(t)dt =
∫

γK,sign(Im λ)

eλtf(t)dt for λ ∈ C
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by Cauchy’s integral theorem where γK,± is the ray parametrized by

γK,±(t) := t± i(t/K + 1/(2K2)), t > −1/(2K).

The ambiguity of the definition above leads to the quotient structure of the (anti)
Laplace image of H. The basic result is the following

Theorem 3.1. The mappings ĽK ,K > 1, define a topological isomorphism Ľ :
H → Ĥ:

H ⊃ HK 3 f 7→ Ľ2K(f) + N2K ∈ Ĥ2K/N2K ⊂ Ĥ.

Proof. (a) For f ∈ HK and λ = η + iξ ∈ C+ we get by the definition of ‖ · ‖K,k

on HK,k

|ĽK(f)(λ)| 6 C1‖f‖K,k+1 sup
t>−1/(2K)

et(η−|ξ|/K−k)−|ξ|/(2K2)

6 C2‖f‖K,k+1e
−Re λ/(2K)

if 0 6 η 6 |ξ|/K + k, i.e. if λ ∈ ωK,k := C+ \ VK,k. Hence

|ĽK(f)(λ)|2K,k 6 C‖f‖K,k+1 (3.1)

and ĽK : HK → Ĥ2K is defined and continuous.
(b) For J > K we have

|ĽK(f)(λ)− ĽJ(f)(λ)| =
∣∣∣∣∣
∫ −1/(2J)

−1/(2K)

eλtf(t)dt

∣∣∣∣∣
6 C1‖f‖K,1e

−Re λ/(2J) if λ ∈ C+.

Therefore,
ĽK(f)(λ)− ĽJ(f)(λ) : HK → N2J

is continuous, hence Ľ : H → Ĥ is defined and continuous.
(c) The inverse M of Ľ is also of Laplace type and is defined as follows: for

g ∈ ĤK let

MK(g)(z) :=
1

2πi

∫

∂VK,1

e−zλg(λ)dλ =
1

2πi

∫

∂VK,k

e−zλg(λ)dλ (3.2)

if z = x+ iy ∈ Ω2K and k ∈ N, where ∂VK,k has clockwise orientation. The second
equation holds by the Cauchy integral theorem.

Using the parametrization

t 7→ k + |t|+ iKt, t ∈ R, (3.3)
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for ∂VK,k we get
∣∣∣∣∣
∫

∂VK,k

e−zλg(λ)dλ

∣∣∣∣∣ 6 C1e
−kx|g|K,k

∫ ∞

−∞
e|t|(−x+K|y|−1/K)dt

6 C2e
−kx|g|K,k

∫ ∞

−∞
e|t|(−x/2−3/(4K))dt

6 C2e
−kx|g|K,k

∫ ∞

−∞
e−|t|/(4K)dt

6 C3e
−kx|g|K,k if x + iy ∈ Ω2K .

(3.4)

Since MK(g) = 0 for g ∈ NK by the Cauchy integral theorem,

MK : ĤK/NK → H2K is defined and continuous.

Again by Cauchy’s integral theorem we see that MK(g)(x) = MJ(g)(x) for x > 0
if g ∈ MK and J > K. Thus,

M : Ĥ = ind
K

(ĤK/NK) → H = ind
K

HK is defined and continuous.

(d) We will prove now that M ◦ Ľ = id on H. To see this we consider the parts
of ∂VK,k in the upper and in the lower half plane separately, and correspondingly
the different definitions of γK,sign(Im λ). Let f ∈ HK and x > 1. Since f ∈ HK,k

for any k, we may change the order of integration and get

M(Ľ(f))(x) =
1

2πi

∫

∂V2K,1,+

e−xλ

∫

γK,+

eλτf(τ)dτdλ

+
1

2πi

∫

∂V2K,1,−
e−xλ

∫

γK,−
eλτf(τ)dτdλ

=
1

2πi

∫

γK,+

f(τ)
∫

∂V2K,1,+

e(τ−x)λdλdτ

+
1

2πi

∫

γK,−
f(τ)

∫

∂V2K,1,−
e(τ−x)λdλdτ

=
1

2πi

(
−

∫

γK,+

f(τ)eτ−x

τ − x
dτ +

∫

γK,−

f(τ)eτ−x

τ − x
dτ

)

=
1

2πi

∫

∂ΩK+1/(2K)

f(τ)eτ−x

τ − x
dτ = f(x)

by the Cauchy integral formula.
(e) The equality Ľ ◦M = id on Ĥ follows by similar ideas complemented by

some new arguments: for g ∈ ĤK and 0 < a < 1/2 fixed we thus get for 2a < x < 1
using (3.3)
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Ľ(M(g))(x) =
1

2πi

∫ ∞

−1/(4K)

ext

∫

∂VK,1

e−tλg(λ)dλdt

=
1

2πi

∫

∂VK,1

g(λ)
∫ ∞

−1/(4K)

e(x−λ)tdtdλ

=
1

2πi

∫

∂VK,1

g(λ)
λ− x

e(λ−x)/(4K)dλ

︸ ︷︷ ︸
h(x):=

= g(x) +
1

2πi

∫

∂VK,a

g(λ)
λ− x

e(λ−x)/(4K)dλ

︸ ︷︷ ︸
G(x):=

= g(x) + G(x),

by the Cauchy integral formula.
The function G can be extended to a holomorphic function on C+ by

G(z) :=
1

2πi

∫

∂VJ,a

g(λ)
λ− z

e(λ−z)/(4K)dλ if z ∈ VJ,2a, a > 0, J > K.

