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UNCERTAINTY PRINCIPLES FOR THE AFFINE GROUP
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Abstract: The Lie algebra of the affine group is generated by two operators A and B satisfying
the commutator rule [A, B] = B. A version of the uncertainty principle is designed such that - in
the time domain - the extremal functions are real valued. The uncertainty inequality naturally
contains a parameter. In the application the wavelet transform based on the extremal functions
gives a model for the first stage of the hearing perception in the inner ear (the cochlea). The
parameter in the uncertainty inequality is associated to the position along the cochlea.
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1. Introduction

The quest to understand signal processing as it is done by the human ear lies at the
origin of this study. Physiological experiments reveal the importance of the affine
group Γ. Invariance principles naturally guide us to the action of the circle group
S, the distinguished one parameter transformation group which commutes with
the action of the affine group. The main result is the basic uncertainty principle
for Γ× S:

ν2

4
6 τ2

(
− 1

4
+ σ2

)

It is a way of expressing that the frequency content of a signal (τ2) and its
temporal variation (σ2) cannot simultaneously be small. The parameter ν which
figures in this inequality is the momentum of the frequency distribution.

The Heisenberg uncertainty principle tells us, that time localization and speci-
fication of the frequency content of an acoustic signal cannot be achieved simulta-
neously with arbitrary precision. This is of central importance in signal processing
and many studies are devoted to this topic (see the standard texts in signal pro-
cessing, e.g. Mallat 1998).

The uncertainty principle for scale by Cohen (1993) is at the beginning of
a new development. The idea was taken up in auditory modeling by Irino and
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Patterson (1997). It led to their gammachirp auditory filter, which models hearing
perception. Indeed, their work is a source of inspiration for the present paper.

In 1946, Gabor defined elementary time-frequency atoms as extremals for the
Heisenberg uncertainty principle and stressed the importance of localized time-
frequency signal processing. The present study reveals, that the ear is sensible to
the elementary time-frequency atoms which arise as extremals in the uncertainty
principle for the affine group.
In contrast to the classical situation, the uncertainty principle for the affine group
contains an additional parameter. In the inner ear this parameter is associated
with the place along the cochlea and in signal processing it is interpreted as a
frequency momentum.

Heisenberg’s uncertainty principle has its origin in quantum physics. The un-
derlying function space is a space of complex valued functions. The space of
acoustic signals however consist of real valued functions. This is the natural set-
ting for the uncertainty principle for the affine group. The results can directly be
applied to signal processing. Of particular interest are the extremal functions, the
time-frequency atoms, which - needless to say - are real valued functions.
In the last section we note that Heisenberg’s uncertainty principle can also be
formulated in this framework.

2. The symmetry group on the space of acoustic signals

Acoustic signals can be described by pressure fluctuations f(t) in the time vari-
able t. The energy of the signal is

∫∞
−∞ |f(t)|2 dt. The space of acoustic signals is

therefore L2(R,R), the Hilbert space of real valued square integrable functions.

The affine group

Γ = {(a, b) : a > 0, b ∈ R}
= {(a, b) : t → at + b, a > 0, b ∈ R}

with group law
(a, b)(a′, b′) = (aa′, ab′ + b)

acts on L2(R,R). Translations and dilations induce actions on L2(R,R). The
translations

τ(b) : t → t + b

describe the time shift. This action is quite natural and reflects time invariance.
The dilations

δ(a) : t → at

however enter the picture only at the level of the hearing process. They reflect
that the ear recognizes a sound independently of its basic pitch.
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The induced actions on L2(R,R) are denoted with the same symbols:

δ(a)f(t) =
1√
a
f
( t

a

)

τ(b)f(t) = f(t− b)

The factor 1√
a
is introduced in order that the action is orthogonal (unitary). We

then set
ρ(a, b)f(t) =

1√
a
f

(
t− b

a

)
= τ(b)δ(a)f(t)

The Fourier transform f intertwines the unitary representation (ρ, L2(R,R)) of Γ
with the representation (ρ̂, L2

sym), where

L2
sym = {f̂ ∈ L2(R,C) : f̂(ω) = f̂(−ω)}

δ̂(a)f̂(ω) =
√

af̂(aω)

τ̂(b)f̂(ω) = e−ibω f̂(ω)

ρ̂(a, b) = τ̂(b)δ̂(a)f̂(ω) = e−iωb
√

af̂(aω)

It should be noted that L2
sym is a real subspace of the complex Hilbert space

L2(R,C). It is a real Hilbert space, the scalar product being given as the restriction
of the Hermitian scalars product in L2(R,C) to L2

sym.
The multiplicative group S = {ε(ϕ) = eiϕ : ϕ ∈ R} of complex numbers of

absolute value one acts in a natural way on L2
sym :

ε̂(ϕ)f̂(ω) = e−iϕ sign (ω)f̂(ω)

= cos(ϕ)f̂(ω)− i sin(ϕ) sign (ω)f̂(ω)

The function −i sign (ω)f̂(ω) is the Fourier transform of the Hilbert transform Hf
of f :

