COMPARING $L(s, \chi)$ WITH ITS TRUNCATED EULER PRODUCT AND GENERALIZATION

Olivier Ramaré

Abstract

We show that any L-function attached to a non-exceptionnal Hecke Grossencharakter Ξ may be approximated by a truncated Euler product when s lies near the line $\Re s=1$. This leads to some refined bounds on $L(s, \Xi)$.

Keywords: Hecke Grossencharakter, Dirichlet L-functions.

1. Introduction and results

We first need to fix some terminology. We select a number field \mathbb{K} / \mathbb{Q} be a number field of degree d and discriminant Δ. We denote its norm by N , as a shortcut to $\mathrm{N}_{\mathbb{K} / \mathbb{Q}}$. We shall consider Hecke Grossencharakters Ξ to (finite) ideal \mathfrak{f}, of norm q, and associated with some finite set of infinite places. The conductor \mathfrak{f} being fixed, the main Theorem of [5] tells us there exists an absolute constant $C>0$ such that no L-function $L(s, \Xi)$ has a zero ρ in the region

$$
\begin{equation*}
\Re \rho \geqslant 1-\frac{C}{\log \max (q \Delta, q \Delta|\Im s|)} \tag{1}
\end{equation*}
$$

except at most one such L-function; this potential exception is associated to a real valued character and may have at most one real zero β in this region. We refer to this hypothetical character as the exceptional character and term the remaining ones as being non-exceptional. See also [11]. In the case of Dirichlet characters, i.e. $\mathbb{K}=\mathbb{Q}$, we know from [13] that we may take $C=1 / 6.3958$.

Theorem 1. Let Ξ be a non-exceptional Hecke Grossencharacter with (finite) conductor \mathfrak{f} of norm $q>1$. We have

$$
L(s, \Xi) \asymp \prod_{\mathrm{N} \mathfrak{p} \leqslant q \Delta|s|}\left(1-\Xi(\mathfrak{p}) / \mathrm{N}^{s}\right)^{-1}
$$

when $1 \geqslant(\Re s-1) \log (q \Delta(2+|s|)) \geqslant-C / 2$, the constant C being the one from (1).

[^0]The restriction to non-exceptional characters can be dispensed with if we assume $|\Im s| \geqslant 1 / \log (q \Delta)$. Under the Riemann hypothesis for the implied L-function, we can restrict the above product to $p \leqslant \log \log (q \Delta|s|)$. As trivial consequences, we find via (a generalization of) Mertens theorems (see (9) below) that, under these conditions

$$
\begin{equation*}
\frac{q / \phi(q)}{\log (q \Delta|s|)} \ll|L(s, \Xi)| \ll \frac{\phi(q)}{q} \log (q \Delta|s|) . \tag{2}
\end{equation*}
$$

The upper bound is classical in the case of Dirichlet characters but improves considerably in the general case on the one given in Theorem 5 of [17], albeit being less explicit. The factor $q / \phi(q)$ in the lower one appears to be novel, even in the case of Dirichlet characters. For instance, it supersedes the one of Corollary 2 of [11] by the factor $q / \phi(q)$ and by the fact that it is valid for any non-exceptional character. From a historical viewpoint, [14] shows that $|L(1, \chi)| \gg 1 / \log ^{5} q$ for non-real characters, and improves this in $|L(1, \chi)| \gg 1 / \log q$ in [15]. The proof is somewhat more delicate than expected.

Note also (by again invoking Mertens' theorems) that we can restrict the product to $p \leqslant(q|s|)^{a}$ for any positive a.

Granville \& Soundararajan investigated in [6] (see also [7]) the distribution of values of $L(1, \chi)$ (χ being a Dirichlet character) via an approximation by an Euler product and in particular,they show in their Proposition 1 that the Euler product may be truncated to $p \leqslant \log q$ for all but $\mathcal{O}\left(q^{1-2 / \log \log q}\right)$ characters. Note however that they aim at an exact approximation of $L(1, \Xi)$ while we only seek to recover its order of magnitude. For $L(1, \chi)$, see also [8], [16] and [1].

