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CONSTRUCTION OF GENERALIZED MODULAR INTEGRALS

Wissam Raji

Abstract: In this paper, we find a functional equation that characterizes the series involved in
the Fourier coefficients of generalized modular forms of large negative real weights.
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1. Introduction and Definitions

In this paper, we construct a basis for the space of automorphic integrals associated
to weakly parabolic generalized modular forms on subgroups of the full modular
groups of large real weights. In our construction, we follow closely Niebur [5]
construction of automorphic integrals. We also find a functional equaiton that
characterizes a series that appear in the Fourier expansion of generalized modular
forms of large negative weights [7]. The importance of the results afore mentioned
lies in its use to prove Eichler isomorphism theorems for generalized modular forms
of arbitrary large real weights.

By a generalized modular form [3] F (τ) belonging to a subgroup Γ of a finite
index in the full modular group of real weight k and multiplier system (MS) v we
mean that F (τ) is analytic in the upper half plane H and that F (τ) satisfies a
transformation law

F (Mτ) = v(M)(cτ + d)kF (τ), (1)

where |v| is not necessarily 1 that depends only of the transformation, and

M =

(
a b
c d

)
∈ Γ.

Note that the multiplier system satisfy the consistency condition

v(M1M2)(c3τ + d3)
k = v(M1)v(M2)(c1M2τ + d1)

k(c2τ + d2)
k, (2)

where

Mi =

(
ai bi
ci di

)
∈ Γ
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for i = 1, 2, 3 and M3 = M1M2. We shall assume that our generalized modu-
lar forms are weakly parabolic generalized modular forms which means that the
|v(Q)| = 1 for all parabolic matrices P .

Let S =

(
1 λ
0 1

)
, λ > 0, generate the subgroup Γ∞ of translations in Γ. Since

F satisfies (1), then in particular

F (z + λ) = v(S)F (z) = e2πiκF (z),

with 0 6 κ < 1. Thus if F is meromorphic in H and its poles do not accumulate
at infinity, F has the Fourier expansion at ∞

F (z) =
∞∑

m=−m0

ame
2πi(m+κ)z/λ, (3)

valid for y = Im z > y0. Γ has also s > 0 inequivalent parabolic classes. Each of
these classes corresponds to a cyclic subgroup of parabolic elements in Γ leaving
fixed a parabolic cusp on the boundary of R, the fundamental region of Γ. Let
q1, q2, ..., qs be the inequivalent parabolic cusps(other than infinity) on the bound-
ary of R and let Γi be the cyclic subgroup of Γ fixing qj , 1 6 j 6 s. Suppose also
that

Qj =

(
∗ ∗
cj dj

)

is a generator of Γi; Qj is necessarily parabolic. For 1 6 j 6 s; put v(Qj) = e2πiκj ,
0 6 κj < 1. Also F has the following Fourier expansion at qj :

F (z) = (z − qj)
−k

∞∑

m=−mj

am(j)e−2πi(m+κj)/λj(z−qj), (4)

valid for y = Im z > yj. Here λj is a positive real number called the width of the
cusp qj and defined as follows. Let

Aj =

(
0 −1
1 −qj

)

so that Aj has determinant 1 and Aj(qj) = ∞. Then λj > 0 is chosen so that

A−1
j

(
1 λj

0 1

)
Aj

generates Γj , the stabilizer of qj . We let C+(Γ, k, v) denote the space of entire
generalized modular forms of real weight k and multiplier system v on Γ which in
addition to being holomorphic in H , it has only terms with m+ κ > 0 in (3) and
m + κj > 0 in (4) for all 1 6 j 6 s. Also, let C0(Γ, k, v) denote the subspace of
generalized cusps forms which is a subspace of C+(Γ, k, v) but it has only terms
with m+ κ > 0 in (3) and m+ κj > 0 in (4) for all 1 6 j 6 s .

Define also Γ0 =

{(
a b
c d

)
∈ Γ : c = 0

}
.
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2. Construction of Automorphic Integrals

Remark. Notice that by Proposition 1 of [4], we see that if v̄ is a MS in weight
k + 2, then v is a multiplier system of weight −k and vise versa. This fact will be
used throughout the whole section.