Hf(t) =
1
π

lim
ε→0

∫

|s|>ε

f(s)
t− s

ds,

−i sign (ω)f̂(ω) = Ĥf(ω)(g)

The action of S on L2(R,R) is therefore

ε(ϕ)f(t) = cos (ϕ)f(t) + sin (ϕ)Hf(t)

It should be noted, that the S-action commutes with the Γ−action. The represen-
tations ρ and ρ̂ of Γ can thus be extended to representations of Γ× S

ρ(a, b, ϕ) = ε(ϕ) ρ(a, b)
ρ̂(a, b, ϕ) = ε̂(ϕ)ρ̂(a, b)

The symmetry group on the space L2(R,R) of signals is therefore the group Γ×S.
The one parameter group S of transformation is distinguished by its invariance
properties. This is a well known fact in harmonic analysis.
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Proposition 2.1. If G is a uniformly bounded one parameter group of linear
transformations of L2(R,R), which commutes with translations and dilations, then
G is the transformation group S−up to scaling.

Proof. In fact, translation invariant linear operators T of L2(R) are multiplier
operators (see e.g. [S] p. 28). There exists a function m ∈ L∞(R) such that

(Tf) (̂ω) = m(ω)f̂(ω) a.e.

for all f ∈ L2(R). If T is dilation invariant then the multiplier satisfies

m(c ω) = m(ω), c > 0

Hence there exist constants a, b such that

m(ω) =

{
a, ω > 0
b, ω < 0

If T preserves real valued functions, then b = ā. Writing a = r e−iϕ the multiplier is

m(ω) = r e−iϕ sign (ω)

A uniformly bounded one parameter group G of such operators must then be the
transformation group S−up to a scaling of the parameter ϕ. ¥

The role of the S−action in hearing has not been clarified yet. It is my con-
jecture, that the hearing process carefully controls the S-action. This question
is related to the problem of "hearing phases". According to Helmholtz [H] "The
quality of the musical portion of a composed tone depends solely on the num-
ber and relative strength of its partial simple tones, and in no respect on their
differences of phases".

It has been known for some time that the statement of Helmholtz is not valid for
sounds composed of many harmonics, see e.g. R.Patterson [P] and the references
given in this paper.

There are two further heuristic reasons why the S-action should be preserved.

1. The Hilbert transform, which is the action ε(π
2 ), reverses symmetries. It

maps even functions into odd functions and vice versa. Hearing is sensible
to symmetries.

2. The Hilbert transform does not preserve functions of compact support. If
the hearing process would not preserve the S-action it could not control the
support and hence the timing of the acoustic signals.

The representations (ρ, L2(R,R)) and (ρ̂, L2
sym) of Γ×S induce representations

of the Lie Algebra. The infinitesimal generators of the one parameter groups
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δ(es), τ(b) and ε(ϕ) are

Af(t) =
d

ds

∣∣∣∣
s=0

δ(es)f(t) =
d

ds

∣∣∣∣
s=0

e−s/2f(e−st) = −1
2
f(t)− t

df

dt
(t),

Bf(t) =
d

db

∣∣∣∣
b=0

τ(b)f(t) =
d

db

∣∣∣∣
b=0

f(t− b) = −df

dt
(t),

Hf(t) =
d

dϕ

∣∣∣∣
ϕ=0

(cos (ϕ)f(t) + sin(ϕ)Hf(t)) = Hf(t).

In the Fourier transform picture we have

Âf̂(ω) =
d

ds

∣∣∣∣
s=0

δ̂(es)f̂(ω) =
d

ds

∣∣∣∣
s=0

es/2f̂(esω) =
1
2
f̂(ω) + ω

df̂

dω
(ω),

B̂f̂(ω) =
d

db

∣∣∣∣
b=0

e−ibω f̂(ω) = −iωf̂(ω),

Ĥf̂(ω) =
d

dϕ

∣∣∣∣
ϕ=0

e−iϕ sign (ω)f̂(ω) = −i sign (ω)f̂(ω).

The only non-vanishing brackets are

[A,B] = B for the representation ρ,

[Â, B̂] = B̂ for the representation ρ̂.

Since the representation is unitary, the infinitesimal generators are skew ad-
joint and the domain of definition is dense in the Hilbert space (see [T], Theo-
rem 1.5, p.6).

There is another way of looking at the representations ρ and ρ̂. The Hilbert
transform H satisfies H2 = −I. It therefore defines a complex structure on
L2(R,R) (and similarly for Ĥ on L2

sym). Since δ(a) and τ(b) commute with H
we can consider ρ as a complex unitary representation on L2(R,R) equipped with
the complex structure H. The action ε(ϕ) is then the natural action of the group
S of complex numbers of absolute value one.

