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Abstract: Let Ω be an open subset of Rn, we establish regularity results for solutions of some
degenerate nonhomogeneous equations of the type

div〈A(x)Du, Du〉 p−2
2 A(x)Du = divF in Ω (1)

where p > 2. The nonnegative function K(x), which measures the degree of degeneracy of
ellipticity bounds, lies in the exponential class, i.e. exp(λK(x)) is integrable for some λ > 0.
Under this assumption, the gradient of a finite energy solution of (1) lies in the Orlicz-Zygmund
class Lp log−1 L(Ω). Our results states that the gradient of such solution is more regular provided
λ is sufficiently large and the datum F = F (x) belongs to a suitable Orlicz-Zygmund class.
Keywords: Elliptic Equations, Mappings with Finite Distortion, Orlicz-Zygmund classes

1. Introduction

Let Ω be an open bounded subset of Rn, we consider the nonhomogeneous equation

divA(x,Du) = div F (1.1)

for u : Ω → Rn, where F = F (x) is a field in Lq logα L(Ω,Rn×n), α > 0, q > 2.
As in the familiar model of p-harmonic operator, we suppose that

A(x, ξ) = 〈A(x)ξ, ξ〉 p−2
2 A(x)ξ (1.2)

where pq = p + q and A(x) : Ω × Rn×n → Rn×n is a symmetric positive definite
linear transformation on Rn×n such that

m(x)|ξ|2 6 〈A(x)ξ, ξ〉 6 M(x)|ξ|2 (1.3)

for almost every x ∈ Ω and all ξ ∈ Rn×n, and 0 < m(x) 6 M(x) < ∞ a.e..
Throughout this paper we deal with weak solutions of (1.1) having finite energy.
We say that a function u ∈ W 1,1

loc (Ω) has finite energy provided

〈A(x)Du, Du〉 p
2 ∈ L1

loc(Ω).
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In the following we set

Definition 1.1. A function u ∈ W 1,1
loc (Ω) with finite energy is a weak (local)

solution of equation (1.1) if
∫

Ω

A(x,Du)Dϕ dx =
∫

Ω

F Dϕ dx

for every function ϕ ∈ C∞0 (Ω).

When the ratio M(x)/m(x) is bounded, these equations are strictly related to
the theory of quasiregular mappings. Indeed, as B. Bojarki and T. Iwaniec stated
in the fundamental paper [BI], the components of a quasiregular mappings solve
equations of the type (1.1).

In recent years, in connection with the study of mappings with finite distortion
(see [IM], [IS]), also equations at (1.1) in which the ellipticity bounds at (1.3)
degenerates, have been considered; we are dealing here with genuine nonisotropic
equations where the ratio M(x)/m(x) is not bounded.
In this case, in order to achieve satisfactory estimates one must control the degree
of degeneracy.

Following the framework of the theory of mappings with finite distortion, we
can state the ellipticity bounds in (1.3) equivalently as

1
p
|ξ|p +

1
q
|A(x, ξ)|q 6 K(x)〈A(x, ξ), ξ〉, (1.4)

where the function K = K(x) > 1 depends on the ellipticity bounds m(x) and
M(x) at (1.3). In the sequel we will refer to (1.4) as the “distortion inequality”
and we will call K(x) the “distortion function” of equation (1.1).
In this paper we will be interested in the distortion K of the exponential class
EXP (Ω). Precisely, we shall assume that K satisfies

∫

Ω

eλK dx < ∞. (1.5)

Without loss of generality (see Section 2) we can assume that K admits a BMO-
majorant. Precisely we can majorizeK point-wise by a function K(x) ∈ BMO(Rn).
We can also ensure a bound for the BMO-norm of K(x) in terms of the exponent λ,
i.e.

‖K‖BMO 6 c(n)
λ

. (1.6)

By assumptions (1.2), (1.4) and (1.5), the gradient of a weak solution lies locally
in the Orlicz-Zygmund space Lp log−1 L(Ω,Rn).