To construct a basis for the space of automorphic integrals associated to weakly
parabolic generalized modular forms, we follow similar construction carried in [5].

Let ν be an integer such that ν + κ > 0, k > α′ where α′ is a positive integer

to be defined later and M =

(
a b
c d

)
∈ Γ. Define

gM (z) = (−2πi(ν + κ)/λ)k+1e2πi(ν+κ)Mz/λ/v(M)(cz + d)k+2.

Notice that (γz + δ)−k−2gM (Lz) = v(m)gML(z) for L =

(
∗ ∗
γ δ

)
∈ Γ. Since

the multiplier system is not unitary, we need to worry about the bound for the
multiplier system when we take an infinite sum of gM (z) over all lower rows of
all matrices M ∈ Γ/Γ0. Suppose that the generators of Γ are the hyperbolic ele-
ments A1, B1, A2, B2, ..., Ag, Bg, the elliptic elements E1, ..., Et and the parabolic
elements Q1, ..., Qs. To find a bound for our multiplier system, we need not to
worry about the parabolic elements since we are dealing with weakly parabolic
generalized modular forms and as a result

|ε(Qi)| = 1

for all i = 1, ..., s. So what is left to consider are the hyperbolic and elliptic
generators. Suppose now we write M = M1...ML where each Mi is a section.
Each section is either a nonparabolic generator of Γ or a power of a parabolic
generator of Γ. Also assume L is minimal. The importance of this factorization
into sections lies in the result of Eichler [1], that for any M ∈ Γ, the factorization
can be carried out so that

L(M) 6 m1 logµ(M) +m2 (5)

where m1,m2 > 0 are independent of M and

µ(M) = a2 + b2 + c2 + d2.

Assume now that |v(A1)| = a1, |v(B1)| = b1,. . ., |v(Ag)| = ag, |v(Bg)| = bg.
Since elliptic elements are of finite order and since |v| is a multiplicative character,
it is easy to see that |v(Eni

i )| = 1 where Eni
i = I hence, |v(Ei)| = 1 for all

i = 1, ...t . Note that if the genus is zero, then there is no hyperbolic generators
so the parabolic generalized modular form will be classical. As a result, we let
K1 = max(ai, bi, 1). We then have

|v(M)| 6 K
L(M)
1 . (6)
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As a result, we see that
|v(M)| 6 K2µ(M)α (7)

where α = m1 logK1. Notice also that M can be written after reusing the same

variables for convenience as M =

(
a ad−1

c
c d

)
where 0 6 a,−d < c. From (7) and

the fact that 0 6 a,−d < c, we see that

|v(M)| 6 K3c
2α (8)

where K3 is independent of M . Notice that using (2) that v(M−1) = κv−1(M)
where |κ| = 1. Notice also that L(M) = L(M−1). As a result we derived a bound
for the multiplier system depending on c. Because the sum over all distinct rows
(c, d) of matrices in Γ of |cz + d|−k−2 converges on strips of the form {x + iy :
|x| 6 A, y > ε > 0}, we see that for k > 2α − 2, Gν(z) =

∑
M∈Γ0/Γ gM (z) ∈

C0(Γ, k+2, ν). As a result, we define α′ = [α−2]+1 where [x] denotes the integer
part of x.

Definition 1. Let ν be an integer such that ν + κ > 0 and let M =

(
∗ ∗
c d

)
∈ Γ.

Let µ+ α = −ν − κ and k > α′. Put

sM (τ) = e2πi(µ+α)Mτ/λ/v̄(M)(cτ + d)−k,

and
tM = p(τ,M−1∞, gM ),

where

Γ(k + 1)p(τ,M−1∞, gM ) =

∫ i∞

M−1∞
gM (z)(z − τ̄ )kdz.

Notice that sM (τ) and tM (τ) are holomorphic in H. Notice also that for

L =

(
∗ ∗
γ δ

)
∈ Γ

(γτ + δ)ksM (Lτ) = v̄(L)sML(τ)

and
(γτ + δ)ktM (Lτ) = v̄(L)[tML(τ) − p(τ, L−1∞, gML)].

