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Abstract. In this paper, we determine the Batalin-Vilkovisky algebra struc-
ture on the Hochschild cohomology of self-injective Nakayama algebras with
the diagonalizable Nakayama automorphism over an algebraically closed field
K. Moreover, in the case that the characteristic of K divides the order of the
Nakayama automorphism, we compute the Batalin-Vilkovisky algebra structure
on cohomology of Hochschild complex related to the Nakayama automorphism.
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§1. Introduction

Hochschild cohomology is an invariant of derived equivalence and it has sev-
eral algebraic structures; module structures, graded commutative ring struc-
tures and Gerstenhaber algebra structures, etc. These algebraic structures
of Hochschild cohomology of algebras have been computed for many classes
of algebras. For instance, for algebras which are stably equivalent to ba-
sic representation-finite self-injective algebras with associate tree Dy (n > 4),
Volkov computed their Hochschild cohomology groups and Hochschild coho-
mology rings ([17], [18], [19], [20] and [21]).

Tradler [16] discovered that Hochschild cohomology of arbitrary symmet-
ric algebra has a Batalin-Vilkovisky (we say BV for short) algebra structure
given by a symmetric bilinear form. Later, Lambre, Zhou and Zimmermann
[9] discovered that Hochschild cohomology of Frobenius algebras with diago-
nalizable Nakayama automorphism has a BV algebra structure. However, it is
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not known if Hochschild cohomology of Frobenius algebras has a BV algebra
structure in general.

Recently, for any Frobenius algebra A, Volkov [22] defined the cohomology
HH*(A)"" of Hochschild complex related to Nakayama automorphism v, which
induces a Gerstenhaber algebra (HH*(A)"T,—,[, ]). Moreover, Volkov [22]
also found a BV algebra structure on (HH*(A)*T,— [, ]). In particular, if the
Nakayama automorphism v is diagonalizable, then HH*(A)*" is isomorphic to
HH*(A) and the BV differential on (HH*(A)*T,— [, ]) induces the one on
the Gerstenhaber algebra (HH*(A),—,[, |). In [22], the BV differentials on
Hochschild cohomology of representation-finite self-injective algebras of tree
type Dy, (n > 4) with diagonalizable Nakayama automorphism were calculated.
However, there are few examples of complete calculation of BV differentials
on Hochschild cohomology of Frobenius algebras which are not symmetric.

In this paper, we will compute BV differentials on Hochschild cohomology
of self-injective Nakayama algebras. We will divide the computation into two
cases: Case (a) the characteristic of the ground field does not divide the order
of the Nakayama automorphism; Case (b) the characteristic of the ground
field divides the order of the Nakayama automorphism. For a self-injective
Nakayama algebra A in Case (b), we will compute HH*(A)*" and BV differ-
entials on (HH*(A)*T,—,[, ]). This implies that HH*(A)*T = HH*(A) as
algebras and [, | = 0. However, [, | # 0 on Hochschild cohomology of A in
Case (a) in general. On the special case, when A is a truncated polynomial
ring, BV algebra structures on the Hochschild cohomology of truncated poly-
nomial rings were calculated in [15]. The Gerstenhaber brackets on Hochschild
cohomology rings of truncated quiver algebras were calculated in [23].

This paper is organized as follows: In Section 2, we recall the definitions and
the notation for Hochschild cohomology, Gerstenhaber brackets on Hochschild
cohomology, BV algebras on Hochschild cohomology of Frobenius algebras.
Moreover, we recall the bilinear form and the Nakayama automorphism for
self-injective Nakayama algebras. In Section 3, we recall chain maps between
Bardzell’s projective resolution and a bar resolution for truncated quiver al-
gebras. In Section 4, we compute BV differentials on Hochschild cohomology
of self-injective Nakayama algebras under the assumption that the character-
istic of base field dose not divide the order of the Nakayama automorphism.
We will determine the image of the BV differentials for each basis element in
n-th Hochschild cohomology group for each n > 0 (Theorem 4.4, Theorem
4.5 and Theorem 4.6). Theorem 4.4, Theorem 4.5 and Theorem 4.6 give pre-
cise formulas for the BV differentials A : HH"(A) — HH""!(A), for n = 1,
n = 2¢, n = 2i + 1, respectively. In Section 5, we determine the ring structure
(Theorem 5.4 and Theorem 5.5), a BV algebra structure (Theorem 5.7) of
the cohomology of Hochschild complex related to Nakayama automorphism of
self-injective Nakayama algebras under the assumption that the characteristic
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of base field divides the order of the Nakayama automorphism. Theorem 5.7
gives precise formulas for the BV differential A : HH"(A)*T — HH"}(A)*!
for n > 1.

Throughout this paper, we denote the tensor product ® i over K by ® for
simplicity, where K is an algebraically closed field.

§2. Preliminaries

In this section, we recall the definitions and the notation for Hochschild co-
homology, Gerstenhaber algebras, Batalin-Vilkovisky (we say BV for short)
algebras. Moreover, following [22], we recall the BV differential on Hochschild
cohomology for Frobenius algebras. In order to compute BV differentials on
Hochschild cohomology of self-injective algebras, we also describe the bilinear
form of self-injective Nakayama algebras and the Nakayama automorphism.

2.1. Batalin-Vilkovisky differential on Hochschild cohomology of
Frobenius algebras

Let K be an algebraically closed field and A a finite dimensional K-algebra.

Definition 2.1. The following complex (C*(A), ) is called the Hochschild
complex of A:

6n71

0— CO(A) ﬁ) Cl(A) i} 5”_*§ Cmfl(A) 4 CM(A) & Cn+1(A) 5n_+§
where C(A) = Homg (K, A) = A, C"(A) = Homg (A®", A) and

n(f)la1® - ®@any1) = ar1f(az ® - @ any1)

n

+ Z(_l)if(al Q- ®aiai41 Q- ® an—H) + (_1)n+1f(a1 Q- an)an+1>

=1

for f € C™(A) and n > 1. The n-th Hochschild cohomology group HH"(A) of
A is defined as the n-th cohomology of (C*(A), d).

The bar resolution (Bar,(A),bs) of A is the following:

- Barg (4) 2 Barg 1 (A) 7 - 2 Barg (4) 25 Barg(4) 2% A 0

where, for n > 0, Bar,(4) = A%"*2 and

n

bn(ag ® -+ ® apt1) = Z(*l)iao @@ ai0i41 Q- Q apy1-
i=0
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For n > 0, the isomorphism Homg (A®™ A) = Hom4e(A®" 2, A) induces
an isomorphism (Hom 4e(Bar,(A), A), Hom e (by, A)) = (C*(A), ds), where A°
is the enveloping algebra of A. Therefore, HH"(A) = Ext’i. (A, A).