Our goal here is to show that these solutions, under suitable assumptions on
F , are more regular.
More precisely, our main result (Theorem 4.1) shows that if u is a weak solution
of (1.1) and the BMO-norm of K at (1.6) is small enough then

|KF | ∈ Lq logα Lloc(Ω) ⇒ |Du| ∈ Lp logα Lloc(Ω).
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In particular, when the distortion function K is bounded, for every weak solution
of (1.1) having the gradient locally p-integrable, we get

|F | ∈ Lq logα Lloc(Ω) ⇒ |Du| ∈ Lp logα Lloc(Ω)

This extends a result of [AIKM], [IKM], [IO] related to the case p = n. In the
setting of Lebesgue spaces, under the assumption that K is bounded, higher inte-
grability results for the gradient of a solution of (1.1) have been proved in [I].
The main tool to prove our result is the solvability of the Dirichlet problem for
equation at (1.1) in a cube in Rn (Theorem 3.3).

2. General Notations and Preliminary Results

In the sequel Ω ⊂ Rn will be a domain and Q a cube in Rn. Following the notations
in the Introduction, we consider the nonhomogeneous equation

divA(x, Du) = div F in Ω

where F : Ω → Rn×n is a vector field and

A(x, ξ) = 〈A(x)ξ, ξ〉 p−2
2 A(x)ξ

for almost every x ∈ Ω and all ξ ∈ Rn×n, with A(x) satisfying (1.3).
By using (1.4), elementary algebraic analysis reveals that A(x, ξ) satisfies the
following growth monotonicity conditions

(i) |ξ|p 6 cK(x)〈A(x, ξ), ξ〉
(ii) |A(x, ξ)|q 6 cK(x)〈A(x, ξ), ξ〉
(iii) K−1(x)|ξ − η|p 6 c〈A(x, ξ)−A(x, η), ξ − η〉
(iv) |A(x, ξ)−A(x, η)| 6 cKp−1|ξ − η|(|ξ|p−2 + |η|p−2)

for almost every x ∈ Ω and all ξ, η ∈ Rn×n and c = c(p, q). The function K(x) lies
in EXP (Ω), i.e. ∫

Ω

eλKdx < ∞ (2.1)

for some λ > 0.

Definition 2.1. Let g be a locally integrable function on Rn; g is said to be a
function of bounded mean oscillation on Rn, briefly g ∈ BMO(Rn), iff

‖g‖BMO := sup
Q
−
∫

Q

|g(y)− gQ|dy (2.2)

is finite, where the supremum extends over all cubes Q in Rn with edges parallel
to coordinate axes and gQ = 1

|Q|
∫

Q
|g|dx = −

∫ |g|dx.
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Modulo constant functions, ‖ · ‖BMO at (2.2) is a norm and BMO is a Banach
space. Functions in BMO are in Lp

loc(Rn), for any finite p > 1; in fact they
are locally exponentially integrable, as shown by the well-known John-Nirenberg
lemma: there exists a constant Θ = Θ(n) such that for every g ∈ BMO(Rn) and
every cube Q, we have

−
∫

Q

exp
(

Θ
|g(x)− gQ|
‖g‖BMO

)
dx 6 2.

Clearly, bounded functions have bounded mean oscillation. On the contrary,
BMO-functions need not be bounded. The usual example is x → log |x|.

Of particular importance in our applications will be the Lp logα L(Ω) space,
that is the Orlicz space LΦ(Ω) generated by Φ(t) = tp logα(e + t) at least for
sufficiently large values of t, equipped by the Luxemburg norm, i.e. the space of
all measurable functions f on Ω such that

‖f‖Φ := inf
{

λ > 0 :
∫

Ω

Φ
( |f |

λ

)
dx 6 1

}
. (2.3)

For p > 1 and α > 0 the non-linear functional

|f |p,α =
[
|f |p logα

(
e +

|f |
‖f‖p

)]1/p

is comparable with the Luxemburg norm at (2.3); for more details see [RR]. Before
going on, we state the following Sobolev-Poincaré type inequality (see [IS], [IS1])

Lemma 2.2. For each matrix field B ∈ L1
loc(Ω,Rn×n) with div B ∈ Ls(Ω,Rn×n),

1 < s < n, and ϕ ∈ C∞0 (Ω), there exists a divergence free matrix field B0 ∈
L1

loc(Ω,Rn×n) such that

‖D(ϕB −B0)‖s 6 c(n, s)‖ |∇ϕ| |B| ‖s.

