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Abstract. In this paper we prove the asymptotic stability of solitons for a
discrete nonlinear Schrodinger equation near the anti-continuous limit. Our
novel insight is that the analysis of linearized operator, usually non-symmetric,
can be reduced to a study of simple self-adjoint operator almost like the free
discrete Laplacian restricted on the space of odd functions.
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§1. Introduction

In this paper, we study the discrete nonlinear Schrodinger equation (DNLS)
on Z

(1.1) i0pu = —Aqu — |ul®u, u: R x Z — C,
where A4 is the discrete Laplacian given by

Aaf(x) = fle+1) = 2f(x) + flz - 1).

Remark 1.1. We have chosen to work on the specific nonlinearity —|u|Su.
However, it will be clear that the proof and the result of this paper will hold
for general nonlinearity g(|u|?)u with smooth g satisfying g(0) = ¢'(0) =
1

g"(0) = 0.

DNLS (1.1) appears in models in physics such as Bose-Einstein condensa-
tion in optical lattice [4] and photonic lattice [10]. The aim of this paper is to
study the stability property of bound state solutions (solitons) e“!¢,.
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To state our result precisely, we set

lull = lle”Tullw,  (u,v) = u(@)o(@), (u,v):=Re(u,v).

TE€EZ

We will consider large and concentrated solitons given by the following
Proposition.

Proposition 1.2. There exist wg > 0, C > 0 and a C®-function w +— ¢,
from (wo, ) to I3, such that

(1.2) 0= —Aagu + whu — b,
and
2
(1.3) > w006 — 0l (wido ) s, < Cw8,
” 2 . . 5
(14) S WP bl < Cw,
§=0

where Py~ =1 — (-,80)00 and do(z) =1 if x = 0 and do(z) = 0 if x # 0.

Remark 1.3. If ¢, satisfies (1.2), then u(t, z) = e“!¢, () is a solution of (1.1).

The main result of this paper is the asymptotic stability result for solitons
e“tg,, given in Proposition 1.2 for w sufficiently large. In particular, we prove
the following:

Theorem 1.4. There exists wy > wy, where wy is given in Proposition 1.2,
such that for any w. > wi, there exist oo > 0 and C > 0 such that if € :=
|lu — ¢w,lliz < o, then there exist § € C>°([0,00),R), wy > wy and &, € 12
such that

(1.5) Jim flu(t) — ¥V, — e | =0,
(1.6) [log wy —logwy | + [|€4[;2 < Ce.

Considering large solitons concentrated on a finite set (in this case {0} C Z)
is equivalent to studying the sollitons near the so-called “anti-continuous limit”.
Indeed, setting u(t,z) = wsv(wt, z), v satisfies

(1.7) 10,0 = —eAqu — |v|%,

where e = w™!. By such rescaling, solitons given in Proposition 1.2 are rescaled
to elepe(z) with 1. ~ dg. In the anti-continuous limit € — 0, (1.7) reduces to an
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infinite system of unrelated ordinarily differential equations and in particular
possesses a solution el*dy. The first rigorous treatment for the existence of
solitons (also called discrete breathers in the context of discrete nonlinear
Klein-Gordon equations) branching from the above solution, was given by
MacKay and Aubry [14] followed by [1, 11]. Further, it was shown by Weinstein
[25] that for sufficiently large w > 0, ¢, is a ground state, i.e. minimizer of
energy under the restriction of /2-norm, and thus orbitally stable.

Remark 1.5. In this paper, we have chosen to work on the rescaled setting to
reduce the number of parameters. Indeed, even if we consider (1.7) we still
need to consider a family of solitons .., with w near 1.

The asymptotic stability problem of solitons near the anti-continuous limit
is no less important than the problem of existence, but it has not yet been
thoroughly investigated. The only asymptotic stability result we are aware
is by Bambusi [2] who studied the asymptotic stability of nonlinear discrete
Klein-Gordon equations (for linear/spectral stability see [19, 20]. Also, for
asymptotic stability of bound states bifurcating from linear potential, see [13,
9, 18, 15, 16]). Our result, Theorem 1.4, is a DNLS version of Bambusi’s
result, with simplified proof, as explained below.

We now explain the outline of the proof of Theorem 1.4. We start from
a standard strategy initiated by [3] for the asymptotic stability of solitons of
nonlinear Schrédinger equations (see also [23] for small solitons). That is, we
decompose the solution v near {e%¢,, | # € R} as u = ¢, + &, with i¢
orthogonal to {ie?¢,,, €?0,¢,}. Then, the problem is to study the dynamics
of #,w and £. Roughly, the equation of £, which we obtain by substituting the
ansatz into DNLS (1.1), will have the form

10,6 = Hy € + O(€2),

where
Hy o€ = (—Aq +w — 468) € — 32095 ¢.

