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GENERALIZED SMIRNOV STATISTICS AND THE DISTRIBUTION
OF PRIME FACTORS

KEVIN FORD

Dedicated to Jean-Marc Deshouillers
on the occasion of his 60th birthday

Abstract: We apply recent bounds of the author for generalized Smirnov statistics to the
distribution of integers whose prime factors satisfy certain systems of inequalities.
Keywords: Smirnov statistics, prime factors.

1. Introduction

For a positive integer n, denote by p; < p2 < -+ < py(n) the sequence of distinct
prime factors of n. In this note, we study integers for which

log,p; > aj = (1<) <w(n)) (L1)

or
logypj <aj+f (1<j<w(n), (1.2)

where o > 0 and log, y denotes loglogy. The distribution of integers satisfying
(1.1) is important in the study of the distribution of divisors of integers (see [3];
Ch. 2 of [4]). We present here estimates for

{n cwin) =k, (1.1)},
My (z; o, 8) = #{n

x:w(n) =k, (1.2

NN

It is a relatively simple matter, at least heuristically, to reduce the estimation
of Ni(z;«, 3) and My (z;a, 8) to the estimation of a certain probability connected
to Kolmogorov-Smirnov statistics. Let us focus on the upper bound for N (z; a, ).
If we suppose that px > x¢ for some small ¢, then for each choice of (p1,...,pr—1),
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the number of possible pi is < z/(p1 - pr—1logz). Since > ., 1/p ~ logyy,
given a well-behaved function f, by partial summation we anticipate that

f (110g2101 logzpk—l)
ogox ’ 7 logy _
> ) o) [ [ p©dE (13)
PI<SPEoaSE - 0<E1 < <Eri<l
where E = (61, . 7§k—1) .
Let Uy,...,U,, be independent, uniformly distributed random variables in

[0,1] and let &,...,&n be their order statistics (&1 is the smallest of the U;,
& is the next smallest, etc.). Taking m = k — 1, the right side of (1.3) is equal
to (logyz)*~1/(k — 1)! times the expectation of f(&;,...,&_1). Letting f be
1 if (1.1) holds and 0 otherwise, the expectation of f is the probability that
& > (oj — B)/logy x for each j.

In general, let @,,(u,v) be the probability that & > 1;“ for 1 <i<m.
Equivalently, if v > 0 then

vt +u
m

Q) = Prob (Fu(t) < 0<i<n).

where F,(t) = 4>, <¢ 1 is the associated empirical distribution function. The
first estimates for @,,(u,v) were given in 1939 by N. V. Smirnov [5], who proved
for each fixed A > 0 the asymptotic formula

QmAm,m) —1—e 22 (m— o0). (1.4)

The sharpest and most general bounds are due to the author [2]; see also [1]. For
convenience, write w = u + v — m. Uniformly in v > 0, w > 0 and m > 1, we
have

Qm(u,v)zl—e_Quw/m+O<u+w>. (1.5)
m
Moreover,
uw
= mi — =z lLw=1). .
Qm(u,v) < min (1, m) (uzlw>1) (1.6)

See [2] for more information about the history of such bounds and techniques for
proving them. A short proof of weaker bounds is given in §11 of [3].

Returning to our heuristic estimation of Nj(z) (and assuming that a similar
lower bound holds), we find that

__ x(log, r)k-1 B logyz

We have (cf. Theorem 4 in §I1.6.1 of [6])

a(logy x)* !

(@) = e S @ s wln) =k =a G
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uniformly for 1 < k < Alogy,x, A being any fixed positive constant. Thus, we
anticipate that

logs x
Ny (w50, 8) < Qp1 (5, 22 ) i (x).
a o«
Observing that the vectors (&1,...,&,) and (1 — &,y 1 — &non,..., 1 — &) have
identical distributions, we have

<u—|—v—m—1+i

Qm(u,v) = Prob (& < (1<i< m)) .

v

Hence, we likewise anticipate that

—lo It
My (z; 0, 8) < Q-1 (k‘+ b ang’ og;m) g ().