3. The basic uncertainty inequality

The uncertainty inequality for Γ× S is based on the following calculation:
For all λ, µ ∈ R

0 6 ‖(λA + µHB)f‖2 = λ2‖Af‖2 + λµ(Af, HBf) + λµ(HBf, Af) + µ2‖HBf‖
= λ2‖Af‖2 − λµ(f, [A, HB]f) + µ2‖HBf‖2

With [A,HB] = HB it follows that

|(f, HBf)| 6 2‖Af‖ ‖HBf‖
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Observe that the scalar products (Af,HBf) and (f, HBf) are finite if Af and Bf
are in L2(R,C). The inequality holds trivially, if either ‖Af‖ = ∞ or ‖Bf‖ = ∞.
Equality is reached if and only if

(λA + µHB)f = 0

for some λ, µ ∈ R2, (λ, µ) 6= (0, 0).

If (λA + µHB)f = 0 for some (λ, µ) ∈ R2, then the non-negative quadratic
form

λ2‖Af‖2 − λµ(f, HBf) + µ2‖HBf‖2

vanishes for these values λ, µ. Therefore the discriminant has to vanish:

(f, HBf)2 − 4‖Af‖2‖HBf‖2 = 0.

Conversely, if equality holds for f ( 6= 0), the discriminant of the quadratic form
vanishes. There exist then (λ, µ) ∈ R2, (λ, µ) 6= (0, 0) such that

λ2‖Af‖2 − λµ(f, HBf) + µ2‖HBf‖2 = 0

for these values λ, µ one must have

‖(λA + µHB)f‖ = 0

and hence
(λA + µHB)f = 0.

In the deduction of the uncertainty inequality, HB can be replaced by HB − ηI,
since both HB and I are selfadjoint. The skew adjoint operator A can be replaced
by A − β B, since B commutes with HB. The basic uncertainty inequality then
takes the form

|(f, HBf)| 6 2 ‖(A− β B)f‖ ‖(HB − ηI)f‖.

Set

ν‖f‖2 = −(f, HBf) = −(f̂ , ĤB̂f̂) =

∞∫

−∞
|ω| |f̂(ω)|2 dω.

Then ν is the expectation value of the modulus of the frequency of the signal. As
such it is a positive real number (and the operator −HB is positive).

Observe next that the norm ‖(HB − ηI)f‖ is minimal if η = −ν.
The expression ‖(A− βB)f‖ is minimal if

β =
Re (Af, Bf)
‖Bf‖2
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In what follows, β is taken to be this number. For Re (Af,B f) one calculates

Re (Af,Bf) = Re

∞∫

−∞

(
−f(t)

2
− t

df

dt
(t)

)(
−df̄

dt
(t)

)
dt

=

∞∫

−∞
t

∣∣∣∣
df

dt
(t)

∣∣∣∣
2

dt.

Therefore β is the expectation value for the position of the derivative of f

β =

∞∫
−∞

t|dfdt (t)|2 dt

∞∫
−∞

|dfdt (t)|2 dt

The precise uncertainty inequality then takes the form

ν‖f‖2 6 2‖(A− βB)f‖ ‖(HB + ν)f‖
The mean deviation from the expectation value ν for the modulus of the fre-
quency is

τ2 =
‖(HB + νI)f̂‖2

‖f̂‖2 =
1

‖f‖2
∞∫

−∞
(|ω| − ν)2|f̂(ω)|2 dω

The other factor in the inequality has a similar interpretation.

‖(A− βB)f‖2 = ‖Af‖2 − 2β2Re (Af, Bf) + β2‖Bf‖2

=
1
4
‖f‖2 + Re

(
f, t

df

dt

)
+ ‖tdf

dt
‖2 − 2β

(
t
df

dt
,
df

dt

)
+ β2‖df

dt
‖2

= −1
4
‖f‖2 +

∞∫

−∞
(t− β)2|df

dt
(t)|2 dt

= −1
4
‖f‖2 + σ2‖f‖2

The quantity σ2 is the mean deviation from the expectation value β related to the
square norm of f (and not to the square norm of df

dt ).

σ2 =
1

‖f‖2
∞∫

−∞
(t− β)2

∣∣∣∣
df

dt
(t)

∣∣∣∣
2

dt.

Theorem 3.1 (uncertainty principle). For any f ∈ L2(R,C) with Af and Bf
in L2(R,C) set

β =

∞∫
−∞

t|dfdt (t)|2 dt

∞∫
−∞

|dfdt (t)|2 dt

,
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ν =
1

‖f‖2
∞∫

−∞
|ω| |f̂(ω)|2 dω,

σ2 =
1

‖f‖2
∞∫

−∞
(t− β)2|df

dt
(t)|2 dt,

τ2 =
1

‖f‖2
∞∫

−∞
(|ω| − ν)2|f̂(ω)|2dω.

Then the inequality
ν2

4
6

(
− 1

4
+ σ2

)
τ2

holds.