The “linearized operator” Hy, is not C-linear due to the complex conjugate.
Thus, it is natural to study the corresponding matrix C-linear operator

[ Ag+w— 4¢g —3621(’(]58
How = < 3721040 Aq —w+ 4@58) '

However, in general it is hard to study the spectral properties of the oper-
ator which are needed for the proof of asymptotic stability and one is forced
to assume, for example, the nonexistence of embedded eigenvalues, edge reso-
nances and internal modes (and if one admits internal modes, then one needs
to assume the Fermi Golden Rule property), see e.g. [6, 8].
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For our problem, the first attempt is to use the fact ¢, = W (50 + O(wil))
where the remainder is small and cliecaying exponentially, as proved in Propo-
sition 1.2. So, we replace ¢, by wsdy and consider

~ —Aq + w — 4wdy —3e29u4
How = —2i0 .
3e W(SO Ad —w+ 4w50

It is possible to study the spectral properties and show decay estimates
related to the operator ﬁng. However, one can reduce this operator one step
further. Recall that we were assuming i& € {ie'%¢,,, €0, ¢, }* (here, we are
considering real inner product). Applying the approximation ¢,, ~ wéég to
the orthogonality condition, it will reduced to i¢ € {iewdy, %eww_%éo}L =
{00,100}, which is equivalent to £(0) = 0. For ¢ satisfying £(0) = 0 and

n = &, we have
~ §\  (~Aqtw 0 13
e ()= (57 020) )

Thus, ﬁgw reduces to a diagonal matrix and there will be no point considering
matrix operator anymore. Thus, the task is now to study Ag := POLAdPOL
where Py~ is the projection on to the space {¢ | £(0) = 0}, see Proposition 1.2.

The analysis of Ag further reduces to the analysis of Aq restricted on odd
functions (see proof of Proposition 2.1, we also note that Bambusi [2] studies
similar operator). Thus, we will obtain the Strichartz estimate for free and the
Kato smoothing estimates, which do not hold for Aq, from a simple fact that
the edge resonance of Ay is even. Therefore, we obtain the linear estimates
needed (the idea using the Kato smoothing is due to [9]). The rest of the
paper is more of less standard except tracing the w dependence of the error
terms carefully.

This paper is organized as follows: In Section 2, we prove the linear es-
timates for Ag. Section 3 will be devoted to the modulation argument and
in particular we derive the equation of & (see (3.18) and (3.21)) and 6,w
(see, (3.27)). In Section 4, we prove Theorem 1.4 by bootstrapping argument
(Proposition 4.1). Finally, in the Appendix, we prove Proposition 1.2.

In the following, we use a < b by meaning a < Cb for some constant C' > 0
not depending on important parameters. Also, if a < b and b < a we write
a ~b.

§2. Linear estimates

Recall that in Proposition 1.2, P(f- was given by

(2.1) Pitu(z) = {g(w) iig’
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We set the restriction of Agq to P5-1?(Z) = {u € [*(Z) | u(0) = 0} by
Ao := Py Ay : PH1%(Z) — PI2(Z).
In particular, for u € Pg-1%(Z), we have

u(£2) — 2u(£1) r = =+1,

(AOU) (x) = {u(:ﬂ + 1) _ 2u($) + u(:L‘ — 1) ’:L'| > 2.

For an interval I C R, we set
Stz(I) := L™(I,1*(Z)) N L%(I,1°°(Z)),
Stz*(I) := L(I,1%(Z)) + L3(I,1(Z)).
The linear estimates we use in this paper are the following:

Proposition 2.1 (Strichartz and Kato smoothing estimates). Let I C R be
an interval with 0 € I. Letug: Z — C and f: R x Z — C. Then, we have

(2.2) HeitAOPOLUU”Stz([)ﬂLQ(I,P_l) S lluollee
(2.3) || /O =980 BL £(8) dsllsenry S 11 F lstaeyezzcrys
(2.4) H /0 =920 PL £(s) dsllpar2 ) S 12y

Proof. First, let Pru(z) = u(z) if £ > 1 and Pru(z) = 0 if +2 < 0. Then,
we have [Ag, P+] = 0 so we get

eMR0(Py 4 P_) = (Py + P_)elo,

This implies Ag = AL @ A_ where Ay := Py Ay : Pyl?> — Pyl?. Thus, it
suffices to show each estimate for AL and we will only consider A . Further,
for u : N — C, we set Tu : Z — C by Tu(x) = u(x) for z > 1, Tu(0) = 0 and
Tu(x) = —u(—z) for x < —1. Then, we have TA; = A4T.