To make our heuristics rigorous, we must impose some conditions on « and
0 to ensure among other things that there are integers satisfying (1.1) or (1.2).
To that end, we set

1 I
T TR N e R S RO
o o o
for the estimation of Ny (z;a, ) and
—1 1
wepy Bl o s k- =241 9
o o o

for the estimation of My (z;«, ).

Theorem 1. Suppose € >0, A>1 and 1 < k < Alogy x. Assume (1.8), 8 >0,
a— <A, w>1+¢e and

e@(w=1) _ pa(w=2) 5 1 4 o (1.10)

Then, for sufficiently large x, depending on € and A,

Ni(z; e, 8) <c 4 min (1, W) 7k (x),

the implied constants depending only on € and A.

Theorem 2. Suppose A > 1 and 1 < k < Alogyx. Assume (1.9), u>1, w >0
and that for 1 < j < k, there are at least j primes < expexp(«j + 3). Then, for
sufficiently large x, depending on A,

My (50, 8) < 4 min (1, ““”J”) (),

the implied constants depending only on A.
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Remarks. Inequality (1.10) is necessary, since for large &, (1.1) implies

) ak—p3 1
_ 5. € B ogx
logn > Y logp; > » e~ e = ) D

J=1 J=1
The condition a—3 < A in Theorem 1 means that there is no significant restriction
on pip.

It is a simple matter to apply the estimates for Ni(z;«, 8) and My (z;a, 3)
to problems of the distribution of prime factors of integers where w(n) is not fixed.
In the following, let w(n,t) be the number of distinct prime factors of n which
are < t. It is well-known (cf. Ch. 1 of [4]) that w(n,t) has normal order log,t.
We estimate below the likelihood that w(n,t) does not stray too far from log, ¢
in one direction.

Corollary 1. Uniformly for large x and 0 < 8 < /logy z, we have

= B+ 1)z

#{n <z :Vt,2 <t < z,wn,t) <max(0,log, t + 0)} < (1.11)
v/1ogsy x
and .
#{néx:Vtﬂgtgx,w(n,t)>log2t—ﬂ}xM (1.12)

V/1ogy x
Proof. The quantity of the left side of (1.11) is >°, Ni(x;1,3). Here u = (3,
v =1log,x and w =logyx + f — k+ 1. By Theorem 1 and (1.7),

+ 1)z
Z Nk(x’175)>>u7
V/1ogy x
logy x—24/log, x<k<log, z—/logy x

since mi(z) < /+/logy x for |k—log, 2| < 24/log, z. This proves the lower bound
in (1.11). For the upper bound, we note that if & > logy z+ 3, then Ng(x;1,8) =0.

Hence, by Theorem 1 and (1.7),

> Ni(w;1,8) <
k

k<log, z+(5—2

+ 1
+ Z m(z) <€ u
log, z+8—2<k<log, 43 \% 10g2 x

This proves the upper bound in (1.11).
The quantity on the left side of (1.12) is Y, Mj(z;1,5—1). Here v = log, z,
u =3+ k—logyr and w= . By Theorem 2,

(B+ 1z

My(x; 1,6 -1 _—
Z k(.’L', 7ﬁ )>> \/@’

logy x4+ /log, z<k<log, x4+24/log, =
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proving the lower bound in (1.12). Also by Theorem 2,

+ 1)z
> Mi(es1,6 1) < DT
log, —B+1<k<10log, V1og, ©

If win) =4k > 1010g2x then the number, 7(n), of divisors of n satisfies 7(n) >
2¢(") > (logz)®. Since > n<a T(n) ~ xlogx, the number of n < z with w(n) >
10log, x is O(x/log® ). By (1.7), the number of n < z with logyz —3—4 < k <
logoz — B+ 1 is O(xz/+/log, x). Finally, suppose k < logy x — 3 — 4. The number
of n < z for which d?|n for some d > logx is O(x D dslog e 1/d?) = O(z/log ).
If there is no such d, then by (1.2),

k k
) 1
logn < 210g2x+210gpj < 210g2x+263+5*1 < 2log2x—|—26k+’6*1 < ilog:c,
j=1 j=1

thus n < y/z. This completes the proof of the upper bound in (1.12).

