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Abstract. In this paper, we determine the Batalin-Vilkovisky algebra struc-
ture on the Hochschild cohomology of self-injective Nakayama algebras with
the diagonalizable Nakayama automorphism over an algebraically closed field
K. Moreover, in the case that the characteristic of K divides the order of the
Nakayama automorphism, we compute the Batalin-Vilkovisky algebra structure
on cohomology of Hochschild complex related to the Nakayama automorphism.
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§1. Introduction

Hochschild cohomology is an invariant of derived equivalence and it has sev-
eral algebraic structures; module structures, graded commutative ring struc-
tures and Gerstenhaber algebra structures, etc. These algebraic structures
of Hochschild cohomology of algebras have been computed for many classes
of algebras. For instance, for algebras which are stably equivalent to ba-
sic representation-finite self-injective algebras with associate tree Dn(n ≥ 4),
Volkov computed their Hochschild cohomology groups and Hochschild coho-
mology rings ([17], [18], [19], [20] and [21]).

Tradler [16] discovered that Hochschild cohomology of arbitrary symmet-
ric algebra has a Batalin-Vilkovisky (we say BV for short) algebra structure
given by a symmetric bilinear form. Later, Lambre, Zhou and Zimmermann
[9] discovered that Hochschild cohomology of Frobenius algebras with diago-
nalizable Nakayama automorphism has a BV algebra structure. However, it is
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not known if Hochschild cohomology of Frobenius algebras has a BV algebra
structure in general.

Recently, for any Frobenius algebra A, Volkov [22] defined the cohomology
HH∗(A)ν↑ of Hochschild complex related to Nakayama automorphism ν, which
induces a Gerstenhaber algebra (HH∗(A)ν↑,⌣, [ , ]). Moreover, Volkov [22]
also found a BV algebra structure on (HH∗(A)ν↑,⌣, [ , ]). In particular, if the
Nakayama automorphism ν is diagonalizable, then HH∗(A)ν↑ is isomorphic to
HH∗(A) and the BV differential on (HH∗(A)ν↑,⌣, [ , ]) induces the one on
the Gerstenhaber algebra (HH∗(A),⌣, [ , ]). In [22], the BV differentials on
Hochschild cohomology of representation-finite self-injective algebras of tree
type Dn(n ≥ 4) with diagonalizable Nakayama automorphism were calculated.
However, there are few examples of complete calculation of BV differentials
on Hochschild cohomology of Frobenius algebras which are not symmetric.

In this paper, we will compute BV differentials on Hochschild cohomology
of self-injective Nakayama algebras. We will divide the computation into two
cases: Case (a) the characteristic of the ground field does not divide the order
of the Nakayama automorphism; Case (b) the characteristic of the ground
field divides the order of the Nakayama automorphism. For a self-injective
Nakayama algebra Λ in Case (b), we will compute HH∗(Λ)ν↑ and BV differ-
entials on (HH∗(Λ)ν↑,⌣, [ , ]). This implies that HH∗(Λ)ν↑ ∼= HH∗(Λ) as
algebras and [ , ] = 0. However, [ , ] 6= 0 on Hochschild cohomology of Λ in
Case (a) in general. On the special case, when Λ is a truncated polynomial
ring, BV algebra structures on the Hochschild cohomology of truncated poly-
nomial rings were calculated in [15]. The Gerstenhaber brackets on Hochschild
cohomology rings of truncated quiver algebras were calculated in [23].

This paper is organized as follows: In Section 2, we recall the definitions and
the notation for Hochschild cohomology, Gerstenhaber brackets on Hochschild
cohomology, BV algebras on Hochschild cohomology of Frobenius algebras.
Moreover, we recall the bilinear form and the Nakayama automorphism for
self-injective Nakayama algebras. In Section 3, we recall chain maps between
Bardzell’s projective resolution and a bar resolution for truncated quiver al-
gebras. In Section 4, we compute BV differentials on Hochschild cohomology
of self-injective Nakayama algebras under the assumption that the character-
istic of base field dose not divide the order of the Nakayama automorphism.
We will determine the image of the BV differentials for each basis element in
n-th Hochschild cohomology group for each n ≥ 0 (Theorem 4.4, Theorem
4.5 and Theorem 4.6). Theorem 4.4, Theorem 4.5 and Theorem 4.6 give pre-
cise formulas for the BV differentials ∆ : HHn(Λ) → HHn−1(Λ), for n = 1,
n = 2i, n = 2i+1, respectively. In Section 5, we determine the ring structure
(Theorem 5.4 and Theorem 5.5), a BV algebra structure (Theorem 5.7) of
the cohomology of Hochschild complex related to Nakayama automorphism of
self-injective Nakayama algebras under the assumption that the characteristic
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of base field divides the order of the Nakayama automorphism. Theorem 5.7
gives precise formulas for the BV differential ∆ : HHn(Λ)ν↑ → HHn−1(Λ)ν↑

for n ≥ 1.
Throughout this paper, we denote the tensor product ⊗K over K by ⊗ for

simplicity, where K is an algebraically closed field.

§2. Preliminaries

In this section, we recall the definitions and the notation for Hochschild co-
homology, Gerstenhaber algebras, Batalin-Vilkovisky (we say BV for short)
algebras. Moreover, following [22], we recall the BV differential on Hochschild
cohomology for Frobenius algebras. In order to compute BV differentials on
Hochschild cohomology of self-injective algebras, we also describe the bilinear
form of self-injective Nakayama algebras and the Nakayama automorphism.

2.1. Batalin-Vilkovisky differential on Hochschild cohomology of
Frobenius algebras

Let K be an algebraically closed field and A a finite dimensional K-algebra.

Definition 2.1. The following complex (C∗(A), δ∗) is called the Hochschild
complex of A:

0 → C0(A)
δ0−→ C1(A)

δ1−→ · · · δn−2−→ Cn−1(A)
δn−1−→ Cn(A)

δn−→ Cn+1(A)
δn+1−→ · · ·

where C0(A) = HomK(K,A) ∼= A, Cn(A) = HomK(A⊗n, A) and

δn(f)(a1 ⊗ · · · ⊗ an+1) = a1f(a2 ⊗ · · · ⊗ an+1)

+
n∑
i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1) + (−1)n+1f(a1 ⊗ · · · ⊗ an)an+1,

for f ∈ Cn(A) and n ≥ 1. The n-th Hochschild cohomology group HHn(A) of
A is defined as the n-th cohomology of (C∗(A), δ∗).

The bar resolution (Bar∗(A), b∗) of A is the following:

· · · bn+1−→ Barn(A)
bn−→ Barn−1(A)

bn−1−→ · · · b2−→ Bar1(A)
b1−→ Bar0(A)

b0−→ A→ 0

where, for n ≥ 0, Barn(A) = A⊗n+2 and

bn(a0 ⊗ · · · ⊗ an+1) =

n∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1.
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For n ≥ 0, the isomorphism HomK(A⊗n, A) ∼= HomAe(A⊗n+2, A) induces
an isomorphism (HomAe(Bar∗(A), A),HomAe(b∗, A)) ∼= (C∗(A), δ∗), where A

e

is the enveloping algebra of A. Therefore, HHn(A) ∼= ExtnAe(A,A).
The cup product on the Hochschild complex (C∗(A), δ∗) is given as follows:

for f ∈ Cn(A) and g ∈ Cm(A), f ⌣ g ∈ Cm+n(A) is given by

(f ⌣ g)(a1 ⊗ · · · ⊗ an+m) = f(a1 ⊗ · · · ⊗ an)g(an+1 ⊗ · · · ⊗ an+m).

The cup product induces the one on Hochschild cohomology ⌣: HHn(A) ×
HHm(A) → HHn+m(A). Then, HH∗(A) := ⊕n≥0HH

n(A) is a commutative
graded algebra. We remark that the Yoneda product on Ext∗Ae(A,A) =
⊕n≥0Ext

n
Ae(A,A) coincides with the cup product on the Hochschild cohomol-

ogy HH∗(A).
Following [6], we recall the Lie bracket [ , ] on the Hochschild cohomology

ring HH∗(A). First, we recall the definition of Gerstenhaber algebras.

Definition 2.2. A Gerstenhaber algebra over an algebraically closed field K is
(V ∗,∪, [ , ]), where V ∗ = ⊕k≥0V

k is a graded K-vector space, ∪ : V n×V m →
V n+m (n,m ≥ 0) is a cup product of degree zero and [ , ] : V n×V m → V n+m−1

(n,m ≥ 0 and V −1 = 0) is a Lie bracket of degree −1 such that the following
conditions hold:

(i) (V ∗,∪) is a graded commutative associative algebra with unit 1 ∈ V 0.

(ii) (V ∗,∪, [ , ]) is a graded Lie algebra.

(iii) For arbitrary homogeneous elements a, b and c in V ∗,

[a, b ∪ c] = [a, b] ∪ c+ (−1)(|a|−1)|b|b ∪ [a, c],

where the notation |a| means the degree of the homogeneous element a.

