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Abstract: We define n -dimensional Beukers-type integrals over the unit hypercube. Using
an n -dimensional birational transformation we show that such integrals are equal to suita-
ble n -dimensional Sorokin-type integrals with linear constraints, and represent linear forms in
1, ζ(2), ζ(3), . . . , ζ(n) with rational coefficients.
Keywords: Multiple integrals of rational functions, values of the Riemann zeta-function, bira-
tional transformations.

1. Introduction

In recent years the study of Q-linear forms in the values of the Riemann zeta-func-
tion at positive integers aroused the interest of several authors, since Rivoal’s the-
orem [1], [9] on the existence of infinitely many irrational values of the zeta-function
at odd positive integers. Basically, two main techniques are employed in this con-
text, often interacting with each other: namely, the arithmetical study of multiple
integrals of suitable rational functions, and the study of multiple hypergeometric
and polylogarithmic series. Among the many papers devoted to this or to related
subjects we mention [4], [5], [6], [10], [11], [13], [16], [17], [18].

Concerning in particular the diophantine study of ζ(2) and ζ(3), successive
improvements on the irrationality measures of such constants were given by several
authors (see [14], pp. 562-563, for an account of this). The methods used to obtain
these results are all related to the double and triple integrals introduced by Beukers
in [2]. The best known irrationality measures of ζ(2) and ζ(3) were obtained by
Rhin and Viola [7], [8], who studied double and triple Beukers-type integrals with
unequal exponents by introducing an algebraic method based on the structure of
certain permutation groups. On the other hand, Sorokin [12] employed the triple
integral ∫

(0,1)3

(
x(1− x)y(1− y)z(1− z)

(1− xy)(1− xyz)
)m dxdy dz

(1− xy)(1− xyz)
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to give a further proof of Apéry’s theorem on the irrationality of ζ(3). The
equivalence of Beukers-type and Sorokin-type triple integrals with unequal expo-
nents satisfying suitable conditions was shown in [4] and [15]. Specifically, in [15],
Section 3, Viola introduced a family of 32 three-dimensional birational trans-
formations which can be used as changes of variables from a Beukers-type to
a Sorokin-type triple integral.

The problem of extending to higher dimensions the arithmetical equivalence
of different kinds of multiple integrals was studied by several mathematicians. In
particular, following Vasilyev [13] and other authors, Fischler [4] considered the
generalisation of Beukers’ three-dimensional measure

dxdy dz
1− (1− xy)z

(1.1)

in Vasilyev’s form

dx1 . . . dxn
1− (1− (1− . . .− (1− x1) . . . xn−2)xn−1)xn

, (1.2)

and gave an n-dimensional change of variables transforming a Vasilyev-type into
a Sorokin-type multiple integral. However, Vasilyev’s measure (1.2) is not the only
reasonable generalisation of (1.1) to the higher-dimensional case, and in the present
paper we analyse Beukers-type multiple integrals with the measure

dx1 . . . dxn
1− (1− x1 . . . xn−1)xn

. (1.3)

The measure (1.3) has some technical advantages over (1.2) and suggests in par-
ticular the definition of a birational transformation ηn (see (2.1) and (2.2) below)
which generalises one of the above-mentioned 32 birational transformations intro-
duced in [15]. In Theorem 2.1 we use ηn as a change of variables to transform an
n-dimensional Beukers-type integral with the measure (1.3) into an n -dimensional
Sorokin-type integral with linear constraints.

Since Vasilyev’s multiple integrals are known to be Q-linear forms in the
values of the Riemann zeta-function at positive integers of a given parity (see
[4], [5], [10], [13], [16], [17]), it is natural to investigate the arithmetical structure
of Beukers-type multiple integrals with the measure (1.3). Results of this kind
were obtained by Nesterenko in [6], as a consequence of more general theorems
involving the arithmetic of linear forms in polylogarithms. On the other hand, in
a recent paper Cresson, Fischler and Rivoal [3] make a deep study of multiple
hypergeometric integrals and series related to multiple polylogarithmic functions.
In particular these authors analyse the arithmetic of suitably defined multiple
Sorokin-type integrals, showing that such integrals are in general Q-linear com-
binations of polyzeta-values. Owing to the great arithmetical complexity of this
general framework, a natural quest consists in seeking conditions for a multiple
Sorokin-type integral to be a Q-linear combination only of values of the Riemann
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zeta-function at positive integers, avoiding the occurrence of polyzeta-values. In
Theorem 3.1, using the birational transformation ηn , we give a new proof that
any convergent n-dimensional Beukers-type integral without constraints, and the-
refore, by Theorem 2.1, also any n-dimensional Sorokin-type integral with natural
linear constraints, are indeed Q-linear combinations of 1, ζ(2), ζ(3), . . . , ζ(n).