As in [5], to define a series analogous to the series Gν we need the following
lemma.

Lemma 1. Suppose that M =

(
∗ ∗
c d

)
∈ Γ and c > 0, then

sM (τ)+tM (τ) = A(v̄(M))−1e2πi(µ+α)a/λcc−1−k(cτ+d)−1+O(c−2−k+2α′ |cτ+d|−2),

where A = (−2πi(µ+ α)/λ)k+1/Γ(k + 2).
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Proof The proof of this lemma follows the steps of the proof of Lemma 3.1
in [5] with a change in the multiplier system and a change in the estimate of the
sum. Notice that

Γ(k + 1)(2πi(ν + κ)/λ)−k−1tM (τ)

= (v̄(M))−1

∫ i∞

−d/c

e−2πi(ν+κ)Mz̄/λ(cz̄ + d)−2−k(z̄ − τ)kdz̄

The above equation shows why (v̄(M))−1 appears in the expression sM (τ)+tM (τ).
Also in the proof of Lemma 3.1 [5, p.377], we have the simple estimate b(β) =
β/Γ(2 + k) +O(|β|2e|β|). Thus plugging in the following equation, derived in the
same way as in [5],

sM (τ) + tM (τ) = (v̄(M))−1e2πi(µ+α)a/c(−2πi(µ+ α)/cλ)kb(β)

and using the estimate of the multiplier system (8), we get

sM (τ)+tM (τ) = A(v̄(M))−1e2πi(µ+α)a/λcc−1−k(cτ+d)−1+O(c−2−k+2α′ |cτ+d|−2).

This explains the appearance of α′ in the exponent of c inside the O notation.
Lemma 1 will guarantee that the sum f(τ) =

∑
M∈Γ0\Γ sM (τ) + tM (τ) con-

verges to a function holomorphic in H for k > α′. Although as in [5] ,the con-
vergence is not absolute, it follows exactly the same proof that for certain family
of parallelograms {PN}, the sum over such parallelograms will converge to f as
N → ∞ where

∑
PN

means a sum over coset representatives with lower row
in PN . This will also hold for transformed family {PNL}, where L ∈ Γ and

PNL = {(c, d)L : (c, d) ∈ PN}. Also notice that for L =

(
∗ ∗
γ δ

)

(γτ + δ)kf(Lτ) = (v̄(L)) lim
N→∞

∑

PN

(sML(τ) + tML(τ) − p(τ, L−1∞, gML))

= (v̄(L)) lim
N→∞

∑

PN L

(sM (τ) + tM (τ) − p(τ, L−1∞, gM ))

= (v̄(L))[f(τ) − p(τ, L−1∞, Gν)].

Notice that for the justification of

lim
N→∞

p

(
τ, L−1∞,

∑

PN

gM

)
= p

(
τ, L−1∞, lim

N→∞

∑

PN

gM

)
,

we use the same justification used in [5] (Lemma 4.4 and Corollary 4.5 in [5]).
Also we see that the above equation is not true if f has a nonzero constant in its
Fourier expansion. As a result we twist the definition of f to introduce Fµ.
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Definition 2. Let µ be a negative integer and put ν = −µ − α − κ. Define the
mth Poincare series Fµ(τ) for weight −k where k > α′ as

Fµ(τ) =
1

2
a0(µ+ α) +

∑

c>0

lim
N→∞

∑

|d|6N

sM (τ) + tM (τ), M =

(
a b
c d

)
∈ Γ0\Γ

where
a0(µ) = |2πµ/λ|k+1 2π

λΓ(k + 2)
e2πik/4

∑

c>0

c−2−kS(µ; 0; c, v),

for α = 0 and a0(µ+α) = 0 for α > 0. Here, S is the Kloostermann sum defined by

S(m,n; c, v) =
∑

M

(v̄(M))−1e2πi(a(m+α)+d(n+α))/λc,

where M runs over a finite set
{(

a ∗
c d

)
∈ Γ : 0 6 a < λ|c|, 0 6 d < λ|c|

}
.

We now present a Lemma which states that Fµ is holomorphic in H, and that
its Fourier coefficients are given by Rademacher formula.