For f ∈ Cn(A) and g ∈ Cm(A) (n+m ≥ 1), we define [f, g] ∈ Cn+m−1(A)
as follows: If n,m ≥ 1, then, for 1 ≤ i ≤ n, f ◦i g ∈ Cn+m−1(A) is given by

(f ◦i g)(a1 ⊗ · · · ⊗ an+m−1)

= f(a1 ⊗ · · · ⊗ ai−1 ⊗ g(ai ⊗ · · · ⊗ ai+m−1)⊗ ai+m ⊗ · · · ⊗ an+m−1).

If n ≥ 1 and m = 0, then, for 1 ≤ i ≤ n, f ◦i g ∈ Cn−1(A) is given by

(f ◦i g)(a1 ⊗ · · · ⊗ an+m−1) = f(a1 ⊗ · · · ⊗ ai−1 ⊗ g ⊗ ai ⊗ · · · ⊗ an−1),

where g is regarded as an element of A.
We set

f ◦ g :=
n∑
i=1

(−1)(m−1)(i−1)f ◦i g
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and

[f, g] := f ◦ g − (−1)(n−1)(m−1)g ◦ f ∈ Cn+m−1(A).

Then [ , ] induces [ , ] : HHn(A) × HHm(A) → HHn+m−1(A), and then
(HH∗(A),⌣, [ , ]) is a Gerstenhaber algebra.

Definition 2.3. A Batalin-Vilkovisky algebra is a Gerstenhaber algebra
(V ∗,∪, [ , ]) with an operator ∆ : V ∗ → V ∗−1 of degree −1 such that ∆◦∆ = 0
and

[a, b] = −(−1)(|a|−1)|b|(∆(a ∪ b)−∆(a) ∪ b− (−1)|a|a ∪∆(b)),

for homogeneous elements a, b ∈ V ∗.

Let A be a Frobenius algebra with the bilinear form 〈 , 〉 : A×A→ K and
the Nakayama automorphism ν. Following [22], we recall a BV differential
on (HH∗(A)ν↑,⌣, [ , ]) focusing on Frobenius algebras. For n ≥ 0, the map
ϕν : Cn(A) → Cn(A) can be defined by

(ϕν(f))(a1 ⊗ · · · ⊗ an) = ν−1(f(ν(a1)⊗ · · · ⊗ ν(an))),

for f ∈ Cn(A) and ai ∈ A. Then ϕν(δnf) = δn(ϕν(f)), so ϕν induces an
automorphism of the Hochschild cohomology. Let Cn(A)ν = {f ∈ Cn(A) |
ϕν(f) = f}. Then, δn restricts to a differential δνn : Cn(A)ν → Cn−1(A)ν

and let HHn(A)ν↑ be the n-th cohomology of the complex (C∗(A)ν , δν∗ ). Then
HHn(A)ν↑ ∼= HHn(A) if ν is diagonalizable by [22, Corollary 2]. The cup
product on the Hochschild complex can restrict to (C∗(A)ν , δν∗ ) and HH∗(A)ν↑

has a ring structure. The Gerstenhaber algebra structure on HH∗(A) induces
the Gerstenhaber algebra structure on HH∗(A)ν↑.

Let f ∈ Cn(A), n ≥ 1. Then, for i such that 1 ≤ i ≤ n we define
∆if ∈ Cn−1(A) by

〈∆if(a1 ⊗ · · · ⊗ an−1), an〉 = 〈f(ai ⊗ · · · ⊗ an ⊗ νa1 ⊗ · · · ⊗ νai−1), 1〉

and we set ∆ :=
∑n

i=1(−1)i(n−1)∆i : C
n(A) → Cn−1(A).

Theorem 2.4 ([22, Theorem 2.2]). Let A be a Frobenius algebra with the
bilinear form 〈 , 〉 and the Nakayama automorphism ν. Then, ∆ induces a
BV algebra structure on the Gerstenhaber algebra (HH∗(A)ν↑,⌣, [ , ]).

Note that this generalizes Tradler’s result. If ν is diagonalizable, then ∆
induces a BV differential on the Gerstenhaber algebra (HH∗(A),⌣, [ , ]). In
[22], BV algebra structures on (HH∗(A),⌣, [ , ]) for self-injective algebras of
tree type Dn is determined. However, there are few examples known of BV
algebra structure on Hochschild cohomology for Frobenius algebras.
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2.2. Self-injective Nakayama algebras

We are focusing on representation-finite self-injective basic algebras over an
algebraically closed field. They are classified by associate trees of their stable
AR-quivers, and the trees are Dynkin diagrams Am(m ≥ 1), Dn(n ≥ 4), Ei(6 ≤
i ≤ 8) in [12]. If the tree is Am, then the algebra is stably equivalent either to
a serial self-injective algebra (self-injective Nakayama algebra) or to Möbius
algebra [13]. Moreover, their Hochschild cohomology groups and rings have
been computed (cf. [3], [5], [8] and [10]). For algebras which are stably
equivalent to representation-finite self-injective basic algebras with associate
tree Dn(n ≥ 4), Volkov computed their Hochschild cohomology groups and
Hochschild cohomology rings ([17], [18], [19], [20] and [21]).

In this subsection, according to [3], we recall the notation of self-injective
Nakayama algebras. Let e(≥ 2) and N(≥ 2) be integers, and Ze a cyclic quiver
with e vertices:

v1
v2

v3

v4

ve

ve−1

α1

$$
α2

��

α3





αe //

αe−1
;;

Figure 1: Ze

Moreover, let Λ = KZe/J
N , where J is the arrow ideal of KZe. For an integer

l, we denote a path of length n(≥ 0) with the start point vl by γ
n
l , that is,

γnl = αlαl+1 · · ·αl+n−1, where we regard subscripts l of vl, αl and γ
n
l modulo e.

Since Λ is basic, Λ is a Frobenius algebra. The bilinear form 〈 , 〉 : Λ×Λ → K
is given by

〈γjl , γ
N−1−j
l+j 〉 = 1,

for 1 ≤ l ≤ e and 0 ≤ j ≤ N − 1, and thus a Nakayama automorphism ν of Λ
is given by

ν(vl) = vl+N−1, ν(γ
j
l ) = γjl+N−1.

Then, it is easy to show that ord(ν) ≤ e. It is well-known that Λ is symmetric
if and only if N ≡ 1 (mod e).
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Let B = {γjl | 1 ≤ l ≤ e and 0 ≤ j ≤ N − 1} be a basis of Λ. We use
the notation γ0l as vl if there is no confusion. For b ∈ B, we denote by b∗ the

element in B such that 〈b∗, b〉 = 1. Then, for γjl ∈ B, (γjl )
∗ = γN−j−1

l+j−(N−1).

Thus, for f ∈ HomΛe(Barn(Λ),Λ), ∆if can be computed by

∆if(α⊗ a1 ⊗ · · · ⊗ an−1 ⊗ β) =
∑
b∈B

〈∆if(1⊗ a1 ⊗ · · · ⊗ an−1 ⊗ 1), b〉αb∗β.

Remark 2.5. In [7], a BV algebra structure on Hochschild cohomology of the
group algebra of the quaternion group of order eight in characteristic two was
computed by means of the dual basis, a symmetric bilinear form and chain
maps between the bar resolution and the projective resolution which gave a
description of its Hochschild cohomology ring.

§3. Chain maps between Bardzell’s projective resolution and the
bar resolution for truncated quiver algebras

Note that self-injective Nakayama algebras are monomial algebras. In [2],
Bardzell gave projective resolutions of monomial algebras as bimodules, and
Hochschild cohomology of truncated quiver algebras were calculated by means
of this resolution. Self-injective Nakayama algebras are truncated quiver al-
gebras. For truncated quiver algebras, Sköldberg [14] also gave the projective
resolution and Ames, Cagliero and Tirao gave comparison morphisms between
Sköldberg’s projective resolution and E-normalized projective resolution by
Cibils [4], where E is the algebra generated by all vertices. For monomial
algebras, comparison morphisms between Bardzell’s projective resolution and
the bar resolution were given by Redondo and Roman [11].

In this section, we focus on truncated quiver algebras and we describe
chain maps between the bar resolution and the Bardzell’s projective resolution
through Cibils’ projective resolution in order to compute BV differentials on
Hochschild cohomology of self-injective Nakayama algebras. This chain map
coincides with the comparison morphism given in [11]. In order to compute
BV differentials easily, we divide comparison morphisms in [11] for truncated
quiver algebras into several chain maps.