Acknowledgement. We are indebted to the referee for helpful remarks and sug-
gestions on an earlier version of this paper.

2. An nnn-dimensional birational transformation

For any n > 2 we introduce an n -dimensional birational transformation

ηn : (x1, . . . , xn) 7−→ (X1, . . . , Xn)

through the equations

ηn :





X1 = (1− x1 . . . xn−1)xn
1− x1 . . . xn

X2 = (1− x1 . . . xn−2)xn−1
1− x1 . . . xn−1

. . . . . . . . . . . . . .

Xn−1 = (1− x1)x2
1− x1x2

Xn = 1− x1 . . . xn.

(2.1)

This transformation generalises to any dimension n one of the 32 birational trans-
formations defined in [15], p. 147, for the case n = 3, namely the transformation
σϑ2η with the notation therein.

As is easily seen, the inverse of (2.1) is given by the equations

η−1
n :





x1 = 1−Xn
1− (1−X1 . . . Xn−1)Xn

x2 = 1− (1−X1 . . . Xn−1)Xn

1− (1−X1 . . . Xn−2)Xn

. . . . . . . . . . . . . . .

xn−1 = 1− (1−X1X2)Xn

1− (1−X1)Xn

xn = 1− (1−X1)Xn.

(2.2)

Using ηn as a change of variables we prove the following

Theorem 2.1. For any non-negative integers a1, . . . , an; b1, . . . , bn; c1, . . . , cn−1

satisfying the linear conditions

a1 + c2 = a2 + c1

a2 + c3 = a3 + c2

. . . . . . . .

an−2 + cn−1 = an−1 + cn−2

(2.3)
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the Beukers-type integral

Bn =
∫

(0,1)n

Xa1
1 (1−X1)b1 . . . Xan

n (1−Xn)bn

(1− (1−X1 . . . Xn−1)Xn)bn+a1−c1
dX1 . . . dXn

1− (1−X1 . . . Xn−1)Xn
(2.4)

is equal to the Sorokin-type integral

Sn = (2.5)
∫

(0,1)n

xbn1 (1− x1)an−1 x
cn−1
2 (1− x2)bn−1 . . . xc1n (1− xn)b1

(1− x1x2)an−1+bn−1−an−2 . . . (1− x1 . . . xn−1)a2+b2−a1(1− x1 . . . xn)a1+b1−an

× dx1 . . . dxn
(1− x1x2) . . . (1− x1 . . . xn)

.

Proof. Since c2, . . . , cn−1 do not appear explicitly in (2.4), for Bn the conditions
(2.3) do not represent constraints but should be viewed instead as definitions of
c2, . . . , cn−1 successively. We also remark that both Bn and Sn are finite if and
only if a1, . . . , an ; b1, . . . , bn ; c1, . . . , cn−1 > 0.

From (2.1) and (2.2) it is plain that ηn is a one-to-one mapping of the open
unit hypercube (0, 1)n onto (0, 1)n . Moreover ηn satisfies

dX1 . . . dXn

1− (1−X1 . . . Xn−1)Xn
= (−1)[n/2]+1 dx1 . . . dxn

(1− x1x2) . . . (1− x1 . . . xn)
. (2.6)

This can be proved by factoring out in the jacobian determinant

d(X1, . . . , Xn)
d(x1, . . . , xn)

the denominators (1−x1x2)2, . . . , (1−x1 . . . xn)2 from the first n−1 rows and then
subtracting from the first row the last multiplied by 1−xn . In the determinant thus
obtained the first row has all zeros except for the last entry which is 1−x1 . . . xn .
We expand this determinant along the first row, and in the remaining determinant
of order n−1 we factor out xn from the last row. Then we subtract from the first
row the last multiplied by 1− xn−1 , and we iterate the process. This easily yields
(2.6).

By (2.6) the change of variables ηn transforms Bn into the integral Sn ,
since from (2.3) we have

a1 − c1 = a2 − c2 = . . . = an−1 − cn−1. (2.7)

Conversely, if for any non-negative integers a1, . . . , an ; b1, . . . , bn ; c1, . . . , cn−1 we
apply to Sn the change of variables η−1

n we get the above integral Bn provided
the linear conditions (2.3) hold, since (2.3) are necessary and sufficient to drop
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from Bn the factors 1 − (1 −X1)Xn, . . . , 1 − (1 −X1 . . . Xn−2)Xn arising from
the change of variables (2.2).