The definition is independent of a and J > K by Cauchy’s theorem.
We will show that G ∈ N4K (and therefore Ľ ◦M(g) = g in Ĥ): for z ∈ VK,1

the integration contour ∂VK,1/2 is contained in ωK,1, hence

|G(z)| 6 C1|g|K,1

∫ ∞

−∞

∣∣∣e(1/2+|t|+iKt−z)/(4K)
∣∣∣ e−(1/2+|t|)/Kdt

6 C2|g|K,1e
−Re z/(4K) if z ∈ VK,1.

(3.5)

Also h can be extended to a holomorphic function on C+ as follows

h(z) :=
1

2πi

∫

∂VK,k+1

g(λ)
λ− z

e(λ−z)/(4K)dλ if z ∈ ωK,k, k ∈ N.

The definition is independent of k by Cauchy’s theorem. Hence

|h(z)| 6 C1|g|K,2

∫ ∞

−∞
|e(2+|t|+iKt−z)/(4K)|e−(2+|t|)/Kdt

6 C2|g|K,2e
−Re z/(4K)

∫ ∞

−∞
e−|t|/(2K)dt

6 C2|g|K,2e
−Re z/(4K) if z ∈ ωK,1.

Since g ∈ ĤK we thus get by the identity theorem

|G(z)| 6 |h(z)|+ |g(z)| 6 C3|g|K,2e
−Re z/(4K) if z ∈ ωK,1 = C+ \ VK,1.

By (3.5) we thus conclude that G ∈ N4K as desired. ¥
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As a first application of Theorem 3.1 and its proof we will show now that H is
somehow the minimal space satisfying the conditions required for the Laplace test
functions in the beginning of section 2 (see the remarks after Definition 2.1).

Lemma 3.2. Let K > 1, then

HK,k+2 ⊆ span{fλ : λ ∈ V2K,k}
H4K,k ⊆ H0

4K,k.

Proof. The second inclusion was shown in Lemma 2.2. To prove the first inclusion
we use the Laplace inversion formula in H from Theorem 3.1: For f ∈ HK,k+2 we
get

f(z) =
1

2πi

∫

∂V2K,k+1

e−zλĽK(f)(λ)dλ if z ∈ Ω4K

by (3.1), (3.4) and (d) in the proof of Theorem 3.1. Moreover, for any ε > 0 there
is j ∈ N such that by (3.4)

∣∣∣∣∣f(z)− 1
2πi

∫

∂V2K,k+1∩{|Re λ|6j}
e−zλĽK(f)(λ)dλ

∣∣∣∣∣ ek Re z

=

∣∣∣∣∣
1

2πi

∫

∂V2K,k+1∩{|Re λ|>j}
e−zλĽK(f)(λ)dλ

∣∣∣∣∣ ek Re z < ε if z ∈ Ω4K .

Clearly, the Riemann sums of 1
2πi

∫
∂V2K,k+1∩{|Re λ|6j} e−zλĽK(f)(λ)dλ are in

span{fλ | λ ∈ V2K,k} and they converge with respect to ‖ · ‖4K,k. ¥

Notice that Hexp(X ) naturally operates on Ĥ as follows: for S ∈ Hexp(X )
and g ∈ ĤK let

(〈Y (S ), g〉)γ :=
∫

∂VK,k+1

g(λ)Sγ(λ)dλ ∈ Xγ for γ ∈ Γ

if V2K,k ⊂ Gγ i.e. if k := k(2K, γ), where ∂VK,k+1 has clockwise orientation and
is parametrized by (3.3).

Lemma 3.3. Let S ∈ Hexp.

(a) The map (〈Y (S ), · 〉)γ : Ĥ → Xγ is well defined and continuous.
(b) The mappings (〈Y (S ), · 〉)γ , γ ∈ Γ, define Y (S ) ∈ L(Ĥ, X).

Proof. (a): Let g ∈ ĤK . Since ∂VK,k+1 ⊂ V2K,k ∩ ωK,k+2 we get by the assump-
tion on Sγ(λ) using (3.3)

∥∥∥∥∥
∫

∂VK,k+1

g(λ)Sγ(λ)dλ

∥∥∥∥∥
γ

6 C1|g|K,k+2

∫ ∞

−∞
e−(|t|+k+1)/(2K)dt 6 C2|g|K,k+2.
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If g ∈ NK then the estimate |g(λ)| 6 C3e
−Re λ/K also holds on V2K,k. This implies

by Cauchy’s integral theorem that
∫

∂VK,k+1
g(λ)Sγ(λ)dλ = 0. Thus (〈Y (S ), · 〉)γ :

ĤK/NK → Xγ is well defined and continuous.
Using Cauchy’s integral theorem again we show that for g ∈ ĤK and J > K

we may shift the path of integration in the definition of (〈Y (S ), · 〉)γ first to
∂VK,k(2J,γ)+1 and then to ∂VJ,k(2J,γ)+1. This shows that

(〈Y (S ), · 〉)γ : Ĥ = ind
K

ĤK/NK → Xγ

is welldefined and continuous.
(b): This follows from the compatibility assumption in Definition 2.1 and

Cauchy’s theorem since we may shift the path of integration from ∂VK,k(2K,γ)+1

to ∂VK,k(2K,ν)+1 if γ > ν. ¥

We can now state and prove the Laplace inversion formula for T ∈ L(H, X):

Theorem 3.4. The mapping

Z : Lb(H, X) → Lb(Ĥ, X), Z(T ) := Y (L (T ))

is a linear topological isomorphism. More precisely we have the following Laplace
inversion formula:

κγ ◦ T (f) =
1

2πi

(〈Z(T ), Ľ(f)〉)
γ

=
1

2πi

∫

∂V2K,k+1

Ľ(f)(λ)Lγ(T )(λ)dλ (3.6)

if f ∈ HK , T ∈ L(H,X) and V4K,k ⊂ Gγ i.e. if k := k(4K, γ).

