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Abstract. In this paper we prove the asymptotic stability of solitons for a
discrete nonlinear Schrödinger equation near the anti-continuous limit. Our
novel insight is that the analysis of linearized operator, usually non-symmetric,
can be reduced to a study of simple self-adjoint operator almost like the free
discrete Laplacian restricted on the space of odd functions.
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§1. Introduction

In this paper, we study the discrete nonlinear Schrödinger equation (DNLS)
on Z

i∂tu = −∆du− |u|6u, u : R× Z → C,(1.1)

where ∆d is the discrete Laplacian given by

∆df(x) = f(x+ 1)− 2f(x) + f(x− 1).

Remark 1.1. We have chosen to work on the specific nonlinearity −|u|6u.
However, it will be clear that the proof and the result of this paper will hold
for general nonlinearity g(|u|2)u with smooth g satisfying g(0) = g′(0) =
g′′(0) = 0.

DNLS (1.1) appears in models in physics such as Bose-Einstein condensa-
tion in optical lattice [4] and photonic lattice [10]. The aim of this paper is to
study the stability property of bound state solutions (solitons) eiωtφω.
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To state our result precisely, we set

‖u‖lpa := ‖ea|·|u‖lp , (u, v) :=
∑
x∈Z

u(x)v(x), 〈u, v〉 := Re(u, v).

We will consider large and concentrated solitons given by the following
Proposition.

Proposition 1.2. There exist ω0 > 0, C > 0 and a C∞-function ω 7→ φω
from (ω0,∞) to l210 such that

(1.2) 0 = −∆dφω + ωφω − |φω|6φω,

and

2∑
j=0

ωj‖∂jωφω − ∂jω

(
ω

1
6 δ0

)
‖l210 ≤ Cω− 5

6 ,(1.3)

2∑
j=0

ωj‖P⊥
0 ∂

j
ωφω‖l210 ≤ Cω− 5

6 ,(1.4)

where P⊥
0 = 1− (·, δ0)δ0 and δ0(x) = 1 if x = 0 and δ0(x) = 0 if x 6= 0.

Remark 1.3. If φω satisfies (1.2), then u(t, x) = eiωtφω(x) is a solution of (1.1).

The main result of this paper is the asymptotic stability result for solitons
eiωtφω given in Proposition 1.2 for ω sufficiently large. In particular, we prove
the following:

Theorem 1.4. There exists ω1 ≥ ω0, where ω0 is given in Proposition 1.2,
such that for any ω∗ > ω1, there exist δ0 > 0 and C > 0 such that if ε :=
‖u − φω∗‖l2 < δ0, then there exist θ ∈ C∞([0,∞),R), ω+ > ω1 and ξ+ ∈ l2

such that

lim
t→∞

‖u(t)− eiθ(t)φω+ − eit∆dξ+‖l2 = 0,(1.5)

| logω∗ − logω+|+ ‖ξ+‖l2 ≤ Cε.(1.6)

Considering large solitons concentrated on a finite set (in this case {0} ⊂ Z)
is equivalent to studying the solitons near the so-called “anti-continuous limit”.

Indeed, setting u(t, x) = ω
1
6 v(ωt, x), v satisfies

(1.7) i∂tv = −ε∆dv − |v|6v,

where ε = ω−1. By such rescaling, solitons given in Proposition 1.2 are rescaled
to eitψϵ(x) with ψϵ ∼ δ0. In the anti-continuous limit ε→ 0, (1.7) reduces to an
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infinite system of unrelated ordinarily differential equations and in particular
possesses a solution eitδ0. The first rigorous treatment for the existence of
solitons (also called discrete breathers in the context of discrete nonlinear
Klein-Gordon equations) branching from the above solution, was given by
MacKay and Aubry [14] followed by [1, 11]. Further, it was shown byWeinstein
[25] that for sufficiently large ω > 0, φω is a ground state, i.e. minimizer of
energy under the restriction of l2-norm, and thus orbitally stable.

Remark 1.5. In this paper, we have chosen to work on the rescaled setting to
reduce the number of parameters. Indeed, even if we consider (1.7) we still
need to consider a family of solitons ψϵ,ω with ω near 1.

The asymptotic stability problem of solitons near the anti-continuous limit
is no less important than the problem of existence, but it has not yet been
thoroughly investigated. The only asymptotic stability result we are aware
is by Bambusi [2] who studied the asymptotic stability of nonlinear discrete
Klein-Gordon equations (for linear/spectral stability see [19, 20]. Also, for
asymptotic stability of bound states bifurcating from linear potential, see [13,
9, 18, 15, 16]). Our result, Theorem 1.4, is a DNLS version of Bambusi’s
result, with simplified proof, as explained below.

We now explain the outline of the proof of Theorem 1.4. We start from
a standard strategy initiated by [3] for the asymptotic stability of solitons of
nonlinear Schrödinger equations (see also [23] for small solitons). That is, we
decompose the solution u near {eiθφω∗ | θ ∈ R} as u = eiθφω + ξ, with iξ
orthogonal to {ieiθφω, eiθ∂ωφω}. Then, the problem is to study the dynamics
of θ, ω and ξ. Roughly, the equation of ξ, which we obtain by substituting the
ansatz into DNLS (1.1), will have the form

i∂tξ = Hθ,ωξ +O(ξ2),

where

Hθ,ωξ :=
(
−∆d + ω − 4φ6ω

)
ξ − 3e2iθφ6ωξ.

The “linearized operator” Hθ,ω is not C-linear due to the complex conjugate.
Thus, it is natural to study the corresponding matrix C-linear operator

Hθ,ω :=

(
−∆d + ω − 4φ6ω −3e2iθφ6ω

3e−2iθφ6ω ∆d − ω + 4φ6ω

)
.

However, in general it is hard to study the spectral properties of the oper-
ator which are needed for the proof of asymptotic stability and one is forced
to assume, for example, the nonexistence of embedded eigenvalues, edge reso-
nances and internal modes (and if one admits internal modes, then one needs
to assume the Fermi Golden Rule property), see e.g. [6, 8].
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For our problem, the first attempt is to use the fact φω = ω
1
6

(
δ0 +O(ω−1)

)
where the remainder is small and decaying exponentially, as proved in Propo-
sition 1.2. So, we replace φω by ω

1
6 δ0 and consider

H̃θ,ω :=

(
−∆d + ω − 4ωδ0 −3e2iθωδ0

3e−2iθωδ0 ∆d − ω + 4ωδ0

)
.