Theorem 2.1 shows that there is a natural equivalence, obtained through
the action of the birational transformation ηn , between an integral Bn without
constraints and an integral Sn with the linear constraints (2.3).

3. Linear forms in zeta-values

With the next theorem we show that any n -dimensional Beukers-type integral Bn ,
and hence, by Theorem 2.1, any n -dimensional Sorokin-type integral Sn with the
linear constraints (2.3), are linear combinations of 1, ζ(2), ζ(3), . . . , ζ(n) with
rational coefficients.

Theorem 3.1. For any n > 2 and any non-negative integers a1, . . . , an; b1, . . . , bn;
c1, . . . , cn−1 satisfying the linear conditions (2.3), the integral

Bn =
∫

(0,1)n

Xa1
1 (1−X1)b1 . . . Xan

n (1−Xn)bn

(1− (1−X1 . . . Xn−1)Xn)bn+a1−c1
dX1 . . . dXn

1− (1−X1 . . . Xn−1)Xn
(3.1)

equals

A1 +A2ζ(2) +A3ζ(3) + . . .+An−1ζ(n− 1) +An(n− 1)ζ(n)

with A1, A2, . . . , An−1 ∈ Q , An ∈ Z . Moreover, if n > 3 and if

an + bn 6 b1 + . . .+ bn−1 + n− 3 (3.2)

then A2 = 0 .

A proof of this theorem can be obtained as a special case of some formu-
lae given by Nesterenko [6] relating multiple integrals over the unit hypercube to
suitable Mellin-Barnes-type hypergeometric integrals and to linear forms in poly-
logarithms. We give here a more elementary and direct proof of Theorem 3.1 using
the birational transformation ηn and a reduction from Sn to Sn−1 (see the proof
of Lemma 3.6 below).

Our proof of Theorem 3.1 is by induction on the dimension n . For n = 2
the theorem holds by [7], Theorems 2.1 or 2.2, after replacing X1 with 1 − X1 .
Let n > 3 and assume the theorem holds for n− 1. We require some lemmas.

Lemma 3.2. The value of the integral Bn in (3.1) is unchanged under the action
of the permutation

ννν = (a1 c1) . . . (an−1 cn−1)(an bn)

which preserves the linear conditions (2.3).



434 Georges Rhin & Carlo Viola

Proof. We apply to Bn the change of variable

Xn =
1− ξn

1− (1−X1 . . . Xn−1)ξn

which satisfies

dXn

1− (1−X1 . . . Xn−1)Xn
= − dξn

1− (1−X1 . . . Xn−1)ξn

and maps the interval 0 < ξn < 1 onto 0 < Xn < 1. The lemma easily follows
from (2.7).

Lemma 3.3. For any n > 3 and any integers a1, . . . , an−1 > 0 we have
∫

(0,1)n

Xa1
1 . . . X

an−1
n−1

dX1 . . . dXn

1− (1−X1 . . . Xn−1)Xn
(3.3)

= A1 +A3ζ(3) + . . .+An−1ζ(n− 1) +An(n− 1)ζ(n)

with A1, A3, . . . , An ∈ Q such that
{
An = 1 and A3 = . . . = An−1 = 0, if a1 = . . . = an−1,
An = 0, otherwise.

Proof. Denote the integral (3.3) by Ia1,...,an−1 . On integrating with respect to
Xn we get

Ia1,...,an−1 = −
∫

(0,1)n−1

Xa1
1 . . . X

an−1
n−1

log(X1 . . . Xn−1)
1−X1 . . . Xn−1

dX1 . . . dXn−1

= −
n−1∑

j=1

∫

(0,1)n−1

Xa1
1 . . . X

an−1
n−1

logXj

1−X1 . . . Xn−1
dX1 . . . dXn−1.

Since

−
∫

(0,1)n−1

Xa1
1 . . . X

an−1
n−1

logX1

1−X1 . . . Xn−1
dX1 . . . dXn−1

= −
∞∑

k=0

∫

(0,1)n−1

Xa1
1 . . . X

an−1
n−1 (X1 . . . Xn−1)k logX1 dX1 . . . dXn−1

= −
∞∑

k=0

1∫

0

Xa1+k
1 logX1 dX1

1∫

0

Xa2+k
2 dX2 . . .