Proof. (a) Z is defined and linear by Lemma 3.3 and Theorem 2.4.
We first prove (3.6): for f ∈ HK we get by (3.1), (3.2) and part d) of the proof

of Theorem 3.1

κγ ◦ T (f) = Tγ,4K,k ◦ iK4Kf = Tγ,4K,k ◦M(Ľ(f))

= Tγ,4K,k

(
1

2πi

∫

∂V2K,k+1

fλĽ(f)(λ)dλ

)

=
1

2πi

∫

∂V2K,k+1

Tγ,4K,k (fλ) Ľ(f)(λ)dλ

=
1

2πi

∫

∂V2K,k+1

Lγ(T )(λ)Ľ(f)(λ)dλ =
1

2πi
(〈Y (L (T )), Ľ(f)〉)γ

= κγ

(
1

2πi

〈
Z(T ), Ľ(f)

〉)

by the definition of Lγ(T )(λ) since the Riemann sums of the integral converge in
H4K,k.
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(b) The map Z is injective by (3.6). To show that Z is surjective we fix
T̃ ∈ L(Ĥ,X) and set T := 1

2πi T̃ ◦ Ľ ∈ L(H,X) by Theorem 3.1. Then

T̃ (Ľ(f)) = 2πiT (f) = Z(T )(Ľ(f)) for any f ∈ H,

by (3.6). Hence T̃ = Z(T ) by Theorem 3.1.
The topological statement follows from (3.6) and Theorem 3.1. ¥

We finally get the following converse of Theorem 2.4.

Corollary 3.5. Let S ∈ Hexp(X ) and set

κγ ◦ T (f) :=
1

2πi

∫

∂V4K,k+1

Ľ(f)(λ)Sγ(λ)dλ (3.7)

if f ∈ HK and V4K,k ⊂ Gγ i.e. if k := k(4K, γ). Then this defines the unique
T ∈ L(H, X) such that S = L (T ).

Proof. Uniqueness. This is evident from Theorem 3.4 since we conclude from
L (T1) = L (T2) that

T1(f) =
1

2πi
Z(T1)(Ľf) =

1
2πi

Y (L (T1))(Ľf) =
1

2πi
Y (L (T2))(Ľf) = T2(f)

if f ∈ H.
Existence. If S ∈ Hexp(X) then Y (S ) ∈ L(Ĥ, X) and T := 1

2πiY (S ) ◦ Ľ ∈
L(H, X) by Lemma 3.3 and Theorem 3.1. This gives the formula for T as above.
To show that L (T ) = S it suffices to show that Lγ(T )(x) = Sγ(x) for any γ and
large real x. For fj,x(z) := exp(−xz − z2/(2j)) as in the proof of Lemma 2.2 we
get

Lγ(T )(x) = lim
j→∞

κγ ◦ T (fj,x) =
1

2πi
lim

j→∞
Y (S )(Ľ(fj,x))︸ ︷︷ ︸

∈Xγ

= lim
j→∞

1
2πi

∫

∂V2K,k+1

Ľ(fj,x)(λ)Sγ(λ)dλ.

To calculate the limit we use Lebesgue’s theorem of dominated convergence twice:
since by definition

Ľ(fj,x)(λ) =
∫ ∞

γK,sign(Im λ)

e(λ−x)τ−τ2/(2j)dτ,

we have to estimate for t > 0 and τ > −1/(2K)

|e(k+1−x+t±2iKt)(τ±i(τ/K+1/(2K2))−(τ±i(τ/K+1/(2K2))2/(2j)| 6 C1e
(k+1−x)τ−t/(2K).

(3.8)
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Since limj→∞ e(λ−x)τ−τ2/(2j) = e(λ−x)τ pointwise on γK,sign(Im λ) we thus get for
x > k + 2

lim
j→∞

Ľ(fj,x)(λ) =
∫ ∞

γK,sign(Im λ)

e(λ−x)τdτ =
e(x−λ)/(2K)

x− λ

pointwise for λ ∈ ∂V2K,k+1. The formula (3.8) and the estimate for Sγ(λ) on V2K,k

also imply that
‖Sγ(λ)‖γ |Ľ(fj,x)(λ)| 6 C2e

−Re λ/(4K)

on ∂V2K,k+1 ⊂ V4K,k. Using Lebesgue’s theorem again we get

Lγ(T )(x) =
1

2πi

∫

∂V2K,k+1

e(x−λ)/(2K)

x− λ
Sγ(λ)dλ = Sγ(x)

by Cauchy’s theorem and the orientation of ∂V2K,k+1. ¥

For Fréchet spaces and (DFS)−spaces we get the converse of Corollaries 2.9
and 2.10:

Corollary 3.6.

a) Let E and F be Fréchet spaces with increasing system (‖ ‖n)n∈N of semi-
norms. Let Y := (L(E, Fn))n∈N and let U := (Un)n∈N be a directed family
of domains. Then for any Y −valued holomorphic function S : U → Y
satisfying (2.5) there is a unique Laplace hyperfunction T : H → Lb(E, F )
such that L (T ) = S .

b) Let E := indn En and F := indn Fn be (DFS)-spaces. Let Y :=
(L(En, F ))n∈N and let U := (Un)n∈N be a directed family of domains. Then
for any Y −valued holomorphic function S : U → Y satisfying (2.7) there
is a unique Laplace hyperfunction T : H → Lb(E,F ) such that L (T ) = S .