Let A = KQ/JN (N ≥ 2) be a truncated quiver algebra, where J is the
arrow ideal of KQ. We denote by Qi the set of all path of length i ≥ 0. For
a path p in Q, s(p) and t(p) denote source of p and target of p, respectively.
We focus on the truncated quiver algebra A, we recall Bardzell’s projective
resolution P :

P : · · · di+1−→ Pi
di−→ · · · d2−→ P1

d1−→ P0
d0−→ A→ 0
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where Pi =
⨿
Ri∈AP (i)As(Ri)⊗t(Ri)A. Here, for c ≥ 1, AP (0) = Q0, AP (1) =

Q1, AP (2c) = QcN , AP (2c + 1) = QcN+1, d0 is the multiplication map and
the differentials di are given by

d2c(s(R2c)⊗ t(R2c)) =

m−1∑
j=0

s(R2c)α1 · · ·αj ⊗ α(c−1)m+2+j · · ·αcN t(R2c),

d2c+1(s(R2c+1)⊗ t(R2c+1))

= s(R2c+1)α
′
1 ⊗ t(R2c+1)− s(R2c+1)⊗ α′

cN+1t(R2c+1),

for R2c = α1 · · ·αcN ∈ AP (2c) and R2c+1 = α′
1 · · ·α′

cN+1 ∈ AP (2c+1), where
αk, α

′
l ∈ Q1.

On the other hand, in [14], Sköldberg gave a similar projective resolution
to compute the Hochschild homology of truncated quiver algebras.

Theorem 3.1 ([14, Theorem 1]). Let N be the set of all non negative integers
and A = KQ/JN a truncated quiver algebra, where J is the arrow ideal of KQ.
The following is a projective N-graded resolution of A as a left Ae-module:

P ′ : · · ·
d′i+1−→ P ′

i

d′i−→ · · ·
d′2−→ P ′

1

d′1−→ P ′
0

ε−→ A −→ 0

Here the modules are defined by

P ′
i = A⊗KQ0 KΓ(i) ⊗KQ0 A,

where KΓ(i) is the vector space generated by Γ(i) and the set Γ(i) is given by

Γ(i) =

{
QcN if i = 2c (c ≥ 0),
QcN+1 if i = 2c+ 1 (c ≥ 0).

The differentials are defined by

d′2(c+1)(α⊗ α1 · · ·α(c+1)N ⊗ β)

=
N−1∑
j=0

αα1 · · ·αj ⊗ α1+j · · ·αcN+1+j ⊗ αcN+2+j · · ·α(c+1)Nβ,

d′2c+1(α⊗ α1 · · ·αcN+1 ⊗ β)

= αα1 ⊗ α2 · · ·αcN+1 ⊗ β − α⊗ α1 · · ·αcN ⊗ αcN+1β,

for c ≥ 0. The augmentation ε : A ⊗KQ0 KQ0 ⊗KQ0 A
∼= A ⊗KQ0 A → A is

defined by ε(α⊗ β) = αβ.

These projective resolutions are isomorphic. In fact, for n ≥ 0, AP (n) =
Γ(n) and the isomorphism P → P ′ is given by

Pn → P ′
n, s(Rn)⊗ t(Rn) 7→ s(Rn)⊗KQ0 Rn ⊗KQ0 t(Rn),
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for Rn ∈ Γ(n).
The following is the comparison morphism given in [11] from Bardzell’s

projective resolution to bar resolution for truncated quiver algebras.

Proposition 3.2 (cf. [11]). Define the map Φ : P → (Bar∗(A), b∗) as follows:

Φ0(ei ⊗ ei) = ei ⊗ ei,

Φ1(s(α1)⊗ t(α1)) = s(α1)⊗ α1 ⊗ t(α1),

Φ2c(s(R2c)⊗ t(R2c))

=
∑

0≤j1,...,jc≤N−2

s(R2c)⊗ α1 · · ·α1+j1 ⊗ α2+j1 ⊗ α3+j1 · · ·α3+j1+j2 ⊗ α4+j1+j2

⊗ · · · ⊗ α2c−1+j1+···+jc−1 · · ·α2c−1+j1+···+jc

⊗ α2c+j1+···+jcα2c+1+j1+···+jc · · ·αcN t(R2c),

Φ2c+1(s(R2c+1)⊗ α1 · · ·αcN+1 ⊗ t(R2c+1))

=
∑

0≤j1,...,jc≤N−2

s(R2c+1)⊗ α1 ⊗ α2 · · ·α2+j1 ⊗ α3+j1 ⊗ α4+j1 · · ·α4+j1+j2

⊗ α5+j1+j2 ⊗ · · · ⊗ α2c+j1+···+jc−1 · · ·α2c+j1+···+jc ⊗ α2c+1+j1+···+jc

⊗ α2c+2+j1+···+jc · · ·αcN+1t(R2c+1),

where ei ∈ Q0 and α1, α2, . . . ∈ Q1. Then, Φ is a chain map.

Next, in order to describe a chain map (Bar∗(A), b∗) → P , we recall Cibils’
projective resolution.

Lemma 3.3 ([4, Lemma 1.1]). Let Q be a finite quiver and KQ0 the subalgebra
of the truncated quiver algebra A = KQ/JN generated by Q0 and r = J/JN

the Jacobson radical of A. Then the following is a projective resolution of A
as a left Ae-module:

P ′′ : · · · −→ A⊗KQ0 r
⊗i

KQ0 ⊗KQ0 A
d′′i−→ A⊗KQ0 r

⊗i−1
KQ0 ⊗KQ0 A −→ · · ·

−→ A⊗KQ0 r ⊗KQ0 A
d′′1−→ A⊗KQ0 A

d′′0−→ A −→ 0

where d′′0(λ[ ]µ) = λµ, and

d′′i (λ[x1| · · · |xi]µ) = λx1[x2| · · · |xi]µ+

i−1∑
j=1

(−1)iλ[x1| · · · |xjxj+1| · · · |xi]µ

+ (−1)iλ[x1| · · · |xi−1]xiµ,

for i ≥ 1. Here, we use the bar notation λ[x1| · · · |xi]µ for λ⊗ x1 ⊗ x2 ⊗ · · · ⊗
xi ⊗ µ.
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There is a chain map θ from the bar resolution to Cibils’ projective reso-
lution given by θ(a1 ⊗ · · · ⊗ an+2) = a1[a2| · · · |an+1]an+2. Moreover, Ames,
Cagliero and Tirao [1] gave the following chain map P ′′ → P ′ to compute the
ring structure of Hochschild cohomology of truncated quiver algebras.

Proposition 3.4 ([1]). Let A = KQ/JN be a truncated quiver algebra, x1, x2,
. . . paths in Q and m1,m2, . . . the lengths of x1, x2, . . ., respectively. We set
x1 = α1α2 · · ·αm1, x2 = αm1+1αm1+2 · · ·αm1+m2 , . . ., where α1, α2, . . . ∈ Q1.
Then there exists a chain map π : P ′′ → P ′ defined by the following equations:

π0(α[ ]β) = α⊗ β,

π1(α[x1]β) =

m1∑
j=1

αα1 · · ·αj−1 ⊗ αj ⊗ αj+1 · · ·αm1β,

π2c(α[x1|x2| · · · |x2c]β) =


α⊗ α1 · · ·αcN ⊗ αcN+1 · · ·αm1+···+m2cβ

if m2i−1 +m2i ≥ N (1 ≤ i ≤ c),
0 otherwise,

π2c+1(α[x1|x2| · · · |x2c+1]β) =


∑m1

j=1 αα1 · · ·αj−1 ⊗ αj · · ·αj+cN⊗
αj+cN+1 · · ·αm1+···+m2c+1β

if m2i +m2i+1 ≥ N (1 ≤ i ≤ c),
0 otherwise,

for α, β ∈ A.

We denote by Ψ the composition map of the following chain maps:

Bar∗(A)
θ−→ P ′′ π−→ P ′ ∼−→ P

Then, ΨΦ = idP . In particular, the chain map Ψ coincides with the chain map
G given in [11] for truncated quiver algebras.

We will compute BV differentials on Hochschild cohomology of self-injective
Nakayama algebras by means of Φ and Ψ.

§4. Hochschild cohomology of self-injective Nakayama algebras 1:
Case (a)

Frobenius algebras over K with a Nakayama automorphism ν of finite order
are divided into the following two cases:

Case (a): charK does not divide ord ν.

Case (b): charK divides ord ν.
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In Case (a), ν is always diagonalizable.
In this section, we assume Case (a) and we recall the basis of the n-th

Hochschild cohomology groups of self-injective Nakayama algebras given in [3].
Moreover, by means of comparison morphisms in Section 3, we compute BV
differentials. Focusing on the self-injective Nakayama algebra Λ = KZe/J

N

in Section 2, we recall the notation for complexes derivered from projective
resolutions as bimodules for truncated quiver algebras in [3].