1∫

0

X
an−1+k
n−1 dXn−1

=
∞∑

h=1

1
(a1 + h)2 (a2 + h) . . . (an−1 + h)

,
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we obtain

Ia1,...,an−1 =
∞∑

h=1

1
(a1 + h) . . . (an−1 + h)

( 1
a1 + h

+ . . .+
1

an−1 + h

)
. (3.4)

Up to applying a permutation of the variables X1, . . . , Xn−1 we may assume a1 6
. . . 6 an−1 . If a1 = . . . = an−1 we have

Ia1,...,a1 = (n− 1)
∞∑

h=1

1
(a1 + h)n

= (n− 1)
(
ζ(n)−

a1∑

j=1

1
jn

)
,

which proves the lemma in this case. For n = 3 and a1 < a2 we have by (3.4)

Ia1,a2 =
1

a2 − a1

∞∑

h=1

( 1
a1 + h

− 1
a2 + h

)( 1
a1 + h

+
1

a2 + h

)

=
1

a2 − a1

∞∑

h=1

(
1

(a1 + h)2 −
1

(a2 + h)2

)
=

1
a2 − a1

a2∑

j=a1+1

1
j2 ,

whence the lemma holds for n = 3.
Let now n > 3 and assume the lemma holds for n− 1. If a1 < an−1 we get

by (3.4)

Ia1,...,an−1 =
1

an−1 − a1

∞∑

h=1

1
(a2 + h) . . . (an−2 + h)

( 1
a1 + h

− 1
an−1 + h

)

×
( 1
a1 + h

+ . . .+
1

an−1 + h

)

=
1

an−1 − a1

∞∑

h=1

1
(a1 + h) . . . (an−2 + h)

( 1
a1 + h

+ . . .+
1

an−2 + h

)

− 1
an−1 − a1

∞∑

h=1

1
(a2 + h) . . . (an−1 + h)

( 1
a2 + h

+ . . .+
1

an−1 + h

)

=
1

an−1 − a1
Ia1,...,an−2 −

1
an−1 − a1

Ia2,...,an−1 .

By the inductive assumption, both Ia1,...,an−2 and Ia2,...,an−1 are linear combi-
nations of 1, ζ(3), . . . , ζ(n − 1) with rational coefficients, and therefore so is
Ia1,...,an−1 .

Lemma 3.4. For any n > 3 and any non-negative integers a1 , . . . , an−1 ; b1 , . . . ,
bn−1 we have

∫

(0,1)n

Xa1
1 (1−X1)b1 . . . Xan−1

n−1 (1−Xn−1)bn−1
dX1 . . . dXn

1− (1−X1 . . . Xn−1)Xn
(3.5)

= A1 +A3ζ(3) + . . .+An−1ζ(n− 1) +An(n− 1)ζ(n)

with A1, A3, . . . , An−1 ∈ Q , An ∈ Z .
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Proof. We expand (1−X1)b1 , . . . , (1−Xn−1)bn−1 using the binomial theorem.
Thus we express the integral (3.5) as a linear combination with integer coefficients
of integrals of type (3.3), and the conclusion follows from Lemma 3.3.

Lemma 3.5. For any non-negative integers a1, . . . , an−1 ; b1, . . . , bn−1 ; c1, . . . , cn−1

satisfying (2.3) and such that a1 6= c1 we have

∫

(0,1)n

Xa1
1 (1−X1)b1 . . . Xan−1

n−1 (1−Xn−1)bn−1

(1− (1−X1 . . . Xn−1)Xn)a1−c1 (3.6)

× dX1 . . . dXn

1− (1−X1 . . . Xn−1)Xn
∈ Q.

Proof. If a1 < c1 , (3.6) is the integral of a polynomial with integer coefficients:
∫

(0,1)n

Xa1
1 (1−X1)b1 . . . Xan−1

n−1 (1−Xn−1)bn−1

× (1− (1−X1 . . . Xn−1)Xn)c1−a1−1 dX1 . . . dXn,

and hence is a rational number. If a1 > c1 we apply the permutation ννν . By
Lemma 3.2 the integral (3.6) becomes

∫

(0,1)n

Xc1
1 (1−X1)b1 . . . Xcn−1

n−1 (1−Xn−1)bn−1

× (1− (1−X1 . . . Xn−1)Xn)a1−c1−1 dX1 . . . dXn,

and hence is a rational number.