Proof. a) Define G(B,n) and S(B,n) : G(B,n) → L(E, Fn) for any B ∈ BE by (2.6).
Then S̃ := (S(B,n))(B,n)∈BE×N ∈ Hexp(X ) for X := (L(EB , Fn))(B,n)∈BE×N and
the conclusion follows from Corollary 3.5.

b) This is proved similarly. ¥

4. Examples of Laplace hyperfunctions and Laplace transforms

Since our Laplace test function space H is continuously embedded in the space
A(K) of analytic germs near a compact K ⊂ [0,∞[, the Laplace transform devel-
oped sofar applies to any vector valued hyperfunction with compact support, i.e.
to any T ∈ L(A(K), X), and therefore also to any of the standard vector valued
generalized functions with compact support.

Also, corresponding results for the Laplace transform of vector valued gener-
alized functions of exponential growth can be easily obtained from the preceding
results. We only discuss the distribution case in some detail, the modifications
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needed for vector valued exponentially increasing ultradistributions are left to the
reader.

The space K′ of Laplace distributions is by definition the dual space of

K := {f ∈ C∞([0,∞[) | ∀k ∈ N : ‖f‖k := sup
x∈[0,∞[,|α|6k

|f (α)(x)|ekx < ∞}.

We also need the global version

KR := {f ∈ C∞(R) | ∀k ∈ N : ‖f‖k := sup
x∈R,|α|6k

|f (α)(x)|ek|x| < ∞}.

The transition from the preceding results to the case of weighted distributions is
provided by the global version of H defined by

HR := ind
K

(proj
k

HR,K,k) = ind
K

HR,K

where

HR,K,k := {f ∈ H(Ω̃K) : ‖f‖K,k := sup
z∈Ω̃K

|f(z)| exp(k|Re z|) < ∞}

and the conic neighborhoods of R are defined by

Ω̃K :=
{

z ∈ C : | Im z| < |Re z|
K

+
1

K2

}
.

We gather the needed facts in the following Lemma. Let the Fourier transform be
defined by

f̂(z) :=
∫

R
f(x)e−ixzdx for z ∈ C and f ∈ HR.

Lemma 4.1.
(a) Let f ∈ HR,K . Then f̂ is an entire function such that for all k ∈ N there is

C > 0 such that

|f̂(z)|e|z|/(4K2) 6 C‖f‖K,k if | Im z| 6 k − 1 + |Re z|/K

(b) HR is densely embedded in KR.
(c) Let f ∈ KR. Then f̂ is an entire function such that for all k ∈ N there is

C > 0 such that

|f̂(z)||zk| 6 C‖f‖k if | Im z| 6 k − 1

Proof. (a) By the Cauchy integral theorem we have for f ∈ HR,K

f̂(z) :=
∫

γz

f(ξ)e−iξzdξ

where γz(t) := t−isign(Re z)(|t|/K+1/(2K2)), t ∈ R. This easily gives the desired
estimate.

(b) This follows by convolution with the normalized Gaussians gn(z) :=
cn exp(−nz2).

(c) This is obvious. ¥
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Our result for the Laplace transform of vector valued exponentially bounded
distributions is as follows. Notice that the sufficient condition (4.2) is seemingly
weaker than the necessary condition (4.1). This effect has already been observed
for weighted distributions with values in Banach spaces, see e.g. Komatsu [10,
Theorem 9].

Theorem 4.2. Let X be a complete locally convex space defined by the projective
spectrum X = (Xγ)γ∈Γ of Banach spaces.

(a) Let T ∈ L(K, X). Then L (T ) : G → X is a holomorphic X −valued
function such that

∀ γ ∈ Γ ∃ k : Gγ = Vk := {λ ∈ C | Re λ > k} and

sup
λ∈Vk

‖Lγ(T )(λ)‖γ(1 + |λ|)−k < ∞. (4.1)

(b) Conversely, let S : G → X be an X −valued holomorphic map such that

∀ γ ∈ Γ ∀ K ∈ N ∃ k : Gγ = Vk and (4.2)

sup
λ∈Vk

‖Sγ(λ)‖γ(1 + |λ|)−ke−Re λ/K < ∞.

Then there is a unique T ∈ L(K, X) such that L (T ) = S .
(c) For T ∈ L(K, X) the following Laplace inversion formula holds for f ∈ K:

κγ ◦ T (f) =
1

2πi

∫

∂Vk+1

Ê(f)(iλ)Lγ(T )(λ)dλ (4.3)

where E(f) ∈ KR is an extension of f and k = k(γ) is as in (a).

Proof. (a) Since T ∈ L(K, X), for any γ there is k such that

T : (K, ‖ · ‖k) → Xγ

is continuous. We may assume that k(γ) 6 k(ν) if γ 6 ν. Since HK,k is contin-
uously embedded in Kk := {f ∈ Ck([0,∞[) | ‖f‖k < ∞} for any K, Lγ(T )(λ) is
defined on Vk = ∪K∈NVK,k by the construction before Theorem 2.4 and it defines
an X −valued holomorphic map on G by Theorem 2.4. Moreover, for λ ∈ VK,k

we have with fj,λ as in the proof of Lemma 2.2

|Lγ(T )(λ)| = lim
j→∞

|κγ ◦ T (fj,λ)| 6 C lim sup
j→∞

‖fj,λ‖k = C‖fλ‖k 6 C(1 + |λ|)k

since HK,k is continuously embedded in Kk and thus, by Lemma 2.2, limj→∞ fj,λ =
fλ =: exp(−λ · ) also with respect to ‖ · ‖k.