The cup product on the Hochschild complex (C*(A), d,) is given as follows:
for f € C"(A) and g € C™(A), f — g € C"™T"(A) is given by

(f ~ g)(al Q- ® aner) = f(al Q- Q& an)g(anJrl Q& aner)'
The cup product induces the one on Hochschild cohomology —: HH"(A) x
HH™(A) — HH""™(A). Then, HH*(A) := @,>0HH"(A) is a commutative
graded algebra. We remark that the Yoneda product on Ext%.(A,A) =
Sn>0Ext’e (A, A) coincides with the cup product on the Hochschild cohomol-
ogy HH*(A).

Following [6], we recall the Lie bracket |, ] on the Hochschild cohomology
ring HH*(A). First, we recall the definition of Gerstenhaber algebras.

Definition 2.2. A Gerstenhaber algebra over an algebraically closed field K is
(V*,U,[, ]), where V* = @kzovk is a graded K-vector space, U: V"* x V™ —
V™ (n m > 0) is a cup product of degree zeroand [, | : VP x V™ — yntm—1
(n,m >0 and V~! = 0) is a Lie bracket of degree —1 such that the following
conditions hold:

i) (V*,U) is a graded commutative associative algebra with unit 1 € V0.
(i) ( g 8
(ii) (V*,U,[, ]) is a graded Lie algebra.
(iii) For arbitrary homogeneous elements a,b and ¢ in V*,
[a,bUc] = [a,b] Uc+ (=1)e=Dlp ya, ],
where the notation |a| means the degree of the homogeneous element a.

For f € C"(A) and g € C™(A) (n+m > 1), we define [f, g] € C"T 1(A)
as follows: If n,m > 1, then, for 1 <i <n, fo; g € C"t™1(A) is given by

(foig)la1 ® - @ antm-1)
=fla1® - ®a-1®9(a; D @ Aifm—1) @ Qigm @ -+ @ Apgm—1)-
If n >1and m =0, then, for 1 <i <n, fo; g € C" !(A) is given by
(foig)la1® - @anim-1)=fla1® - a1 QIR X R ap_1),

where g is regarded as an element of A.
We set

n

fog=> (-1 Do g

=1
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and
[f.g)i=fog— (-1)" DM Dgo fecmtm=l(a),

Then [, | induces [ , | : HH*(A) x HH™(A) — HH""™ 1(A), and then
(HH*(A),—,[, ]) is a Gerstenhaber algebra.

Definition 2.3. A Batalin- Vilkovisky algebra is a Gerstenhaber algebra
(V*,U,[, ]) with an operator A : V* — V*~! of degree —1 such that Ao A = 0
and

la,5] = —(~1) 0D (A (@ UB) = Ala) Ub — (~1)%a U A®)),
for homogeneous elements a,b € V*.

Let A be a Frobenius algebra with the bilinear form (, ) : Ax A — K and
the Nakayama automorphism v. Following [22], we recall a BV differential

on (HH*(A)"T,—,[, ]) focusing on Frobenius algebras. For n > 0, the map
¢y : C"(A) — C™(A) can be defined by

(Gu(Fa1 @ ®an) = v (f(r(a1) @ - @ v(an))),

for f € C"(A) and a; € A. Then ¢,(0,f) = dn(du(f)), so ¢, induces an
automorphism of the Hochschild cohomology. Let C™(A)” = {f € C"(4) |
é,(f) = f}. Then, §, restricts to a differential §% : C"(A)Y — C"1(A)
and let HH"(A)"T be the n-th cohomology of the complex (C*(A)¥,6Y). Then
HH"(A)T = HH"(A) if v is diagonalizable by [22, Corollary 2]. The cup
product on the Hochschild complex can restrict to (C*(A)?,§%) and HH*(A)¥"
has a ring structure. The Gerstenhaber algebra structure on HH*(A) induces
the Gerstenhaber algebra structure on HH*(A4)"7.

Let f € C"(A), n > 1. Then, for i such that 1 < i < n we define
A;f € C"1(A) by

(Aifla1 @ ®ap-1),an) = (f(a; @ Qap, ®va; @ -+ Qva;_1),1)
and we set A := Z?:l(—l)i(n_l)ﬁi :C"(A) — C"1(4).

Theorem 2.4 ([22, Theorem 2.2]). Let A be a Frobenius algebra with the
bilinear form ( , ) and the Nakayama automorphism v. Then, A induces a
BV algebra structure on the Gerstenhaber algebra (HH*(A)YT,—,[, ).

Note that this generalizes Tradler’s result. If v is diagonalizable, then A
induces a BV differential on the Gerstenhaber algebra (HH*(A),—,[, ]). In
[22], BV algebra structures on (HH*(A),—,[, ]) for self-injective algebras of
tree type D,, is determined. However, there are few examples known of BV
algebra structure on Hochschild cohomology for Frobenius algebras.
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2.2. Self-injective Nakayama algebras

We are focusing on representation-finite self-injective basic algebras over an
algebraically closed field. They are classified by associate trees of their stable
AR-~quivers, and the trees are Dynkin diagrams A,,(m > 1), D,(n > 4), E;(6 <
i < 8) in [12]. If the tree is A,,, then the algebra is stably equivalent either to
a serial self-injective algebra (self-injective Nakayama algebra) or to Mdbius
algebra [13]. Moreover, their Hochschild cohomology groups and rings have
been computed (cf. [3], [5], [8] and [10]). For algebras which are stably
equivalent to representation-finite self-injective basic algebras with associate
tree Dp(n > 4), Volkov computed their Hochschild cohomology groups and
Hochschild cohomology rings ([17], [18], [19], [20] and [21]).

In this subsection, according to [3], we recall the notation of self-injective
Nakayama algebras. Let e(> 2) and N (> 2) be integers, and Z, a cyclic quiver
with e vertices:

a/e>v1~{v

Ve 2

Ae—1 a2
// \
Uefl

Figure 1: Z,

Moreover, let A = KZB/JN, where J is the arrow ideal of KZ.. For an integer
[, we denote a path of length n(> 0) with the start point v; by 7}, that is,
V' = quagyr -+ - pp—1, where we regard subscripts [ of v;, a; and 7" modulo e.
Since A is basic, A is a Frobenius algebra. The bilinear form (, ) : AXA — K
is given by

. Nel—ji
<7277/yl+j ]> = 17

for1<lI<eand 0 <j <N —1, and thus a Nakayama automorphism v of A
is given by
V(Ul) = Vl+N-1, V(’Ylj) = '71]+N_1-

Then, it is easy to show that ord(v) < e. It is well-known that A is symmetric
if and only if N =1 (mod e).