Our main ingredient is the following Lemma of independent interest.
Lemma 1. Under the conditions above, $\left|L^{\prime} / L(s, \Xi)\right| \ll \log (q \Delta(2+|s|))$.
In this Lemma also, the restriction to non-exceptional characters can be dispensed with if we assume $|\Im s| \geqslant 1 / \log (q \Delta)$. The inequality $-\Re L^{\prime} / L(s, \Xi) \leqslant$ $c \log (q \Delta(2+|s|))$ when $\Re s>1$ is a classical element of the proof of the zero-free region for $L(\cdot, \Xi)$ (see [4, chapter 14] for instance); by using his local method, Landau shows in [15, page 30] that $\Re L^{\prime} / L(s, \Xi) \leqslant c \log (q \Delta(2+|s|))$. The above Lemma shows that much more is true and that only invoking a one-sided bound for the real part does not lead to any improvement.

Under the Riemann hypothesis for $L(\cdot, \Xi)$, the upper bound becomes $\log \log (q \Delta(2+|s|))$.

Generalization

Like many properties of Dirichlet L-functions, this one generalizes to a wide class of L-functions. We shall not describe such a general context but refer the reader to chapter 5 of [12]. We work under the conditions of their Theorem 5.10: $L(f, s)$ is an L-function fo degree d such that the Rankin-Selberg convolutions $L(f \otimes f, s)$ and $L(f \otimes \bar{f}, s)$ exist, the latter having a simple pole at $s=1$ while the former is entire when $f \neq \bar{f}$. We further suppose that $\left|\alpha_{j}(p)\right|^{2} \leqslant p / 2$ at the ramified primes.

The notion of exceptional character is more complicated to define in a general context, since it requires a way of defining families of L-functions. Assuming that our candidate has no real zero in the classical zero-free region, we find that

$$
\begin{equation*}
L(f, s) \asymp \prod_{p \leqslant \mathfrak{q}(f, s)}\left(1-\alpha_{1}(p) p^{-s}\right)^{-1} \cdots\left(1-\alpha_{d}(p) p^{-s}\right)^{-1} \tag{3}
\end{equation*}
$$

where the analytical conductor is defined there in equation (5.7).

Notations

We need some names for our variables, and the easiest path is to keep a fixed point $s_{0}=\sigma_{0}+i t_{0}$, which will be s in the Theorem, and a running $s=\sigma+i t$. We define

$$
\begin{equation*}
\mathcal{L}=\log \left(q \Delta\left(\left|s_{0}\right|+2\right)\right) . \tag{4}
\end{equation*}
$$

The point $s_{1}=\sigma_{1}+i t_{0}$ with $\sigma_{1}=1+1 / \mathcal{L}$ will be of special interest.

2. Some material on primes in number fields

We can use the prime number Theorem for \mathbb{K} / \mathbb{Q}, but we prefer to sketch an elementary approach to the classical results we need. Such material is also contained in [18]. Assume we have an asymptotic estimate:

$$
\begin{equation*}
\sum_{\mathrm{N} \mathfrak{a} \leqslant X} 1=c_{0} X+\mathcal{O}(X / \log (2 X)) \tag{5}
\end{equation*}
$$

where \mathfrak{a} ranges the integral ideals of \mathbb{K}. Such an estimate is linked with the fact that the Dedekind zeta function $\zeta_{\mathbb{K}}$ of \mathbb{K} has a simple pole at $s=1$. In particular c_{0} is the residue of this function at $s=1$. The results we seek also hold with the error term being simply $o(X)$, but our proof would require a modification. From this we deduce that

$$
\begin{equation*}
\sum_{\mathrm{N} \mathfrak{a} \leqslant X} \log \mathrm{~N} \mathfrak{a}=c_{0} X \log X+\mathcal{O}(X) . \tag{6}
\end{equation*}
$$