For paths p ∈ Λ and q ∈ AP (n), (p, q) denotes the pair of paths p, q such
that s(p) = s(q) and t(p) = t(q). In [3], the Hochschild cohomology group
HHn(Λ) of Λ is computed by means of the following diagram

HomΛe (Pn,Λ)
HomΛe (dn+1,Λ)
−−−−−−−−−−−→ HomΛe (Pn+1,Λ)x∼=

y∼=∐
p∈AP (n)

HomΛe (Λs(p)⊗ t(p)Λ,Λ)
∐

q∈AP (n+1)

HomΛe (Λs(q)⊗ t(q)Λ,Λ)

xµ

yµ−1

∐
p∈AP (n)

(s(p)Λt(p), p)
ϕ∗
n+1−−−−−→

∐
q∈AP (n+1)

(s(q)Λt(q), q)

where µ :
⨿
p∈AP (n)(s(p)Λt(p), p) →

⨿
p∈AP (n)HomΛe(Λs(p) ⊗ t(p)Λ,Λ) is

defined by

[µ(mp, p)](s(q)⊗ t(q)) =

{
mp if q = p,
0 if q 6= p,

for mp ∈ s(p)Λt(p) and p, q ∈ AP (n). Moreover, ϕ∗n is given by

ϕ∗2i+1((mp, p)p∈AP (2i)) = (1qmq2 −mq1q
1, q)q∈AP (2i+1),

ϕ∗2i((mp, p)p∈AP (2i−1)) = (

N∑
j=1

j−1qmqjq
N−j , q)q∈AP (2i),

where, for q ∈ AP (n), kq denotes a path of length k such that q = kqq′ for
some path q′, ql denotes a path of length l such that q = q′′ql for some path
q′′, 1qq2 = q1q

1 = q ∈ AP (2i+ 1), and j−1qqjq
N−j = q ∈ AP (2i).

A basis of
⨿
p∈AP (n)(s(p)Λt(p), p) is given by{

{(γjl , γ
Ni
l ) | 1 ≤ l ≤ e, 0 ≤ j ≤ N − 1} if n = 2i,

{(γjl , γ
Ni+1
l ) | 1 ≤ l ≤ e, 0 ≤ j ≤ N − 1} if n = 2i+ 1.

Moreover, we regard the notation µ again for the composition⨿
p∈AP (n)

(s(p)Λt(p), p)
µ→

⨿
p∈AP (n)

HomΛe(Λs(p)⊗ t(p)Λ,Λ)
∼→ HomΛe(Pn,Λ)
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if there is no confusion.
We will compute the BV differential by dividing the Hochschild cohomology

groups HHn(Λ) into the following cases: HH1(Λ); HH2i(Λ); HH2i+1(Λ) for
i ≥ 1.

Let N = me+t(m ≥ 0, 0 ≤ t ≤ e−1), g0 = gcd(N−1, e) and e0 =
e
g0
. Then

ord(ν) = e0 and charK ∤ e0. We recall the basis of Hochschild cohomology
groups HHn(Λ) in [3].

Proposition 4.1 ([3, Proposition 5.1]). If N > 2, then a K-basis of HH0(Λ)
is given by B =

{
e∑
l=1

(γael , vl) | 0 ≤ a ≤
[
N − 2

e

]}
if N 6≡ 1 (mod e),

B ∪ {(γN−1
l , vl) | 0 ≤ l ≤ e} if N ≡ 1 (mod e).

Proposition 4.2 ([3, Proposition 5.2]). For i ≥ 1, a K-basis of HH2i(Λ) is
given by

B =

{
e∑
l=1

(γjl , γ
Ni
l ) | 0 ≤ j ≤ N − 2 and j ≡ Ni (mod e)

}
if charK ∤ N or Ni 6≡ N − 1 (mod e),

B ∪ {
e∑
l=1

(γN−1
l , γNil )} if charK | N and Ni ≡ N − 1 (mod e).

Proposition 4.3 ([3, Proposition 5.3]). For i ≥ 1, a K-basis of HH2i−1(Λ) is
given by

B ={
e0−1∑
k=0

(γj+1
1+kg0

, γ
N(i−1)+1
1+kg0

) | 0 ≤ j ≤ N − 2 and j ≡ N(i− 1) (mod e)

}
if charK ∤ N or Ni 6≡ N − 1 (mod e),

B ∪ {
e∑
l=1

(vl, γ
N(i−1)+1
l )} if charK | N and Ni ≡ N − 1 (mod e).

For the images of µ with the basis elements above, we will compute BV
differentials. We fix the K-basis B = {γjl | 1 ≤ l ≤ e and 0 ≤ j ≤ N − 1} of Λ.

Theorem 4.4. The equation ∆(
∑e0−1

k=0 (γj+1
1+kg0

, γ11+kg0)) =
N−j−1
g0

∑e
l=1(γ

j
l , vl)

holds for
∑e0−1

k=0 (γj+1
1+kg0

, γ11+kg0) ∈ HH1(Λ), 0 ≤ j ≤ N − 2 and j ≡ 0 (mod e).

Proof. We set ωj = µ(
∑e0−1

k=0 (γj+1
1+kg0

, γ
N(i−1)+1
1+kg0

)), where 0 ≤ j ≤ N − 2 and
j ≡ 0 (mod e). Then,

∆ωj(vl ⊗ vl) = ∆1ωj(vl ⊗ vl)
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=
∑
b∈B

〈ωjΨ1(1⊗ b⊗ 1), 1〉vlb∗vl

=

[N−j−1
e ]∑

k=0

〈ωjΨ1(1⊗ γN−j−1−ek
l+j ⊗ 1), 1〉vl(γN−j−1−ek

l+j )∗vl

= 〈ωjΨ1(1⊗ γN−j−1
l+j ⊗ 1), 1〉vl(γN−j−1

l+j )∗vl

=
N − j − 1

g0
γjl .

Thus we have ∆ωj =
N − j − 1

g0
µ(
∑e

l=1(γ
j
l , vl)).

Theorem 4.5. Let i be a positive integer. For any w ∈ HH2i(Λ), ∆(w) = 0
holds.

Proof. We set ωj = µ(
∑e

l=1(γ
j
l , γ

Ni
l )) ∈ HH2i(Λ), where 0 ≤ j ≤ N − 2 and

j ≡ Ni (mod e). We have

Φ2i−1(s(γ
N(i−1)+1
l )⊗ t(γ

N(i−1)+1
l ))

=
∑

0≤j1,...,ji−1≤N−2

s(γ
N(i−1)+1
l )⊗ γ1l ⊗ γj1+1

l+1 ⊗ γ1l+2+j1 ⊗ γj2+1
l+3+j1

⊗ γ1l+4+j1+j2 ⊗ · · · ⊗ γ
ji−1+1
l−1+2(i−1)+j1+···+ji−2

⊗ γ1l+2(i−1)+j1+···+ji−1

⊗ γ
N(i−1)−(2(i−1)+j1+···+ji−1)
l+1+2(i−1)+j1+···+ji−1

.

By the map π2c, we only need to consider the summand

s(γ
N(i−1)+1
l )⊗ γ1l ⊗ γN−1

l+1 ⊗ γ1l+N ⊗ · · ·

⊗ γN−1
l+N(i−2)+1 ⊗ γ1l+N(i−1) ⊗ t(γ

N(i−1)+1
l ).

For b ∈ B, we set

xb := 1⊗ γ1l ⊗ γN−1
l+1 ⊗ γ1l+N ⊗ · · · ⊗ γN−1

l+N(i−2)+1 ⊗ γ1l+N(i−1) ⊗ b⊗ 1.

Then, it suffices to assume that N − 1 ≡ Ni (mod e). By j ≤ N − 2,∑
b∈B

〈ωj(Ψ(xb)), 1〉s(γ
N(i−1)+1
l )b∗t(γ

N(i−1)+1
l )

= 〈ωj(Ψ(xγN−1
l+N(i−1)+1

)), 1〉s(γN(i−1)+1
l )(γN−1

l+N(i−1)+1)
∗t(γ

N(i−1)+1
l )

= 〈γjl , 1〉s(γ
N(i−1)+1
l )(γN−1

l+N(i−1)+1)
∗t(γ

N(i−1)+1
l )

= 0.
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Thus we obtain ∆1ωj = 0. Similarly, we have ∆kωj = 0 for 1 ≤ k ≤ 2i.
Therefore, ∆ωj = 0.

We suppose that charK | N and Ni ≡ N − 1 (mod e) and we set ω =
µ(
∑e

l=1(γ
N−1
l , γNil )) ∈ HH2i(Λ). We will compute ∆1ω. By the above,∑

b∈B
〈ω(Ψ(xb)), 1〉s(γ

N(i−1)+1
l )b∗t(γ

N(i−1)+1
l )

= 〈ω(Ψ(xγN−1
l+N(i−1)+1

)), 1〉s(γN(i−1)+1
l )(γN−1

l+N(i−1)+1)
∗t(γ

N(i−1)+1
l )

= 〈γN−1
l , 1〉s(γN(i−1)+1

l )vl+N(i−1)+1t(γ
N(i−1)+1
l )

= vl.

Thus, ∆1ω(s(γ
N(i−1)+1
l ) ⊗ t(γ

N(i−1)+1
l )) = vl. Similarly, for 2 ≤ k ≤ 2i, we

have ∆kω(s(γ
N(i−1)+1
l )⊗t(γN(i−1)+1

l )) = vl, so ∆kω = µ(
∑e

l=1(vl, γ
N(i−1)+1
l )).

Therefore,

∆ω =

2i∑
k=1

(−1)k(2i−1)µ(

e∑
l=1

(vl, γ
N(i−1)+1
l )) = 0.