Our methods for proving Theorems 1 and 2 are borrowed from [3], especially
sections 8, 10 and 12 therein. The tools there are adequate for making precise
the heuristic argument outlined above when the function f is monotonic in each
variable, even if f is discontinuous. We provide details only for Theorem 1. In
lower bound for My (z;«,3), we may need to fix several of the smallest prime
factors of n, but otherwise the details of the proof of Theorem 2 are very similar.

2. Certain partitions of the primes

We describe in this section certain partitions of the primes which will be needed
in the proof of Theorems 1 and 2. The constructions are similar to those given in
§4 and §8 of [3].

Let Ao = 1.9 and inductively define A; to be the largest prime such that

>

/\]'71<p§>\j

<1

SR

In particular, Ay = 3 and A = 109. By Mertens’ estimate, log, A; = j + O(1).
Let G; be the set of primes in (Aj_1, ;] for 7 > 1. Then there is an absolute
constant K so that if p € G; then |logyp —j| < K.

Next, let Q@ > e!® and v = 1/logQ. If p < @, then p” < e, hence p? <
14+ (e — 1)ylogp. By Mertens’ estimates,

1 logp
Z pf(l—’y) )+ Z ( » > =log, @ + O(1).

P<Q <
1SS p<Q
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It follows for an absolute constant K’, independent of @, that the set of primes
p < @ may be partitioned into at most %logQQ + K’ sets E; so that (i) for

each j,
1
Z pf(l_')’) g 2

PEE;
fz1

and (ii) for p € Ej, |logy p — 2j| < K'. We stipulate that the above sum is < 2
rather than < 1 in order to accomodate the prime 2.

3. Proof of Theorem 1 upper bound

Without loss of generality, suppose that k is large, (v + 1)w < k/10, and n >
x/logx. We have v < 1.1k and consequently « > 1/(1.14). Also, by (1.1),

k — 9
logy pr 2 ak — 8 = Uulog2x> ﬁ10g2x.

We may suppose p? { n, as the number of n < x with p2|n is O(z exp(—(log x)l%))
= O(mi(xz)/k). For brevity, write x, = z1/¢" . For some integer ¢ satisfying ¢ >
0 and expexp(ak — ) < x¢, we have zp11 < pr < z¢. With /¢ fixed, given
P1,...,Pr—1 With exponents fi,..., fr_1, the number of possibilities for py is

T xlf'y/2el

<
plt - p ) log

< :
(] pf ) log

where v = 1/logz,. This follows for ¢ > 1 from pi' --~p£’“:11 > z/(pglogz) >
z'/2. We conclude that

xr 1,0 1
Ni(w;a, B) < —— > e3¢ > » : (3.13)
logz ¢ P < <PRp_1STp (p{1 "'pikfill)l_’y

Consider the intervals E; defined in the previous section corresponding to
Q = z¢. Put J = |$logy 2, + K'| and define ji,...,jk—1 by p; € Ej,. Let J
denote the set of tuples (j1,...,7k—1) so that 1 < j; < -+ < jr—1 < J and such
that j; > %(ai —f—K'—A) for every i. Given pq,...,pr—1, let b; be the number
of p; in Ej, for 1 < j < J. The contribution to the inner sum of (3.13) from those
tuple of primes with a fixed (ji,...,7k—1) I8

T 1 bj

SIE D P

j=1"7" \peE;,f>1
2k71

< —.
bil-- byl
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We observe that 1/(by!---bs!) is the volume of the region (yi,---,yp_1) € RF?
satisfying 0 < y1 < -+ < yp—1 < J and j; — 1 < y; < j; for each i (there are b,
numbers y; in each interval (j — 1, j]). Making the change of variables & = y;/J
and summing over all possible vectors (j1,...,Jk—1) € J, we find that the inner
sum in (3.13) is