The quantities β, ν, τ and σ transform as follows under the representation ρ.
Set fa,b = ρ(a, b)f , f̂(a, b) = ρ̂(a, b)f̂ . Then

β(fa,b) =

∞∫
−∞

t
∣∣∣dfa,b

dt (t)
∣∣∣
2

dt

∞∫
−∞

∣∣∣dfa,b

dt (t)
∣∣∣
2

dt

= a β(f) + b,

ν(fa,b) =
1

‖ ˆfa,b‖2
∞∫

−∞
|ω‖ ˆfa,b(ω)|2dω = a−1ν(f),

σ2(fa,b) =
1

‖fa,b‖2
∞∫

−∞
(t− β(fa,b))2

∣∣∣∣
dfa,b

dt
(t)

∣∣∣∣
2

dt = σ2(f),

τ2(fa,b) =
1

‖ ˆfa,b‖2
∞∫

−∞
(|ω| − ν( ˆfa,b))2| ˆfa,b(ω)|2dω = a−2τ2(f)

A function f for which equality holds in the uncertainty principle will be called
an extremal function. The reasoning used at the beginning of this section shows
that f is extremal if and only if there exist λ, µ ∈ R such that

λ(A− βB)f + µ(HB − ηI)f = 0

If f ∈ L2(R,R) is a solution of this equation, then this forces β to be the expecta-
tion value for the position of df

dt and −η = ν the expectation value for the modulus
of the frequency of f̂ (as defined above).
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Fortunately, the Fourier transforms f̂ of the extremal functions can be deter-
mined explicitly: in the equality

λ(Â− βB̂)f̂ + µ(ĤB̂ + νI)f̂ = 0

we specify the operators and set f̂ = h, µ
λ = −κ :

(
1
2

+ ω
d

dω
+ iβω

)
h = −κ(|ω| − ν)h

This differential equation can be separated:
dh
dω

h
= −κ sign (ω)− i β +

(
κ ν − 1

2

)
1
ω

The solutions in L2
sym of this equation are

h(ω) = c e−i ε sign (ω)−i β ωe−κ|ω||ω|κν− 1
2

where c and ε are arbitrary real constants. The parameters are ν = ν(h), β = β(h)
and κ = κ(h). Both ν and κ must be positive. The parameter κ can be calculated
from the defining equality:

‖(A− β B)h‖2 = κ2‖(HB + ν I)h‖2,
−1

4
+ σ2 = κ2 τ2.

Since h is extremal, the equality

−1
4

+ σ2 =
ν2

4τ2

has to hold.
Therefore

κ =
ν

2τ2
=

2
ν

(
−1

4
+ σ2

)

These functions are in L2
sym provided that κ and ν both are positive.

Note that h may not be continuous at 0. Still it is a solution of the differential
equation. The differential operator ω d

dω can be applied to h in the distributional
sense.

As such ω d
dω h is the temperate distribution defined by

ω
d

dω
h(ϕ) = −

∫
h(ω)

d

dω
(ω ϕ (ω))dω

for any test function ϕ.
Another possibility is to interpret the differential operator as a Lie derivative:

(
ω

d

dω
h

)
(ω) =

d

ds

∣∣∣∣
s=0

h(esω)

Both variants show that h is a solution in L2
sym of the differential equation.
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Proposition 3.1. The set E of extremal functions for the uncertainty inequality
that are in L2(R,R) is invariant under the action ρ of Γ× S.

Proof. It suffices to show that the set Ê of Fourier transforms of extremal func-
tions is invariant under the action ρ̂ of Γ × S. But this can readily be seen from
the explicit form of the solutions:

ρ̂(a)h(ω) = c aκνe−i ε sign (ω)e−κ a|ω|−iβ a ω |ω|κaνa−1− 1
2

Under this action the parameters change as

(κ, ν, β, ε) → (κa, νa−1, βa, ε)

similarly
τ̂(b)ε̂(ϕ)h(ω) = c e−i(ε+ϕ)sign (ω)e−κ|ω|−i(β+b)ω |ω|κν− 1

2

with parameter change

(κ, ν, β, ε) → (κ, ν, β + b, ε + ϕ). ¥

Extension. Starting from the inequality

|(f,HBf)| 6 2‖Af‖ ‖HBf‖

it is possible to replace A by A− αH − βB instead of by A− βB. The resulting
uncertainty inequality

ν‖f‖2 6 2‖(A− αH − βB)f‖ ‖(HB + νI)f‖

still displays the full invariance under Γ.
The condition for minimality of α and β is now a linear system of two equations:

α‖f‖2 − β(f,HBf) + (f, HAf) = 0,

−α(f, HBf) + β‖Bf‖2 −Re(Af,Bf) = 0.

The Fourier transforms of the extremal functions then satisfy the differential equa-
tion

λ(Â− αĤ − βB̂)f̂ + µ(ĤB̂ + νI)f̂ = 0

with α and β the solutions of the above system. A direct calculation shows that
they are of the form

h(ω) = c e−i ε sign (ω)−iα sign (ω) log|ω| −i β ω e−κ|ω||ω|κν− 1
2
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4. The basilar membrane filter

In the inner ear the acoustic signals f are transformed into fluid waves. They
travel along the basilar membrane, where the hair cells are located. These cells
convert the movement of the basilar membrane into nerve impulses.