As B0 is obtained via Riesz transform of ϕB it may be concluded that if B ∈
Ls′
loc(Ω,Rn×n) for some other exponent 1 < s′ < +∞ then B0 ∈ Ls′(Rn,Rn×n).

Hence if Ω is a cube centered in x0 ∈ Rn, then for x ∈ Rn − 2Ω we have the
pointwise inequality

|D(ϕB −B0)(x)| 6 c(n)
diamΩ

|x− x0|n+1
‖|ϕ| |B| ‖L1(Rn) (2.4)

In order to achieve satisfactory a priori estimates for equations defined at (1.1)
in Rn a.e. we assume that

eλK ∈ L1
loc(Rn) and eλK ∈ L1(Rn) + L∞(Rn). (2.5)
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This condition certainly holds if the matrix field A(x, ξ) has compact support.
In the sequel, as we announced in the Introduction, we shall replace the distor-
tion function K by a BMO-majorant.
Precisely, we shall majorise K(x) point-wise as

K(x) 6 K(x) a.e. in Ω (2.6)

where K = K(x) > 1 lies in BMO(Rn).
With the aid of (2.5) we can also ensure the uniform BMO-bound of K at (1.6).
Moreover, we have the following global exponential integrability property of K

eλ(K−K0) − 1 ∈ L1(Rn)

for some K0 ∈ L∞(Rn), such that

1 6 K0(x) 6 K(x).

More details about such majorisation can be found in [IS]; we just remark that
the following “type” Hölder inequality (see Lemma 5.1 of [IMMP]) holds: if α > 1,
f ∈ Lp logα L and K(x) ∈ BMO(Rn) is the function at (2.6) then

‖Kf‖Lp logα−p 6 c

λ
‖f‖Lp logα L + c[K]‖f‖Lp logα−1 L

with c = c(α) and

[K] = ‖K0‖∞ +
1
λ

∫

Rn

[eλ(K−K0) − 1]dx.

Under assumptions (2.5) the following a priori estimate holds (see Theorem 13.1
of [IMMP])

Theorem 2.3. For any α > 0 there exists λα > 1 such that, whenever K satis-
fies (1.6) with λ > λα, we have

‖ |Du|p + |A(x,Du)|q ‖L logα L(Rn) 6 c‖KF‖q
Lq logα L(Rn) (2.7)

with c = c(K,n, α).

3. A priori estimates

We start by proving a local a priori estimate for solutions of equation (1.1).

Proposition 3.1. Let u be a solution of (1.1) with |Du| ∈ Lp logα Lloc(Ω) and
|A(x,Du)| ∈ Lq logα Lloc(Ω). For any α > 0 there exists a critical exponent λα > 1
such that whenever K satisfies (1.6) with λ > λα and |KF | ∈ Lq logα L(Ω), then

‖ |Du|p + |A(x,Du)|q ‖L logα L(Q) 6

6 c
(
‖ |Du|p + |A(x,Du)|q ‖

L
n

n+1 (2Q)
+ ‖KF‖q

Lq logα L(2Q)

)
(3.1)

for any cube Q ⊂ 2Q ⊂ Ω, with c = c(Q,K).



144 Luigi D’Onofrio, Gioconda Moscariello

Proof of Proposition 3.1 . Fix a cube Q ⊂ 2Q ⊂ Ω and a cut-off function
ϕ ∈ C∞0 (2Q), such that 0 6 ϕ 6 1 with ϕ = 1 on Q. To have shorter notation we
introduce the matrix field

B(x) = A(x,Du)− F

and we define
H(x) = ϕpB(x) = A(x, ϕqDu)− ϕpF (3.2)

Equation (1.1) and assumptions (1.2), (1.4) and (1.6) yield

div H = (A(x,Du)− F )Dϕp ∈ Lq logα L(Ω)

Applying divergence operator to (3.2) we obtain

div(A(x, ϕqDu)− ϕpF ) = div(H(x)−H0) (3.3)

where H0 can be any divergence free matrix field. We use Lemma 2.2 to find H0

such that

‖D(H −H0)‖s 6 c‖div H‖s = ‖Dϕp(A(x,Du)− F )‖s (3.4)

for 1 < s 6 q. If we decompose ϕqDu = g + Dw with w = ϕq(u − uQ) and
g = −uDϕq, by (3.3) we obtain that w, whose gradient lies in Lq logα L , is a
solution of the equation

divA(x,Dw) = div G in Rn,

with
G = [A(x, Dw)−A(x, g(x) + Dw)] + [H(x)−H0] + ϕpF.