Theorem 4.6. Let i be a positive integer. For 0 ≤ j ≤ N − 2 and j ≡ Ni
(mod e), we have ∆(

∑e0−1
k=0 (γj+1

1+kg0
, γNi+1

1+kg0
)) = (Ni+N−j−1)(

∑e
l=1(γ

j
l , γ

Ni
l )).

If charK | N and Ni ≡ N − 1 (mod e), then ∆(
∑e

l=1(vl, γ
Ni+1
l )) = 0 holds.

Proof. For s(γNil )⊗ t(γNil ) ∈ Λs(γNil )⊗ t(γNil )Λ, we have

Φ2i(s(γ
Ni
l )⊗ t(γNil ))

=
∑

0≤j1,...,ji≤N−2

s(γNil )⊗ γj1+1
l ⊗ γ1l+1+j1 ⊗ γj2+1

l+2+j1
⊗ γ1l+3+j1+j2 ⊗ · · ·

⊗ γji+1
l+2i−2+j1+···+ji−1

⊗ γ1l+2i−1+j1+···+ji ⊗ γ
Ni−(2i+j1+···+ji)
l+2i+j1+···+ji t(γNil ).

Let ωj = µ(
∑e0−1

k=0 (γj+1
1+kg0

, γNi+1
1+kg0

)), where 0 ≤ j ≤ N−2 and j ≡ Ni (mod e).
First, we will compute ∆2c−1 for 1 ≤ c ≤ i. We compute the following formula:

(∆2c−1ωj)(s(γ
Ni
l )⊗ t(γNil ))

=
∑
b∈B

⟨
ωjΨ2i+1

( ∑
0≤j1,...,ji≤N−2

1⊗ γjc+1
l+2(c−1)+j1+···+jc−1

⊗ γ1l+2c−1+j1+···+jc

⊗ · · · ⊗ γji+1
l+2i−2+j1+···+ji−1

⊗ γ1l+2i−1+j1+···+ji ⊗ b⊗ ν(γj1+1
l )⊗ ν(γ1l+1+j1)

⊗ · · · ⊗ ν(γ
jc−1+1
l+2(c−2)+j1+···+jc−2

)⊗ ν(γ1l+2c−3+j1+···+jc−1
)⊗ 1

)
, 1

⟩
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s(γNil )b∗γ
Ni−(2i+j1+···+ji)
l+2i+j1+···+ji .

By the map π2c+1, we can suppose that j1 = · · · = jc−1 = jc+1 = · · · = ji =
N − 2. Then we have

(∆2c−1ωj)(s(γ
Ni
l )⊗ t(γNil ))

=
∑
b∈B

⟨
ωjΨ2i+1

( ∑
0≤jc≤N−2

1⊗ γjc+1
l+N(c−1) ⊗ γ1l+N(c−1)+1+jc

⊗ γN−1
l+N(c−1)+2+jc

⊗ · · · ⊗ γ1l+N(i−2)+1+jc
⊗ γN−1

l+N(i−2)+2+jc
⊗ γ1l+N(i−1)+1+jc

⊗ b

⊗ ν(γN−1
l )⊗ ν(γ1l+N−1)⊗ · · · ⊗ ν(γN−1

l+N(c−2))⊗ ν(γ1l+N(c−1)−1)⊗ 1

)
, 1

⟩
s(γNil )b∗γ

N−(2+jc)
l+N(i−1)+2+jc

t(γNil )

=

⟨
ωjΨ2i+1

( ∑
0≤jc≤N−2

1⊗ γjc+1
l+N(c−1) ⊗ γ1l+N(c−1)+1+jc

⊗ γN−1
l+N(c−1)+2+jc

⊗ · · · ⊗ γ1l+N(i−2)+1+jc
⊗ γN−1

l+N(i−2)+2+jc
⊗ γ1l+N(i−1)+1+jc

⊗ γN−1
l

⊗ ν(γN−1
l )⊗ ν(γ1l+N−1)⊗ · · · ⊗ ν(γN−1

l+N(c−2))⊗ ν(γ1l+N(c−1)−1)⊗ 1

)
, 1

⟩
s(γNil )(γN−1

l )∗γ
N−(2+jc)
l+N(i−1)+2+jc

t(γNil ).

By the map wj and the bilinear form 〈 , 〉,

∆2c−1ωj(s(γ
Ni
l )⊗ t(γNil ))

=

⟨
ωjΨ2i+1

(
1⊗ γN−j−1

l+N(c−1) ⊗ γ1l+Nc−j−1 ⊗ γN−1
l+Nc−j ⊗ · · · ⊗ γ1l+N(i−1)−j−1

⊗ γN−1
l+Ni−j ⊗ γ1l+Ni−j−1 ⊗ γN−1

l ⊗ ν(γN−1
l )⊗ ν(γ1l+N−1)⊗ · · ·

⊗ ν(γN−1
l+N(c−2))⊗ ν(γ1l+N(c−1)−1)⊗ 1

)
, 1

⟩
s(γNil )(γN−1

l )∗γjl+Ni−jt(γ
Ni
l )

=

⟨
ωj

(N−j−1∑
p=1

γp−1
l+N(c−1) ⊗ γN−j−p−1

l+N(c−1)+Ni+pvl+Nc−1

)
, 1

⟩
s(γNil )γjl t(γ

Ni
l ).

Next, we will compute ∆2c for 1 ≤ c ≤ i. Then,

∆2cωj (s(γ
Ni
l )⊗ t(γNil ))

=
∑
b∈B

⟨
ωjΨ2i+1

( ∑
0≤j1,...,ji≤N−2

1⊗ γ1l+2c−1+j1+···+jc ⊗ γ
jc+1+1
l+2c+j1+···+jc ⊗ · · ·

⊗ γ1l+2i−3+j1+···+ji−1
⊗ γji+1

l+2i−2+j1+···+ji−1
⊗ γ1l+2i−1+j1+···+ji ⊗ b⊗ ν(γj1+1

l )
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⊗ ν(γ1l+1+j1)⊗ · · · ⊗ ν(γ
jc−1+1
l+2(c−2)+j1+···+jc−2

)⊗ ν(γ1l+2c−3+j1+···+jc−1
)

⊗ ν(γjc+1
l+2(c−1)+j1+···+jc−1

)⊗ 1

)
, 1

⟩
s(γNil )b∗γ

Ni−(2i+j1+···+ji)
l+2i+j1+···+ji t(γNil ).

By the map π2c+1, it is sufficient to consider only the case j2 = · · · = ji = N−2.
Moreover, by the bilinear form 〈 , 〉, we have

∆2cωj(s(γ
Ni
l )⊗ t(γNil ))

=
∑
b∈B

⟨
ωjΨ2i+1

( ∑
0≤j1≤N−2

1⊗ γ1l+j1+N(c−1)+1 ⊗ γN−1
l+j1+N(c−1)+2 ⊗ · · ·

⊗ γ1l+j1+N(i−2)+1 ⊗ γN−1
l+j1+N(i−2)+2 ⊗ γ1l+j1+N(i−1)+1 ⊗ vl+j1+N(i−1)+2bvl+N−1

⊗ ν(γj1+1
l )⊗ ν(γ1l+1+j1)⊗ ν(γN−1

l+2+j1
)⊗ · · · ⊗ ν(γ1l+j1+N(c−2)+1)

⊗ ν(γN−1
l+j1+N(c−2)+2)⊗ 1

)
, 1

⟩
s(γNil )b∗γN−j1−2

l+j1+N(i−1)+2t(γ
Ni
l )

=
∑

0≤j1≤N−2

∑
0 ≤ p ≤ j1

j + p ≡ N − 2 (mod e)⟨
ωjΨ2i+1

(
1⊗ γ1l+j1+N(c−1)+1 ⊗ γN−1

l+j1+N(c−1)+2 ⊗ · · · ⊗ γ1l+j1+N(i−2)+1

⊗ γN−1
l+j1+N(i−2)+2 ⊗ γ1l+j1+N(i−1)+1 ⊗ vl+j1+N(i−1)+1γ

N−j1−1+p
l+j1+N(i−1)+2vl+N−1

⊗ ν(γj1+1
l )⊗ ν(γ1l+1+j1)⊗ · · · ⊗ ν(γN−1

l+j1+N(c−3)+2)

⊗ ν(γ1l+j1+N(c−2)+1)⊗ ν(γN−1
l+j1+N(c−2)+2)⊗ 1

)
, 1

⟩
s(γNil )(γN−j1−1+p

l+j1+N(i−1)+2)
∗γN−j1−2
l+j1+N(i−1)+2t(γ

Ni
l )

=
∑

0≤j1≤N−2

∑
0 ≤ p ≤ j1

j + p ≡ N − 2 (mod e)

⟨
ωj(vl+j1+N(c−1)+1 ⊗ γpl+N(c−1)+Ni+2), 1

⟩

s(γNil )γj1−pl+N(i−1)+2+pγ
N−j1−2
l+j1+N(i−1)+2t(γ

Ni
l )