For a fixed position x along the basilar membrane the response to a sinusoidal
input increases with the frequency ω up to a critical frequency ωx, the so called
resonant frequency. If the frequency is increased beyond ωx, the response quickly
drops to zero. The function which assigns to x the resonant frequency ωx is called
the frequency position function. In a first approximation

ωx = Ke−γx

where K and γ are scaling constants.
For the present purpose it is essential, that each position x along the basilar

membrane is tuned to a specific frequency. The basic uncertainty principle contains
the expectation value ν as a parameter. In the following this parameter will be
identified with this specific frequency ωx. Assuming linearity and time invariance,
the response of the inner ear to the input

f(t) = Re eiωt

has to be of the form
Re{ĝ(x, ω)eiωt}.

The variable x denotes the position along the basilar membrane. The complex val-
ued function ĝ(x, ω) is called the basilar membrane filter. It displays a remarkable
invariance with respect to dilations:

ĝ(x, ω) = ĝ(x− γ log a, aω), a > 0.

In this notation the highest audible frequency of about 20’000 Hz is assigned to the
position x = 0, the place at the oval window. The lower frequencies are assigned
to places x closer to the apex. The positive number γ is the scaling constant that
appears in the frequency position function.
This invariance property is amazingly exact for frequencies above 1000 Hz and
changes slightly for lower frequencies. It is this invariance property that explains
the dilation invariance of the hearing process. In her book I. Daubechies (1992)
observes, that the ear produces a wavelet transform of the incoming sound. In
the literature on acoustics this result appears in the work of X.Yang, K. Wang
and S. Shamma (1992). The reason behind this fact is the invariance law for the
basilar membrane filter.

In the present paper, the basic discovery is the fact, that the basilar membrane
filter ĝ(x, ω) can be approximated by extremal functions for the general uncertainty
inequality. With this in mind the extremal function h for the uncertainty inequality
is written in the form

h(ω) = c e−iε sign(ω)−iβ ω
ν e−µ|ω

ν |
∣∣∣ω
ν

∣∣∣
µ− 1

2
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with real constants c, ε, β and µ that can be chosen arbitrarily in adjustment of
the experimental data. The parameter ν takes the special role mentioned above.
It is the expectation value of the extremal function h and as such figures as a
parameter in the uncertainty inequality. In the present context, it is identified
with ωx. In this way, the extremal function h becomes a function h(x, ω) of x
and ω. It displays the scaling invariance

h(x, ω) = h(x− γ log a, aω), a > 0.

This is the proposed representation for the basilar membrane filter. In Figure 1
the graph of this function is pictured as a function of the distance x (in mm)
along the basilar membrane. It is reminiscent of Békésy’s analysis of the dead
human cochlea. (Békésy 1947). His results are described in Geisler’s book (1998)
in chapter 5 (compare in particular with Figures 5.2 and 5.3).

Figure 1: The real part and the modulus of the extremal function h(x, ω) as a function
of x for ω = 314 Hz. The parameters are: c = 1, η = 1.6, β = 2π

The linearity requirement in the definition of ĝ(x, ω) is essential. Unfortunately
it only holds within narrow limits. The intensity of the acoustic signal varies over
more than 100 dB whereas the basilar membrane movement varies over a much
smaller range. The response of the inner ear is thus highly compressive, it can
only be linear within a rather narrow range. The extremal function h(x, ω) is
then interpreted as a linear approximation of the basilar membrane filter at high
intensities of sound. In order to obtain a good linear approximation at low levels
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the uncertainty principle for the affine group will be generalized. This is the topic
of the next section.

5. The general uncertainty principle

The mathematical construction starts with a real character χ of the multiplicative
group R∗

χ(a) = aχ, a > 0, χ > 0

and the quasiregular unitary representation of R∗ on L2
sym :

δ̂χ(a)f̂(ω) = a
1
2χ f̂(a

1
χ ω)

To obtain a representation ρ̂χ of the affine group Γ set

τ̂χ(b)f̂(ω) = e−ib|ω|χ sign (ω)f̂(ω)

and
ρ̂χ(a, b) = τ̂χ(b) δ̂χ(a)

This is in fact a representation of Γ on L2
sym since

ρ̂χ(a, b) ρ̂χ(a′, b′)f̂(ω) = e−ib|ω|χ sign (ω) a
1
2χ ρ̂κ(a′, b′)f̂(a

1
λ ω)

= e−ib|ω|χ sign (ω) a
1
2χ e−ib′|a

1
χ ω|χ sign (ω) a′

1
2χ f̂(a′

1
χ a

1
χ ω)

= ρ̂χ(a a′, a b′ + b)f̂(ω)

and it is clearly unitary.
The infinitesimal generators are

Âχ =
1
χ

(
1
2

+ ω
d

dω

)
=

1
χ

Â

B̂χ = −i sign (ω) |ω|χ

The commutator relation are those of the Lie algebra of Γ :

[Âχ, B̂χ] = B̂χ

This representation is extended to a representation of Γ× S by setting

ε̂(ϕ) f̂(ω) = e−iϕ sign (ω)f̂(ω)

The associated uncertainty inequality becomes

|(f̂ , [Âχ, Ĥ B̂χ]f̂)| 6 2‖Âχf̂‖ ‖Ĥ B̂χf̂‖
The expectation νχ of −Ĥ B̂χ is defined as

νχ‖f̂‖2 = (f̂ ,−ĤB̂χf̂) =

∞∫

−∞
|ω|χ|f̂(ω)|2 dω.