Therefore, it suffices to show the estimates (2.2), (2.3) and (2.4) for A4 and
ug, f restricted to odd functions. Thus, we immediately have the Strichartz
estimates by [24]. That is, we have

€20 Pstuo|lseary < Iluollsz, ||/0 )80 Pk £(s) dsllseucr) S 11 st (n)-
Next, we show the Kato smoothness estimate

itAo L
(2.5) €20 Py-uoll p2r2) S llwolli2
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which does not hold for Ay with general up. To show (2.5), it suffices to show

(2.6) sup  sup ||(—Agq —A)tullp <1,
llull2 <1Tm A0 2
u:odd

which is a sufficient condition for the Kato smoothness, see [12] or Corollary
of Theorem XIII.25 of [21]. From the Fourier transform,

. 1 e Elz—yl .
e (AN @ =g > [ e

27
YyEZ
By the residue theorem, we can rewrite the r.h.s. of (2.7). Take R > 0 and set
AUBUCUD =1[0,27]U [2r — iR, —iR] U [-iR, 0] U [27, 27 — iR],

where [a,b] ;== {a+t(b—a) | t €0,1]} for a,b € C. Then we have

e*ié\m*yl d e*i,u|:p7y\
/AUBUCUD 2—2 COS€ - A g 7TZ 2 Sin/,L ’

where cospp =1 — % with Im p < 0. By

e~ Elz—yl G—0
/C’UD 2 —2cos¢ — )\u(y) ¢=0,

and
i e Elz—yl g =0
Reo BQ—QCOS{—)\U(y) §=90,

we have
e_i |I—y‘
(—Aq =N tu) (2) =1) e 77

YyEZL

2sin p uly)-

Using the fact that u is odd, we can further rewrite

_ . eii/‘tlzfy|
(2.8) (—Aa =N ") (z) = IZ QSTU(QJ)
YEZ ©
e—i,u,|:s—y| e—iu\ﬂ:—y\
) i Y e )
= 2sin = 2sin

e~ inlz—y| _ o—iplz+yl

2sin u(y)-
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We now decompose (2.8) as below and estimate the contribution of each term.

e inlz—y| _ o—inlz+yl

29) 3 )

Z el@—yp _ olz+y)u (—z4y)p _ pilz+y)p

) + Z u(y).
ot sin g = sin g

For the first term of the r.h.s. of (2.9), by Euler’s formula and the finite
geometric series, we have

n@—y) _ einlety)| -
(2.10) ez y‘ ez +y _ ,elu(x—y)| 1 'e ipx
sin s L
z—1
= [2ieitei@) || == 1’ 21TV N " ek] < ()
e 1
k=0

where we have used the fact x > 0, x —y > 0 and Im p < 0. Then, by the
Holder inequality and (2.10),

e YK _ olyp 3
> —ul)| $ @) |lule.
O<y<z H
Therefore,

e (@—y) _ olu(z+y)

|~ = Z

O<y<z

o)l S e < g

Next, we consider the second term of the r.h.s. of (2.9) . From (2.10), ex-
changing the role of x and y, we have

el—zt+y)n _ pi(z+y)p
e S ()
isin p
Thus,
ell—z+y)p _ pi(z+y)p
< el <

> @) S 1 el < Clluli
y>x 2 y>x

—1

Therefore, we have (2.6).
Next the estimate

H /0 =920 B £(s) dsllsier) S Il
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follows from the dual of (2.5) and the Christ-Kiselev lemma [5, 22].
Finally, we prove (2.4) by a parallel argument of Lemma 8.7 of [7]. The
following formula was proved in Lemma 4.5 of [17]:

t
(2.11) 2 / e~ it=)%0 peb £ () ds
0

\/127 /R e NR(N —10) + RO +10)) P(FLF)(N) dA
0

+ / e—i(t—s)AOPOJ_f(s) ds — / e—i(t—s)AOPOJ-f<3) ds,
0

—00

where R(\) = (=Ag — A\)~! and F; ! is the inverse Fourier transform with
respect to the ¢ variable. For the first term of the r.h.s. of (2.11), by the
Plancherel theorem, we have

| / e (R(A = 10) + R(A+10)) Py (F, 1 )(A) dX|[ 22
A 2
< max ||[RO £ 10) B (F ) (Ml 22,
< maX Sup IR +10) 22 I1F fllzze S 1 Fllz2ee

where we have used (2.6) in the third inequality. Here, we note that the
operator norm || - [[;2_;2 is given by the supremum of all odd functions in 12

as in (2.6). The second and third term can be estimated by using (2.5) and
its dual. Therefore, we have the conclusion. O

§3. Modulation argument

We set ¢[0,w] := e%¢,,. Then, by (1.2), we have
(3.1) iwdpe[f, w] = —Ag[0,w] — [$[0, ][0, w].