Lemma 3.6. For any non-negative integers a1, . . . , an ; b1, . . . , bn−1 ; c1, . . . , cn−1

satisfying (2.3) and such that

an > min(a1 + b1, . . . , an−1 + bn−1) (3.7)

we have
∫

(0,1)n

Xa1
1 (1−X1)b1 . . . Xan−1

n−1 (1−Xn−1)bn−1Xan
n

(1− (1−X1 . . . Xn−1)Xn)a1−c1 (3.8)

× dX1 . . . dXn

1− (1−X1 . . . Xn−1)Xn
= A1 +A2ζ(2) + . . .+An−1ζ(n− 1)

with A1, A2, . . . , An−1 ∈ Q . Moreover, if

an 6 b1 + . . .+ bn−1 + n− 3 (3.9)

then A2 = 0 .
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Proof. Up to applying a permutation of X1, . . . , Xn−1 we may assume

a1 + b1 = min(a1 + b1, . . . , an−1 + bn−1). (3.10)

The integral (3.8) is equal to (2.4) with bn = 0. Therefore, by Theorem 2.1, (3.8)
is equal to the Sorokin-type integral

∫

(0,1)n

(1− x1)an−1 x
cn−1
2 (1− x2)bn−1 . . . xc1n (1− xn)b1

(1− x1x2)an−1+bn−1−an−2 . . . (1− x1 . . . xn)a1+b1−an (3.11)

× dx1 . . . dxn
(1− x1x2) . . . (1− x1 . . . xn)

.

By (3.7) and (3.10) we have a1+b1−an < 0. Hence we can expand both (1−xn)b1

and (1−x1 . . . xn)an−a1−b1−1 using the binomial theorem and then integrate with
respect to xn . Thus the integral (3.11) becomes

b1∑

h=0

an−a1−b1−1∑

k=0

(−1)h+k

c1 + h+ k + 1

(
b1
h

)(
an − a1 − b1 − 1

k

)
(3.12)

×
∫

(0,1)n−1

xk1 (1− x1)an−1 x
cn−1+k
2 (1− x2)bn−1 . . . xc2+k

n−1 (1− xn−1)b2

(1− x1x2)an−1+bn−1−an−2 . . . (1− x1 . . . xn−1)a2+b2−a1

× dx1 . . . dxn−1

(1− x1x2) . . . (1− x1 . . . xn−1)
.

For each k , the integral in (3.12) is an (n− 1)-dimensional Sorokin-type integral
Sn−1 of type (2.5) with exponents, say, α1, . . . , αn−1 ; β1, . . . , βn−1 ; γ1, . . . , γn−2

given by
α1 = a2, . . . , αn−2 = an−1, αn−1 = a1,

β1 = b2, . . . , βn−2 = bn−1, βn−1 = k,

γ1 = c2 + k, . . . , γn−2 = cn−1 + k.

Since
γi − αi = ci+1 − ai+1 + k (i = 1, . . . , n− 2),

by (2.7) the linear conditions (2.3) hold for Sn−1 . Again by Theorem 2.1, Sn−1 is
equal to the Beukers-type integral

∫

(0,1)n−1

Xa2
1 (1−X1)b2 . . . Xan−1

n−2 (1−Xn−2)bn−1Xa1
n−1(1−Xn−1)k

(1− (1−X1 . . . Xn−2)Xn−1)k+a2−(c2+k)
(3.13)

× dX1 . . . dXn−1

1− (1−X1 . . . Xn−2)Xn−1
.
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Since we have assumed Theorem 3.1 to be true for the dimension n−1, the integral
(3.13) is a Q -linear combination of 1, ζ(2), . . . , ζ(n−1), and therefore so is (3.11)
and hence (3.8).

If n = 3 and if (3.2) holds, the coefficient A2 of ζ(2) is zero by [8], Theorem
2.1 and Remark 2.2. If n > 4, our argument to prove A2 = 0 under the condition
(3.9) is again by induction on the dimension. We assume that for the dimension
n− 1 the condition (3.2) implies the vanishing of the coefficient of ζ(2). Since in
(3.12) we have k 6 an − a1 − b1 − 1, assuming (3.9) we get

a1 + k 6 an − b1 − 1 6 b2 + . . .+ bn−1 + (n− 1)− 3.

Thus by the inductive assumption on the dimension and by (3.2), the coefficient
of ζ(2) for the integral (3.13) vanishes. Hence in each term of the sum (3.12) the
coefficient of ζ(2) vanishes, and we conclude that A2 = 0.