BV ALGEBRA STRUCTURE ON HOCHSCHILD COHOMOLOGY 39

LetB:{fylj |1 <l <eand0 < j < N —1} be a basis of A. We use
the notation 710 as vy if there is no confusion. For b € B, we denote by b* the
element in B such that (b*,b) = 1. Then, for 'ylj € B, (71])* = ’yﬁ;zai,_l).
Thus, for f € Hompe(Bar,(A),A), A;f can be computed by

Aif(a®a1 @ ®an-1 @) = Z<Aif(1 ®a® - ®@ap—1 ®1),b)ab*s.
beB

Remark 2.5. In [7], a BV algebra structure on Hochschild cohomology of the
group algebra of the quaternion group of order eight in characteristic two was
computed by means of the dual basis, a symmetric bilinear form and chain
maps between the bar resolution and the projective resolution which gave a
description of its Hochschild cohomology ring.

§3. Chain maps between Bardzell’s projective resolution and the
bar resolution for truncated quiver algebras

Note that self-injective Nakayama algebras are monomial algebras. In [2],
Bardzell gave projective resolutions of monomial algebras as bimodules, and
Hochschild cohomology of truncated quiver algebras were calculated by means
of this resolution. Self-injective Nakayama algebras are truncated quiver al-
gebras. For truncated quiver algebras, Skoldberg [14] also gave the projective
resolution and Ames, Cagliero and Tirao gave comparison morphisms between
Skoldberg’s projective resolution and FE-normalized projective resolution by
Cibils [4], where E is the algebra generated by all vertices. For monomial
algebras, comparison morphisms between Bardzell’s projective resolution and
the bar resolution were given by Redondo and Roman [11].

In this section, we focus on truncated quiver algebras and we describe
chain maps between the bar resolution and the Bardzell’s projective resolution
through Cibils’ projective resolution in order to compute BV differentials on
Hochschild cohomology of self-injective Nakayama algebras. This chain map
coincides with the comparison morphism given in [11]. In order to compute
BV differentials easily, we divide comparison morphisms in [11] for truncated
quiver algebras into several chain maps.

Let A= KQ/JN (N > 2) be a truncated quiver algebra, where .J is the
arrow ideal of K@Q. We denote by @); the set of all path of length ¢ > 0. For
a path p in @, s(p) and t(p) denote source of p and target of p, respectively.
We focus on the truncated quiver algebra A, we recall Bardzell’s projective
resolution P :

dit1 d; d d d,
P....8p 5. . 2p P A0
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where P; = [, c ap(i) As(Ri)®t(R;)A. Here, for c > 1, AP(0) = Qo, AP(1) =
Q1, AP(2¢) = Qcn, AP(2c+ 1) = Qcn+1, do is the multiplication map and
the differentials d; are given by

m—1
dac(s(Rae) ® t(Rac)) Z s(Roc)o -+ 0 @ Qe1yma2+j * ** Qent(Rae),
]:

doct1(8(Ract1) @ t(Roct1))
= 5(Ract1)0) @ t(Ract1) — 8(Racy1) © oy 1t(Ract1),

for Rye = a1 -+~ ey € AP(2¢) and Roeq1 = o -+l € AP(2c+ 1), where
ag, o) € Q1.

On the other hand, in [14], Skéldberg gave a similar projective resolution
to compute the Hochschild homology of truncated quiver algebras.

Theorem 3.1 ([14, Theorem 1]). Let N be the set of all non negative integers
and A = KQ/JN a truncated quiver algebra, where J is the arrow ideal of K Q.
The following is a projective N-graded resolution of A as a left A°-module:

’ dipy ) d; dy dy
pP:...— P—> 5P 5P A—0

Here the modules are defined by
Pi, =A QKQq KF(i) X KQo A,
where KT'W is the vector space generated by TW and the set T is given by

@ — QcN if i =2c(c>0),
Qent1 if i=2c+1(c>0).

The differentials are defined by
dyeipy(@®@ar- - aeyny @ B)
= Z QO @ Qg QeN414+5 & QeN42+j Qe 1)N s
dyer (@@ @y -+ aeny1 @ B)

=00 @ag- - 0eN41 QP —a @ eN @ den415,

for ¢ > 0. The augmentation €: A ®kqQ, KQo ®xg, A = AR®kqg, A — A is
defined by e(a ® ) = af.

These projective resolutions are isomorphic. In fact, for n > 0, AP(n) =
'™ and the isomorphism P — P’ is given by

P, — P,;, S(Rn) ® t(Rn) — S(Rn) ®KQq R, RKQq t(Rn),



BV ALGEBRA STRUCTURE ON HOCHSCHILD COHOMOLOGY 41

for R, € T,
The following is the comparison morphism given in [11] from Bardzell’s
projective resolution to bar resolution for truncated quiver algebras.

Proposition 3.2 (cf. [11]). Define the map ® : P — (Bar.(A),b.) as follows:
Pole; @ ei) = €; @ e,

D1 (s(on) ® t(en)) = s(e1) @ an @ t(an),

(I)QC(S(RQC) ® t(RQC))

= Z $(R2c) ® a1 -+ Q14j; @ Q24 @ 34y *+* O34y 4y @ Qs+
0<j1 50 fe SN =2

Q- @ Q2e—14j1 4 +je1 T O2e—14j1++je
® Qe jy 4ot O2c4 141 ++je - CeNT(R2c),
Pocr1(8(R2er1) @ a1 - aent1 @ H(Roer1))

= E 5(Rocy1) @ 0p @ g+ oy jy @ A3y @ Qagjy - Qg+
0<j1,03Je SN—2

Q A54j1+jp @ 1+ O Q2ctgy+otjort * T O2etjit+je © A2e+14j1++je
® Q2c424j1+4je * UeN+1H(Roet1),

where e; € Qo and a1, s, ... € Q1. Then, ® is a chain map.

Next, in order to describe a chain map (Bar.(A), b.) — P, we recall Cibils’
projective resolution.

Lemma 3.3 ([4, Lemma 1.1]). Let Q be a finite quiver and KQq the subalgebra
of the truncated quiver algebra A = KQ/JN generated by Qo and r = J/JV
the Jacobson radical of A. Then the following is a projective resolution of A
as a left A°-module:

i d! i—1
pP’.... — A®KQ, r®KQo ®OKQy A — A®KQ, r®KQg QKQy A — -
d// d/l
—>A®KQOT®KQOA—1>A®KQ0A—O>A—>O

where dj(A[  u) = A, and

i—1
&} N |-+ |wilp) = Ao - il + D (1) A |- ajajia - |2l
j=1

+ (1) Az -z ]ap,

fori > 1. Here, we use the bar notation Nxi| - |x;jp for \@ 1 @z ® -+ ®
i ® W
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There is a chain map 0 from the bar resolution to Cibils’ projective reso-
lution given by (a1 ® -+ ® ani2) = ailaz|- - |apt1]ante. Moreover, Ames,
Cagliero and Tirao [1] gave the following chain map P” — P’ to compute the
ring structure of Hochschild cohomology of truncated quiver algebras.