=
∑

N−j−2≤j1≤N−2

⟨
ωj

(
vl+j1+N(c−1)+1 ⊗ γN−j−2

l+j1+N(c−1)+Ni+2

)
, 1

⟩
s(γNil )γjl+Ni−jt(γ

Ni
l )

=
N∑

j1=N−j

⟨
ωj

(
vl+N(c−1)+j1−1 ⊗ γN−j−2

l+N(c−1)+Ni+j1

)
, 1

⟩
γjl .
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Finally, we compute ∆2i+1. We have

∆2i+1ωj(s(γ
Ni
l )⊗ t(γNil ))

=
∑
b∈B

⟨
ωjΨ2i+1

( ∑
0≤j1,...,ji≤N−2

1⊗ b⊗ ν(γj1+1
l )⊗ ν(γ1l+1+j1)⊗ · · ·

⊗ ν(γji+1
l+2i−2+j1+···+ji−1

)⊗ ν(γ1l+2i−1+j1+···+ji)⊗ 1

)
, 1

⟩
s(γNil )b∗γ

Ni−(2i+j1+···+ji)
l+2i+j1+···+ji t(γNil )

=
∑
b∈B

⟨
ωjΨ2i+1(1⊗ b⊗ ν(γN−1

l )⊗ ν(γ1l+N−1)⊗ · · ·

⊗ ν(γN−1
l+N(i−1))⊗ ν(γ1l+Ni−1)⊗ 1), 1

⟩
s(γNil )b∗t(γNil )

= 〈ωjΨ2i+1(1⊗ γN−j−1
l+j ⊗ ν(γN−1

l )⊗ ν(γ1l+N−1)⊗ · · ·

⊗ ν(γN−1
l+N(i−1))⊗ ν(γ1l+Ni−1)⊗ 1), 1〉s(γNil )(γN−j−1

l+j )∗t(γNil )

= 〈ωj(
N−j−1∑
p=1

γp−1
l+j ⊗ γN−j−1−p

l+j+Ni+p), 1〉s(γ
Ni
l )γjl t(γ

Ni
l ).

Hence we have

∆ωj(s(γ
Ni
l )⊗ t(γNil )) =

2i+1∑
k=1

∆k(s(γ
Ni
l )⊗ t(γNil )) =

Ni+N − j − 1

g0
γjl .

Therefore, we obtain

∆ωj =
Ni+N − j − 1

g0
µ(

e∑
l=1

(γjl , γ
Ni
l )).

On the other hand, if charK | N and N(i+1) ≡ N − 1 (mod e), then it is
easily shown that ∆µ(

∑e
l=1(vl, γ

Ni
l )) = 0 by the bilinear form 〈 , 〉.

Corollary 4.7 (cf. [23]). We set

xi,j =

e∑
l=1

(γjl , γ
Ni
l ) ∈ HH2i(Λ),

yi′,j′ =

e∑
l=1

(γj
′+1
l , γNi

′+1
l ) ∈ HH2i′+1(Λ)
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and wi′′,0 =
∑e

l=1(vl, γ
Ni′′+1
l ) ∈ HH2i′′+1(Λ) (if charK | N and Ni′′ ≡ N − 1

(mod e)), where i, i′, i′′ ≥ 0 and j satisfies{
0 ≤ j ≤ N − 1 if charK | N and Ni ≡ N − 1 (mod e),
0 ≤ j ≤ N − 2 otherwise.

Then the bracket [ , ] on HH∗(Λ) is given as follows:

[xi,j , xi′,j′ ] = [yi,j , yi′,j′ ] = [wi,0, wi′,0] = [xi,j , wi′,0] = [yi,j , wi′,0] = 0,

[xi,j , yi′,j′ ]

=



−(Ni− j)xi+i′,j+j′

if j + j′ ≤ N − 2, and charK ∤ N or N(i+ i′) 6≡ N − 1 (mod e),
jxi+i′,j+j′

if j + j′ ≤ N − 2, charK | N and N(i+ i′) ≡ N − 1 (mod e),
−(j + 1)xi+i′,j+j′

if j + j′ = N − 1, charK | N and N(i+ i′) ≡ N − 1 (mod e),
0 otherwise.

§5. Hochschild cohomology of self-injective Nakayama algebras 2:
Case (b)

Let N = me + t(m ≥ 0, 0 ≤ t ≤ e − 1, t 6= 1) and g0 = gcd(N − 1, e). Then
ord(ν) = e

g0
. Throughout this section, for a self-injective Nakayama algebra

Λ = Ze/J
N with the Nakayama automorphism ν, we assume that

Case (b) : charK | ord(ν) = e

g0
.

In this case, N 6≡ 1 (mod e) and the Nakayama automorphism ν is not neces-
sarily diagonalizable. In this section, we compute HH∗(Λ)ν↑ and BV differen-
tial on HH∗(Λ)ν↑ defined by Volkov [22].

We consider the chain map

HomΛe(Φ,Λ)ψ−1ϕνψHomΛe(Ψ,Λ) : HomΛe(P ,Λ) → HomΛe(P ,Λ),

where ψ : HomΛe(Bar(Λ),Λ) → (C∗(Λ), δ∗) is an isomorphism given by

[ψf ](a1 ⊗ · · · ⊗ an) = f(1⊗ a1 ⊗ · · · ⊗ an ⊗ 1),

for f ∈ HomΛe(Λ⊗n+2,Λ). This map induces an isomorphism of Hochschild
cohomology. We denote the above chain map by Fν .
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Lemma 5.1. We set HomΛe(Pn,Λ)
ν = {f ∈ HomΛe(Pn,Λ) | Fνf = f}. Then

HomΛe(Pn,Λ)
ν is the following:

HomΛe(P2i,Λ)
ν = K{f iϕj,l | 1 ≤ l ≤ g0, 0 ≤ j ≤ N − 1, j ≡ Ni (mod e)},

HomΛe(P2i−1,Λ)
ν

=


K{giϕj,l | 1 ≤ l ≤ g0, −1 ≤ j ≤ N − 2, j ≡ N(i− 1) (mod e)}

if gcd(N, e) = 1 and Ni ≡ N − 1 (mod e),
K{giϕj,l | 1 ≤ l ≤ g0, 0 ≤ j ≤ N − 2, j ≡ N(i− 1) (mod e)}

if Ni 6≡ N − 1 (mod e),

for i ≥ 0, where fϕj,l and gϕj,l are given by

f iϕj,l = µ(

e
g0

−1∑
k=0

(γjl+k(N−1), γ
Ni
l+k(N−1))),

giϕj,l = µ(

e
g0

−1∑
k=0

(γj+1
l+k(N−1), γ

N(i−1)+1
l+k(N−1))).

In particular, if e | N , that is, t = 0, then

HomΛe(P2i,Λ)
ν = K{f iϕj,l | 1 ≤ l ≤ g0, 0 ≤ j ≤ N − 2, j ≡ Ni (mod e)}.

Proof. For f ∈ HomΛe(P2i,Λ) and s(γ
Ni
l )⊗ t(γNil ) ∈ P2i, we have

[Fνf ](s(γ
Ni
l )⊗ t(γNil ))

= [HomΛe(Φ,Λ)ψ−1ϕνψHomΛe(Ψ,Λ)f ](s(γNil )⊗ t(γNil ))

= s(γNil )ν−1

(
fΨ

( ∑
0≤j1,...,ji≤N−2

1⊗ ν(γj1+1
l )⊗ ν(γ1l+1+j1)⊗ ν(γj2+1

l+2+j1
)

⊗ ν(γ1l+3+j1+j2)⊗ · · · ⊗ ν(γji+1
l+2i−2+j1+···+ji−1

)⊗ ν(γ1l+2i−1+j1+···+ji)⊗ 1

))
γ
Ni−(2i+j1+···+ji)
l+2i+j1+···+ji t(γNil )

= s(γNil )ν−1(f(ν(γNil ))⊗ ν(t(γNil ))))t(γNil ).

Similarly, for g ∈ HomΛe(P2c−1,Λ) and s(R2c−1)⊗ t(R2c−1) ∈ P2c−1, we have

[Fνg](s(R2c−1)⊗ t(R2c−1))

= s(R2c−1)ν
−1(g(ν(s(R2c−1))⊗ ν(t(R2c−1))))t(R2c−1).

Therefore, we can determine the set HomΛe(Pn,Λ)
ν as above.
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Lemma 5.2. The following hold:

[ψHom(Ψ,Λ)](Hom(Pn,Λ)
ν) ⊂ Cn(Λ)ν ,

[Hom(Φ,Λ)ψ−1](Cn(Λ)ν) ⊂ HomΛe(Pn,Λ)
ν .

In particular, for n ≥ 0, Hn(HomΛe(P ,Λ)ν) ∼= HHn(Λ)ν↑.