(0i—fB—K' —A—2)
27

<(2J)‘“1Vol{0<£1<-~<5k1<1: &> (1<z<k—1)}

(logy x4+ 2K")k—1 B+K +A+2 2]
B (k — 1)' Qk—l < )
(logy )"~ (u+ Ljw

(k—1)! B

o e

<A

where we have used (1.6). By (3.13), summing on ¢ and using (1.7) completes the
proof.

4. Proof of Theorem 1 lower bound

First, we assume k > 2, since if £k =1 then Ny (z;a, 8) = m1(2)+O(log z) trivially

as A+ 3 > a (powers of primes < e*™# are not counted in N;(z;a, 3)). Also, we

may assume that o > 1/2A. If a < 1/2A, then Ni(x;a,3) > Ni(z;1/2A,0) and

we prove below that Ny (x;1/2A4,0) > mi(x) (here u=0, v > 2k and w > k).
Let T be a sufficiently large constant, depending on ¢ and A, and put

C = 63T+2[(+10

We first prove the theorem in the case that
edw=l) _galw=2) 5 ¢ (4.14)

Notice that
aj —f=logyr —afw+k—1-—j). (4.15)

In particular,
ak — p=logyx —a(w—1) < log, z —log C.

Let J = |logyx — K —logT — 2|. Recall the definition of the numbers \; and
sets G; from section 2. Consider squarefree n satisfying (1.1), with pr_1 < A
and for which

prepr—1 < a2
Also take py so that /2 <n < x. Given py,...,pr—1, the number of possible py
is > x/(p1--pr_1logz). Put by =--- =by_1 =0 and for T < j < J, suppose
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b <min(T(j —T —1),T(J — j+1)). Suppose there are exactly b; primes p; in
the set G; for 1 < j < J. By the definition of J,

k-1 k—1
Zlogp <T6]+KZT€1 T<3T€]+K< logx
i=1 r=1

as required. Define the numbers j; by p; € G;,. The inequalities (1.1) will be
satisfied if
jizai—-B+K  (1<i<k-1). (4.16)

This is possible since by (4.14)
alk—1)—pB=logyx —aw < logyx —2K —3T -10< J-T — 1.

With (j1,...,75—1) fixed (so that by,...,b; are fixed), the sum of 1/py---pr_1

ﬁbl(zp Zi 2 Pi>

=T J° p1E€G; P2€G; Py, €Gj
P27#P1 pp. E{P1,---> Pp,—1}
j j
b;
1 1 b —1\"
> _ Z_
> 172 5 -
: p j—1

bj
1 1 by
b]‘! )\j,1

TG -T+1 U
expexp(j —1— K)

WV
,zk

<
Il
~

WV
.zk
|-
7 N

—

<
Il
!
<

if T is large enough. The right side is 1/2 of the volume of the region of (y,---,
yr_1) € RF1satisfying 0 <y <+ <yp1 < J-T+1and 5,—T < y; < 5i+1-T
for each i. Set H =J —T + 1. Assume that

Jmr+1 2T +m, jr_1—mr <J—m (integers m > 1), (4.17)

so that b; < min(T'(j —T+1),T(J — j+ 1)) for each j. Making the substitution
& = y;/H and summing over all tuples (jq,---,jk—1) yields