58 Hans Martin Reimann

With Âχ = 1
χ Â this leads to the inequality

νχ‖f̂‖2 6 2
χ
‖Â f̂‖ ‖Ĥ B̂χf̂‖.

We arrived at almost the same inequality as before except for the fact, that the
selfadjoint operator −Ĥ B̂ has been replaced by a power of −Ĥ B̂

(−Ĥ B̂)χ = −Ĥ B̂χ = |ω|χ.

Since B̂ commutes with Ĥ B̂χ the proof for the basic inequality can be modified
to give the general uncertainty inequality

νχ‖f‖2 6 1
χ
‖(A− β B)f‖ ‖(H Bχ − η I)f‖.

The norms on the righthand side are minimal for

β =
1

‖Bf‖2
∫

t

∣∣∣∣
df

dt
(t)

∣∣∣∣
2

dt

η = − 1

‖f̂‖2
∫
|ω|χ |f̂(ω)|2 dω := −νχ

The interpretation of the term ‖(Â− βB̂)f‖ is unchanged

‖(A− βB)f‖2 = −1
4
‖f‖2 +

∫
(t− β)2

∣∣∣∣
df

dt
(t)

∣∣∣∣
2

dt

= −1
4
‖f‖2 + σ2 ‖f‖2

with σ2 the mean deviation of df
dt from its expected value β, normalized by ‖f‖2.

The remaining term is the mean deviation of |ω|χ from its expected value νχ :

‖(ĤB̂χ + νχI)f̂‖2 =
∫

(|ω|χ − νχ)2 |f̂(ω)|2dω := τ2
χ ‖f‖2

Theorem 5.1 (general uncertainty principle). We have

χ2 ν2
χ

4
6

(
−1

4
+ σ2

)
τ2
χ.

It is remarkable that this inequality transforms nicely under the standard rep-
resentations ρ (and ρ̂), but not under the representation ρχ. This is due to the
fact that we used A− βB and not A− βBχ.
Under the representation ρ the quantities β and σ behave as before

β(fa,b) = a β + b,

σ(fa,b) = σ(f).
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For νχ and τχ one obtains

νχ(fa,b) =
1

‖ ˆfa,b‖2
∞∫

−∞
|ω|χ| ˆfa,b(ω)|2dω = a−χνχ(f),

τχ(fa,b) =
1

‖ ˆfa,b‖2
∞∫

−∞
(|ω|χ − νχ( ˆfa,b))2| ˆfa,b(ω)|2dω = a−2χτ2

χ(f).

The Fourier transforms of the extremal functions for the general uncertainty in-
equality can be determined explicitly. They have to satisfy the equation

λ

χ

((
1
2

+ ω
d

dω

)
f̂ + iβωf̂

)
+ µ(−|ω|χf̂ − νχf̂) = 0

for certain real constants λ, µ, β and νχ, with νχ > 0.
Set f̂ = h, µχ

λ = −κ and separate the equation:

dh
dω

h
= −κ

|ω|χ
ω

+
(

κνχ − 1
2

)
1
ω
− iβ

The solutions in L2
sym are

h(ω) = c e−iε sign (ω) e−
κ
χ |ω|χ |ω|κνχ− 1

2 e−iβω, c, ε ∈ R
(with κ > 0, νχ > 0).

Again, κ can be determined from the defining equality

‖(A− β B)h‖2 = κ2‖(HBχ + νχ)h‖2,
−1

4
+ σ2 = κ2 τ2

χ.

Since h is extremal
χ2ν2

χ

4τ2
χ

= −1
4

+ σ2.

Therefore
κ =

χνχ

2τ2
χ

=
2

χνχ

(
−1

4
+ σ2

)
.

Proposition 5.1. The set Eχ of extremal functions for the general uncertainty
inequality that are in L2(R,R) is invariant under the action ρ of Γ× S.

Proof. It suffices to show that the set Êχ of Fourier transforms of extremal func-
tions is invariant under ρ̂. It clearly is invariant under ε̂. The invariance under τ̂
is due to the factor e−iβω and the invariance under δ̂ can be verified directly.

δ̂(a)h(ω) = aκνχ− 1
2 ce−iεsign(ω) e

κaχ

χ |ω|χ |ω|κνχ− 1
2 e−iβaω. ¥
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Figure 2: Real part and modulus of the extremal functions hχ(x, ω) for ω = 314 Hz.
A: χ = 2, B: χ = 4 and C: χ = 8. The remaining parameters are: η = 4π, µ = 2, C = 1
and ε = 0.

The localization parameter for our application is

ν = (νχ)
1
χ .

Setting

µ =
κνχ

χ
, η =

β

ν

the extremal function can then be expressed in the form

hχ(ω) = c e−εsign(ω)−iη ω
ν e−µ|ω

ν |χ
∣∣∣ω
ν

∣∣∣
µχ− 1

2

with newly defined constants c and ε. Once again, setting ν = ωx turns hχ into a
function hχ(x, ω) of x and ω that displays the correct scaling behavior:

hχ(x, ω) = hχ(x− γ log a, aω), a > 0.