It is possible to study the spectral properties and show decay estimates
related to the operator H̃θ,ω. However, one can reduce this operator one step
further. Recall that we were assuming iξ ∈ {ieiθφω, eiθ∂ωφω}⊥ (here, we are

considering real inner product). Applying the approximation φω ∼ ω
1
6 δ0 to

the orthogonality condition, it will reduced to iξ ∈ {ieiθωδ0, 16e
iθω− 5

6 δ0}⊥ =
{δ0, iδ0}⊥, which is equivalent to ξ(0) = 0. For ξ satisfying ξ(0) = 0 and
η = ξ, we have

H̃θ,ω

(
ξ
η

)
=

(
−∆d + ω 0

0 ∆d − ω

)(
ξ
η

)
.

Thus, H̃θ,ω reduces to a diagonal matrix and there will be no point considering
matrix operator anymore. Thus, the task is now to study ∆0 := P⊥

0 ∆dP
⊥
0

where P⊥
0 is the projection on to the space {ξ | ξ(0) = 0}, see Proposition 1.2.

The analysis of ∆0 further reduces to the analysis of ∆d restricted on odd
functions (see proof of Proposition 2.1, we also note that Bambusi [2] studies
similar operator). Thus, we will obtain the Strichartz estimate for free and the
Kato smoothing estimates, which do not hold for ∆d, from a simple fact that
the edge resonance of ∆d is even. Therefore, we obtain the linear estimates
needed (the idea using the Kato smoothing is due to [9]). The rest of the
paper is more of less standard except tracing the ω dependence of the error
terms carefully.

This paper is organized as follows: In Section 2, we prove the linear es-
timates for ∆0. Section 3 will be devoted to the modulation argument and
in particular we derive the equation of ξ (see (3.18) and (3.21)) and θ, ω
(see, (3.27)). In Section 4, we prove Theorem 1.4 by bootstrapping argument
(Proposition 4.1). Finally, in the Appendix, we prove Proposition 1.2.

In the following, we use a ≲ b by meaning a ≤ Cb for some constant C > 0
not depending on important parameters. Also, if a ≲ b and b ≲ a we write
a ∼ b.

§2. Linear estimates

Recall that in Proposition 1.2, P⊥
0 was given by

(2.1) P⊥
0 u(x) =

{
u(x) x 6= 0,

0 x = 0.



ASYMPTOTIC STABILITY OF SOLITON FOR DNLS 15

We set the restriction of ∆d to P⊥
0 l

2(Z) = {u ∈ l2(Z) | u(0) = 0} by

∆0 := P⊥
0 ∆d : P⊥

0 l
2(Z) → P⊥

0 l
2(Z).

In particular, for u ∈ P⊥
0 l

2(Z), we have

(∆0u) (x) =

{
u(±2)− 2u(±1) x = ±1,

u(x+ 1)− 2u(x) + u(x− 1) |x| ≥ 2.

For an interval I ⊂ R, we set

Stz(I) := L∞(I, l2(Z)) ∩ L6(I, l∞(Z)),

Stz∗(I) := L1(I, l2(Z)) + L
6
5 (I, l1(Z)).

The linear estimates we use in this paper are the following:

Proposition 2.1 (Strichartz and Kato smoothing estimates). Let I ⊂ R be
an interval with 0 ∈ I. Let u0 : Z → C and f : R× Z → C. Then, we have

‖eit∆0P⊥
0 u0‖Stz(I)∩L2(I,l2−1)

≲ ‖u0‖l2 ,(2.2)

‖
∫ ·

0
ei(·−s)∆0P⊥

0 f(s) ds‖Stz(I) ≲ ‖f‖Stz∗(I)+L2(I,l21)
,(2.3)

‖
∫ ·

0
ei(·−s)∆0P⊥

0 f(s) ds‖L2(I,l2−1)
≲ ‖f‖L2(I,l21)

.(2.4)

Proof. First, let P±u(x) = u(x) if ±x ≥ 1 and P±u(x) = 0 if ±x ≤ 0. Then,
we have [∆0, P±] = 0 so we get

eit∆0(P+ + P−) = (P+ + P−)e
it∆0 .

This implies ∆0 = ∆+ ⊕∆− where ∆± := P±∆0 : P±l
2 → P±l

2. Thus, it
suffices to show each estimate for ∆± and we will only consider ∆+. Further,
for u : N → C, we set Tu : Z → C by Tu(x) = u(x) for x ≥ 1, Tu(0) = 0 and
Tu(x) = −u(−x) for x ≤ −1. Then, we have T∆+ = ∆dT .

Therefore, it suffices to show the estimates (2.2), (2.3) and (2.4) for ∆d and
u0, f restricted to odd functions. Thus, we immediately have the Strichartz
estimates by [24]. That is, we have

‖eit∆0P⊥
0 u0‖Stz(I) ≲ ‖u0‖l2 , ‖

∫ ·

0
ei(·−s)∆0P⊥

0 f(s) ds‖Stz(I) ≲ ‖f‖Stz∗(I).

Next, we show the Kato smoothness estimate

(2.5) ‖eit∆0P⊥
0 u0‖L2(I,l2−1)

≲ ‖u0‖l2 ,



16 M. MAEDA AND M. YONEDA

which does not hold for ∆d with general u0. To show (2.5), it suffices to show

(2.6) sup
∥u∥

l21
≤1

u:odd

sup
Imλ ̸=0

‖(−∆d − λ)−1u‖l2−1
≲ 1,

which is a sufficient condition for the Kato smoothness, see [12] or Corollary
of Theorem XIII.25 of [21]. From the Fourier transform,

(2.7)
(
(−∆d − λ)−1u

)
(x) =

1

2π

∑
y∈Z

∫
[0,2π]

e−iξ|x−y|

2− 2 cos ξ − λ
u(y)dξ.