(b) Uniqueness. If Tj ∈ L(K, X) satisfy L (T1) = S = L (T2) then Tj ∈
L(H, X) and hence T1 |H= T2 |H by Corollary 3.5 and therefore T1 |KR= T2 |KR
by Lemma 4.1b). Thus T1 = T2 since K = KR/K0 where K0 := {f ∈ K | f(x) =
0 if x > 0}.
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Existence. The assumption implies that S ∈ Hexp(X ). Hence by Corollary
3.5 there is T ∈ L(H, X) such that L (T ) = S and T is defined by

κγ ◦ T (f) =
1

2πi

∫

∂V4K,k+1

Ľ(f)(λ)Sγ(λ)dλ (4.4)

if f ∈ HK and V4K,k ⊂ Gγ i.e. if k := k(4K, γ).
Notice that for f ∈ HR,K (and ĽK(f) defined before Theorem 3.1) we have

ĽK(f)(z)− f̂(iz) =
∫ −1/(2K)

−∞
f(x)exzdx =: g(z),

where g ∈ N2K and therefore
∫

∂V4K,k+1

g(λ)Sγ(λ)dλ = 0

by the Cauchy integral theorem, hence we get for f ∈ HR,K

κγ ◦ T (f) =
1

2πi

∫

∂V4K,k+1

f̂(iλ)Sγ(λ)dλ.

For f ∈ HR,J we may choose K large enough such that by Lemma 4.1 (a) and the
bounds on Sγ(λ) the path of integration may be shifted by the Cauchy integral
theorem to get for some j

κγ ◦ T (f) =
1

2πi

∫

∂Vj+1

f̂(iλ)Sγ(λ)dλ. (4.5)

The latter formula extends T to a continuous linear mapping T : KR → X by
Lemma 4.1 (c). If f ∈ KR satisfies f(x) = 0 for any x > δ, δ < 0, then f̂(iz) ∈ NR

for some R and hence T (f) = 0. Since the set of these f is dense in K0 we thus
have T |K0= 0, that is, T : K = KR/K0 → X is continuous.

(c) For T ∈ L(K, X) and f ∈ K we clearly have T (f) = T (E(f)) since f =
E(f) |[0,∞[. The second equality in (4.3) now follows from the proof of (b) above
by setting Sγ(λ) = Lγ(T )(λ) in (4.5) for E(f) instead of f . ¥

Examples of more regular L(E)−valued Laplace hyperfunctions are easily ob-
tained from the following proposition treating a situation corresponding to C0−
semigroups.

Proposition 4.3. Let {T (t) | t > 0} be a pointwise continuous family (i.e.,
continuous with respect to the variable t and the topology of pointwise convergence
in L(E)) of continuous linear mappings in a complete (ultra)bornological space E
such that

∀ α ∈ A ∀ B ∈ BE ∃ Cj = Cj(B, α) ∀ t > 0 : sup
g∈B

‖T (t)g‖α 6 C1e
C2t.

(4.6)
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Then the mapping T : H → Lb(E, E) defined by

T (f)(g) :=
∫ ∞

0

f(t)T (t)g dt if f ∈ H and g ∈ E

is continuous. The Laplace transform L (T ) = (L(B,α)(T )(λ)) is defined on

G = (G(B,α)) for G(B,α) = {λ | Re (λ) > C2(B, α)}.

Moreover
‖L(B,α)(λ)‖L(EB ,Eα) 6 C

Re λ− C2(B, α)
.

In [1] Babalola considered families of operators satisfying

∀ α ∈ A ∃ β ∈ A ∃ Cj = Cj(β, α) ∀ t > 0 : ‖T (t)g‖α 6 C1e
C2t‖g‖β (4.7)

which is (at least formally) stronger than (4.6) (compare also Proposition 4.13).
Let us observe that the families T (t) satisfying (4.7) have the continuity esti-

mates not depending on t. Especially, in the case of Frechet spaces E,

σt(n) := inf{k : ∃ C ∀ g ‖T (t)g‖n 6 C‖g‖k}

does not depend on t ∈ [0,∞). On C∞(R) the family T (t), T (t)g(x) := g(etx) has
continuity estimates depending on t since a suitable version of the first condition
of (4.9) below is not satisfied.

Let us collect some examples of families like in Proposition 4.3 above.

Example 4.4. Semigroups of composition operators

Let ψt : Rd → Rd be a semigroup of diffeomorphisms, i.e.,

ψt+s(x) = ψt(ψs(x)), for t, s > 0. (4.8)

We define the family of maps:

T (t) := Cψt , Cψt(g)(x) := g(ψt(x))

and we can consider them on various function spaces.
(a) Assume that

∀ k ∃ Ck ∀ t ∈ [0,∞) ∀ |x| 6 k |ψt(x)| 6 Ck,

∀ α : the functions (t, x) 7→ ∂αψt(x)
∂xα

are continuous.
(4.9)

Then the family of maps

T (t) : C∞(Rd) → C∞(Rd) T (t)g(x) := g(ψt(x))
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satisfies (4.7). Indeed, (4.9) implies that

∀ k ∃ Dk ∀ t ∈ [0, 1] : sup
|x|6k

sup
|α|6k

∣∣∣∣
∂αψt(x)

∂xα

∣∣∣∣ 6 Dk.

Since
∂

∂xi
ψt(x) =

∂

∂xi
(ψt/n ◦ ψt/n ◦ · · · ◦ ψt/n(x)︸ ︷︷ ︸

n−times

)

=
(

∂

∂xi
ψt/n

)
◦ ψ(1−1/n)t(x)

(
∂

∂xi
ψt/n

)
◦ ψ(1−2/n)t(x) . . .

∂

∂xi
ψt/n(x)

then for t ∈ [0, n], |x| 6 k we get
∣∣∣∣

∂

∂xi
ψt(x)

∣∣∣∣ 6 Dn
Ck

.