Proposition 3.4 ([1]). Let A= KQ/J" be a truncated quiver algebra, 1,2,
... paths in Q and mi,ma, ... the lengths of x1,x2, ..., respectively. We set
T] = Q1Q2 - Uy s T2 = Qg +1Qmy+2 *** Qi mags - - - Where aq, ... € Q1.
Then there exists a chain map 7 : P” — P’ defined by the following equations:

mo(ef 18) =a®p,

mi
m(alz]B) = ZOzOq 1 @0y @ Qg oy By
J=1

AR O QN @ QeN41** Oy et B
moc(alry|ze| - - |220] B) = if mai—1+my >N (1<i<c¢),
0 otherwise,

mi . PR .
Do @ Qg A eN®

QiteN+1 " " O w1 B
maeri(afw|zs] - [2e41]B) = if mz-]j—cm;H > Jn\]Tla IWZL'Q<+10)
T A - = g )
0 otherwise,
fora,B € A.

We denote by ¥ the composition map of the following chain maps:
Bar,(4) - P” s P’ = P

Then, Y& = idp. In particular, the chain map ¥ coincides with the chain map
G given in [11] for truncated quiver algebras.

We will compute BV differentials on Hochschild cohomology of self-injective
Nakayama algebras by means of & and V.

§4. Hochschild cohomology of self-injective Nakayama algebras 1:
Case (a)

Frobenius algebras over K with a Nakayama automorphism v of finite order
are divided into the following two cases:

Case (a): char K does not divide ord v.

Case (b): char K divides ord v.
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In Case (a), v is always diagonalizable.

In this section, we assume Case (a) and we recall the basis of the n-th
Hochschild cohomology groups of self-injective Nakayama algebras given in [3].
Moreover, by means of comparison morphisms in Section 3, we compute BV
differentials. Focusing on the self-injective Nakayama algebra A = KZ./JV
in Section 2, we recall the notation for complexes derivered from projective
resolutions as bimodules for truncated quiver algebras in [3].

For paths p € A and ¢ € AP(n), (p,q) denotes the pair of paths p, g such
that s(p) = s(q) and t(p) = t(q). In [3], the Hochschild cohomology group
HH"(A) of A is computed by means of the following diagram

Hom e (dpi1,A
Hom e (P, A) Homae (@ny1.h), Hompe (Ppy1, A)

I I

[I Homae(As(p) ® tp)A, A) [I  Homae(As(q) ® t()A, A)
pEAP(n) gEAP(n+1)
I b
11 oA p) ZESN I (@Ata),a)
pEAP(n) gEAP(n+1)

where p1 : J[,cap@ (s(p)AL(P), ) = [lpcapn) Homae(As(p) ® t(p)A, A) is
defined by

i mp lf q = p7
e pl(s(a) @ ) = { 47 420
for m, € s(p)At(p) and p,q € AP(n). Moreover, ¢ is given by

1 1
¢§i+1((mpap)p€AP(2i)) = ( qMg, — Mg, q aQ)qEAP(%—i-l)a

N
¢§i((mpap)peAP(2i—1)) = (Z]_lqmqqu_]v Q)quP(%)’
j=1

where, for ¢ € AP(n), *q denotes a path of length k such that ¢ = *q¢’ for
some path ¢, ¢' denotes a path of length [ such that ¢ = ¢”¢' for some path
¢, a2 = q¢" = g € AP(2i + 1), and 77 qq;q" 7 = q € AP(2i).

A basis of [[,c 4pn) (s(p)At(p),p) is given by

(AN [1<1<e,0<j<N-1} ifn=2i
(AN ) [1<1<e,0<j <N -1} ifn=2i+1.

Moreover, we regard the notation p again for the composition

H (s(p)At(p),p) & H Hompe (As(p) ® t(p)A, A) = Hompe (P, A)
pEAP(n) pEAP(n)
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if there is no confusion.

We will compute the BV differential by dividing the Hochschild cohomology
groups HH"(A) into the following cases: HH!(A); HH*(A); HH**(A) for
7> 1.

Let N =me+t(m >0,0<t<e—1), g0 =ged(N—1,e) and ey = g%' Then
ord(v) = eg and char K t eg. We recall the basis of Hochschild cohomology
groups HH"(A) in [3].

Proposition 4.1 ([3, Proposition 5.1]). If N > 2, then a K-basis of HH’(A)
s given by

B:{EXWW00Sa§Pt2” fNZ1 (mod e),

=1
BUu{(yLu)|0<i<e} if N=1 (mod e).

Proposition 4.2 ([3, Proposition 5.2]). For i > 1, a K-basis of HH*(A) is
given by

B:{Z(%jy%]\”)|0§j§1\7—2andjENi (mode)}
=1
if char K{ N or Ni ZN —1 (mod e),

BU{Z AL A if char K | N and Ni =N —1 (mod e).

Proposition 4.3 ([3, Proposition 5.3]). Fori > 1, a K-basis of HH*"(A) is
given by

B =

ep—1
N (4
{ZWﬁwm%ﬁWOQ<NumL_ul>@ma}
k=0

ifchar K{ N or Nt Z N —1 (mod e),

BU{Z v, Y N(I 1+1} if char K | N and Ni=N —1 (mod e).

For the images of p with the basis elements above, we will compute BV
differentials. We fix the K-basis B={v/ |1 <l <eand 0 < j < N-—1}of A.

. 1 _
Theorem 4.4. The equation A(D ;% 01 (V{ikgomukgo)) = ] Ly 1(71 , 1)

holds for » ;2 01(7{Illfg07711+kgo) € HHY(A),0<j < N -2 andj =0 (mod e).

Proof. We set wj = pu(d> ;" 01(’7{11151077145;901)“)), where 0 < j < N — 2 and
j =0 (mod e). Then,

Aw;j(v @ 1) = Aqwj(v @ vy)
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= Z(wjklll(l ®b® 1), b y
beB

==

N—j—1—ek N—j—1—ek

k=0
N—j—1 N—j—1\x
= <CUj\I/1(1 ® ’.YlJrjj ® 1)7 1>Ul(7[+j] ) Uy
N-j—-1

90

N—j—1 |

Thus we have Aw; = 7ju(zl6:1(vlj,w)). O
9o

Theorem 4.5. Let i be a positive integer. For any w € HH*(A), A(w) =0
holds.