Further, differentiating (3.1) with respect to § and w, we obtain

(3.2) H[G, w)Dpd[h, w] = iwds |6, w],

(33) H[ea w]aw¢[97w] = 18@¢[9,W] + iwaGawgbw’w]a
where

(3.4) HIO, wlu := —Au+ V[0, w]u

= —Aqu — 4|6[0, w]|%u — 3|6[0, w]|* B0, w] .
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Remark 3.1. The operator H[0,w] is not C-linear but only R-linear due to the
complex conjugate in the last term of (3.4).

It is easy to check that H[f,w] is symmetric with respect to the real inner-
product (-,-). That is, we have (H[0,w|u,v) = (u, H[0, w]v). We set

Qu,v) == (iu,v), u,v € >

Remark 3.2. § is the symplectic form associated to discrete NLS (1.1).
We set

H.[0,w] := {uc?®| Qu, 0|0, w]) = Qu, 0,00, w]) = 0}

and
To(r) = {u e | jnf u— gL, O] < 7).

Lemma 3.3 (Modulation). For w, > wp, where wy is given in Proposition
1.2, there exist 6 > 0, 0 € C*°(T,,,(5),R) and w € C*(T,,(0),R) such that

(3.5) §(u) == u—¢[0(u), w(u)] € He[0(u), w(u)].
Proof. Set

R Q(u - (;5[9,(.«)],8 ¢[9’w])
(36) Fllw,w) = (Q(u - ¢[9,W],6Z¢[9,W]>) '

Then, we have F(0,w, ¢[f,w]) = 0 and

0 —1
Do Fe) = ¢ (] )

+ < Qu— ¢[0,w], GFgl0,w])  Qu— d[0,w], 0p0.0[0, w]))
Q(u - ¢[9’ w]v 898w¢[97w]> Q(u - ¢[07w]? 83;¢[9a w]) 7

where ¢(w) = 3||¢[6,w][|%. Since Gpo[0,w] = 1[0, w], we have
¢ (w) = (Qudlt, w], g[8, w]) = Q(0us[f, w], i8]0, w]) = ([0, w], Dp¢[0, w]).
Thus, from Proposition 1.2, for large w, we have
(3.7) ¢ (w) ~w™3 > 0.

Therefore, D(g ) F (6, w, ¢[0,w]) is invertible. By the implicit function the-
orem we have the conclusion. O
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Lemma 3.4. There exists w1 > wp such that for w, > wy, if u € Ty, (J), we
have

(33) &)l S nf 1w — 416, w.]lle.

Here, § > 0 is the constant (depending on w,) given in Lemma 3.3.

Proof. Fix u € 7,,(0,9) and set € = infgcp [|[u — ¢[f,ws]||;2. We take 6y to
satisfy € = ||lu — ¢[0p, w«]||;2 and set v := u — ¢[fy, w.] and for s € [0, 1],

uls] 1= $ldo,wa] + 50, wls] = w(uls]), Ols] = O(uls)),

Als] := [luls] = ¢lwls], O[s]]]2-

Notice that we have u[0] = ¢[fy,ws], 0]0] = Oy, w[0] = ws, u[l] = u and (3.8)
is equivalent to A[1] < e. So, to show (3.8) we prove the following claim.

Claim 3.5. There exist w1 > wp and Cp > 0 such that if s € (0,1), we > wy

and if
(3.9) lw[s] — wy| < Cow?/Ce,

(3.10) Als] < Cpe,
we have (3.9) and (3.10) with Cj replaced by Cp/2.

Proof of Claim 3.5. We assume (3.9) and (3.10) for all 7 € [0,s] for some
1

€ (0,1). We take Cp = w{?. In this proof, when we use < or ~, the implicit
constant will not depend on wy, ws nor s.
From (3.9), we have

(3.11) w(s] ~ wy.
From the fundamental theorem of calculus, we have
(3.12)  Als] < e+ [|9[0s, ws] — B[00, wi]ll:2

<e+ /OS (1060107, wrlli2| Dub(ur)v| + (040107, wrllli2| Duw (ur)v]) dr.
Differentiating F(0(u;),w(u:),ur) = 0 with respect to 7, where F is the
function given in (3.6), we have

(
313) () = (D POl ol un) ™ (Gl o))

The determinant of Dy, F can be explicitly written as
det (D(ng)]—") (0, wr,ur)

= (q/(wT))Q + Qur — [0, wr], (992¢[07, wr])Qur — P07, w7, Qicb[@ﬂwT])
- Q(UT - ¢[077w7’]> 8Gaw¢[977w7])2-
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By (3.7) and (3.11), we have ¢'(w,)? ~ wy ® = w,

ol
==
lo

and

< ewy

~

cls

1_
et (Do) (Br,wr,ur) — (¢ (wr))?] S Alrlwd ™

Thus, we have

ol

(3.14) det (Do F) (Br,wystr) ~ wy .