Lemma 3.7. For any non-negative integers a1, . . . , an ; b1, . . . , bn−1 such that

0 < an 6 min(a1 + b1, . . . , an−1 + bn−1)

we have
∫

(0,1)n

Xa1
1 (1−X1)b1 . . . Xan−1

n−1 (1−Xn−1)bn−1Xan
n

dX1 . . . dXn

1− (1−X1 . . . Xn−1)Xn

= A1 +A2ζ(2) + . . .+An−1ζ(n− 1) +An(n− 1)ζ(n) (3.14)

with A1, A2, . . . , An−1 ∈ Q , An ∈ Z . Moreover if (3.9) holds then A2 = 0 .

Proof. We distinguish three cases.

(i) an 6 n− 3.
In this case (3.9) holds for any values b1, . . . , bn−1 > 0. If b1 > 0 we decompose
the integral (3.14) as

∫

(0,1)n

Xa1
1 (1−X1)b1−1 . . . X

an−1
n−1 (1−Xn−1)bn−1Xan

n

× dX1 . . . dXn

1− (1−X1 . . . Xn−1)Xn

−
∫

(0,1)n

Xa1+1
1 (1−X1)b1−1 . . . X

an−1
n−1 (1−Xn−1)bn−1Xan

n

× dX1 . . . dXn

1− (1−X1 . . . Xn−1)Xn
,

(3.15)

and for each of these two integrals we iterate the same decomposition until the
exponent of 1−X1 is pared down to zero. In each integral thus obtained we repeat
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the same process for every positive bi (2 6 i 6 n − 1). Hence we express (3.14)
as a linear combination with integer coefficients of integrals of the type

Ja′1, ..., a′n−1, an
: =

∫

(0,1)n

X
a′1
1 . . . X

a′n−1
n−1 X

an
n

dX1 . . . dXn

1− (1−X1 . . . Xn−1)Xn

where ai 6 a′i 6 ai+bi (i = 1, . . . , n−1). If one of the a′i is zero, Ja′1, ..., a′n−1, an

satisfies the assumptions (3.7) and (3.9) and therefore, by Lemma 3.6, it is a
Q-linear combination of 1, ζ(3), . . . , ζ(n − 1). If a′1 . . . a

′
n−1 > 0, using the

identity
X1 . . . Xn = (1− (1−X1 . . . Xn−1)Xn) +Xn − 1 (3.16)

we get

Ja′1, ..., a′n−1, an
=
∫

(0,1)n

X
a′1−1
1 . . . X

a′n−1−1
n−1 Xan−1

n dX1 . . . dXn

+
∫

(0,1)n

X
a′1−1
1 . . . X

a′n−1−1
n−1 Xan

n

dX1 . . . dXn

1− (1−X1 . . . Xn−1)Xn

−
∫

(0,1)n

X
a′1−1
1 . . . X

a′n−1−1
n−1 Xan−1

n

dX1 . . . dXn

1− (1−X1 . . . Xn−1)Xn

=
1

a′1 . . . a
′
n−1 an

+ Ja′1−1, ..., a′
n−1−1, an − Ja′1−1, ..., a′

n−1−1, an−1.

By iterating the same decomposition for the last two integrals, in finitely many
steps we express Ja′1, ..., a′n−1, an

as a sum of a rational number and of a linear
combination with integer coefficients of integrals of the same type, where we have
either an = 0, so that for such integrals we can apply Lemma 3.3, or an >
min(a′1, . . . , a

′
n−1) so that (3.7) and (3.9) hold, and we can apply Lemma 3.6. This

proves the lemma in the present case.

(ii) an > b1 + . . .+ bn−1 + n− 3.
Here we argue as in case (i) except that we ignore (3.9).

(iii) n− 3 < an 6 b1 + . . .+ bn−1 + n− 3.
We now use a method of descent, based on an iterated use of (3.15) and (3.16)
successively. With the integral (3.14) we associate the weight

n∑

i=1

ai + 2
n−1∑

i=1

bi = an +
n−1∑

i=1

(ai + bi) +
n−1∑

i=1

bi. (3.17)

We repeatedly apply the decomposition (3.15) for suitable positive bi ’s until we
pare down the sum b1 + . . .+ bn−1 +n− 3 to an . In other words, using (3.15) we
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express (3.14) as a linear combination with integer coefficients of integrals of the
same type for each of which

0 < an = b1 + . . .+ bn−1 + n− 3. (3.18)