By the residue theorem, we can rewrite the r.h.s. of (2.7). Take R > 0 and set

A ∪B ∪ C ∪D = [0, 2π] ∪ [2π − iR,−iR] ∪ [−iR, 0] ∪ [2π, 2π − iR],

where [a, b] := {a+ t(b− a) | t ∈ [0, 1]} for a, b ∈ C. Then we have∫
A∪B∪C∪D

e−iξ|x−y|

2− 2 cos ξ − λ
dξ = 2πi

e−iµ|x−y|

2 sinµ
,

where cosµ = 1− λ
2 with Imµ ≤ 0. By∫

C∪D

e−iξ|x−y|

2− 2 cos ξ − λ
u(y)dξ = 0,

and

lim
R→∞

∫
B

e−iξ|x−y|

2− 2 cos ξ − λ
u(y)dξ = 0,

we have (
(−∆d − λ)−1u

)
(x) = i

∑
y∈Z

e−iµ|x−y|

2 sinµ
u(y).

Using the fact that u is odd, we can further rewrite

(
(−∆d − λ)−1u

)
(x) = i

∑
y∈Z

e−iµ|x−y|

2 sinµ
u(y)(2.8)

= i
∑
y>0

e−iµ|x−y|

2 sinµ
u(y) + i

∑
y<0

e−iµ|x−y|

2 sinµ
u(y)

= i
∑
y>0

e−iµ|x−y| − e−iµ|x+y|

2 sinµ
u(y).
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We now decompose (2.8) as below and estimate the contribution of each term.∑
y>0

e−iµ|x−y| − e−iµ|x+y|

sinµ
u(y)(2.9)

=
∑

0<y<x

ei(x−y)µ − e(x+y)µ

sinµ
u(y) +

∑
y≥x

ei(−x+y)µ − ei(x+y)µ

sinµ
u(y).

For the first term of the r.h.s. of (2.9), by Euler’s formula and the finite
geometric series, we have∣∣∣∣∣eiµ(x−y) − eiµ(x+y)

sinµ

∣∣∣∣∣ = |eiµ(x−y)|
∣∣∣∣1− e2iµx

sinµ

∣∣∣∣(2.10)

= |2ieiµeiµ(x−y)|
∣∣∣∣e2iµx − 1

e2iµ − 1

∣∣∣∣ = |2ieiµeiµ(x−y)||
x−1∑
k=0

eiµk| ≲ 〈x〉 ,

where we have used the fact x > 0 , x − y > 0 and Imµ < 0. Then, by the
Hölder inequality and (2.10),∣∣∣∣∣∣

∑
0<y<x

e−iyµ − eiyµ

sinµ
u(y)

∣∣∣∣∣∣ ≲ 〈x〉
3
2 ‖u‖l2 .

Therefore,

‖e−|x|
∑

0<y<x

e−iµ(x−y) − eiµ(x+y)

2i sinµ
u(y)‖l2 ≲ ‖u‖l2 ≤ ‖u‖l21 .

Next, we consider the second term of the r.h.s. of (2.9) . From (2.10), ex-
changing the role of x and y, we have∣∣∣∣∣ei(−x+y)µ − ei(x+y)µ

2i sinµ

∣∣∣∣∣ ≲ 〈y〉 .

Thus,∥∥∥∥∥∥
∑
y≥x

ei(−x+y)µ − ei(x+y)µ

2i sinµ
u(y)

∥∥∥∥∥∥
l2−1

≲ ‖e−|x|
∑
y≥x

〈y〉u(y)‖l2 ≲ C‖u‖l21 .

Therefore, we have (2.6).
Next the estimate

‖
∫ ·

0
ei(·−s)∆0P⊥

0 f(s) ds‖Stz(I) ≲ ‖f‖L2(I,l21)
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follows from the dual of (2.5) and the Christ-Kiselev lemma [5, 22].

Finally, we prove (2.4) by a parallel argument of Lemma 8.7 of [7]. The
following formula was proved in Lemma 4.5 of [17]:

2

∫ t

0
e−i(t−s)∆0P⊥

0 f(s) ds(2.11)

=
i√
2π

∫
R
e−itλ(R(λ− i0) +R(λ+ i0))P (F−1

t f)(λ) dλ

+

∫ ∞

0
e−i(t−s)∆0P⊥

0 f(s) ds−
∫ 0

−∞
e−i(t−s)∆0P⊥

0 f(s) ds,

where R(λ) = (−∆0 − λ)−1 and F−1
t is the inverse Fourier transform with

respect to the t variable. For the first term of the r.h.s. of (2.11), by the
Plancherel theorem, we have

‖
∫
R
e−itλ(R(λ− i0) +R(λ+ i0))P⊥

0 (F−1
t f)(λ) dλ‖L2l2−1

≲ max
±

‖R(λ± i0)P⊥
0 (F−1

t f)(λ)‖L2
λl

2
−1

≲ max
±

sup
λ∈R

‖R(λ± i0)‖l21→l2−1
‖F−1

t f‖L2
λl

2
1
≲ ‖f‖L2l21

,

where we have used (2.6) in the third inequality. Here, we note that the
operator norm ‖ · ‖l21→l2−1

is given by the supremum of all odd functions in l21
as in (2.6). The second and third term can be estimated by using (2.5) and
its dual. Therefore, we have the conclusion.

§3. Modulation argument

We set φ[θ, ω] := eiθφω. Then, by (1.2), we have

(3.1) iω∂θφ[θ, ω] = −∆φ[θ, ω]− |φ[θ, ω]|6φ[θ, ω].

Further, differentiating (3.1) with respect to θ and ω, we obtain

H[θ, ω]∂θφ[θ, ω] = iω∂2θφ[θ, ω],(3.2)

H[θ, ω]∂ωφ[θ, ω] = i∂θφ[θ, ω] + iω∂θ∂ωφ[θ, ω],(3.3)

where

H[θ, ω]u := −∆u+ V[θ, ω]u(3.4)

:= −∆du− 4|φ[θ, ω]|6u− 3|φ[θ, ω]|4φ[θ, ω]2u.
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Remark 3.1. The operator H[θ, ω] is not C-linear but only R-linear due to the
complex conjugate in the last term of (3.4).

It is easy to check that H[θ, ω] is symmetric with respect to the real inner-
product 〈·, ·〉. That is, we have 〈H[θ, ω]u, v〉 = 〈u,H[θ, ω]v〉. We set

Ω(u, v) := 〈iu, v〉 , u, v ∈ l2.

Remark 3.2. Ω is the symplectic form associated to discrete NLS (1.1).