Thus for t ∈ [n− 1, n] and |x| 6 k we have
∣∣∣∣

∂

∂xi
ψt(x)

∣∣∣∣ 6 DCk
Dt

Ck
= DCk

ewt (4.10)

for w = log DCk
.

Let us observe that for C∞−functions f and g we have

∂α

∂xα
f ◦ g(x) =

∑

|β|6|α|

(
∂α

∂xα
f

)
(g(x)) · Pβ(x), (4.11)

where for every β the function Pβ is a polynomial of derivatives of g of order 6 |α|.
Therefore, an estimate like (4.10) also holds for ∂αψt (with ω depending on α).

It is not difficult to show that

‖T (t)g‖k 6 Cewt‖g‖Ck
,

for suitable C and w, where

‖f‖k := sup
|x|6k

sup
|α|6k

∣∣∣∣
∂αf(x)

∂xα

∣∣∣∣ .

The continuity condition in (4.9) and (4.11) imply that t 7→ T (t) is pointwise
continuous.

(b) If instead of (4.9) we assume:

∃ δ > 0 ∀ t ∈ [0, δ] ∃ C ∀ x ∈ Rd : (1 + |x|) 6 C(1 + |ψt(x)|)

∃ δ > 0 ∀ t ∈ [0, δ] ∀ k ∃ Ck : sup
x∈Rd

sup
|α|6k,α 6=0

∣∣∣∣
∂αψt(x)

∂xα

∣∣∣∣ 6 Ck,

∀ t0, α ∃ l ∀ ε > 0 ∃ δ > 0 ∀ x ∈ Rd, |t− t0| < δ :∣∣∣∣
∂α

∂xα
ψt(x)− ∂α

∂xα
ψt0(x)

∣∣∣∣ 6 ε(1 + |x|)l,

(4.12)

then the family of maps T (t) : S(Rd) → S(Rd) defined as in (a) satisfies (4.7).
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Using two first conditions as in the proof of part (a) we can show that

sup
x∈Rd

(1 + |x|)
(1 + |ψt(x)|) 6 Cewt

sup
x∈Rd

sup
|α|6k,α 6=0

∣∣∣∣
∂αψt(x)

∂xα

∣∣∣∣ 6 Cewt

(4.13)

for suitably chosen C and w. The formula (4.11) and the last condition in (4.12)
implies that t 7→ T (t) is pointwise continuous. The conditions (4.13) imply that
for some C and w:

‖T (t)g‖k = sup
|α|6k,l6k

sup
x∈Rd

∣∣∣∣
∂α

∂xα
g(ψt(x))

∣∣∣∣ (1 + |x|)l 6 ‖g‖kCewt.

(c) If ψt : K → K, K a compact subset in Rd with smooth boundary then
T (t) : C∞(K) → C∞(K). If we assume

∀ α : the functions (t, x) 7→ ∂αψt(x)
∂xα

are continuous (4.14)

then the family T (t) satisfies (4.7).
(d) Of course, we could also treat the family of transposed operators tT (t)

on the tempered distributions S(Rd)′b in part (a) or distributions with compact
support in part (b) as well on (C∞(K))′b in part (c).

(e) If K ⊆ Rd is a compact set with smooth boundary then there is a continuous
linear extension operator V : C∞(K) → C∞(Rd) such that for a fixed compact
set L, K b L for every f ∈ C∞(K) holds suppV (f) b L. We can define operator:

T (t) : C∞(K) → C∞(K), T (t)g(y) := (V g)(ψt(y)), y ∈ K.

If we assume

∀ α : the functions (t, x) 7→ ∂αψt(x)
∂xα

are continuous (4.15)

then the family T (t) satisfies (4.7).

Example 4.5. Special composition operators

Let Q : R→ R be a C∞ function on R with bounded derivatives of any order
and such that 0 < 1

C < Q′ < C on R, Q(0) = 0. Then we define:

ψt(x) := Q−1(eatQ(x))

which is an example of a diffeomorphism like in Example 4.4. The condition (4.12)
is easy to check. Since,

∂

∂t
ψt(x) = a

Q(x)
Q′(x)

· ∂

∂x
ψt(x), ψ0(x) = x,
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the function f , f(t) := T (t)g, solves the abstract Cauchy problem:
{

d
dtf = Af,

f(0) = g,

where A : S(R) → S(R), Af(x) := a Q(x)
Q′(x)

d
dxf(x), T (t)g(x) = g

(
Q−1 (eatQ(x))

)
.

The special case Q(x) = x for a = 1 (i.e., Af(x) = x d
dxf(x)) is considered in

Babalola’s paper [1, Section 6] as well as in [7, Ch. IV.3.3].
The general Laplace transform of T exists by Proposition 4.3 and Theorem

2.4. However, T does not admit an operator-valued Laplace transform in the
usual sense in S(R) i.e. the integral

L(T )(g)(λ) :=
∫ ∞

0

e−λtT (t)g dt if g ∈ S(R) (4.16)

does not exist in S(R) for any λ ∈ R. Indeed, (4.16) gives for y > 0

L(T )(g)(λ)(y) =
∫ ∞

0

e−λt(T (t)g)(y)dt

=
∫ ∞

0

e−λtg(Q−1(eatQ(y)))dt

=
∫ ∞

y

(
Q(y)
Q(z)

)λ
a

g(z)
Q′(z)
aQ(z)

dz,

where z = Q−1(eatQ(y)). If supp g b (0,∞) then for y small enough

L(T )(g)(λ)(y) = (Q(y))
λ
a

∫

R

g(z)Q′(z)

(Q(z))
λ
a +1

a
dz.