If an > min(a1 + b1, . . . , an−1 + bn−1) we have (3.7) and (3.9), and we can apply
Lemma 3.6. Hence for any such integral we may assume

0 < an 6 min(a1 + b1, . . . , an−1 + bn−1). (3.19)

Let
Jb1, ..., bn−1
a1, ..., an (3.20)

be any integral of type (3.14) satisfying (3.18) and (3.19). If n = 3 we have
Jb1,b2a1,a2,a3

= A1 + A3 2ζ(3) with A1 ∈ Q and A3 ∈ Z by virtue of [8], Theorem
2.1. Thus we may assume n > 4. Since n − 3 > 0, (3.18) implies bi < an
(i = 1, . . . , n−1) whence, by (3.19), ai > an−bi > 0. Therefore we can repeatedly
apply the identity (3.16) to (3.20). Since through the application of (3.16) the
exponents b1, . . . , bn−1 do not change and an does not increase, in finitely many
steps we express (3.20) as a sum of a rational number and of a linear combination
with integer coefficients of integrals again of type (3.14) and satisfying (3.9), in
each of which either an = 0 (Lemma 3.4), or ai = 0 for at least one i (1 6
i 6 n − 1). In the latter case we iterate the above process by applying again the
decomposition (3.15) to the integral considered if some bi is positive, until (3.18)
holds again for the integrals obtained. Plainly the weight (3.17) strictly decreases at
each application of (3.15) or (3.16), so that the algorithm terminates after finitely
many iterations, yielding a rational number plus a linear combination with integer
coefficients of finitely many integrals, each of which satisfies the assumptions of
one of Lemmas 3.3, or 3.4, or 3.6 with the assumption (3.9). This suffices for the
proof.

Lemma 3.8. For any non-negative integers a1, . . . , an ; b1, . . . , bn−1 ; c1, . . . , cn−1

satisfying (2.3) and

0 < an 6 min(a1 + b1, . . . , an−1 + bn−1) (3.21)

we have
∫

(0,1)n

Xa1
1 (1−X1)b1 . . . Xan−1

n−1 (1−Xn−1)bn−1Xan
n

(1− (1−X1 . . . Xn−1)Xn)a1−c1
dX1 . . . dXn

1− (1−X1 . . . Xn−1)Xn

= A1 +A2ζ(2) + . . .+An−1ζ(n− 1) +An(n− 1)ζ(n) (3.22)

with A1, A2, . . . , An−1 ∈ Q , An ∈ Z . Moreover if (3.9) holds then A2 = 0 .

Proof. If a1 = c1 the conclusion holds by Lemma 3.7. If a1 < c1 the inte-
gral (3.22) is a rational number, as in the proof of Lemma 3.5. If a1 > c1 and
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0 < an < a1 − c1 , we apply the permutation ννν as in Lemma 3.5. By Lemma 3.2
the integral (3.22) equals

∫

(0,1)n

Xc1
1 (1−X1)b1 . . . Xcn−1

n−1 (1−Xn−1)bn−1(1−Xn)an

(1− (1−X1 . . . Xn−1)Xn)an+c1−a1

× dX1 . . . dXn

1− (1−X1 . . . Xn−1)Xn
,

and again this is a rational number since we are assuming an+ c1−a1 < 0. Thus,
by (3.21), it remains to consider the case

0 < a1 − c1 6 an 6 min(a1 + b1, . . . , an−1 + bn−1).

We transform the integral
1∫

0

Xa1
1 (1−X1)b1

dX1

(1− (1−X1 . . . Xn−1)Xn)a1−c1+1 (3.23)

by (a1 − c1)-fold partial integration. If b1 > a1 − c1 , (3.23) becomes

1
(a1 − c1)X2 . . . Xn

1∫

0

d
dX1

(
Xa1

1 (1−X1)b1
) dX1

(1− (1−X1 . . . Xn−1)Xn)a1−c1

= . . . =
1

(a1 − c1)!Xa1−c1
2 . . . Xa1−c1

n

×
1∫

0

( d
dX1

)a1−c1(
Xa1

1 (1−X1)b1
) dX1

1− (1−X1 . . . Xn−1)Xn
.

By Leibniz’ rule this is easily seen to be

1
Xa1−c1

2 . . . Xa1−c1
n

a1−c1∑

k=0

(−1)k
(

a1

c1 + k

)(
b1
k

)

×
1∫

0

Xc1+k
1 (1−X1)b1−k

dX1

1− (1−X1 . . . Xn−1)Xn
.