The function hχ(x, ω) is our approximation for ĝ(x, ω) at small intensities, the
level decreasing with increasing values of χ. The functions hχ for χ = 2, 4 and 8
are illustrated in Figure 2.
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The maximal value of the modulus of the extremal function |hχ(ω)| =
|c| e−µ|ω

ν |χ |ων |µχ− 1
2 is reached at a value

ω∗ = ν

(
1− 1

2µχ

) 1
χ

below ν = ωx. This agrees with the observation, that at a fixed position x the peak
of the basilar membrane filter |g(x, ω)| moves to lower frequencies with increasing
sound levels. If the parameter χ increases then the ratio ν

ω∗ tends to 1. This is
illustrated in Figure 3, in which the graphs for |hχ(ω)| are shown in a log-log scale.

Figure 3: The extremal functions |hχ(ω)| on a log log-scale for ν = 1000, µ from 1.6 to 2;
c from 1.6 to 2.4 and successively for χ = 1, 1.41, 2, 2.82, 4, 5.64, 8, 11.28 and 16 (de-
creasing width of line)

6. Intertwining

Proposition 6.1. The unitary operator T : L2(R) → L2(R),

T h(ω) =
√

χ |ω|χ−1
2 h(|ω|χsign (ω))

intertwines the representations ρ̂ and ρ̂χ

ρ̂χ T = T ρ̂.

Furthermore, it commutes with the action of S.
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Proof. T is unitary:

‖T h‖2 = χ

∫ ∞

−∞
|ω|χ−1|h(|ω|χ sign(ω))|2dω

=
∫
|h(µ)|2dµ = ‖h‖2.

The intertwining property is easily verified:

ρ̂χ
(a,b)T h(ω) = τ̂χ(b)δ̂χ(a) T h(ω)

= e−ib|ω|χ sign(ω) a
1
2χ
√

χ |a 1
χ ω|χ−1

2 h(a|ω|χ sign (ω))
= T ρ̂ h(ω) ¥

The operator T then also intertwines the infinitesimal operators

Âχ T = T Â,

B̂χ T = T B̂,

Ĥ T = T Ĥ.

The uncertainty principle in its basic form (Section 2) can be intertwined to give

|(f,HBχ f)| 6 2‖(Aχ − βχBχ)f‖ ‖(HBχ + νχ)f‖.

The quantities νχ and τχ are as before, and

βχ =
Re (Aχf,Bχf)

‖Bχf‖

If χ = n ∈ N, then βχ can be expressed as an integral in the time variable.
If n = 2m + 1 is odd, then

B̂ = −|ω|ni sign (ω) = (−1)m+1(iω)n,

nRe (Anf, Bnf) = (−1)mRe

∫ (
1
2
f + t

d

dt
f

)
dn

dtn
f̄ dt

= (−1)m−1Re

∫ (
1
2

d

dt
f + t

d2

dt
f

)
dn−1

dtn−1
f̄ dt

= nRe

(
An df

dt
,Bn−2 df

dt

)
= Re

(
A

dmf

dtm
, B

dmf

dtm

)

=
∫

t

∣∣∣∣
dm+1f

dtm+1

∣∣∣∣
2

dt = nβn‖Bnf‖2



Uncertainty principles for the affine group 63

If n = 2m is even, then

B̂n = (−1)m+1 (iω)2m i sign (ω),

nRe (Anf,Bnf) = (−1)m Re

∫
(Af)H

dnf̄

dtn
dt

= (−1)m−1 Re

∫ (
A

df

dt

)
H

dn−1f̄

dtn
dt

= nRe

(
An df

dt
,Bn−2 df

dt

)
= nRe

(
An dmf

dtm
,H

dmf

dtm

)

= Re

∫
t
dm+1f

dtm+1
H

dmf̄

dtm
dt = nβn‖Bnf‖2

For both n even and odd

‖Bnf‖2 =
∫ ∣∣∣∣

dn

dtn
f(t)

∣∣∣∣
2

dt

The quantity ‖(An − βn Bn)f‖2 can be calculated to be

− 1
4n2

‖f‖2 +
∫ ∣∣∣∣

t

n

df

dt
− (−1)mβn

dnf

dtn

∣∣∣∣
2

dt :=
1
n2

(
−1

4
+ σ2

n

)

in case n = 2m + 1, and finally for n = 2m:

− 1
4n2

‖f‖2 +
∫ ∣∣∣∣

t

n

df

dt
+ (−1)mβn H

dnf

dtn

∣∣∣∣
2

dt :=
1
n2

(
−1

4
+ σ2

n

)

Theorem 6.1 (general uncertainty principle, second version). We have

n2 ν2
n

4
6

(
−1

4
+ σ2

n

)
τ2
n.

For n = 1 this is the basic uncertainty principle for which we calculated the
extremal functions

h(ω) = c e−iεsign(ω) e−κ|ω|−iβω |ω|κν− 1
2

in Section 2. The extremal functions for general n are then obtained by applying
the intertwining operator T.