We set

Hc[θ, ω] := {u ∈ l2 | Ω(u, ∂θφ[θ, ω]) = Ω(u, ∂ωφ[θ, ω]) = 0}

and

Tω(r) := {u ∈ l2 | inf
θ∈R

‖u− φ[ω, θ]‖l2 < r}.

Lemma 3.3 (Modulation). For ω∗ > ω0, where ω0 is given in Proposition
1.2, there exist δ > 0, θ ∈ C∞(Tω∗(δ),R) and ω ∈ C∞(Tω∗(δ),R) such that

(3.5) ξ(u) := u− φ[θ(u), ω(u)] ∈ Hc[θ(u), ω(u)].

Proof. Set

(3.6) F(θ, ω, u) :=

(
Ω(u− φ[θ, ω], ∂θφ[θ, ω])
Ω(u− φ[θ, ω], ∂ωφ[θ, ω])

)
.

Then, we have F(θ, ω, φ[θ, ω]) = 0 and

D(θ,ω)F(θ, ω, u) = q′(ω)

(
0 −1
1 0

)
+

(
Ω(u− φ[θ, ω], ∂2θφ[θ, ω]) Ω(u− φ[θ, ω], ∂θ∂ωφ[θ, ω])

Ω(u− φ[θ, ω], ∂θ∂ωφ[θ, ω]) Ω(u− φ[θ, ω], ∂2ωφ[θ, ω])

)
,

where q(ω) = 1
2‖φ[θ, ω]‖

2
l2 . Since ∂θφ[θ, ω] = iφ[θ, ω], we have

q′(ω) = 〈∂ωφ[θ, ω], φ[θ, ω]〉 = Ω(∂ωφ[θ, ω], iφ[θ, ω]) = Ω(∂ωφ[θ, ω], ∂θφ[θ, ω]).

Thus, from Proposition 1.2, for large ω, we have

(3.7) q′(ω) ∼ ω− 2
3 > 0.

Therefore, D(θ,ω)F(θ, ω, φ[θ, ω]) is invertible. By the implicit function the-
orem we have the conclusion.
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Lemma 3.4. There exists ω1 > ω0 such that for ω∗ > ω1, if u ∈ Tω∗(δ), we
have

(3.8) ‖ξ(u)‖l2 ≲ inf
θ∈R

‖u− φ[θ, ω∗]‖l2 .

Here, δ > 0 is the constant (depending on ω∗) given in Lemma 3.3.

Proof. Fix u ∈ Tω∗(0, δ) and set ε = infθ∈R ‖u − φ[θ, ω∗]‖l2 . We take θ0 to
satisfy ε = ‖u− φ[θ0, ω∗]‖l2 and set v := u− φ[θ0, ω∗] and for s ∈ [0, 1],

u[s] := φ[θ0, ω∗] + sv, ω[s] := ω(u[s]), θ[s] := θ(u[s]),

A[s] := ‖u[s]− φ[ω[s], θ[s]]‖l2 .

Notice that we have u[0] = φ[θ0, ω∗], θ[0] = θ0, ω[0] = ω∗, u[1] = u and (3.8)
is equivalent to A[1] ≲ ε. So, to show (3.8) we prove the following claim.

Claim 3.5. There exist ω1 > ω0 and C0 > 0 such that if s ∈ (0, 1), ω∗ > ω1

and if

|ω[s]− ω∗| ≤ C0ω
5/6
∗ ε,(3.9)

A[s] ≤ C0ε,(3.10)

we have (3.9) and (3.10) with C0 replaced by C0/2.

Proof of Claim 3.5. We assume (3.9) and (3.10) for all τ ∈ [0, s] for some

s ∈ (0, 1). We take C0 = ω
1
12
1 . In this proof, when we use ≲ or ∼, the implicit

constant will not depend on ω1, ω∗ nor s.
From (3.9), we have

(3.11) ω[s] ∼ ω∗.

From the fundamental theorem of calculus, we have

A[s] ≤ ε+ ‖φ[θs, ωs]− φ[θ0, ω∗]‖l2(3.12)

≤ ε+

∫ s

0
(‖∂θφ[θτ , ωτ ]‖l2 |Duθ(uτ )v|+ ‖∂ωφ[θτ , ωτ ]‖l2 |Duω(uτ )v|) dτ.

Differentiating F(θ(uτ ), ω(uτ ), uτ ) = 0 with respect to τ , where F is the
function given in (3.6), we have

(3.13)

(
Duθ(uτ )v
Duω(uτ )v

)
=

(
D(θ,ω)F(θ(uτ ), ω(uτ ), uτ )

)−1
(
Ω(v, ∂θφ[θτ , ωτ ])
Ω(v, ∂ωφ[θτ , ωτ ])

)
.

The determinant of D(θ,ω)F can be explicitly written as

det
(
D(θ,ω)F

)
(θτ , ωτ , uτ )

= (q′(ωτ ))
2 +Ω(uτ − φ[θτ , ωτ ], ∂

2
θφ[θτ , ωτ ])Ω(uτ − φ[θτ , ω]τ , ∂

2
ωφ[θτ , ωτ ])

− Ω(uτ − φ[θτ , ωτ ], ∂θ∂ωφ[θτ , ωτ ])
2.
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By (3.7) and (3.11), we have q′(ωτ )
2 ∼ ω

− 4
3

∗ = ω
− 16

12
∗ and

|det (Dθ,ωF) (θτ , ωτ , uτ )− (q′(ωτ ))
2| ≲ A[τ ]ω

1
3
−2

τ ≲ εω
− 19

12
∗ .

Thus, we have

(3.14) det (Dθ,ωF) (θτ , ωτ , uτ ) ∼ ω
− 4

3
∗ .

Computing the r.h.s. explicitly and using Proposition 1.2, (3.11) and (3.14),
we have

|Duθ(uτ )v|+ ω−1
∗ |Duω(uτ )v| ≲ ω

− 1
6

∗

(
1 +A(s)ω

− 1
6

∗

)
ε.

Substituting this bound in (3.12) and ωs = ω∗ +
∫ t
0 Duω(uτ )v dτ , we have

A[s] ≲
(
1 +A(s)ω

− 1
6

∗

)
ε ≲ (1 + ω

− 1
12

1 ε)ε ≲ ε,

|ω[s]− ω∗| ≲ ω
5
6
∗

(
1 +A(s)ω

− 1
6

∗

)
ε ≲ ω

5
6
∗ (1 + ω

− 1
12

1 ε)ε ≲ ω
5
6
∗ ε.