Writing $\zeta_{\mathbb{K}}^{\prime} / \zeta_{\mathbb{K}}(s)=\sum_{\mathfrak{a}} \Lambda_{\mathbb{K}}(\mathfrak{a}) / \mathrm{N} \mathfrak{a}^{s}$ we find that $\sum_{\mathfrak{b} \mid \mathfrak{a}} \Lambda_{\mathbb{K}}(\mathfrak{b})=\log \mathrm{N} \mathfrak{a}$ and plugging this into (6), we get

$$
c_{0} X \log X+\mathcal{O}(X)=\sum_{N \mathfrak{b} \leqslant X} \Lambda_{\mathbb{K}}(\mathfrak{b}) \sum_{N \mathfrak{c} \leqslant X / N \mathfrak{b}} 1=X \sum_{N \mathfrak{b} \leqslant X} \frac{\Lambda_{\mathbb{K}}(\mathfrak{b})}{N \mathfrak{b}}
$$

by appealing to (5), from which we infer

$$
\begin{equation*}
\sum_{\mathrm{N} \mathfrak{b} \leqslant X} \frac{\Lambda_{\mathbb{K}}(\mathfrak{b})}{\mathrm{Nb}}=\log X+\mathcal{O}(1) . \tag{7}
\end{equation*}
$$

Using the expression of $\zeta_{\mathbb{K}}$ as an Euler product, we find that $\Lambda_{\mathbb{K}}(\mathfrak{b})$ is zero except when \mathfrak{b} is a power of a prime \mathfrak{p}, at which point it takes the value $\log N \mathfrak{p}$. This finally leads us to the estimate

$$
\begin{equation*}
\sum_{N \mathfrak{p} \leqslant X} \frac{\log \mathrm{~N} \mathfrak{p}}{\mathrm{~Np}}=\log X+\mathcal{O}(1) \tag{8}
\end{equation*}
$$

We infer $\sum_{\mathrm{N} \mathfrak{p} \leqslant X} 1 / \mathrm{N} \mathfrak{p}=\log \log X+\mathcal{O}(1)$ and thus

$$
\begin{equation*}
\prod_{N \mathfrak{p} \leqslant X}(1-1 / \mathrm{N} \mathfrak{p}) \asymp 1 / \log X \tag{9}
\end{equation*}
$$

which is enough for our purpose. This is not what is referred to as Mertens' Theorem, since we do not have a proper asymptotic, but these estimates are enough for our purpose. We refer the reader to [3] for related material on explicit Mertens' Theorem in abelian number fields.

3. Proof of Lemma 1

We start from Linnik's density lemma which the reader may find in [5, Lemma 7] or in [2, chapter 6] in case of Dirichlet characters. We define $n(1+i t, r)$ to be the number of zeros ρ of $L(s, \chi)$ in the disc $|\rho-i-i t| \leqslant r$. We have

$$
\begin{equation*}
\frac{L^{\prime}}{L}(s, \Xi)=\frac{-\delta_{\Xi}}{s-1}+\sum_{\left|\rho-1-i t_{0}\right| \leqslant 1 / 3} \frac{1}{s-\rho}+\mathcal{O}(\mathcal{L}) \quad\left(\left|s-1-i t_{0}\right| \leqslant 1 / 4\right) \tag{10}
\end{equation*}
$$

where δ_{Ξ} is 1 if Ξ is principal, and 0 otherwise. This is for instance Lemma 6 of [5]; In case of Dirichlet characters, this is (4) of chapter 16 of [4], and in a general context (5.28) of [12]. These two last proofs relie on a global representation of L^{\prime} / L, while Fogel's one follows the local method of Landau. The latest refinements of this method may be found in [10] and [9].