Computing the r.h.s. explicitly and using Proposition 1.2, (3.11) and (3.14),
we have
) .

Substituting this bound in (3.12) and ws = wy + [§ Dyw(uy)v dr, we have

=
o=

|Du8(ur)v| + wyt Dyw(ur)v| < wy (1 + A(8)ws

o=

1
Als] < (1 + A(8)ws > €S (1+w; 2e)e S,

* ol

5 1 5 1
lwls] — ws| Swé (l—i—A(s)w* 6) e Swi(l4+w, Pe)e Swie.

Therefore, we have the conclusion. ]

By Claim 3.5 and the continuity argument, we obtain (3.9) and (3.10) with
s = 1 and in particular (3.8). O

Recall that POJ- is given in (2.1). For large w, the two spaces POLZ2 and
H_.[0,w] become similar.

Lemma 3.6. POl is invertible. Moreover,

‘ Hc[G,w]

-1
= (P . P — H.
Q[va] ( 0 ’Hc[e,w]> Ol - [91“}]
s given by

(3.15) Q[f,w]u
= u+ € (¢ (0) 1w, Ddlh, w]) + 10,6 (0) "' Q(u, Dp[8, w])) o,

and for u € P;H12, we have

(3.16) lu — Q8 wlullz S w ™ lullz -
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Proof. Since (Pj-u) (z) = u(z) for z # 0, the only possible form of the inverse
of POJ_|HC[9 Y] is
(3.17) QIo, wlu = u + €?q(u)do,

with g(u) € C. Substituting (3.17) into Q(QI0, w]u, dxP[f,w]) = 0 for X =
0,w, we have

Re q(u) = —¢u(0) ™' Q(u, 0p6[6, w]),
Im q(u) = 0,6 (0)1Q(u, D,0[0, w]).

Since v = Q[f, w] P5-u is the unique element of 2 satisfying v(z) = u(z) for
x # 0 and v € H[f,w], we see v = u for u € Hc[f,w]. Finally, (3.16) follows
from Proposition 1.2 and (3.15). O

In the following, we write 6(t) = 0(u(t)), w(t) = w(u(t)) and £(t) :=
&(u(t)), where u(t) is the solution of (1.1). Substituting u = ¢[f,w] + £ into
the equation, we have

(3.18) i€ +19p0[0, w](0 — w) + 10,8[0, wlw = H[B, w]é — f[0,w, €] — [€]5¢,

where

(319)  flO,w,€] = 3 aw[e,w]ww,wﬁ"’ga?,

U UV ZIde >

for some A, € N. We set

(3.20) n(t) == Py-&(t).

Notice that from Lemma 3.6, we have £(t) = Q[0(t), w(t)]n(t).
Applying POL to (3.18), we have

(3:21) i) = —Agn — P-Aq(1 — Q[0,w])n + P-V[0,wl¢
— P9[0, w](0 — w) — iPs-8.0[0, wlw — B§- f(0,w, &) — Py~ (1€[%¢) .

We next seek for the equation for 0 — w and w. First, taking the inner
product of (3.18) with d,,¢[0,w], we have

(3.22) Q€ 0,000, w]) — ' (w >(9’ — w)
= (H[0, W€, 8010, w]) — (10w, €] +[€]°¢, 0,0[0,w]) .

Now, since %Q(f,@wd)[e,w]) =0,

(3.23) Q(E, 0u0l0, w]) = —Q(E, D26[0, w])i — Q(E, 0pDud[0, w])6.
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From (3.3), we have

(3.24) ([0, w]&, 0,0[0,w]) = (&,10p9[0, w] + iwdpu [0, w])
= —wl(§, 0p0u 90, w]).

Combining (3.22), (3.23) and (3.24), we have

(3.25) (¢(w) + Q¢ Dpdslo,w))) (6 —w) + &, 02010, w])e
= (f[0,w, €] + [€]°¢, 0,960, w]) -
Similarly, taking the innerproduct ((3.18), 9yp¢|[f,w]), we have
(3'26) (q/(w) - Q(f, 698w¢[97w])) w— Q({, (93(1)[(9, w])(9 - w)
= - <f[9awa£] + |€‘6£a89¢[97w]> .