Therefore, we have the conclusion.

By Claim 3.5 and the continuity argument, we obtain (3.9) and (3.10) with
s = 1 and in particular (3.8).

Recall that P⊥
0 is given in (2.1). For large ω, the two spaces P⊥

0 l
2 and

Hc[θ, ω] become similar.

Lemma 3.6. P⊥
0

∣∣
Hc[θ,ω]

is invertible. Moreover,

Q[θ, ω] :=

(
P⊥
0

∣∣∣
Hc[θ,ω]

)−1

: P⊥
0 l

2 → Hc[θ, ω]

is given by

Q[θ, ω]u(3.15)

= u+ eiθ
(
−φω(0)−1Ω(u, ∂θφ[θ, ω]) + i∂ωφω(0)

−1Ω(u, ∂ωφ[θ, ω])
)
δ0,

and for u ∈ P⊥
0 l

2, we have

(3.16) ‖u−Q[θ, ω]u‖l21 ≲ ω−1‖u‖l2−1
.
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Proof. Since
(
P⊥
0 u

)
(x) = u(x) for x 6= 0, the only possible form of the inverse

of P⊥
0

∣∣
Hc[θ,ω]

is

(3.17) Q[θ, ω]u = u+ eiθq(u)δ0,

with q(u) ∈ C. Substituting (3.17) into Ω(Q[θ, ω]u, ∂Xφ[θ, ω]) = 0 for X =
θ, ω, we have

Re q(u) = −φω(0)−1Ω(u, ∂θφ[θ, ω]),

Im q(u) = ∂ωφω(0)
−1Ω(u, ∂ωφ[θ, ω]).

Since v = Q[θ, ω]P⊥
0 u is the unique element of l2 satisfying v(x) = u(x) for

x 6= 0 and v ∈ Hc[θ, ω], we see v = u for u ∈ Hc[θ, ω]. Finally, (3.16) follows
from Proposition 1.2 and (3.15).

In the following, we write θ(t) := θ(u(t)), ω(t) := ω(u(t)) and ξ(t) :=
ξ(u(t)), where u(t) is the solution of (1.1). Substituting u = φ[θ, ω] + ξ into
the equation, we have

(3.18) iξ̇ + i∂θφ[θ, ω](θ̇ − ω) + i∂ωφ[θ, ω]ω̇ = H[θ, ω]ξ − f [θ, ω, ξ]− |ξ|6ξ,

where

(3.19) f [θ, ω, ξ] :=
∑

0≤a≤4,0≤b≤3,2≤a+b≤6

Aa,bφ[θ, ω]
4−aφ[θ, ω]

3−b
ξaξ

b
,

for some Aa,b ∈ N. We set

(3.20) η(t) := P⊥
0 ξ(t).

Notice that from Lemma 3.6, we have ξ(t) = Q[θ(t), ω(t)]η(t).
Applying P⊥

0 to (3.18), we have

iη̇ = −∆0η − P⊥
0 ∆d(1−Q[θ, ω])η + P⊥

0 V[θ, ω]ξ(3.21)

− iP⊥
0 ∂θφ[θ, ω](θ̇ − ω)− iP⊥

0 ∂ωφ[θ, ω]ω̇ − P⊥
0 f(θ, ω, ξ)− P⊥

0

(
|ξ|6ξ

)
.

We next seek for the equation for θ̇ − ω and ω̇. First, taking the inner
product of (3.18) with ∂ωφ[θ, ω], we have

Ω(ξ̇, ∂ωφ[θ, ω])− q′(ω)(θ̇ − ω)(3.22)

= 〈H[θ, ω]ξ, ∂ωφ[θ, ω]〉 −
〈
f [θ, ω, ξ] + |ξ|6ξ, ∂ωφ[θ, ω]

〉
.

Now, since d
dtΩ(ξ, ∂ωφ[θ, ω]) = 0,

(3.23) Ω(ξ̇, ∂ωφ[θ, ω]) = −Ω(ξ, ∂2ωφ[θ, ω])ω̇ − Ω(ξ, ∂θ∂ωφ[θ, ω])θ̇.
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From (3.3), we have

〈H[θ, ω]ξ, ∂ωφ[θ, ω]〉 = 〈ξ, i∂θφ[θ, ω] + iω∂θ∂ωφ[θ, ω]〉(3.24)

= −ωΩ(ξ, ∂θ∂ωφ[θ, ω]).

Combining (3.22), (3.23) and (3.24), we have(
q′(ω) + Ω(ξ, ∂θ∂ωφ[θ, ω])

) (
θ̇ − ω

)
+Ω(ξ, ∂2ωφ[θ, ω])ω̇(3.25)

=
〈
f [θ, ω, ξ] + |ξ|6ξ, ∂ωφ[θ, ω]

〉
.

Similarly, taking the innerproduct 〈(3.18), ∂θφ[θ, ω]〉, we have(
q′(ω)− Ω(ξ, ∂θ∂ωφ[θ, ω])

)
ω̇ − Ω(ξ, ∂2θφ[θ, ω])(θ̇ − ω)(3.26)

= −
〈
f [θ, ω, ξ] + |ξ|6ξ, ∂θφ[θ, ω]

〉
.

Combining (3.25) and (3.26), we have

(3.27) A[θ, ω, η]

(
θ̇ − ω
ω−1ω̇

)
=

( 〈
f [θ, ω, ξ] + |ξ|6ξ, ∂ωφ[θ, ω]

〉
−ω−1

〈
f [θ, ω, ξ] + |ξ|6ξ, ∂θφ[θ, ω]

〉) ,
where

A[θ, ω, η]

(3.28)

:=

(
q′(ω) + Ω(Q[θ, ω]η, ∂θ∂ωφ[θ, ω]) ωΩ(Q[θ, ω]η, ∂2ωφ[θ, ω])
−ω−1Ω(Q[θ, ω]η, ∂2θφ[θ, ω]) q′(ω)− Ω(Q[θ, ω]η, ∂θ∂ωφ[θ, ω])

)
.

Here, we have multiplied ω−1 to (3.26) to adjust the scale.