It is clear that if λ
a is not an integer and n ∈ N, n > λ

a ∈ R then dn

dyn [L(T )(g)(λ)] (y)
is not continuous as y → 0. Of course, for Re λ

a > n the integral exists.
On the other hand, we have

(L(T )(λ)g) (y) := T (fλ)g(y) :=
∫ ∞

0

e−λtg(Q−1(eatQ(y))) dt

= sgn y|Q(y)|λ
a

∫ sgn(y)∞

y

g(z)|Q(z)|−λ
a−1 Q′(z)

a
dz if g ∈ S(R)

which converges for large Re (λ) as a continuous linear operator between the local
Banach spaces

Sk(R) := {f ∈ Ck(R) | sup
j6k,l6k,x∈R

|xjf (l)(x)| < ∞}.

This shows how the Laplace transform in the general sense of Theorem 2.4 is
obtained in this concrete case.
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Example 4.6. Semigroups of generalized shifts

(a) A more general example is given as follows. Let P : R → R be a smooth
function with discrete sequence of zeros:

· · · < x−n < x−n+1 < · · · < x−1 < x0 < x1 < · · · < xn < xn+1 < . . . .

If the sequence of zeros is bounded from above (i.e., there is the biggest zero xk),
then we assume additionally in the interval (xk,∞) that

∃ C > 0 |P (x)| < C|x|

and in this case we denote xk+1 := ∞. Analogous assumptions should hold if there
is the smallest zero of P .

We define F to be a primitive of 1
P on (xn−1, xn). Clearly, F : (xn−1, xn) →

(−∞,∞) is a strictly monotone smooth bijection. We define

ψt,P (x) := F−1(t + F (x)).

These maps form a semigroup of diffeomorphisms on (xn−1, xn). Observe that the
definition does not depend on the choice of primitive F ! We can repeat the same
procedure on all intervals between the zeros (and our assumptions assure that it
works also on possibly existing infinite intervals). It is not difficult to see that
defining ψt,P (xn) = xn makes it a homeomorphism

ψt,P : R→ R.

Moreover, the value ψt,P depends only on values of P for arguments between x
and ψt,P (x). Example 4.5 is a particular case of the present example — just take
P = Q

Q′ .

Lemma 4.7. Let P ∈ C∞(R), P (0) = 0, P ′(0) 6= 0 and m ∈ N. There are
polynomials Q1, Q2 such that

Q1(0) = Q2(0) = 0, Q′
1(0) = Q′2(0) = 1, Q

(k)
1 (0) = Q

(k)
2 (0) for k = 1, . . . , m

and on some neighborhood of zero

P ′(0)
Q1

Q′1
6 P 6 P ′(0)

Q2

Q′2
.

Proof. Since P ∈ C∞(R) thus

P (x) = P ′(0)x + a2x
2 + · · ·+ anxn + Rn(x),

where Rn(x)
xn → 0 as x → 0. For every polynomial of the form

W (x) = a1x + a2x
2 + · · ·+ akxk, a1 6= 0
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we find a polynomial

Q(x) = x + b2x
2 + · · ·+ blx

l, l < k

such that
W (x)Q′(x)− a1Q(x) (4.17)

is a polynomial with root at zero of order at least l. To obtain (bj) we calculate
(4.17) and solve the corresponding linear equations for b2, . . . , bl. Notice that the
first p coefficients of Q depend only on the first p coefficients of W .

Apply this procedure to the Taylor polynomial W of order 2n + 2 for the
function P (x) + εxn, where l = n + 2. Then

(P (x) + εxn) Q′(x)− P ′(0)Q(x) = W (x)Q′(x)− P ′(0)Q(x) + R2n+2(x)Q′(x)

= R̃n+1(x) where
R̃n+1(x)

xn+1
→ 0 as x → 0.

Thus

P (x) + εxn − P ′(0)
Q(x)
Q′(x)

6 εxn+1

on a neighborhood of zero. We take Q2 := Q. The construction of Q1 is analogous,
where we take P (x) − εxn instead of P (x) + εxn. Hence Q1 and Q2 have equal
first n− 1 coefficients. ¥

Lemma 4.8. If P1 6 P2 then ψt,P1 6 ψt,P2 .

Proof. If 0 < P1 6 P2 then for ψt,P1(x) =: u we get u > x for t > 0 and
∫ u

x

1
P2(v)

dv 6
∫ u

x

1
P1(v)

dv = t.

Hence
ψt,P2(x) > u = ψt,P1(x).

If 0 > P2(x) > P1(x) then u 6 x and
∫ x

u

( −1
P2(v)

)
dv >

∫ x

u

( −1
P1(v)

)
dv = t > 0.

Therefore
ψt,P2(x) > u = ψt,P1(x).

Finally, if P1 6 0 6 P2 then ψt,P1(x) 6 x 6 ψt,P2(x). ¥

Lemma 4.9. If P ∈ C∞(R) has only discrete zeros of order 1, then ψt,P ∈ C∞(R)
and it is a diffeomorphism. Moreover, the function ΨP , ΨP (t, x) := ψt,P (x), is a
C∞-function of two variables.
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Proof. Assume that xk = 0 and m ∈ N. By Lemmas 4.8 and 4.7,

ψ
t,P ′(0) Q1

Q′1
6 ψt,P 6 ψ

t,P ′(0) Q2
Q′2

(4.18)

on a neighborhood of zero. On the other hand, on a neighborhood of xk

ψt(x) := ψt,P ′(0) Q
Q′

(x) = Q−1(eP ′(0)tQ(x)).

Clearly, ψt ∈ C∞ and its m first derivatives at zero depend on the m first
derivatives of Q at zero. Thus ψt,P is between two C∞-functions with the same
m first derivatives at zero. Hence, ψt,P is m-times differentiable at zero and
ψ′t,P (0) = eP ′(0)t. We can repeat the same procedure for each xk.