One of the consequences of (10) is Linnik's density lemma:

$$
\begin{equation*}
n(1+i t, r) \ll r \mathcal{L}+1 \tag{11}
\end{equation*}
$$

Apply (10) to $s=\sigma+i t_{0}$ with $\sigma \geqslant 1-C / 2 \mathcal{L}$ and to s_{1} and substract. For any zero ρ in the summation above, we have $|s-\rho| \geqslant\left|1+i t_{0}-\rho\right| / 2$ and thus, with $r_{k}=2^{k} / \mathcal{L}$

$$
\begin{aligned}
\left|\frac{L^{\prime}}{L}(s, \Xi)-\frac{L^{\prime}}{L}\left(s_{1}, \Xi\right)\right| & \leqslant \sum_{\left|\rho-1-i t_{0}\right| \leqslant 1 / 3} \frac{4\left|\sigma-\sigma_{1}\right|}{\left|1+i t_{0}-\rho\right|^{2}}+\mathcal{O}(\mathcal{L}) \\
& \leqslant\left|\sigma-\sigma_{1}\right| \sum_{0 \leqslant k \leqslant \log \mathcal{L}} \sum_{2^{k} \leqslant\left|\rho-1-i t_{0}\right| \mathcal{L} \leqslant 2^{k+1}} \frac{4}{r_{k}^{2}}+\mathcal{O}(\mathcal{L}) \\
& \leqslant\left|\sigma-\sigma_{1}\right| \sum_{0 \leqslant k \leqslant \log \mathcal{L}} \frac{4 n\left(1+i t_{0}, r_{k}\right)}{r_{k}^{2}}+\mathcal{O}(\mathcal{L}) \\
& \ll\left|\sigma-\sigma_{1}\right| \sum_{0 \leqslant k \leqslant \log \mathcal{L}}\left(\frac{\mathcal{L}}{r_{k}}+\frac{1}{r_{k}^{2}}\right)+\mathcal{O}(\mathcal{L}) \ll\left|\sigma-\sigma_{1}\right| \mathcal{L}^{2}+\mathcal{L} .
\end{aligned}
$$

Notice furthermore that $\left|L^{\prime} / L\left(s_{1}, \Xi\right)\right| \leqslant-\zeta^{\prime} / \zeta\left(\sigma_{1}\right) \ll \mathcal{L}$, so that, when $\sigma \leqslant 1+\mathcal{L}$, the above inequality reduces to

$$
\begin{equation*}
\left|\frac{L^{\prime}}{L}(s, \Xi)\right| \ll \mathcal{L} . \tag{12}
\end{equation*}
$$

This ends the proof in case of non-exceptional characters. In case of an exceptional character, we simply consider separately in (10) its contribution, namely $1 /(s-\beta)$ which is again $\mathcal{O}(\mathcal{L})$. Under the Riemann hypothesis, we simply invoke Theorem 5.17 of [12].

4. Proof of the Theorem

Define $R=q \Delta\left|s_{0}\right|$. We check that, on using (8),

$$
\begin{equation*}
\left|\frac{L^{\prime}}{L}(s, \Xi)+\sum_{N \mathfrak{p} \leqslant R} \frac{\Xi(\mathfrak{p}) \log N \mathfrak{p}}{N \mathfrak{p}^{s}-\Xi(\mathfrak{p})}\right| \ll \mathcal{L}+\log R \ll \mathcal{L} \tag{13}
\end{equation*}
$$

when $s=\sigma+i t_{0}$ and $1 \geqslant(\sigma-1) \mathcal{L} \geqslant-C / 2$. We integrate (12) between s_{1} and s_{0} and find that

$$
\begin{equation*}
\left|\log L_{R}\left(s_{0}, \Xi\right)-\log L_{R}\left(s_{1}, \Xi\right)\right| \ll 1 \tag{14}
\end{equation*}
$$

with $L_{R}(s, \Xi)=\prod_{N \mathfrak{p}>R}\left(1-\Xi(\mathfrak{p}) / \mathrm{Np}^{s}\right)^{-1}$. Next we note that

$$
\begin{aligned}
\left|L_{R}\left(s_{1}, \Xi\right)\right| & \leqslant \prod_{\mathrm{N} \mathfrak{p}>R}\left(1-\mathrm{N}^{-\sigma_{1}}\right)^{-1} \leqslant \exp \sum_{\mathrm{N} \mathfrak{p}>R} \mathrm{~N}^{-\sigma_{1}} \\
& \ll \exp \int_{R}^{\infty} \frac{d t}{t^{\sigma_{1}} \log t}=\exp \int_{R^{\sigma_{1}-1}}^{\infty} \frac{d v}{v^{2} \log v}
\end{aligned}
$$

by setting $v=t^{\sigma_{1}-1}$, and where we have again invoked (8). The last quantity is bounded since so is $R^{\sigma_{1}-1}$. Considering only real parts in (14), the Theorem readily follows.