§4. Proof of main theorem

We set XT := Stz(0, T ) ∩ L2((0, T ), l2−1).

Proposition 4.1. There exists ω1 > ω0 such that for ω∗ > ω1, there exist
ε0 ∈ (0, 1) and C0 > 1 with C0ε0 < 1 such that for T > 0, if ε := infθ∈R ‖u(0)−
φ[ω∗, θ]‖l2 < ε0 and

‖ξ‖Stz∩L2l2−1(0,T ) ≤ C0ε,(4.1)

‖ω−1ω̇‖L1∩L∞(0,T ) + ‖θ̇ − ω‖L1∩L∞(0,T ) ≤ C0ε,(4.2)

then the above holds with C0 replaced by C0/2.
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In the following, we assume (4.1) and (4.2). Further, when we use ≲
or ∼, the implicit constant will not depend on C0, ε, ω∗ nor ω1. Since
supt∈(0,T ) |ω(t) − ω∗| ≤ ‖ω̇‖L1(0,T ) ≤ C0ε, assuming ω1 > 2 if necessary, we
have

ω(t) ∼ ω∗ for all t ∈ (0, T ).(4.3)

Further, since we have set η = P⊥
0 ξ in Section 3, from (2.1), we have

(4.4) ‖η‖Stz∩L2((0,T ),l2−1)
≤ C0ε.

We start with the estimate of η.

Lemma 4.2. Under the assumption of Proposition 4.1, we have

(4.5) ‖η‖XT
≲ ‖η(0)‖l2 + C0ω

− 5
6

1 ε+ (C0ε)
7.

Proof. From (3.21) and Proposition 2.1, we have

‖η‖XT
≲ ‖η(0)‖l2 + ‖P⊥

0 ∆d(1−Q[θ, ω])η‖L2((0,T ),l21)
(4.6)

+ ‖P⊥
0 V[θ, ω]Q[θ, ω]η‖L2((0,T ),l21)

+ ‖P⊥
0 ∂θφ[θ, ω](θ̇ − ω)‖L2((0,T ),l21)

+ ‖P⊥
0 ∂ωφ[θ, ω]ω̇‖L2((0,T ),l21)

+ ‖P⊥
0 f(θ, ω, ξ)‖L2((0,T ),l21)

+ ‖P⊥
0

(
|ξ|6ξ

)
‖L1((0,T ),l2)

+ ‖
∫ ·

0
ei∆0(·−s)P⊥

0

(
|ξ|6ξ(s)

)
ds‖L2((0,T ),l2−1)

.

By ‖P⊥
0 ‖l21→l21

≤ 1, ‖∆d‖l21→l21
≲ 1 and Lemma 3.6, we have

(4.7) ‖P⊥
0 ∆d(1−Q[θ, ω])η‖L2((0,T ),l21)

≲ ω−1
1 ‖η‖XT

≲ C0ω
− 5

6
1 ε.

By (1.4) and (3.4), we have ‖P⊥
0 V[θ, ω]Q[θ, ω]‖l2−1→l21

≲ ω−5
1 . Thus,

(4.8) ‖P⊥
0 V[θ, ω]Q[θ, ω]η‖L2((0,T ),l21)

≲ ω−5
1 ‖η‖XT

≲ C0ω
− 5

6
1 ε.

For the terms in the second line of (4.6), by (1.4), we have

‖P⊥
0 ∂θφ[θ, ω](θ̇ − ω)‖L2((0,T ),l21)

+ ‖P⊥
0 ∂ωφ[θ, ω]ω̇‖L2((0,T ),l21)

(4.9)

≲ ω
− 5

6
1 ‖θ̇ − ω‖L2(0,T ) + ω

− 5
6

1 ‖ω−1ω̇‖L2(0,T ) ≲ C0ω
− 5

6 ε.

For the first term of the third line of (4.6), by (1.4) and (3.19),

‖P⊥
0 f(θ, ω, ξ)‖L2((0,T ),l21 )(4.10)

≲
6∑

j=2

ω
− 5

6
(7−j)

1 ‖ξ‖j−1
L∞((0,T ),l2)

‖ξ‖L2((0,T ),l2−1)
≲ C0ω

− 5
6

1 ε.
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For the second term in the third line, since Stz(0, T ) ↪→ L7((0, T ), l14(Z)),
we have

(4.11) ‖P⊥
0

(
|ξ|6ξ

)
‖L1((0,T ),l2) ≤ ‖ξ‖7XT

≤ (C0ε)
7.

Finally, for the last term of (4.6), by Proposition 2.1, we have

‖
∫ ·

0
ei∆0(·−s)P⊥

0

(
|ξ|6ξ(s)

)
ds‖L2((0,T ),l2−1)

≤
∫ T

0
‖ei∆0(·−s)P⊥

0

(
|ξ|6ξ(s)

)
‖L2((0,T ),l2−1)

ds

≲
∫ T

0
‖P⊥

0

(
|ξ|6ξ(x)

)
‖l2 ds = ‖P⊥

0

(
|ξ|6ξ

)
‖L1((0,T ),l2).

Thus, from (4.11), we have

(4.12) ‖
∫ ·

0
ei∆0(·−s)P⊥

0

(
|ξ|6ξ(s)

)
ds‖L2((0,T ),l2−1)

≲ (C0ε)
7.

Combining (4.6)–(4.12), we have (4.5).

Lemma 4.3. Under the assumption of Proposition 4.1, we have

(4.13) |θ̇ − ω|+ |ω−1ω̇| ≲ ω− 1
3 ‖η‖2l2−1

+ ‖η‖7l2−1
.

Proof. First, from Proposition 1.2 and Lemma 3.6 we have

|Ω(Q[θ, ω]η, ∂θ∂ωφ[θ, ω])|

≤ |Ω(η, P⊥
0 ∂θ∂ωφ[θ, ω])|+ |Ω((1−Q[θ, ω])η, ∂θ∂ωφ[θ, ω])| ≲ ω− 11

6 ‖η‖l2−1
.

Similarly, we have

|ωΩ(Q[θ, ω]η, ∂2ωφ[θ, ω])|+ |ω−1Ω(Q[θ, ω]η, ∂2θφ[θ, ω])| ≲ ω− 11
6 ‖η‖l2−1

.