Proof. We will check that [ψHomΛe(Ψ,Λ)](Hom(Pn,Λ)
ν) ⊂ Cn(Λ)ν . For

f iϕj,l′
∈ HomΛe(P2i,Λ)

ν and γj1l ⊗ γj2l+j1 ⊗ · · · ⊗ γj2i
l+

∑2i−1
k=1 jk

∈ Λ⊗2i, where l ≡ l′

(mod g0), j2k−1 + j2k ≥ N for 1 ≤ k ≤ i, and
∑2i

k=1 jk ≤ Ni+N − 1, we have

[ϕνψHom(Ψ,Λ)(f iϕj,l′ )](γ
j1
l ⊗ γj2l+j1 ⊗ · · · ⊗ γj2i

l+
∑2i−1

k=1 jk
)

= ν−1

(
[ψ(f iϕj,l′Ψ)](ν(γj1l )⊗ ν(γj2l+j1)⊗ · · · ⊗ ν(γj2i

l+
∑2i−1

k=1 jk
))

)
= ν−1

(
f iϕj,l′ (s(ν(γ

j1
l ))⊗ ν(γ

∑2i−1
k=1 jk−Ni

l+Ni ))

)

= ν−1

(
s(ν(γj1l ))

e
g0

−1∑
k=0

γjl′+k(N−1)ν(γ
∑2i−1

k=1 jk−Ni
l+Ni )

)

= s(γj1l )ν−1(

e
g0

−1∑
k=0

γjl′+k(N−1))γ
∑2i−1

k=1 jk−Ni
l+Ni

= s(γj1l )(

e
g0

−1∑
k=0

γjl′+k(N−1))γ
∑2i−1

k=1 jk−Ni
l+Ni

= [ψHomΛe(Ψ,Λ)(f iϕj,l′ )](γ
j1
l ⊗ γj2l+j1 ⊗ · · · ⊗ γj2i

l+
∑2i−1

k=1 jk
).

For other elements in Λ⊗2i of the form p1 ⊗ · · · ⊗ p2i, where p1, . . . , p2i are
paths in Λ, we have

[ϕνψHom(Ψ,Λ)(f iϕj,l′ )](p1 ⊗ · · · ⊗ p2i) = [ψHom(Ψ,Λ)(f iϕj,l′ )](p1 ⊗ · · · ⊗ p2i)

= 0.

Hence, [ψHom(Ψ,Λ)](HomΛe(P2i,Λ)
ν) ⊂ C2i(Λ)ν . By a similar computation,

we have ϕνψHom(Ψ,Λ)(P2i+1,Λ)
ν = ψHomΛe(Ψ,Λ) for i ≥ 0.

Next, we check that [Hom(Φ,Λ)ψ−1](Cn(Λ)ν) ⊂ HomΛe(Pn,Λ)
ν . For f ∈

C2i(Λ)ν and s(γNil )⊗ t(γNil ) ∈ P2i, we have

[Fν(Hom(Φ,Λ)(ψ−1(f)))](s(γNil )⊗ t(γNil ))

= [(Hom(Φ,Λ)ψ−1ϕνψHom(Ψ,Λ))(Hom(Φ,Λ)(ψ−1f))](s(γNil )⊗ t(γNil ))
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= [ψ−1(ϕν(ψ((ψ
−1f)ΦΨ)))]Φ(s(γNil )⊗ t(γNil ))

=
∑

0 ≤ j1, j2, . . . , ji ≤ N − 2

s(γNil )

(
[(ϕν(ψ((ψ

−1f)ΦΨ)))]

(γj1l ⊗ γ1l+j1 ⊗ · · · ⊗ γji
l+2i−1+

∑i−1
k=1 jk

⊗ γ1
l+2i−1+

∑i
k=1 jk

)

)
γ
Ni−(2i+

∑i
k=1 jk)

l+2i+
∑i

k=1 jk

=
∑

0 ≤ j1, j2, . . . , ji ≤ N − 2

s(γNil )

(
ν−1

(
[ψ((ψ−1f)ΦΨ)]

(ν(γj1l )⊗ ν(γ1l+j1)⊗ · · · ⊗ ν(γji
l+2i−1+

∑i−1
k=1 jk

)⊗ ν(γ1
l+2i−1+

∑i
k=1 jk

))
))

× γ
Ni−(2i+

∑i
k=1 jk)

l+2i+
∑i

k=1 jk

=
∑

0 ≤ j1, j2, . . . , ji ≤ N − 2

s(γNil )

(
ν−1

(
[ψ−1f ](s(ν(γj1l ))⊗ ν(γj1l )⊗ ν(γ1l+j1)⊗

· · · ⊗ ν(γji
l+2i−1+

∑i−1
k=1 jk

)⊗ ν(γ1
l+2i−1+

∑i
k=1 jk

)⊗ ν(γ
Ni−(2i+

∑i
k=1 jk)

l+2i+
∑i

k=1 jk
))

))
× t(γNil )

=
∑

0 ≤ j1, j2, . . . , ji ≤ N − 2

s(γNil )

(
ν−1

(
s(ν(γj1l ))f(ν(γj1l )⊗ ν(γ1l+j1)⊗ · · ·

⊗ ν(γji
l+2i−1+

∑i−1
k=1 jk

)⊗ ν(γ1
l+2i−1+

∑i
k=1 jk

))ν(γ
Ni−(2i+

∑i
k=1 jk)

l+2i+
∑i

k=1 jk
)

))
t(γNil )

=
∑

0 ≤ j1, j2, . . . , ji ≤ N − 2

s(γNil )

(
s(γj1l )ν−1

(
f(ν(γj1l )⊗ ν(γ1l+j1)⊗ · · ·

⊗ ν(γji
l+2i−1+

∑i−1
k=1 jk

)⊗ ν(γ1
l+2i−1+

∑i
k=1 jk

))

)
γ
Ni−(2i+

∑i
k=1 jk)

l+2i+
∑i

k=1 jk

)
t(γNil )

=
∑

0 ≤ j1, j2, . . . , ji ≤ N − 2

s(γNil )f(γj1l ⊗ γ1l+j1 ⊗ · · · ⊗ γji
l+2i−1+

∑i−1
k=1 jk

⊗ γ1
l+2i−1+

∑i
k=1 jk

)

× γ
Ni−(2i+

∑i
k=1 jk)

l+2i+
∑i

k=1 jk

= [Hom(Φ,Λ)ψ−1f ](s(γNil )⊗ t(γNil )).

Hence, [Hom(Φ,Λ)ψ−1](C2i(Λ)ν) ⊂ HomΛe(P2i,Λ)
ν holds.

Similarly, we have [Hom(Φ,Λ)ψ−1](C2i+1(Λ)ν) ⊂ HomΛe(P2i+1,Λ)
ν for i ≥

0. Therefore, [Hom(Φ,Λ)ψ−1](Cn(Λ)ν) ⊂ HomΛe(Pn,Λ)
ν for n ≥ 0.

Since Fν : HomΛe(P ,Λ)ν → HomΛe(P ,Λ)ν is equal to idHomΛe (P ,Λ)ν , for

n ≥ 0, we have Hn(HomΛe(P ,Λ)ν) ∼= HHn(Λ)ν↑.

From now on, we give a basis of HHn(Λ)ν↑ for n ≥ 0 and determine the
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ring structure of HH∗(Λ)ν↑.

Theorem 5.3. A basis of HH0(Λ)ν↑ is given by

{
g0∑
l=1

f0ϕj,l | 0 ≤ j ≤ N − 2 and j ≡ 0 (mod e)}.

For i ≥ 1, a basis of HH2i(Λ)ν↑ is given by

{
g0∑
l=1

f iϕj,l | 0 ≤ j ≤ N − 2 and j ≡ Ni (mod e)}.

For i ≥ 1, a basis of HH2i−1(Λ)ν↑ is given by

{giϕj,1 | 0 ≤ j ≤ N − 2 and j ≡ N(i− 1) (mod e)}.

Proof. By a direct computation, we have

ϕ∗ν2i+1(f
i
ϕj,l

) =


gi+1
ϕj,l−1

− gi+1
ϕj,l

if 1 ≤ j ≤ N − 2,

or j = 0 and gcd(N, e) = 1,
0 otherwise,

for j(0 ≤ j ≤ N − 1) satisfying Ni ≡ j (mod e), and

ϕ∗ν2i (g
i
ϕj,l

)

=


t∑

k=1

f iϕN−1,l+k
if gcd(N, e) = 1, N(i− 1) + 1 ≡ 0 (mod e),

j = −1 and t 6= 0,
0 otherwise,

for j(0 ≤ j ≤ N − 2) satisfying N(i− 1) ≡ j (mod e).

Since we already assumed that charK | ord(ν) = e
g0
, we note that charK ∤

N if gcd (N, e) = 1. Hence, we have

Kerϕ∗ν2i+1

=



⊕
0 ≤ j ≤ N − 2
j ≡ Ni (mod e)

K

g0∑
l=1

f iϕj,l ⊕
g0⊕
l=1

Kf iϕN−1,l
if Ni ≡ N − 1 (mod e),

⊕
0 ≤ j ≤ N − 2
j ≡ Ni (mod e)

K

g0∑
l=1

f iϕj,l otherwise,
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Imϕ∗ν2i+1 =
⊕

0 ≤ j ≤ N − 2
j ≡ Ni (mod e)

g0⊕
l=2

K(gi+1
ϕj,l

− gi+1
ϕj,1

),

Kerϕ∗ν2i =
⊕

1 ≤ j ≤ N − 2
j ≡ N(i− 1) (mod e)

g0⊕
l=1

Kgiϕj,l ,

Imϕ∗ν2i =


g0⊕
l=1

Kf iϕN−1,l
if gcd(N, e) = 1 and Ni ≡ N − 1 (mod e),

0 otherwise.