Proof. We set w; = M(Zle('ylj,'ylm)) € HH%(A), where 0 < j < N — 2 and
j = Ni (mod e). We have

Do 1 (s T @ (4N

B N(i—1)+1 1o jitl o 1 ja1
= Z s(9 ) O ®Yid1 © Vivati © Viati
0< g1 seeerfio1 SN =2

1 Ji—1+1 1
B Vitatji+is @ @ Norp2(i=1)tgi4tiice © Vb2 Dbt +tiioa

N(@i—1)—@2@E—1)+j1++7i-1)
OV 142(i—1)+judtiss
By the map ma., we only need to consider the summand

N(i—1)+1 _
s MY et e ek e
N(i—l)—i—l)

N-1 1
® Vi Ni—2)+1 © V(o) © LY
For b € B, we set
o 1 N-1 1 N-1 1

Then, it suffices to assume that N —1 = Ni (mod ¢e). By j < N — 2,

Z<wj(\lf(xb)), 1>s(fle(i—l)—H)b*t(fle(i—l)-i-l)

beB

o N(i—1)+1y, N—1 %,/ N(i—1)+1

= <WJ(\IJ(£E7£;V1(¢71)+1))’1>8(% )(7l+N(i—1)+1) t('7[ )
A [T R C A

= (7,1
=0.
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Thus we obtain Ajw; = 0. Similarly, we have Ajw; = 0 for 1 < k < 2i.
Therefore, Aw; = 0.

We suppose that char K | N and Ni = N — 1 (mod e) and we set w =
(3 (Y AN € HH%(A). We will compute Ajw. By the above,

Z<w(\y($b)), 1>3(')’zN(i_l)+l)b*t(fle(i_l)Jrl)

beB

N(i—1)+1 — * N(i—1)+1
= (@@ D Ds0 O )t T
= (L Ds(] T e vy at( UT
= .

Thus, Alw(s(%N(i_l)H) ® t('le(i_l)H)) = ;. Similarly, for 2 < k < 2i, we
have Ageo(s(r" M @1 ) = w so A = (S ().
Therefore,

21 e

Aw — Z(—l)k(QFl)M(Z(Ula’YlN(i_l)H)) —0

k=1 I=1
O
Theorem 4.6. Let i be a positive integer. For 0 < j < N —2 and j = Ni

(mod ¢), we have AT (W igor Vivige)) = (N4 N—j=D(Zi1 (07, %™)-
Ifchar K | N and Ni= N — 1 (mod e), then A(Y 7, (vi, 7 ™)) = 0 holds.

Proof. For s(7V") @ (V") € As(v]%) @ t(7{¥)A, we have

Doi(s(v"") @ t(7\"))
1

Ni - ) _ .
- Z SO0 ) @ ®Wagg ® Wiors © Vet ®
0<j1,,Ji SN2
Jit1 1 Ni—(2it+j1+-+ji) o Ni

O M4 gi—atjitiimy @ M2i-14j14tj; © 7l+2z'+j1+~1~-+j¢ tn)-

Let wj = u(30 (7T ANTHLY) where 0 < j < N—2and j = Ni (mod e)
7= M2 k=0 Mtkgo® V14kgo! /) VSIS J= :
First, we will compute Ao, for 1 < ¢ < i. We compute the following formula:

(Age1w7) (s(1) @ t(3"))

= g . . Jet1 1
N <"Jﬂ Pait1 < Z VO M et tirtgon © Tk2e—1ti+etie
beB 0<j1,n,Ji SN =2
. Jit1 1 J1+1 1
@ @V 9 gttty © Vik2i-tgrdets; @ 0@ V(NT) @V (Vigay,)

Jeo1+1 1
@ OV tjrbtios) © Y Mib2estitotio) © 1>’ 1>
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x  Ni—(2i+j1++7;)
S( )b l+21+]1+ +Ji :

By the map mo.y1, we can suppose that j; = -+ = jee1 = Jeg1 = - = J; =
N — 2. Then we have

(Age—1w;)(s(¥") @ t(%"))

_ Je+1 N-1
= Z<Wj‘1’2i+1( D 1@V N1y ® MV e+ 145 © VA N(em1)+ 244,
beB 0<je<N-2

1 -1 !
® - OV N2 114 © 71+N( —2) 247 @ VA N(i-1)+14j. DO

©v(y ) @ v(vn-1) @ O V(N Nem2) © V(M N(e—1)1) © 1) : 1>
7 * 2 c
A LA T VA

_ Jet1 1 N-—1
- <Wj‘1’2i+l ( Z l® V4+N(e-1) ® V4N (c—1)+1+j. ® V4+N(e=1)+2+je
0<je<N—2

N-1 1 N-1
Q& ’YI+N(1 2)+14jc ® fyl—i-N(z 2)+2+7. ® ’Yl+N(i71)+1+jc ® N

v ) @ vk ) 8 8O R y) VG ©1):1)
AT A NI ARS R TCTAD Y
By the map w; and the bilinear form ( , ),
Age1wi(s(M) @ t(4"))
= <WJ"I’2Z‘+1 <1 ® 7z+N(c 1) ® Vit Ne—j—1 © Wi Ne— ;O ® %1+N(z'_1)_j_1
®71+Nz - ® Vi Nie —j—1 ®
® V(Vl]i;\fl(c—Q)) ® ’/(711+N(c—1)—1) ® 1> ) 1>

Ni N— j Ni
s O T Y it O

N—j—1
o
< ( > b SN gt ) 1>8(% ().

v ) @v(Yin_1) ©

Next, we will compute Aoy, for 1 < ¢ <. Then,
Agew; (s(1") @ t(4{"))

— T 1 Jet1+1 e
= Z<% Wit ( > L@ Yigoe—14j14-+ic © Nik2etjittie @

beB 0<j1,-.,Ji<N=2
Ji+1

1 Jji+1
@ Vor2i—3tjittist ® Mg 4mtios © Vikzimtbjyeotss @ DO V(T)
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1 Je—1+1 1
® V(/Yl+1+j1) K& V(’Yl+2zc—2)+j1+v--+jc72) ® V(/Yl+2c—3+j1+~"+jc,1)

Jet1 Niyps  Ni—(2i+j1++ji) . Ni
® V(’Y[+2(C_1)+jl+...+jc_1) ® 1) ’ 1>S(’Yl Z)b ’7[+2i+j1+.1.4+jz. t(’)/l Z)'

By the map mac41, it is sufficient to consider only the case jo = -+ = j; = N—2.
Moreover, by the bilinear form ( , ), we have

Agcw;(s(3V") @ t(v\")

- Z<wﬁ%z+l < D 1O Mente1r @ Wiy Ne 12 €
beB 0<j1<N—-2

1 N-1 1
D V44N (i—2)41 D Vg N (—2)+2 © Vg 4 N(i—1)+1 @ Vi +N(i—1)+2b014 N -1

4 _
@v( ) @ v(agy,) © V(VﬁQijl) Q- V(%1+j1+N(c_2)+1)
N-1 Niyp*  N—j1—2 Ni
® V(Fyl+j1+N(c—2)+2) ® 1) ) 1>3(7l Z)b ’7[+j1jiN(i_1)+2t('7l Z)

= 2 2.