By (3.7), we see that if ‖η‖l2 ≲ 1, A[θ, ω], defined in (3.28), is invertible
and we have

(4.14) ‖A[θ, ω, η]−1‖C2→C2 ≲ ω
2
3 .

Next,

| 〈f [θ, ω, ξ], ∂ωφ[θ, ω]〉 |(4.15)

≲
6∑

j=2

〈
|φ[θ, ω]|7−j |ξ|j−1 (|η|+ |(1−Q[θ, ω])η|) , |∂ωφ[θ, ω]|

〉
≲

6∑
j=2

(
ω

−46+6j
6 + ω− 4+j

6

)
‖η‖j

l2−1
≲ ω−1‖η‖2l2−1

.
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Similarly, we have

(4.16) |ω−1 〈f [θ, ω, ξ], ∂θφ[θ, ω]〉 | ≲ ω−1‖η‖2l2−1
.

Finally,

(4.17) |
〈
|ξ|6ξ, ∂ωφ[θ, ω]

〉
|+ |ω−1

〈
|ξ|6ξ, ∂θφ[θ, ω]

〉
| ≲ ω− 5

6 ‖η‖7l2−1
.

Therefore, from (3.27) and (4.14)–(4.17), we obtain (4.13).

Proof of Proposition 4.1. By Lemma 3.6, (3.8) and (4.5), we have

‖ξ‖XT
≤ C(1 + C0ω

− 5
6

1 + C0(C0ε)
6)ε

for some C > 0. Thus, taking C0 = 4C and ω1 sufficiently large and ε0

sufficiently small so that C(C0ω
− 5

6
1 + C0(C0ε0)

6) ≤ 1
4C0, we have (4.1) with

C0 replaced by C0/2.
Next, from (4.3) and (4.13), we have

‖θ̇ − ω‖L1∩L∞(0,T ) + ‖ω−1ω̇‖L1∩L∞ ≤ C̃(ω
− 1

3
1 + C6

0ε
6)C0ε

for some C̃ > 0. Thus, taking ω1 sufficiently large and ε0 sufficiently small so

that C̃(ω
− 1

3
1 + C6

0ε
6) ≤ 1

2 , we have (4.2) with C0 replaced by C0/2.

Proof of Theorem 1.4. By Proposition 4.1, we have (4.1) and (4.2) with T =
∞. In particular, this estimate implies the convergence of ω in (1.6) and the
bound on the first term in the inequality of (1.6). Further, since ‖ξ‖Stz <∞,
by standard argument we see that there exists ξ+ such that ‖ξ(t)−eit∆ξ+‖l2 →
0 as t → ∞. Therefore, we have (1.5) and the bound on the second term in
the inequality of (1.6).

§A. Proof of Proposition 1.2

In this Appendix, we prove Proposition 1.2. We start from the following
lemma.

Lemma A.1. For sufficiently large ω > 0, −∆0 + ω is invertible on P⊥
0 l

2
10,

where ∆0 = P⊥
0 ∆P⊥

0 . Further, we have ‖(−∆0 + ω)−1‖l210→l210
≲ ω−1.

Proof. We first show ‖(−∆d + ω)−1‖l210→l210
≲ ω−1. For such estimate, it

suffices to show

(A.1) ‖(−∆d + ω)−1u‖l210 ≲ ω−1‖u‖l210
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for compactly supported u. Since (−∆d + ω)−1 is invertible on l2 for ω > 4,
we set

v := (−∆d + ω)−1u.

Then, we have (−∆d + ω)v = u. Moreover, (−∆d + ω)v(x) = 0 for |x| ≥ R
for some R, because u is supported on a bounded set. Recall that the general
solution of (−∆d + ω)v = 0 is given by c+b(ω)

x + c−b(ω)
−x, where

b(ω) = (2 + ω +
√
ω2 + 4ω)/4 ∼ ω.

Since b(ω) > 1 and v ∈ l2, we have

v(x) ∼ b(ω)−|x| = e−|x| log b(ω).

Therefore, taking ω > 0 sufficiently large, we have v ∈ l210. Now, applying
cosh(10x) to (−∆d + ω)v = u, we have

(−∆d + ω)ṽ = ũ+ [cosh(10x),∆d] cosh(10x)
−1ṽ,

where ṽ = cosh(10x)v and ũ = cosh(10x)u. Thus, from ‖(−∆d+ω)
−1‖l2→l2 ≲

ω−1, we have

‖ṽ‖l2 ≲ ω−1 (‖ũ‖l2 + ‖[cosh(10x),∆d] cosh(−10x)ṽ‖l2) .

Since

[cosh(10x),∆d] cosh(10x)
−1ṽ

=
(
cosh(10x) cosh(10(x− 1))−1 − 1

)
ṽ(x− 1)

+
(
cosh(10x) cosh(10(x+ 1))−1 − 1

)
ṽ(x+ 1),

and

‖ cosh(10x) cosh(10(x− 1))−1 − 1‖l∞
+ ‖ cosh(10x) cosh(10(x+ 1))−1 − 1‖l∞ ≲ 1,

we have

‖ṽ‖l2 ≲ ω−1 (‖ũ‖l2 + ‖ṽ‖l2) .

Therefore, by ‖ṽ‖l2 ∼ ‖v‖l210 and ‖ũ‖l2 ∼ ‖u‖l210 , we have (A.1) for suffi-
ciently large ω.

Next, we consider −∆0+ω. For u ∈ P⊥
0 l

2
10, we look for v ∈ P⊥

0 l
2
10 satisfying

(−∆0 + ω)v = u. Since this can be written as P⊥
0 (−∆d + ω)v = u, we have

(A.2) (−∆d + ω)v = u− (v(1) + v(−1))δ0.
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Setting Φω[v] := (−∆d + ω)−1(u − (v(1) + v(−1))δ0), we see that Φω is a
contraction mapping on

Bl210(0,Cω−1) := {w ∈ l210 | ‖w‖l210 ≤ Cω−1}

for C > 0 satisfying ‖(−∆d+ω)
−1‖l210→l210

≤ Cω−1 and sufficiently large ω > 0.

Thus, we find v ∈ l210 satisfying (A.2) and ‖v‖l210 ≲ ω−1.

Finally, (A.2) at x = 0 implies (2+ω)v(0) = 0 so we have v ∈ P⊥
0 l

2
10. Thus,

we have the conclusion.