Hence, by (2.7), the integral (3.22) equals

a1−c1∑

k=0

(−1)k
(

a1

c1 + k

)(
b1
k

)
(3.24)

×
∫

(0,1)n

Xc1+k
1 (1−X1)b1−kXc2

2 (1−X2)b2 . . . Xcn−1
n−1 (1−Xn−1)bn−1Xan−(a1−c1)

n

× dX1 . . . dXn

1− (1−X1 . . . Xn−1)Xn
.
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Each integral in the sum (3.24) satisfies the assumptions of Lemma 3.4 if an =
a1 − c1 , or of Lemma 3.7 if an > a1 − c1 . Moreover if (3.9) holds then

an − (a1 − c1 − k) 6 an 6 b1 + . . .+ bn−1 + n− 3,

so that the integral in (3.24) satisfies

an − (a1 − c1) 6 (b1 − k) + b2 + . . .+ bn−1 + n− 3

and therefore, by Lemmas 3.4 and 3.7, the coefficient of ζ(2) is zero. This proves
the lemma if b1 > a1 − c1 .

If b1 < a1 − c1 , again by (a1 − c1)-fold partial integration one easily finds
that the integral (3.23) is equal to

1
Xa1−c1

2 . . . Xa1−c1
n

b1∑

k=0

(−1)k
(

a1

c1 + k

)(
b1
k

)
(3.25)

×
1∫

0

Xc1+k
1 (1−X1)b1−k

dX1

1− (1−X1 . . . Xn−1)Xn

+ (−1)b1+1
a1−c1∑

k=b1+1

(
a1

k − b1 − 1

)

k

(
a1 − c1
k

)
Xk

2 . . . X
k
n (1− (1−X2 . . . Xn−1)Xn)a1−c1−k+1

.

The contribution to the integral (3.22) given by the first sum in (3.25) is treated as
in the previous case. By (2.7), the contribution to (3.22) given by the second sum
in (3.25) is a linear combination with rational coefficients of (n− 1)-dimensional
integrals of the type

∫

(0,1)n−1

Xa2−k
2 (1−X2)b2 . . . Xan−1−k

n−1 (1−Xn−1)bn−1Xan−k
n

(1− (1−X2 . . . Xn−1)Xn)(a2−k)−c2 (3.26)

× dX2 . . . dXn

1− (1−X2 . . . Xn−1)Xn
.

Since we assume Theorem 3.1 to hold for the dimension n−1, (3.26) is a Q-linear
combination of 1, ζ(2), . . . , ζ(n− 1). Also, for the second sum in (3.25) we have
k > b1 + 1. Thus if (3.9) holds we get

an − k 6 an − b1 − 1 6 b2 + . . .+ bn−1 + (n− 1)− 3,

whence, by the inductive assumption on the dimension together with [8], Theorem
2.1 and Remark 2.2 for the dimension 3, the coefficient of ζ(2) for the integral
(3.26) vanishes. This completes the proof of the lemma.

Proof of Theorem 3.1. If bn = 0 the conclusion holds by Lemmas 3.4, 3.5, 3.6
or 3.8. If bn > 0 we use the identity

1−Xn = (1− (1−X1 . . . Xn−1)Xn)−X1 . . . Xn.
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The integral (3.1) becomes

∫

(0,1)n

Xa1
1 (1−X1)b1 . . . Xan

n (1−Xn)bn−1

(1− (1−X1 . . . Xn−1)Xn)(bn−1)+a1−c1
dX1 . . . dXn

1− (1−X1 . . . Xn−1)Xn
(3.27)

−
∫

(0,1)n

Xa1+1
1 (1−X1)b1 . . . Xan+1

n (1−Xn)bn−1

(1− (1−X1 . . . Xn−1)Xn)(bn−1)+(a1+1)−c1
dX1 . . . dXn

1− (1−X1 . . . Xn−1)Xn
.

By iterating this decomposition we express the integral (3.1) as a sum of a rational
number (whenever some exponent in the denominator becomes negative) plus a
linear combination with integer coefficients of integrals where the exponent of
1−Xn is zero, and hence satisfying the assumptions of one of the previous lemmas.
If the condition (3.2) holds for the integral (3.1), it also holds for the two integrals
in (3.27). This suffices for the proof of Theorem 3.1.
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Ile du Saulcy, 57045 Metz Cedex 01, France
Carlo Viola, Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5,
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