If we choose β = 0, then

T h(ω) =
√

nce−iε sign (ω)|ω|n−1
2 e−κ|ω|n |ω|nκν− 1

2

for both versions of the general uncertainty principle. The set Eχ of extremal
functions for the second version of the general uncertainty inequality is invariant
under the action ρχ of Γ× S.
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7. Heisenberg’s uncertainty principle for real valued functions

The classical Heisenberg uncertainty principle tells us that position and momentum
of a particle cannot be determined simultaneously with arbitrary precision. In
quantum mechanics the particles are represented by complex valued functions.
The expectation for the momentum is defined in the Fourier domain as

∫

R
ω|f̂ |2dω

(with normalization ‖f‖ = 1 ). Yet this definition assigns the value zero to all
real valued functions. This fact lies at the core of the difficulties encountered in
applying the Heisenberg inequality in signal processing. However there is a way
to formulate the Heisenberg uncertainty principle that is much more appropriate
for real valued functions.

Powers of the selfadjoint operator −Ĥ B̂ lead to the general uncertainty prin-
ciple for Γ×S. Other functions of −Ĥ B̂ may also lead to interesting inequalities.
The example which is chosen here is the logarithm.
Since −Ĥ B̂ is a positive selfadjoint operator, log (−Ĥ B̂) is a well defined selfad-
joint operator. In L2

sym it is realized as the multiplier log |ω|. It commutes with
B̂ and Ĥ and the commutator relation with Â is the Heisenberg relation:

[Â, log (−Ĥ B̂)] = I

The uncertainty inequality is derived in the same way:

‖f‖2 6 2‖(A− βB)f‖ ‖(log (−HB)− νI)f‖.
The values β and η for which the norms of the righthand side are minimal are the
expectation values

β =
1

‖df
dt‖2

∞∫

−∞
t

∣∣∣∣
df

dt
(t)

∣∣∣∣
2

dt

and

ν =
1

‖f‖2
∞∫

−∞
log |ω| |f̂(ω)|2 dω

As before we define σ by

σ2‖f‖2 =

∞∫

−∞
(t− β)2

∣∣∣∣
df

dt
(t)

∣∣∣∣
2

dt

and τ2
log as the mean deviation

τ2
log ‖f‖2 =

∞∫

−∞
(log |ω| − ν)2 |f̂(ω)|2dω
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Theorem 7.1 (Heisenberg’s uncertainty principle for real valued func-
tions). We have

1
4

6
(
−1

4
+ σ2

)
τ2
log.

The extremal functions are determined by the differential equation

λ

(
1
2

+ ω
d

dω
f̂ + i β ω f̂

)
+ µ

(
log |ω|f̂ − νf̂

)
= 0

Again we set f̂ = h, µ
λ = κ and separate the equation

dh
dω

h
= −i β +

(
κν − 1

2

)
1
ω
− κ

log |ω|
ω

Integration gives

log |h(ω)| = −i β ω +
(

κν − 1
2

)
log |ω| − κ

(log |ω|)2
2

+ const,

h(ω) = c e−iε sign (ω)−iβω e−
κ
2 (log |ω|)2 |ω|κν− 1

2

with arbitrary real constants c and ε, β = β(h), ν = ν(h) and κ = 1
2τ2 =

2(− 1
µ + σ2).
This function is in L2

sym if κ > 0 (this time ν is an arbitrary real number).

Proposition 7.1. The set of extremal functions that are in L2
sym is invariant

under the action ρ of Γ× S.

Remark. With the substitution x = log ω, (ω > 0) the function

f̃(x) = h(ω) = c e−iε −iβex

e−
κx2
2 +(κν− 1

2 )x

is almost the extremal function for the well known Heisenberg inequality as it is
usually derived for the standard action of the Heisenberg group on the complex
Hilbert space L2(R,C).

In order to arrive at the classical solution one has to replaceA by A−αH (and
not A− βB) in the uncertainty inequality

1 6 2 ‖Af‖ ‖ log(−HB)f‖.

This gives
1 6 2‖(A− αH)f‖ ‖(log (−HB)− νI)f‖

where the norms are minimal for

α =
(Af, Hf)
‖f‖2
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and for the expectation value

ν =
1

‖f‖2
∫

log |ω| |f(ω)|2 dω.

The differential equation for the extremal function is

λ

((
1
2

+ ω
d

dω

)
f̂ + iα sign (ω)f̂

)
+ µ

(
log |ω|f̂ − νf̂

)
= 0.

Set f̂ = h, µ
λ = κ and separate the equation

dh
dω

h
= −κ

log |ω|
ω

+
(

κν − 1
2

)
1
ω
− iα

1
|ω| .

The solutions are

h(ω) = c e−iεsign(ω) e−κ(
log |ω|

2 )2 |ω|κν− 1
2 |ω|−iαsign(ω).

The substitution x = log ω (for ω > 0) gives the classical functions

h̃(x) = h(ω) = c e−iε e−κ x2
2 +(κν− 1

2−iα)x.
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