0<j1<N-2 0<p<n
j+p=N-—-2 (mode)

1 N-1 1
<wj‘1’2i+1 <1 V4N (e=1)4+1 © Vg N (=142 @ O V4N (i-2)41

N-1 1 N—ji—1+p
O Vit N (=242 © Vi 4N = D)+1 © Viky 4 NG=1) 1V jr 4 N (i—1) 42V N -1
j1+1 1 N-1
Qv @V(W14g) € O V(L ve-3)+2)

1 N—1
D V(Vgjy 1N (e-2)41) © V(7l+j1+N(c72)+2) ® 1) ’ 1>

Niy/ N—ji—1+p N—j1—2 Ni
5(% Z)(7l+j1j—N(i—l)—i—Q)*’yl-‘rﬁi—N(i—l)-&-zt(% )

= Z Z <Wj(vl+j1+N(c—1)+1 ® nyJrN(cfl)JrNiJrZ)’ 1>

0<j1<N-2 0<p<n
j+p=N-—-2 (mode)

Niy ji—p N—j1—2 Ni
s(71 Z)VZiN(i—1)+2+pfyl+j1i-N(i—1)+2t(’Yl ")

= Z wj | Vi @I 1
3\ Vit +N(e=1)+1 © Vg5 4 N(e—1)+Nit2 )
N—j—2<j1<N—2

Niv i Ni
(i Z)'V[ﬂ]\[ifjt(% ‘)
N

- N—j—2 ]
= > <wj'<”z+zv<c—1)+j1—1®'71+N<c—1>+m+ﬁ)’1> w

Jj1=N—j
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Finally, we compute Asg; 1. We have
Agirw;(s(1") @ t(4"))

—Z<wj‘1/2i+1< Z 1®b®V(’)’ljl+1)®V(’Yll+1+j1)®"'

beB 0< 1,0 ji <N —2

jit1 1
® 1/(’7[3+2@'72+j1+...+ji71) ® V(Vig2i—14j144ji) @ 1> ) 1>

Ni Ni—(2i+j1++ji) ( Ni
AR I ARNER T CTAD

= Z<qu/2i+1(1 @b vy ) ©r(Win-1) @
beB
9 V) © ¥k ) © .10 0

1

N—j— -
= (W P2it1(1 @57 @v(y ) @v(viy )@
) N—j-1

vy ni-1) @ Y(ivic1) @ 1) s ) (7))
N—j—1
1 _ N—j-1— N g ;
= <wj( Z 'Ylerj ®71+jiN¢+l;,)a1>3('71N2)71]t('YlNl)'
p=1

Hence we have

2i+1 . .

i i i i Ni+N-j—-1;

Awi(s() @ () = > Als(M) @ t(4Y)) = " 7.
k=1

Therefore, we obtain

e

Ni+N—j—1 N
Aw; = o pO> (74,
=1

On the other hand, if char K | N and N(i+1) = N — 1 (mod e), then it is
easily shown that Au(3"7_;(v,7"%)) = 0 by the bilinear form ( , ). O

Corollary 4.7 (cf. [23]). We set

e

zij =Y (7, ") € HH*(A),
=1

Yir 5 = Z(%j +17,le@' H) € HH%/H(A)
=1
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and wyr g = Zlezl(vl,’ylmnﬂ) e HH*"*1(A) (if char K | N and Ni’ = N — 1

(mod e)), where i,4',i" > 0 and j satisfies

0<j<N-1 ifcharK|N and Ni=N -1 (mod e),
0<j<N—2 otherwise.

Then the bracket [ , | on HH*(A) is given as follows:

[ig, 2 3] = Wi, Yo 5] = (Wi, wi 0] = w35, wir 0] = [Yi5, wi0] =0,
[i5: Yir 7]
—(Ni = J)Tivir jrj7

ifj+j <N—-2,andchar K{N or N(i+i)# N —1 (mod e),
JTivir j+j
= ifj+j <N—-2 charK|N and N(i +7) =N —1 (mod e),
=+ D@igir jajr

ifj+j =N-—1,char K| N and N(i +7)=N -1 (mod e),

L 0 otheruwise.

§5. Hochschild cohomology of self-injective Nakayama algebras 2:
Case (b)

Let N =me+t(m >0,0<t<e—1,t#1)and go = gcd(N — 1,e). Then
ord(v) = g%. Throughout this section, for a self-injective Nakayama algebra

AN=2Z.)J N with the Nakayama automorphism v, we assume that

Case (b) : char K | ord(v) = y
go

In this case, N # 1 (mod e) and the Nakayama automorphism v is not neces-
sarily diagonalizable. In this section, we compute HH*(A)*" and BV differen-
tial on HH*(A)*T defined by Volkov [22].

We consider the chain map
Hompe (®, A)p~ ¢, pHompe (¥, A) : Hompe (P, A) — Hompe (P, A),
where ) : Hompe(Bar(A),A) — (C*(A), d,) is an isomorphism given by
Willa1® - ®ap)=f1Ra ® - Ra, ® 1),

for f € Hompe(A®" "2 A). This map induces an isomorphism of Hochschild
cohomology. We denote the above chain map by F,,.
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Lemma 5.1. We set Hompe(P,,, A)” = {f € Hompe(P,,A) | F,f = f}. Then
Hompe (P, )" is the following:
Hompe (Pa;, A)” = K{f}, [1<1<g0,0<j<N—1,j=Ni (mode)},
HomAc (Pgi_l, A)V
K{gésjl |1<1<gy,-1<j<N-2j=N@G—-1) (mode)}
if gcd(N,e) =1 and Ni=N —1 (mod e),
K{gy 11<1<g,0<j<N-2j=N(i-1) (mode)}
if NiZN —1 (mod e),

for i >0, where fs., and gy, are given by

S}
90
. , i
o= Z (Wi r(v—1) Verb(v—1)))»
k=0
e
; < +1 N(i—1)+1
96,0 = M2 ORyrv—1) Yerk(v—1)))
k=0

In particular, if e | N, that is, t = 0, then
Hompe (Poi, A)” = K{ff, , |1 <1<g0,0<j <N —=2,j=Ni (mode)}.
Proof. For f € Hompe(Py;, A) and s(’ylm) ® t(’lei) € Py;, we have

[F, A(s(Y) @ t(3"))
= [Hompe (@, A)p~ ' ipHompe (W, A) f](s(+]V) @ t(+]""))

— (3 <qu< S 19vei ) @ v, @ veEEL )
0<g1,..0,7: SN—=2

1 ji+1 1
OV(Viatgiia) @ OVMiaiatgi ot 1) @ VOli2ictyetd,) © 1))
Ni—(2i+j1++3i ‘
'71+12i4(rjz1+]-1--+j¢ ’ )t(’lel)
= s W FWO)) @ v,
Similarly, for g € Hompe(Pae—1,A) and s(Rac—1) ® t(Rac—1) € Pac—1, we have

[Fug](s(Rac—1) @ t(Rac—1))
= 5(Roe—1)v " (9(v(5(Roe-1)) ® v(t(Rae-1))))t(Rac—1).