Notice that KG ∈ Lq logα L(Rn). for any α. Indeed, by (3.4) and Sobolev Imbed-
ding Theorem H − H0 ∈ L

ns
n−s . Thus H − H0 ∈ Lr

loc for every 1 < r 6 nq
n−q

and K(H − H0) lies in Lq logα L as K is in BMO. By noting that A(x,Dw) ∈
Lq logα L(Ω), applying the apriori estimate in Rn we get

‖A(x,Dw)‖q
Lq logα L(Rn) + ‖Dw‖p

Lp logα L(Rn) 6 c‖KG‖q
Lq logα L(Rn)

6 c[‖K(x)|A(x,Dw)−A(x, g(x) + Dw)| ‖q
Lq logα L(Rn)

+ ‖K(x)(H(x)−H0)‖q
Lq logα L(Rn) + ‖KϕpF‖q

Lq logα L(Rn)].

Here and in what follows c = c(n,K).
By structure condition (iv) we can replace the last term to get

‖A(x,Dw)‖q
Lq logα L(Rn) + ‖Dw‖p

Lp logα L(Rn)

6 c
[
‖K(x)K(x)p−1|g(x)| (|g(x)|p−2 + |Dw|p−2)‖q

Lq logα L(Ω)

+ ‖K(x) (H(x)−H0)‖q
Lq logα L(Rn) + ‖ϕpKF‖q

Lq logα L(Ω)

]
.
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Applying Young’s inequality we obtain

‖A(x,Dw)‖q
Lq logα L(Rn) + ‖Dw‖p

Lp logα L(Rn) 6 c
[
‖K(x)p|g(x)| ‖p

Lp logα L(Ω)

+ ‖K(x) (H(x)−H0)‖q
Lq logα L(Rn) + ‖ϕpKF‖q

Lq logα L(Ω)

]
. (3.5)

By Hölder inequality, since K ∈ BMO

‖K(x)p|g(x)| ‖Lp logα L(Ω) 6 c ‖g‖
L

np
n−p+1 (2Q)

6 c‖Du‖
L

np
n+1 (2Q)

.

In order to estimate the second term in the right hand side of (3.5), we fix a
function η ∈ C∞0 (5Q), 0 6 η 6 1, which equals 1 on the cube 4Q. Then, denoting
H (x) = H(x)−H0, we can write

‖K(x)H (x)‖Lq logα L(Ω) 6 ‖ηK(x)H (x)‖Lq logα L(5Q)

+ ‖(1− η)K(x)H (x)‖Lq logα L(Rn−4Q)

Then, by Hölder inequality and relation (2.4) and (3.4) we have

‖K(x)H (x)‖Lq logα L(Rn) 6 c ‖H (x)‖
L

nq
n−q+1 (2Q)

+
∥∥∥∥

diam Q

|x− x0|

∥∥∥∥
Lq logα L(Rn−4Q)

∫

Rn

|Dϕp||A(x,Du)− F |

6 c

(
‖|Dϕp|A(x,Du)‖q

L
nq

n+1 (2Q)
+ ‖ |Dϕp|F‖

L
nq

n+1 (2Q)

)

6 c ‖A(x, Du)‖q

L
nq

n+1 (2Q)
+ ‖F‖Lq logα L(2Q)

(3.6)

with c = c(n, K,Ω).
Since ϕ = 1 on the cube Q, we get by (3.5) and (3.6)

‖A(x,Du)‖q
Lq logα L(Q) + ‖Du‖p

Lp logα L(Q)

6 c(Q, K)

(
‖Du‖p

L
np

n+1 (2Q)
+ ‖A(x,Du)‖q

L
nq

n+1 (2Q)

)
+ ‖KF‖q

Lq logα L(2Q),

for any cube Q ⊂ 2Q ⊂ Ω, which concludes the proof. ¥

Now, let us consider the problem
{

divA(x,Du) = div F in Q0

u = 0 on ∂Q0
(3.7)

where Q0 is a cube in Rn and A(x, ξ) is defined in Section 2.
Assume that K(x) lies in EXP (Q0), i.e.