Combining (3.25) and (3.26), we have

O—w\ [ (fl6,w,E+ €[5, 0,00, w])
(821)  Alfwn) ( ) - <—w1 (110, w,€] + rfwﬁf,aeqbw,wD) ’

wld
where
(3.28)
Al w, 7]

_ (f/(w) + QQ[0, wn, 90,90, w]) w(Q[O, win, 82610, w]) >
' —w Q0 wln, Gol0,w]) ¢ (w) — QLY wn, pduslf, w]) )

Here, we have multiplied w™! to (3.26) to adjust the scale.

§4. Proof of main theorem
We set Xp := Stz(0,7) N L2((0,T),1%,).

Proposition 4.1. There exists w1 > wg such that for ws, > wi, there exist
€0 € (0,1) and Cy > 1 with Coeg < 1 such that for T > 0, if € := infgep ||u(0) —
Plws, O|l;2 < €0 and

(4.1) 1€llstznr2z 0,1y < Coe,
(4.2) lw™ @l prnzee o,y + 118 = Witz o) < Coe,

then the above holds with Cy replaced by Co/2.
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In the following, we assume (4.1) and (4.2). Further, when we use <

~

or ~, the implicit constant will not depend on Cj, €, w, nor wi. Since
supye(o,1) |w(t) — wil < [|@llzi07) < Coe, assuming wy > 2 if necessary, we
have

(4.3) w(t) ~w, for all t € (0,7).
Further, since we have set n = Polf in Section 3, from (2.1), we have
(4.4) ||77||Stsz2((o,T),lzl) < Coe.

We start with the estimate of 7.
Lemma 4.2. Under the assumption of Proposition 4.1, we have
(4.5) 7l x7 < [17(0) |2 + Cow, ® e+ (Coe)”.

Proof. From (3.21) and Proposition 2.1, we have

(4.6)  [nllxr S 1m0l + [1P5-Aa(1 = QO, )l 2(0,1).2)
+ 1B V10, wQIO, wnll 2(o.1).2)
+ 1| P5 09910, w] (0 — )l 2(0,7),2) + 1Po 010, 1| 20,102
+ 1Py f(0,w S z20,1)2) + 175" (1€1%€) 21 ((0,7).2)

+ [ @R (g 5(s>) dslzzoy
By HPOLHZ%_H% <1 [[Adlz_z S 1 and Lemma 3.6, we have
@D IR Aa( = QDo) S wi il S Cowi e
By (1.4) and (3.4), we have HPOLV[H,w]Q[G,w]HEl_ﬂ% < w;®. Thus,
(4.8) 1B V[0, 0]QI6, wlnll L2 ((0.ry,2) S wi°lInllxy S Cowy e
For the terms in the second line of (4.6), by (1.4), we have
(4.9) HPOLBW[QM](@ - W)HB((O,T)J%) + HPOJ_anb[e?w]wHLQ((O,T),Zf)

_5 . 5 s
Swy o - W||L2(0,T) +w; *flw 1W||L2(o,:r) S Cow™ be.

For the first term of the third line of (4.6), by (1.4) and (3.19),

(4.10) |’Pd_f(9 w, )| 2 ((0,T),121)
6 5
Z |§”Loo ((0,T) 12)||5HL2((0,T) 2)~ Cowl

=2
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For the second term in the third line, since Stz(0,T) — L7((0,T),1*4(Z)),
we have

(4.11) 125" (I€1°€) Nl o.my.2) < IIElI, < (Coe)T

Finally, for the last term of (4.6), by Proposition 2.1, we have

H /0 20C=5) P ((€lo¢(s)) dsl 2 qomy
T
< /0 2009 P (€06 (s)) ll2oimy2 ) ds

T
5/0 1P (1€1°€(2)) lli2 ds = [|1Pg" (1€1°€) Nl zro.1),02) -

Thus, from (4.11), we have

@12) | [ IR () dslliaame, S (Coo
Combining (4.6)—(4.12), we have (4.5). O
Lemma 4.3. Under the assumption of Proposition 4.1, we have
(4.13) 16— ool + ] S S [mlh + s
Proof. First, from Proposition 1.2 and Lemma 3.6 we have
Q(Q[6, w]n, Gs0.,0[0, w])]
< |90, P 0p00[0, )| + 1((1 — QI8 w])n, oDl w])| S w5 |10l .
Similarly, we have
wAQIB, wln, D2l0, w])| + lw™ QLY. wln, B[, w))| < w ™ Iz,

By (3.7), we see that if ||n]|;z < 1, Af,w], defined in (3.28), is invertible
and we have