Proof of Proposition 1.2. Substituting φω = ω
1
6 (δ0 + ϕω) into (1.2), we have

(A.3) ω−1 (−∆dδ0 −∆dϕω) + ϕω −
6∑

n=1

7Cnδ0ϕ
n
ω − ϕ7

ω = 0,

where 7Cn are the binomial coefficients. We further decompose ϕω = Aωδ0 +
ψω, where ψω = P⊥

0 ϕω and Aω ∈ R. Then, applying P0 := 1− P⊥
0 , we have

(−6 + 2ω−1)Aω = −2ω−1 + ω−1 (ψω(1) + ψω(−1)) +
7∑

n=2

7CnA
n
ω.

Thus, for ω > 0 sufficiently large and for given ψ (with ‖ψ‖l∞ ≲ 1), we can
solve Aω = Aω(ψ). Further, we have

|Aω(ψ)| ≲ ω−1 (1 + |ψ(1)|+ |ψ(−1)|) ,(A.4)

|Aω(ψ1)−Aω(ψ2)| ≲ ω−1 (|ψ1(1)− ψ2(1)|+ |ψ1(−1)− ψ2(−1)|) .(A.5)

Now, applying P⊥
0 to (A.3), we have

(A.6) ψω = (−∆0 + ω)−1
(
(Aω[ψω] + 1) (δ1 + δ−1) + ωψ7

ω

)
,

where we have used P⊥
0 ϕ

7
ω = ψ7

ω. Setting the r.h.s. of (A.6) by Φω[ψω], we see
that it suffices to show Φω is a contraction mapping on

BP⊥
0 l210(0,Cω−1) := {w ∈ P⊥

0 l
2
10 | ‖w‖l210 ≤ Cω−1}

for some C > 0. However, from Lemma A.1, (A.4) and (A.5), we have

‖Φω[0]‖l210 ≲ ω−1‖δ1 + δ−1‖l210 ≲ ω−1,(A.7)

‖Φω[ψ1]− Φω[ψ2]‖l210 ≲ ω−1
(
|Aω[ψ1]−Aω[ψ2]|+ ω‖ψ7

1 − ψ7
2‖l210

)
(A.8)

≲ ω−1
(
ω−1 + ω‖ψ1‖6l210 + ω‖ψ1‖6l210

)
‖ψ1 − ψ2‖l210

≲ ω−2‖ψ1 − ψ2‖l210 ,



ASYMPTOTIC STABILITY OF SOLITON FOR DNLS 29

where we have used

|ψ(1)|+ |ψ(−1)| ≤ 2‖ψ‖l∞ ≤ 2‖ψ‖l210 ≤ 2Cω−1

for ψ ∈ BP⊥
0 l210

(0, Cω−1).

Thus, from (A.7) and (A.8) and since the implicit constant is independent of
ω, taking C sufficiently large so that ω‖Φω[0]‖l210 < C/2, we have the existence
of the fixed point ψω. Thus, we have the solution

φω = ω1/6 (δ0 +Aω[ψω]δ0 + ψω)

of (1.2) satisfying the estimates of (1.3) and (1.4) with j = 0.
We next estimate the derivative of φω. We set a(ω) := Aω(ψω). Then, a(ω)

satisfies

(A.9) (−6 + 2ω−1)a(ω) = −2ω−1 + ω−1 (ψω(1) + ψω(−1)) +
7∑

n=2

7Cna(ω)
n.

Differentiating (A.9) by ω, we have

(−6 + 2ω−1 −
7∑

n=2

n7Cna(ω)
n−1)a′(ω)

= ω−1 (∂ωψω(1) + ∂ωψω(−1)) + ω−2 (2a(ω) + 2− ψω(1)− ψω(−1)) .

Therefore, by |a(ω)|+ |ψω(1)|+ |ψω(−1)| ≲ ω−1, we have

(A.10) |a′(ω)| ≲ ω−1 (|∂ωψω(1)|+ |∂ωψω(−1)|) + ω−2.

Next, differentiating (A.6) with respect to ω, we have

∂ωψω = (−∆0 + ω)−1
(
−ψω + a′(ω) (δ−1 + δ1) + 7ψ6

ω∂ωψω + ψ7
ω

)
.

Thus, using (A.10), we have

‖∂ωψω‖l210
≲ ω−1

(
ω−1 + ω−1 (|∂ωψω(1)|+ |∂ωψω(−1)|) + ω−2 + ω−5‖∂ωψω‖l210

)
.

Taking ω sufficiently large, we have

(A.11) ‖∂ωψω‖l210 ≲ ω−2.

From (A.10) and (A.11), we have |a′(ω)| ≲ ω−2. From (A.10) and (A.11), we
can deduce the estimate for (1.3) and (1.4) with j = 1.



30 M. MAEDA AND M. YONEDA

Finally, for the case j = 2, differentiating (A.9) twice by ω, we have

(−6 + 2ω−1 −
7∑

n=2

n7Cna(ω)
n−1)a′′(ω)

= ω−1
(
∂2ωψω(1) + ∂2ωψω(−1)

)
+ 2ω−2

(
2a′(ω) + 2− ∂ωψω(1)− ∂ωψω(−1)

)
+ 2ω−3 (2a(ω)− ψω(1)− ψω(−1)) +

7∑
n=2

n(n− 1)7Cna(ω)
n−2

(
a′(ω)

)2
,

which provides the estimate

(A.12) |a′′(ω)| ≲ ω−1
(
|∂2ωψω(1)|+ |∂2ωψω(−1)|

)
+ ω−3.

Next, differentiating (A.6) twice with respect to ω, we have

∂2ωψω = (−∆0 + ω)−1(
−2∂ωψω + a′′(ω) (δ−1 + δ1) + 42ψ5

ω(∂ωψω)
2 + 7ψ6

ω∂
2
ωψω + 14ψ6

ω∂ωψω

)
.

From (A.12) and the previous estimates, we have

‖∂2ωψω‖l210 ≲ ω−1
(
ω−2 + ω−1

(
|∂2ωψω(1)|+ |∂2ωψω(−1)|

)
+ω−3 + ω−8 + ω−5‖∂ωψω‖l210

)
.

Therefore, we have

‖∂2ωψω‖l210 ≲ ω−3, |a′′(ω)| ≲ ω−3.

This completes the proof.
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