Therefore, we can determine the set Hompe(P,, A)” as above. O
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Lemma 5.2. The following hold:

[Hom(¥, A)](Hom(P,,A)”) C C™(A)",

[Hom(®, A)yp~1)(C™(A)¥) € Hompe (P, A)”.
In particular, for n >0, H"(Hompe (P, A)") = HH"(A)*T
Proof. We will check that [szomAc(\I/ A)](Hom(P A)Y) c C"(A)”. For
f(; € Hompe(Po;, A)” and 7]1 l+J1 R ® Vﬁlzil 1 € A®?% where l =’
(modgo) Jok—1+ Jor = N for 1 < k <1, andz,C 1jkj<Nz+N—1 we have

[¢»Hom(¥, A)(fé)]l/)]( ® 7l+gl Q- ’Yljiizii:—ll jk)

— (Wféj,yqf)](u(v{l) vifi) @ @ vy e, ”)

- 1<f¢”,( (i) @ vk N’)))

-1
St G —Ni
= ( Z 71/+k 'Vl+7\/z1 )>

e 1
7—1
_ Jiy,,—1 J Zk { Je—Ni
= s(y' v (Z N k(N-1) )ViENG
k=0

=1
S jk—Ni
- Z ’Vl'+k )YViENG
= [wHOmAe(\P, A)(f¢j’l,)](71jl & 'Yl]j_jl Q- ® ”)/ljj_iziiz—ll jk)'
For other elements in A®? of the form p; ® --- ® po;, where py,...,po; are

paths in A, we have

(v Hom (2, A) (£, )](pr ® -+ © pai) = [Hom(W, A)(f} (p1 @~ @ pa)
=0.

Hence, [Hom(¥, A)](Hompe(Py;, A)*) C C?(A)”. By a similar computation,
we have ¢,pHom (U, A)(Poit1,A)” = wHomAc(\I/, A) for i > 0.

Next, we check that [Hom(®, A)y~1](C™(A)”) C Hompe(P,, A)”. For f €
C?(A)” and s(vV") @ t({'?) € Ps;, we have

[F (Hom(®, A) (&~ (FNI(s(3") @ t(3")) |
= [(Hom(®, A)y ™' ¢, Hom (¥, A))(Hom(®, A) (v~ f))](s(3"") @ ("))
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= [ (G (W (W HHRU)))]R(s(3) @ t(\7))
- 3 S ([<¢,,<w<<w—1f>w>>>1

0<j1,52,--,Ji <N —2

J1 1 . Ji 1 ‘ Ni*(2i+22~:1 Jk)
' @y @@ Moim1eyi g © M2im145 jk)>71+2¢+2;;_1jk

- > S (vl(w«wlf)wn
0<yj1,J2,.-.,0i <N =2
i1 1 i 1
W) @v0) @ OV i ) OV sy J‘k)))>
Ni—(20+325_1 i)
204> Jk
_ ) s (v (0 st ) @ v @ vk )5
0<7j1,02,..,Ji <N—-2

1 Ni—(2i+> % 1 jk)
71+2¢-1+Z§;:1 jk) ® V<7l+2i+27;:1 Jk ))>>

x t(4{')
_ T s ( <5(V(7{1))f(V(751) & V() @ -
0<j1,02,---,0i SN =2

ji 1 Ni—(2i+3 ) _; i) Ni
I L TG R 7 Crivwesns o) D0

- 3 s (sw{l)u-l (f(V('v{l) Svirl) ®

0<j1,42,---,Ji <N —2

---®V( i

Ji
’Yl+2i—1+2};11 jk) ® v(

Ji 1 , Ni—(2i+Y "}y jk) Ni
® V(71+2¢71+z;;11 i) BV a1y jk))>7l+2i+2§€_1jk )t(% )
_ Ni J1 1 . Ji 1 _
= D s @y @@ Mioic145i 1 e © Mi2ic15i i)
0<J1,52,--.,0s SN =2
Ni—(20+35 1 )
1204577 g
_ -1 Ni Ni
= [Hom(®, M)y f](s(v"") @ t(~™))-
Hence, [Hom(®, A)yp~1](C%(A)¥) C Hompe(Py;, A)” holds.
Similarly, we have [Hom(®, A)y~1](C?*T1(A)¥) C Hompe(Pojy1, A) for i >
0. Therefore, [Hom(®, A)y~1(C™(A)”) C Hompe (P, A)” for n > 0.
Since F,, : Hompe(P,A)” — Hompe(P,A)” is equal to idpom,e(p,a)v; for
n > 0, we have H"(Hompe (P, A)) = HH"(A)"T. O

From now on, we give a basis of HH"(A)"T for n > 0 and determine the
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ring structure of HH*(A)"T.

Theorem 5.3. A basis of HHO(A)"T is given by

g0

{ngjl|0§j§N—2 and =0 (mod e)}.
=1

Fori > 1, a basis of HH*(A)"" is given by
g0 )
{Zféﬁjz |[0<j<N-2andj=Ni (mode)}.
=1
Fori > 1, a basis of HH*~Y(A)T is given by
{gé].1 |0<j<N-2andj=N(G—1) (mode)}.