(4.14) 1A[0, w0, 7] Mleosee S ws.
Next,
(4.15) | (f10,,€],0.0[0,w]) |

<

(910, 1eP " (In] + (1 = QL8.w)nl) , 10010, w][)

<.
o | Ma
o

S
i

— 46463 _44] ; _
(™5 + w5 Il S w ™Ml -

[|
)



26 M. MAEDA AND M. YONEDA

Similarly, we have

(4.16) W™t (f[0,w, €], Bpo[0,]) | S w il
Finally,

(417)  [(IE° 0u000, @) | + " (1%, By [0, w]) | S w SlImlE -
Therefore, from (3.27) and (4.14)—(4.17), we obtain (4.13). O

Proof of Proposition 4.1. By Lemma 3.6, (3.8) and (4.5), we have

_5
1€]lx, < C(1+ Cow; © + Co(Coe)®)e

for some C' > 0. Thus, taking Cy = 4C and w; sufficiently large and ¢q
_5
sufficiently small so that C(Cow; ® 4+ Co(Coe)®) < 1Co, we have (4.1) with
Cp replaced by Cp/2.
Next, from (4.3) and (4.13), we have

. ~ _1
16 — wllzinre(or) + lw @l pinpe < Clw; ® 4+ Che®)Coe

for some C > 0. Thus, taking w; sufficiently large and ¢q sufficiently small so
~ 1
that C(w; * + C5eb) < 3, we have (4.2) with Cy replaced by Cp/2. O

Proof of Theorem 1.4. By Proposition 4.1, we have (4.1) and (4.2) with T' =
oo. In particular, this estimate implies the convergence of w in (1.6) and the
bound on the first term in the inequality of (1.6). Further, since |||, < oo,
by standard argument we see that there exists £ such that ||£(¢) —e®2& |2 —
0 as t — oo. Therefore, we have (1.5) and the bound on the second term in
the inequality of (1.6). O

8A. Proof of Proposition 1.2

In this Appendix, we prove Proposition 1.2. We start from the following
lemma.

Lemma A.l. For sufficiently large w > 0, —A¢ + w is invertible on Pg-13,,
where Ag = P;-APg-. Further, we have ||(—Aq + W)_lulfo—ﬂfo <w L

~

Proof. We first show |[(—Agq + W)_1||l§0—>l$0 < w™l. For such estimate, it
suffices to show

(A.1) l(=Aa+w) ullp, S w  ulls,
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for compactly supported u. Since (—Aq + w) ™! is invertible on I? for w > 4,
we set
vi=(—Ag +w) tu.

Then, we have (—A4 + w)v = u. Moreover, (—Aq + w)v(z) = 0 for |z| > R
for some R, because u is supported on a bounded set. Recall that the general
solution of (—Aq4 +w)v = 0 is given by c4b(w)* 4+ c_b(w)~*, where

b(w) = (24w + Vw? + 4w) /4 ~ w.
Since b(w) > 1 and v € {2, we have
v(x) ~ b(w)_|w\ — o~ lzllogb(w)

Therefore, taking w > 0 sufficiently large, we have v € I3,. Now, applying
cosh(10x) to (—Ag + w)v = u, we have

(~Aq +w)T = i + [cosh(10z), Ag] cosh(10z) 7',

where © = cosh(10z)v and % = cosh(10x)wu. Thus, from ||(—Agq+w) 22 <

w™ L, we have

[0lle S ™ (Ifallz + [[feosh(10), Ag] cosh(—102)3]|;2) .

Since
[cosh(10z), Ag] cosh(10z) 1o
= (cosh(10x) cosh(10(z — 1))™! — 1) o(z — 1)
+ (cosh(10z) cosh(10(z + 1)) ' — 1) (> + 1),
and
|| cosh(10z) cosh(10(x — 1))~ — 1|y
+ || cosh(10z) cosh(10(z + 1)) 7! — 1]jjee <1,

we have

Rl S w™ (llle + 1[0]l2)

Therefore, by [|v]|;2 ~ ||1)Hl%0 and |||,z ~ Hqu%O, we have (A.1l) for suffi-
ciently large w.