Since ψt,P is strictly increasing between the zeros of P and has a non-zero
derivative at the zeros of P , thus its inverse exists and is smooth.

Clearly, ΨP is smooth at (t, x) for any t > 0, x 6= xk, k ∈ N. Moreover, at
x = xk the functions ∂j

∂tj ψ
t,P ′(0) Q1

Q′1
and ∂j

∂tj ψ
t,P ′(0) Q2

Q′2
have the same values and the

same first m− j derivatives with respect to x. By (4.18) the function ΨP has all
partial derivatives of order 6 m at any point (t, xk). Since it holds for any m ∈ N,
the function ΨP is a C∞-function of two variables. ¥

To give a more concrete example let us take P (x) = sin x, then

ψt,P (x) = 2 arctan(et tan(x/2)) + 2π · E
(

x + π

2π

)

where E(x) denotes the integer part of x. This is the same as

ψt,P (x) = arccos
(

(1− e2t) + (1 + e2t) cos x

(1 + e2t) + (1− e2t) cos x)

)
+ πE

(x

π

)
.

In fact we have proved above that if on any neighborhood of a zero xk of P
there is a smooth function Q such that

P ′(xk)
Q(x)
Q′(x)

= P (x), Q′(xk) = 1

then ψt,P (x) is infinitely differentiable with respect to the two variables t and x
around (t, xk). This implies the following conclusion:

Proposition 4.10. Let P have infinitely many discrete zeros (xk)k∈Z unbounded
from below and from above, all zeros are of order one. Then the family of maps

T (t) : C∞(R) → C∞(R), T (t)g(x) := g(ψt,P (x))

satisfies
‖T (t)g‖k 6 Ck,1 · eCk,2t‖g‖k for t > 0
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for
‖h‖k := sup

x∈[x−k,xk]

sup
l6k

|h(l)(x)|.

In fact T (t) are isomorphisms of C∞(R). An analogous statement holds for l < m
if we consider

T (t) : C∞[xl, xm] → C∞[xl, xm].

Proof. The maps ψt,P satisfy the conditions (4.9) and (4.14) of Example 4.4. ¥

Clearly f , f(t) := T (t)g, solves the abstract Cauchy problem:
{

d
dtf = Af,

f(0)= g,

where A : C∞(R) → C∞(R), Ah(x) := P (x) d
dxh(x).

The Laplace transform L(T )(λ) for T as above never is a smooth function for
most of the values λ. Indeed, for y ∈ (xn, xn+1):

L(T )(λ)(g)(y) =
∫ ∞

0

e−λtg(F−1(t + F (y)))dt

=
∫ xn+1

y

eλ(F (y)−F (z))g(z)
dz

P (z)

= eλF (y)

∫ xn+1

y

e−λF (z)g(z)
dz

P (z)
.

If supp g b (xn, xn+1) then for y close to xn we have

L(T )(λ)(g)(y) = eλF (y)

∫ xn+1

xn

e−λF (z)g(z)
dz

P (z)

= eλF (y) · const .

If for a fixed λ0 ∈ R this is a smooth function at xn then for λ ∈ R such that λ/λ0

is not rational the function L(T )(λ)(g)(y) cannot be smooth at xn. Thus L(T )(λ)
is not a map from S(R) to S(R) or from C∞(R) to C∞(R). It only exists in the
generalized way.

(b) It is not clear what should be assumed on P that T (t) defined as above
satisfies the corresponding condition in S(R). But there are plenty of examples
when this is so, for instance, P (x) = x or P (x) = sin x or more generally P is
periodic satisfying the assumptions of Proposition 4.10.

(c) In case if K = [a, b] b R is properly contained in the interval [xl, xm] we
can consider T (t) : C∞(K) → C∞(K) defined as in Example 4.4 (e).

Problem 4.11. Clarify for which P the operator T (t) defined above satisfies
assumptions of Proposition 4.3 on S? What about P with zeros of higher order
for the C∞-case?
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Problem 4.12. For which P ∈ C∞(R) the function (t, y) 7→ ψt,P (y) is smooth as
a function of two variables?

Proposition 4.10 solves the latter Problem for P having only zeros of order one.
Let us finally clarify the difference between the condition (4.7) and (4.6).

Proposition 4.13. (a) There is a family of operators T (t) on the space of finite
sequences φ which satisfies (4.6) but not (4.7).

(b) Let E be a Fréchet space with system (‖·‖)m, m ∈ N, of seminorms defining
the topology of E. Then a family T (t) satisfies (4.6) if and only if it satisfies (4.7).

Proof. (a): Let us take

T (t)(x) :=
(
entxn

)
n∈N for x = (xn) ∈ φ.

The operator T satisfies (4.6) but not (4.7).
(b): Let us define the space

Ê := {f = (ft)t∈R+ ∈ ER+ : ∀ m ∃ n ∈ N ‖f‖m,n := sup
t
‖ft‖me−nt < ∞}.

Thus topologically
Ê = proj

m
k(Em),

where Em is a step space of E and k(Em) is the coechelon Em−valued space
indn `∞(vn, Em), vn(t) := e−nt. If (4.6) is satisfied then the map

T̂ : E → Ê, T̂ (g) := (T (t)g)t∈R+

is a bounded map. Since E is bornological, T̂ is continuous, hence

T̂m : E → k(Em)

is continuous for any m ∈ N. Of course, k(Em) is an LB-space. Since E is a
Fréchet space, by the Grothendieck factorization theorem (see [11, 24.33]), there
is n ∈ N such that T̂m(E) ⊂ `∞(vn, Em) and hence T̂m : E → `∞(vn, Em) is
continuous by the closed graph theorem. This is exactly (4.7). ¥
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