Proof. By a direct computation, we have

| Go, — 9y, H1<j<N-2
¢§?+1(f;j,l) = or j =0 and ged(N,e) =1,
0 otherwise,

for j(0 < j < N — 1) satisfying Ni = j (mod e), and

G (sl,,)
t .
Z'fé]\]—ll-&-k if ged(N,e) =1, N(i—1)+1=0 (mod e),
= k=1
j=—-landt#0,

0 otherwise,

for j(0 < j < N — 2) satisfying N(i — 1) = j (mod e).
Since we already assumed that char K | ord(v) = ==, we note that char K {
N if ged (N, e) = 1. Hence, we have

*
Ker ¢3¢

90 9o
@ Kzféj,l@@KféN—l,z f Ni=N-1 (mOde)’

0<j<N-2 =1 =1
j=Ni (mod e)

g0

@ K Z féjl otherwise,
0<j<N-2 =l

{ J=Ni (mode)
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g0

41 i+1
Im ¢37, ) = . DKy - a5t

0<j<N-2 =2
j=Ni (mod e)

g0
kas= @ DK,
=1

1<j<N-2
J=N@GE—-1) (mode)
9o '
Tm g3/ — @Kﬁm,l,l if gcd(N,e) =1 and Ni=N —1 (mod e),
=1
0 otherwise.
Therefore, for each HH"(A)*T (n > 0), we obtain a basis as claimed. O

Next, in order to consider the ring structure, we recall the Yoneda product
in HH*(A). For [¢] € HH"(A) and [¢p] € HH™(A) (n,m > 0), there exists

0;(0 <7 < n) such that the following diagram commute:

dm+n dm+1

= Imn m+n—1*>"'H'Pm+1*>Pm
R N
On On—1 o1 a0
p—"-p, . P op %o 0

Figure 2: The commutative diagram for the Yoneda product

Then [¢] x [¢] is defined by [¢o,] € HH"t™(A).
Ity =37, fi , € HH*(A)"T, then oy : Poipx — Py is given by

o (s(Raisr) ® t(Roirr)) = ok(s(Raipr) D% @ t(Rairn)),
=1

for Ryi, € AP(2i+ k). If ¢ = g} | € HH'(A), then oy : P, — Py is given by

k
N N K N—k'—
JI(S(VZ )®t(/yl )) = Z Z M ®Vl+k/+117
0<k<N-1 k'=0
l+k=1 (mod go)

. ,
for 4V € AP(2). Hence, we have [gj ,]* = 0 and [gf;gl] = [g,.1] X D212 fo,)-
We leave out the notation [ | and x if there is no confusion. Now, we can
determine the ring structure of HH*(A)*T.
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Theorem 5.4. Suppose that N < e, and either char K ¢ N or char K | N
and gcd(N,e) # 1. Let x = fd)ol’ g¢0 L and zj = f¢ ;> where
i;(> 0) is the smallest integer such that Ni; = j (mod e) if there exists such
an integer i;. Then HH*(A)"T is generated by {x,y,z; | 0 <j < N — 2}, and
the relations and the degree of elements are as follows:

degree : degx =0, degy =1, deg z; = 2i;.

y—Oz[] 0,

zj—za]zflgajngQ

and iq; = aij for 1 <j < N -2,
Zjl"'zjn:Oifjl“‘ +jnZN_1a
iy g, =2 2y, i it =01 s
whereOSjl,...,]n,jl,...,j%,§N—2.

relations :

\

Theorem 5.5. Suppose that N > e, and either char K { N, or char K | N
and gcd(N e) # 1. Let g = > 7%, fgo’l, 1= Y9, f(ge,l y = 9;50,1 and
Zp = f¢ ;» where i.(> 0) is the smallest integer such that Ni, = r
(mod e) zf there exists such an integer i, for every 0 < r < e—1. Then
HH*(A)" is generated by {xo,21,y,2 | 0 <7 <e—1} and the relations, and
the degree of elements are as follows:

degree : degzr =0(k=0,1), degy = 1, deg 2z, = 2i,.

(27"=0if N=0 (mod e),
2P =0if N#£0 (mod e),
N
=050 =0,
relations : 228 =zgr ifl <ar<e—1and ig =ai, for 1 <r <e-—1,
Zjy 2, =04f 1+ + g 2N -1,
Zy g =2 2y i it i =g s
where()gjl,...,jn, and ji,...,j0, <e—1.

Corollary 5.6. For a self-injective Nakayama algebra A, HH*(A) is isomor-
phic to HH*(A)*T as algebras.

90 = g0
holds, where 0 < 7 < N —2 and j = Ni (mod €). Fori>1 and > 7, f¢j1

HH* (AT, A, f;ﬁj,z = 0 holds, where 0 < j < N—2 and j = Ni (mod e).

Theorem 5.7. Fori > 0 and gZle € HHZH (AT, Ag ol — Nl go f¢]l

Proof. By the proof of Theorem 4.6, for g“rl € HH*1(A)¥T, we have

Agit (st @ t(n™))
21+1

_z Mgl (s @ 1)
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i N—j—1
1 1 N NiAJp(~Ni
= <gf£—1< Z VéerNc 1) ®7[+NJ(CP1)+NZ+I,UZ+NC 1) 1>3(7l l)Vljt(ﬁ)/l ")
=1
i N
£ > (d) L BN NG s
‘ g¢j,1 Vl4+N(c—1)—=1+j1 ’7[+N(C_1)+Ni+jl ) S )N tn

N—j—1
1 L ,
gjbﬁ Z f)/f-i-j ®71+;+Nz+p) 1>3<’YZNZ)’71]15(’YZN1)

= ZZ<9¢ 1( UVI4+N(c—1)+p—1 ®%+N(c 1)+Nl+p> 1>5(7lNi)%Jt(WNi)

c=1 p=1
N—j—1
1 1 NiyJq(Ni
92;;1 Z %erNZUHNerp 1 ®71+]+N€+p) Ds(v Z)W’ljt(% ‘)
p=1
Ni+N—j—1
i+1 N—j—2 NiyJs(Ni
= Z <gés—;1 (Ul-i-p—l & 7[+Nji+p)7 1>5(7l Z)’Yljt(fn Z)
p=1
Ni+N—-j—1
g0
N-—-1
90
By a similar computation, we obtain the second statement. ]

Corollary 5.8. The Gerstenhaber braket [, | on HH*(A)" is the zero map.

Proof. Suppose that N < e, and either char K { N or char K | N and
ged(N, e) # 1. Then, for any generators a, b in Theorem 5.4, we have [a, b] = 0.
On the other hand, suppose that N > e, and either char K { N, or char K | N
and ged(N,e) # 1. Then, for any generators a,b in Theorem 5.5, we have
[a,b] = 0. O

Finally, we give the non trivial Batalin-Vilkovisky algebra structure on
cohomology of Hochschild complex related to the Nakayama automorphism
for the self-injective Nakayama algebra in [9, Example 5.3].

Example 5.9 (cf. [9, Example 5.3]). Suppose that char K = 2, e = 2 and
N = 4. Then, gy = 1, ord(v) = 2 and HH*(A)"" = K[z1,vy, 20]/(2?,?), where
degz; = 0, degy = 1 and degzy = 2. Moreover, the bracket [ , | = 0 and
BV-differential A is given by

A(1) = A(z1) = A(z) = A(z120) = A(22) = 0,
A(y) =1, A(yz1) =z1, A(yz0) = 20.
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