Therefore, for each HHn(Λ)ν↑ (n ≥ 0), we obtain a basis as claimed.

Next, in order to consider the ring structure, we recall the Yoneda product
in HH∗(Λ). For [ϕ] ∈ HHn(Λ) and [ψ] ∈ HHm(Λ) (n,m ≥ 0), there exists
σi(0 ≤ i ≤ n) such that the following diagram commute:

· · · // Pm+n
dm+n//

σn

��

Pm+n−1

σn−1

��

// · · · // Pm+1
dm+1 //

σ1
��

Pm

σ0
��

ψ

  @
@@

@@
@@

@

· · · // Pn
dn // Pn−1

// · · · // P1
d1 // P0

d0 // Λ // 0

Figure 2: The commutative diagram for the Yoneda product

Then [ϕ]× [ψ] is defined by [ϕσn] ∈ HHn+m(Λ).

If ψ =
∑g0

l=1 f
i
ϕj ,l

∈ HH2i(Λ)ν↑, then σk : P2i+k → Pk is given by

σk(s(R2i+k)⊗ t(R2i+k)) = σk(s(R2i+k)
e∑
l=1

γjl ⊗ t(R2i+k)),

for R2i+k ∈ AP (2i+ k). If ψ = g1ϕ0,1 ∈ HH1(Λ), then σ1 : P2 → P1 is given by

σ1(s(γ
N
l )⊗ t(γNl )) =

∑
0 ≤ k ≤ N − 1

l + k ≡ 1 (mod g0)

k∑
k′=0

γk
′
l ⊗ γN−k′−1

l+k′+1 ,

for γNl ∈ AP (2). Hence, we have [g1ϕ0,1]
2 = 0 and [gi+1

ϕj ,1
] = [g1ϕ0,1]× [

∑g0
l=1 f

i
ϕj ,l

].

We leave out the notation [ ] and × if there is no confusion. Now, we can
determine the ring structure of HH∗(Λ)ν↑.
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Theorem 5.4. Suppose that N ≤ e, and either charK ∤ N or charK | N
and gcd(N, e) 6= 1. Let x =

∑g0
l=1 f

0
ϕ0,l

, y = g1ϕ0,1 and zj =
∑g0

l=1 f
ij
ϕj ,l

, where

ij(> 0) is the smallest integer such that Nij ≡ j (mod e) if there exists such
an integer ij. Then HH∗(Λ)ν↑ is generated by {x, y, zj | 0 ≤ j ≤ N − 2}, and
the relations and the degree of elements are as follows:

degree : deg x = 0, deg y = 1, deg zj = 2ij .

relations :



y2 = 0, z
[N
j
]

j = 0,

zaj = zaj if 1 ≤ aj ≤ N − 2

and iaj = aij for 1 ≤ j ≤ N − 2,
zj1 · · · zjn = 0 if j1 + · · ·+ jn ≥ N − 1,
zj1 · · · zjn = zj′1 · · · zj′n′

if j1 + · · ·+ jn = j′1 + · · ·+ j′n′,

where 0 ≤ j1, . . . , jn, j
′
1, . . . , j

′
n′ ≤ N − 2.

Theorem 5.5. Suppose that N > e, and either charK ∤ N , or charK | N
and gcd(N, e) 6= 1. Let x0 =

∑g0
l=1 f

0
ϕ0,l

, x1 =
∑g0

l=1 f
0
ϕe,l

y = g1ϕ0,1 and

zr =
∑g0

l=1 f
ir
ϕr,l

, where ir(> 0) is the smallest integer such that Nir ≡ r
(mod e) if there exists such an integer ir for every 0 ≤ r ≤ e − 1. Then
HH∗(Λ)ν↑ is generated by {x0, x1, y, zr | 0 ≤ r ≤ e− 1} and the relations, and
the degree of elements are as follows:

degree : deg xk = 0(k = 0, 1), deg y = 1, deg zr = 2ir.

relations :



xm1 = 0 if N ≡ 0 (mod e),

xm+1
1 = 0 if N 6≡ 0 (mod e),

y2 = 0, z
[N
r
]

r = 0,
zar = zar if 1 ≤ ar ≤ e− 1 and iar = air for 1 ≤ r ≤ e− 1,
zj1 · · · zjn = 0 if j1 + · · ·+ jn ≥ N − 1,
zj1 · · · zjn = zj′1 · · · zj′n′

if j1 + · · ·+ jn = j′1 + · · ·+ j′n′,

where 0 ≤ j1, . . . , jn, and j
′
1, . . . , j

′
n′ ≤ e− 1.

Corollary 5.6. For a self-injective Nakayama algebra Λ, HH∗(Λ) is isomor-
phic to HH∗(Λ)ν↑ as algebras.

Theorem 5.7. For i ≥ 0 and gi+1
ϕj,1

∈ HH2i+1(Λ)ν↑, ∆gi+1
ϕj,1

= N−1
g0

∑g0
l=1 f

i
ϕj,l

holds, where 0 ≤ j ≤ N − 2 and j ≡ Ni (mod e). For i ≥ 1 and
∑g0

l=1 f
i
ϕj,1

∈
HH2i(Λ)ν↑, ∆

∑g0
l=1 f

i
ϕj,l

= 0 holds, where 0 ≤ j ≤ N −2 and j ≡ Ni (mod e).

Proof. By the proof of Theorem 4.6, for gi+1
ϕj,1

∈ HH2i+1(Λ)ν↑, we have

∆gi+1
ϕj,1

(s(γNil )⊗ t(γNil ))

=
2i+1∑
k=1

∆kg
i+1
ϕj,1

(s(γNil )⊗ t(γNil ))
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=

i∑
c=1

⟨
gi+1
ϕj,1

(N−j−1∑
p=1

γp−1
l+N(c−1) ⊗ γN−j−p−1

l+N(c−1)+Ni+pvl+Nc−1

)
, 1

⟩
s(γNil )γjl t(γ

Ni
l )

+

i∑
c=1

N∑
j1=N−j

⟨
gi+1
ϕj,1

(
vl+N(c−1)−1+j1 ⊗ γN−j−2

l+N(c−1)+Ni+j1

)
, 1

⟩
s(γNil )γjl t(γ

Ni
l )

+ 〈gi+1
ϕj,1

(

N−j−1∑
p=1

γp−1
l+j ⊗ γN−j−p−1

l+j+Ni+p), 1〉s(γ
Ni
l )γjl t(γ

Ni
l )

=

i∑
c=1

N∑
p=1

⟨
gi+1
ϕj,1

(
vl+N(c−1)+p−1 ⊗ γN−j−2

l+N(c−1)+Ni+p

)
, 1

⟩
s(γNil )γjl t(γ

Ni
l )

+ 〈gi+1
ϕj,1

(

N−j−1∑
p=1

γp−1
l+Nivl+Ni+p−1 ⊗ γN−j−p−1

l+j+Ni+p), 1〉s(γ
Ni
l )γjl t(γ

Ni
l )

=

Ni+N−j−1∑
p=1

〈gi+1
ϕj,1

(vl+p−1 ⊗ γN−j−2
l+Ni+p), 1〉s(γ

Ni
l )γjl t(γ

Ni
l )

=
Ni+N − j − 1

g0
γjl

=
N − 1

g0
γjl .

By a similar computation, we obtain the second statement.

Corollary 5.8. The Gerstenhaber braket [ , ] on HH∗(Λ)ν↑ is the zero map.

Proof. Suppose that N ≤ e, and either charK ∤ N or charK | N and
gcd(N, e) 6= 1. Then, for any generators a, b in Theorem 5.4, we have [a, b] = 0.
On the other hand, suppose that N > e, and either charK ∤ N , or charK | N
and gcd(N, e) 6= 1. Then, for any generators a, b in Theorem 5.5, we have
[a, b] = 0.

Finally, we give the non trivial Batalin-Vilkovisky algebra structure on
cohomology of Hochschild complex related to the Nakayama automorphism
for the self-injective Nakayama algebra in [9, Example 5.3].

Example 5.9 (cf. [9, Example 5.3]). Suppose that charK = 2, e = 2 and
N = 4. Then, g0 = 1, ord(ν) = 2 and HH∗(Λ)ν↑ = K[x1, y, z0]/(x

2
1, y

2), where
deg x1 = 0, deg y = 1 and deg z0 = 2. Moreover, the bracket [ , ] = 0 and
BV-differential ∆ is given by

∆(1) = ∆(x1) = ∆(z0) = ∆(x1z0) = ∆(z20) = 0,

∆(y) = 1, ∆(yx1) = x1, ∆(yz0) = z0.
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