Vol(R) >4 MVOMR), (4.18)

cHF
Nk(l';a,ﬂ) >
log

log x
where, by (4.16) and (4.17), R is the set of £ satisfying (i) 0 < & < -+ < &g—1 <
1,& > (vi—pB+K—-T)/H foreach i, (ii) {mri1 = m/H and §—1—pmr < 1—m/H
for each positive integer m.
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It remains to estimate from below the volume of R. Let S be the set of &
satisfying (i), so that
Qr—1(p,v) 6+T—-K H
Vol(S) = ———— = v=—.
o ( ) (k _ 1)! I’ 'LL a ) v a
If T > K+ A, then u <4 (u+1). By the definition of C' and J, if T is large
enough then

quVf(kfl):J K+1+B,(k,1)>w,10gT+2K+2> w >
«o o} 1+¢
Hence, by (1.6),
Vol(S) > (k‘fl)" f=min(1, (u + Dw/k). (4.19)

The implied constant in (4.19) does not depend on T, but the inequality does
require that T be sufficiently large.
For a positive integer m, let

Vl(m) e VOl{{ IS ng-&-l < 77”L/]{}7
Va(m)=Vol{€ € S : &—1—mr >1—m/H}.

We have by (1.6),

Vi(m)
(m/H)mT-H
(mT +1)!
(m/H)™* Qg mr(p— (mT +1),v)
(mT +1)! (k—2—mI)!
(m/H)™  pp+v— (k—1))
(mT +1)! (k—mT)(k—2—mT)!
fh(m/H)™
(k —=mT)(mT + 1)}(k —2 —mT)!
fo (km/H)™ K
S (k-1 (mT+1)! k—mT

Vol{0 < Emrps << & <1162 —E(mT+2 <i<k—1)
124

<

<

Since k/H <4 1 and 7! > (r/e)", it follows from (4.19) that for large enough T,
1
> Vi(m) < 7 Vol(8).

Similarly,
Qr—2-m(p,v) (m/H)™ T+
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By (1.6),

pwlp+v—(k—1)4+mT+1) < mTkf
k—mT E—mT’

Qr—2-m7(it, V) < min <1,
Hence, if T is large enough then

1
Zm: Va(m) < Vol(S).

We therefore have, for T large enough,

Vol(R) > Vol(S) = > (Vi(m) + Va(m)) >4

m>1

k-

Together with (4.18) and (1.7), this completes the proof under the assumption
(4.14).
It remains to consider the case

1+e< ea(w—l) _ ea(w—Q) < C.

Since w > 1+4+¢ and o > 1/2A, we find that o <. 4 1 and w <. 4 1. Hence, if
x is large enough,

logy
4A

k=u+v—-—w+1>2v—w=

Let B be a large integer depending on €. Suppose that
aj—B<logyp; <aj—B+log(l+e/2) (k—B<j<k—1) (420

Then, by (4.15),

Z logp; < (1+4¢/2) ( Taw g emalwtl) 4oy e_"(erB_l)) log x
j=k—B

1 —a(w—1
<(1+¢€/2) (ea(w_l) ——at=) ¢ ( )) log z.

Assume also that

k— 1

B
g/2
Z logp; < a1 — ga(w=2) log z. (4.21)

Jj=1

If in addition ak — 8 < log, pr < ak — B+ log(1 + £/2), then by (1.10),

k
ef2+1+4+¢/2
logn = Zlogpj < ea(é_l) _ea(i—2) logx < logz,
j=1
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as required. Thus, given p1,...,pr—1 satisfying (4.20) and (4.21), the number of
pr is > x/(p1---pr—1logx). If B is large enough, there is great flexibility in
choosing p1,...,pk—p—1, since by (4.15),

k—B-1 s e—a(B+1)
Z € S ex(w—1) _ ca(w—2) IOg.’L‘,
j=1

which is small compared with the right side of (4.21). By the same argument used
to give a lower bound for the sum of 1/(p; - - - pr—1) under the assumption (4.14),

we obtain
)k—B—l

1 f(logy @
> A
Z P pr_p1 " (k—B-1)

P1;--sPk—B-1

Also, since k >4 log, z, we have

1 (k—B—1)!
— = >, pl1>.4 (logyx)Pr— "1,
Z P-pPEo1 4 (logy @) (k—1)!

Pk—B;--Pk—1

The proof is again completed by applying (1.7).
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