∫

Q0

eλKdx < ∞ for some λ > 0. (3.8)
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We study solutions of (3.7) with the gradient in Lp logα L(Q0) vanishing on
∂Q0 in the sense of distributions. for a solution of problem (3.7) the following a
priori estimate holds

Proposition 3.2. Let u be a solution of (3.7). For any α > 0 there exists a
critical exponent λα > 1 such that, whenever K satisfies (1.6) with λ > λα and
|KF | ∈ Lq logα L(Q0), we have

‖Du‖p
Lp logα L(Q0)

+ ‖A(x, Du)‖q
Lq logα L(Q0)

6 c‖KF‖q
Lq logα L(Q0)

(3.9)

where c = c(K,n, Q0).

Proof. We can argue as in Lemma 3.1 of [M]. We can reflect u, F and the coeffi-
cients of the matrix A(x) across the face of Q0. New cubes emerge in this process
and we continue reflecting infinitely times. In this way we extend the p-harmonic
equation

divA(x, Du) = div F in Rn (3.10)

and at the end we look at u as a local solution of the extended equation in the
double cube 2Q0 (for more details see [IS]).
By Proposition 3.1 we get

‖Du‖p
Lp logα L(Q0)

+ ‖A(x, Du)‖q
Lq logα L(Q0)

6 c

(
‖Du‖p

L
np

n+1 (2Q0)
+ ‖A(x, Du)‖q

L
nq

n+1 (2Q0)
+ ‖KF‖q

Lq logα L(2Q0)

)

with c = c(Q0,K).
Now, since K ∈ BMO and the norms over 2Q0 are controlled by those over Q0,
condition (ii) of Section 2 and Hölder inequality, yield

‖A(x,Du)‖q

L
nq

n+1 (2Q0)
6 ‖Kp−1|Du|p−1‖q

L
nq

n+1 (2Q0)
= ‖K Du‖p

L
np

n+1 (2Q0)

6 ‖K Du‖p

L
np

n+1 (Q0)
6 c(K)‖K−1/p|Du| ‖p

p.
(3.11)

Summarizing

‖Du‖p
Lp logα L(Q0)

+ ‖A(x, Du)‖q
Lq logα L(Q0)

6 c(K)‖K−1/p|Du| ‖p
p + ‖KF‖q

Lq logα L(Q0)
.

Now, using u as a test function in (3.7)
∫

1
K
|Du|p 6

∫

Ω

〈A(x,Du), Du〉 =
∫

Ω

F Du

=
∫

Ω

(
K1/pF

) (
(K−1/p Du

)
6 ‖K1/pF‖q ‖K−1/p Du‖p
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we deduce
‖K−1/p Du‖p

p 6 c(q)‖KF‖q
q. (3.12)

Combining (3.11) and (3.12) we finally have

‖Du‖p
Lp logα L(Q0)

+ ‖A(x,Du)‖q
Lq logα L(Q0)

6 c ‖KF‖q
Lq logα L(Q0)

with c = c(n, K,Q0). ¥

With the aid of Proposition 3.2 by following the same arguments of Theorem 3.2
of [M], we can state the following

Theorem 3.3. For any α > 0 there exists a critical exponent λα such that if K
satisfies (1.6) with λ > λα and |KF | ∈ Lq logα L(Ω), then the problem (3.7) admits
a unique solution u with |Du| ∈ Lp logα L(Ω). We also have the uniform bounds

‖Du‖p
Lp logα L 6 c‖KF‖q

Lq logα L,

‖A(x,Du)‖Lq logα L 6 c‖KF‖Lq logα L

(3.13)

where c = c(n, α, K).

To prove our main statement, we also need a uniqueness result for solutions of
problem (3.7) whose gradient lies in Lp log−1 L(Ω,Rn×n).