Next, we consider —Ag+w. For u € Pg-13,, we look for v € P&'l%o satisfying
(—Ap + w)v = u. Since this can be written as Py-(—Aq + w)v = u, we have

(A.2) (—Ag +w)v =u— (v(1) +v(—1))dp.
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Setting @, [v] := (—Ag + w) L (u — (v(1) + v(—1))dp), we see that @, is a
contraction mapping on

B (0.c0-1) = {well| ”szfo < Cw™}

for C' > 0 satisfying ”(‘Ad+w)_1‘|l§0—>l§0 < Cw™! and sufficiently large w > 0.
Thus, we find v € 12, satisfying (A.2) and Hv||l%0 <w L

Finally, (A.2) at x = 0 implies (2+w)v(0) = 0 so we have v € Ps-13,. Thus,
we have the conclusion. O

Proof of Proposition 1.2. Substituting ¢, = ws (00 + ¢u,) into (1.2), we have

6
(A.3) wt (—Agbo — Aqpw) + pu — Z 7Cndopy, — ‘PZJ =0,

n=1

where 7C), are the binomial coefficients. We further decompose ¢, = A,dy +
Yy, where 9, = Polcpw and A, € R. Then, applying Py :=1 — POJ-, we have

7
(—6+2w N Ay = —2w ! + W (u(1) + 9 (-1) + Y 7CL AL
n=2

Thus, for w > 0 sufficiently large and for given 1 (with ||7]/;~ < 1), we can
solve A,, = A, (¢). Further, we have

(A.4) [Au(@)] S w™ (1 + ()] + [p(-1)]),

(A5)  |Au(1) — Au(¥2)| Sw ™ ([1(1) — vo(1)] + [h1(—1) — tha(—1)]).
Now, applying Py to (A.3), we have

(A.6) Yo = (=0 +w) ™ ((Aultra] + 1) (01 +6-1) +wii])

where we have used Pg-¢, = 1. Setting the r.h.s. of (A.6) by ®,[1).], we see
that it suffices to show ®,, is a contraction mapping on

Briocu) = {we Pii | flulls, < Co)
for some C' > 0. However, from Lemma A.1, (A.4) and (A.5), we have
(A7) [9ul0)lis, S w61+ 8-l Sw
(A8) [ @ultr] = Bultalllis, S 0 (JAuln] — Aufwal] +wll] = ¥]le, )

S (Wl + @l ) e - vells,

S len = alls,
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where we have used

)]+ [(-1)] < 2l < 20|z, < 20w

for ¢ € BPOLZ%O (0, Cw_l).

Thus, from (A.7) and (A.8) and since the implicit constant is independent of
w, taking C sufficiently large so that w[|®,,[0][|;z, < C/2, we have the existence
of the fixed point . Thus, we have the solution

b = W' (80 + Au[tu]do + )
of (1.2) satisfying the estimates of (1.3) and (1.4) with j = 0.

We next estimate the derivative of ¢,,. We set a(w) := A, (¢,). Then, a(w)
satisfies

(A9) (—6+2w Ha(w) = 2w +w™ (Y, (1) + 2 (—1)) + Z 7Cna(w

Differentiating (A.9) by w, we have

—6 +2w™ Z n7Cha(w)" Hd (w)
=w ! (Quthu(l )+3www(— ) + w2 (2a(w) + 2 = (1) = hu(-1)).
Therefore, by |a(w)| + 1w (1)| + |0 (—1)] < w™!, we have
(A.10) o/ (@) S @™ (108 ()] + [Buth (- 1)]) + w2
Next, differentiating (A.6) with respect to w, we have
Oty = (—Ag +w) ™ (=thy + 0/ (W) (61 + 61) + T 0w + U] -
Thus, using (A.10), we have

Hawwwulfo
S w™! (Wil +w ! (100w (V)] + [0utw(=1)]) + w2+ w75”aw1/}le%0) .
Taking w sufficiently large, we have

)
(A'll) Haw@bwnlfo Sw

From (A.10) and (A.11), we have |a/(w)| < w™2. From (A.10) and (A.11), we
can deduce the estimate for (1.3) and (1.4) with j = 1.
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Finally, for the case j = 2, differentiating (A.9) twice by w, we have

7
(=6 42wt — Z n7Cra(w)* 1)d" (w)

=w ! (agzpw(qi Pu(—1)) + 2w 2 (2d' (w) + 2 — Outhu (1) — utbu(—1))
+ 2w (2a(w) — (1) — Yo (—1)) + i;n(n —1)7Cha(w)" 2 (d'(w))?,
which provides the estimate -
(A.12) ja" (W) S w™t (105%0 (D] + 102w (-1)]) +w .

Next, differentiating (A.6) twice with respect to w, we have

Tths = (Do +w) ™!
(=201 + (W) (01 + 61) + 4203 (D) + TS 020h + 1405010 -
From (A.12) and the previous estimates, we have
105%ullz, S 0™ (w2 ™ (10290 (1)] + 1023w (=1)])
o W™ W g, ) -
Therefore, we have
102 ¢ulliz, Sw™,  la" (@) Sw™.

This completes the proof. ]
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