Lemma 2. For k > α′, we have Fµ(τ) is holomorphic in H and Fµ(τ) =
e2πi(µ+α)τ/λ +

∑∞
m=0 am(µ+ α)e2πi(m+α)τ/λ where

am(µ+ α) = (2π/λ)e2πik/4|(µ+ α)/(m+ α)|(k+1)/2

×
∑

c>0

c−1S(µ,m; c, v)Ik+1(4π|(µ+ α)(m+ α)|1/2/λc)

where Ik+1 is the modified Bessel function of the first kind.

The proof of Lemma 2 goes in the same way as Lemma 4.2 in [5] with a slight
difference in the convergence of the sums. Thus it is crucial to impose the condition
k > α′ to insure the convergence of the infinite sum once the estimate of the
multiplier system is used. Also note that to show where (v̄(M))−1 shows up in
the Kloostermann sum, we use the sum in Lemma 1 and the estimation equation
from [5, p.380] to obtain

∑

|d|6N

sM (τ) + tM (τ) =

∗∑

d

(v̄(M))−1e−2πiµ0a/c(2πiµ0/c)
k

×
∑

|n|6N/cλ

e2πinα
∞∑

j=1

(2πiµ0/c(cτ + d− ncλ))j

Γ(j + 1 + k)
+O(N−1).

Note that the sum over the right coset of representatives for Γ over Γ0 will be

written as a sum over I∪
{(

a ∗
c d+ nλc

)
: c > 0, 0 6 a < cλ, 0 6 d 6 cλ, n ∈ Z

}

and the sum over this set will be represented by
∑

c>0

∑∗
d

∑
n. By I we denote

the identity matrix.
We now show that with Fµ defined as in Lemma 2, it can be written as a limit

of finite double sums.
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Lemma 3. Let k > α′ and let Fµ be defined as in Lemma 2. Suppose that L ∈ Γ
and for each integer N , PNL = {(x, y)L : |x| 6 N, |y| 6 N2}. If τ ∈ H, then

Fµ(τ) =
1

2
a0(µ+ α) + limN→∞

∑

M∈AN L

sM (τ) + tM (τ)

where ANL = I ∪ {MΓ0\Γ : c > 0, (c, d) ∈ PNL}.

As in Lemma 2, the condition that k > α′ will guarantee the convergence of
the sums. Notice also that since RM (τ) = O(c−2−k−α′ |cτ + d|−2) we see that the
convergence of

∑
M∈Γ0\ΓRM (τ) is also guaranteed by the condition that k > α′.

Now as in [5], if we define

T =
∑

c>0

lim
N→∞

∑

|d|6N

(v̄(M))−1e−2πiµ0a/c

c1+k(cτ + d)
and TN (L) =

∑

AN L

(v̄(M))−1e−2πiµ0a/c

c1+k(cτ + d)

then similarly as in [5, pp. 381-382] we see that limN→∞ TN(L) = T .

Theorem 1. For k > α′, Fµ(τ) is an automorphic integral with principal part
e2πi(µ+α)τ/λ at ∞, and its associated cusp form is Gν .

Notice that Lemma 2 shows that Fµ(τ) is holomorphic for τ ∈ H and it has
principal part e2πi(µ+α)τ/λ at ∞. Also, Lemma 3 proves that

Fµ(τ) = 1/2a0(µ+ α) + lim
N→∞

∑

M∈AN L−1

sM (τ) + tM (τ).

Notice also that the functional equation of sM (τ) and tM (τ) implies

(v̄(L))−1(γτ + δ)kFµ(Lτ) = 1/2(v̄(L))−1(γτ + δ)ka0(µ+ α)

+ lim
N→∞

∑

M∈AN I

sM (τ) + tM (τ) − p(τ, L−1∞, gM ).

As we mentioned before, Corollary 4.5 in [5, p.384] shows that the right hand
of the above equation is

1/2a0(µ+ α) + lim
N→∞

∑

M∈AN I

sM (τ) + tM (τ) − p(τ, L−1∞, Gν).

Hence, Lemma 3 implies that Fµ satisfies the functional equation of an automor-
phic integral with associated cusp form Gν .
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