Proposition 3.4. Let u and v be two solutions of problem (3.7) with the gradient
in Lp log−1 L(Ω,Rn×n). If A(x,Du) and A(x,Dv) belong to Lq log−1 L(Ω,Rn×n)
respectively, then u = v a.e. in Ω.

For the proof see [M, Proposition 3.3].

4. The Main Result

Now we are able to prove the main result.

Theorem 4.1. Let u be a weak solution of equation (1.1). For any α > 0 there
exists a critical exponent λα such that whenever (2.1) is satisfied for λ > λα then

|KF | ∈ Lq logα Lloc(Ω) =⇒ |Du| ∈ Lp logα Lloc(Ω)

and, for any cube Q ⊂ 2Q ⊂ Ω,
∫

Q

|Du|p logα

(
e +

|Du|
‖Du‖p

)
dx

6 c

(∫

2Q

〈A(x,Du), Du〉dx + ‖KF‖q
Lq logα L(2Q)

) (4.1)

where c = c(α, Q).
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In particular, for nonhomogeneous p -laplacian equation

div |Du|p−2Du = div F (4.2)

we have

Corollary 4.2. Let u ∈ W 1,p
loc (Ω) be a weak solution of (4.2). Then for any α > 0

|F | ∈ Lq logα Lloc(Ω) =⇒ |Du| ∈ Lp logα Lloc(Ω).

Proof of Theorem 4.1. Following the same notations as in Proposition 3.1, we
fix a cube Q ⊂ 2Q ⊂ Ω and a cut-off function ϕ ∈ C∞0 (2Q) such that 0 6 ϕ 6 1
with ϕ = 1 on Q. Let us consider the matrix field

B(x) = A(x,Du)− F

and let us define
H(x) = ϕpB(x) = A(x, ϕqDu)− ϕpF. (4.3)

Equation (1.1) and relations (1.4) and (2.1) yield

div H = (A(x, Du)− F )Dϕp ∈ Lq log−1 L(Ω,Rn).

Applying divergence operator in (4.3) we obtain

div(A(x, ϕq Du)− ϕpF ) = div(H(x)−H0) (4.4)

where H0 can be any divergence free matrix field. We use Lemma 2.2 to find H0

such that
‖D(H −H0)‖s 6 c‖div H‖s for every 1 < s < q, (4.5)

with c = c(q, n). If we decompose ϕqDu = g + Dw with w = ϕq(u − uQ) and
g = −uDϕq, by (4.4) we obtain that w, whose gradient lies in Lq log−1 L(2Q,Rn),
is a solution of the equation

{
divA(x,Dw) = div G in 2Q,
w = 0 on ∂(2Q) (4.6)

where, by (4.4),

G = [A(x, Dw)−A(x, g(x) + Dw)] + [H(x)−H0] + ϕpF.

Notice that KG ∈ Lq logα L(2Q,Rn), for any α > 0. Indeed by (4.5) and the
Sobolev Imbedding Theorem H −H0 ∈ L

ns
n−s (Ω,Rn). Thus H −H0 ∈ Lr

loc(Ω,Rn)
for every 1 < r < nq

n−q and so K(H −H0) lies in Lq logα L(2Q,Rn) for any α > 0
as K is exponentially integrable.

Also K|A(x,Dw)−A(x, g+Dw)| ∈ Lq logα L(2Q), in fact, by the condition (iv)
in Section 2 we have

|A(x,Dw)−A(x, g + Dw)| 6 K(x)p−1|g(x)| (|g(x)|p−2 + |Dw|p−2
)
.



On finite energy solutions for nonhomogeneous p-harmonic equations 149

For a fixed α > 0, let v be a solution of Problem (4.6) given by Theorem 3.3, then
by definition of H, condition (iv) in Section 2 and (4.3) we get

|A(x,Dw)| 6 |A(x,Dw)−A(x, g + Dw)|+ |A(x, g + Dw)|
6 cK(x)p−1|g(x)| (|g(x)|p−2 + |Dw|p−2

)
+ ϕp|A(x,Du)|.

So, as u is a weak solution and K is exponentially integrable, relation (1.4) implies
that A(x,Dw) ∈ Lq log−1 L(2Q,Rn) and by Proposition 3.4, Du = Dv a.e. in Q.
Estimate (4.1) follows by Theorem 3.3. ¥
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