References

[1] P. Barrucand, S. Louboutin, Minoration au point 1 des fonctions L attachées à des caractères de Dirichlet, Colloq. Math., 65(2) (1993), 301-306.
[2] E. Bombieri, Le grand crible dans la théorie analytique des nombres, Astérisque, 18 (1987), 103pp.
[3] O. Bordellés, An explicit Mertens' type inequality for arithmetic progressions, J. Inequal. Pure Appl. Math., 6(3) (2005), paper no 67 (10p).
[4] H. Davenport, Multiplicative Number Theory, Graduate texts in Mathematics, Springer-Verlag, third edition edition, 2000.
[5] E. Fogels, On the zeros of Hecke's L-functions, I, Acta Arith., 7 (1962), 87-106.
[6] A. Granville, K. Soundararajan, The distribution of values of $L(1, \chi)$, Geom. Func. Anal., 13(5) (2003), 992-1028. http://www.math.uga.edu/~ andrew/Postscript/L1chi.ps.
[7] A. Granville, K. Soundararajan, Errata to: The distribution of values of $L(1, \chi)$, in GAFA 13:5 (2003). Geom. Func. Anal., 14(1) (2004), 245-246.
[8] K. Hardy, R.H. Hudson, D. Richman, K.S. Williams, Determination of all imaginary cyclic quartic fields with class number 2, Trans. Amer. Math. Soc., 311(1) (1989), 1-55.
[9] D.R. Heath-Brown. Zero-free regions for Dirichlet L-functions and the least prime in an arithmetic progression, Proc. London Math. Soc., III Ser., 64(2) (1992), 265-338.
[10] D.R. Heath-Brown, Zero-free regions of $\zeta(s)$ and $L(s, \chi)$, In E. (ed.) et al. Bombieri, editor, Proceedings of the Amalfi conference on analytic number theory, pages 195-200, Maiori, Amalfi, Italy, from 25 to 29 September, 1989. Salerno: Universita di Salerno, 1992.
[11] J. Hinz, M. Lodemann, On Siegel Zeros of Hecke-Landau Zeta-Functions. Monat. Math. 118 (1994), 231-248.
[12] H. Iwaniec, E. Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI, 2004. xii+615 pp.
[13] H. Kadiri, An explicit zero-free region for the Dirichlet L-functions, To appear in J. Number Theory, 2009.
[14] E. Landau, Über das Nichtverschwinden der Dirichletschen Reihen, welche komplexen Charakteren entsprechen, Math. Ann., 70(1) (1910), 69-78.
[15] E. Landau, Über Dirichletsche Reihen mit komplexen Charakteren entsprechen, J. f. M., 157 (1926), 26-32.
[16] S. Louboutin, Minoration au point 1 des fonctions L et détermination des corps sextiques abéliens totalement imaginaires principaux, Acta Arith., 62(2) (1992), 109-124.
[17] H. Rademacher, On the Phragmén-Lindelöf theorem and some applications, Math. Z., 72 (1959), 192-204.
[18] M. Rosen, A generalization of Mertens' theorem, J. Ramanujan Math. Soc., 14(1 (1999), 1-19.

Address: Laboratoire CNRS Paul Painlevé, 56655 Villeneuve d'ascq, France.
E-mail: ramare@math.univ-lille1.fr
Received: 17 April 2009

[^0]: Mathematics Subject Classification: primary: 11R42, 11M06; secondary: 11M20

