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Abstract. Let a, b, c be pairwise relatively prime positive integers such that
a2+br = c2 with r positive integer. Then we show that the equation x2+bm = cn

has the positive integer solution (x,m, n) = (a, r, 2) only under some conditions.
The proof is based on elementary methods and Zsigmondy’s theorem.
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§1. Introduction.

In 1913, Ramanujan [R] conjectured that the equation x2+7 = 2n has only five
positive integer solutions (x, n) = (1, 3), (3, 4), (5, 5), (11, 7), (181, 15). In 1960,
Nagell [N] resolved Ramanujan’s conjecture. Tanahashi [Ta] and Toyoizumi
[To] independently extended Nagell’s result by showing that the equation x2+
7m = 2n has only six solutions (x,m, n) = (1, 1, 3), (3, 1, 4), (5, 1, 5), (11, 1, 7),
(181, 1, 15), (13, 3, 9). Tanahashi [Ta] also established that the equation x2 +
11m = 3n has only one solution (x,m, n) = (4, 1, 3). Let b and c be relatively
prime positive integers greater than one. Then the generalized Ramanujan-
Nagell equation

(1.1) x2 + bm = cn

in positive integers x,m and n has been studied by a number of authors.
As an analogue of Jeśmanowicz’ conjecture ([J]) concerning primitive

Pythagorean triples, the first author [Te1] proposed the following:

Conjecture 1. Let a, b, c be pairwise relatively prime positive integers such
that a2+ b2 = c2 with b odd. Then (1.1) has only one positive integer solution
(x,m, n) = (a, 2, 2).
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The first author [Te1] proved that if p and q are primes such that (i) q2+1 =
2p and (ii) d = 1 or even if q ≡ 1 mod 4, then the Diophantine equation
x2 + qm = pn has only one positive integer solution (x,m, n) = (p − 1, 2, 2),
where d is the order of a prime divisor of (p) in the ideal class group of Q(

√
−q).

Conjecture 1 has been verified to be true in many special cases:

• (Le [Le1]) b > 8 · 106, b ≡ 5 mod 8, c is a prime power.

• (Chen-Le [CL]) b2 + 1 = 2c, b ̸≡ 1 mod 16, b and c are odd primes.

• (Le [Le2]) b ≡ 7 mod 8, either b or c is a prime.

• (Cao-Dong [CD]) c ≡ 5 mod 8, b or c is a prime power.

• (Yuan-Wang [YW]) b ≡ ±5 mod 8, c is a prime.

However, Conjecture 1 remains unsolved.

The first author [Te2] showed that if 2c − 1 is a prime and 2c − 1 ≡ 3, 5
(mod 8), then the equation x2 + (2c− 1)m = cn has only one positive integer
solution (x,m, n) = (c− 1, 1, 2), and proposed the following:

Conjecture 2. Let c be a positive integer with c ≥ 2. Then the equation

x2 + (2c− 1)m = cn

has only one positive integer solution (x,m, n) = (c− 1, 1, 2).

Conjecture 2 also has been verified to be true in several cases:

• (Terai [Te2]) 2 ≤ c ≤ 30 with c ̸= 12, 24.

• (Deng [D], Bennett-Billerey [BeBi]) c = 12, 24.

• (Deng-Guo-Xu [DGX]) 2c − 1 = 32s+1p2t+1, 2c − 1 = 52s+1p2t+1,
or 3 ≤ c ≤ 499 with c ≡ 3 (mod 4) and p prime.

• (Fujita-Terai [FT]) 2c− 1 = 3pl or 2c− 1 = 5pl with p prime.

The first author [Te3] has recently proved that if a, b, c are pairwise rela-
tively prime positive integers such that a2+ b4 = c2 with b odd, then (1.1) has
only one positive integer solution (x,m, n) = (a, 4, 2) under certain conditions.

In this paper, when a2+br = c2 with r positive integer, we consider (1.1). It
is well known that any primitive Pythagorean triple a, b, c such that a2+b2 = c2

with b even can be parametrized as follows:

a = u2 − v2, b = 2uv, c = u2 + v2,
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where u, v are positive integers such that gcd(u, v) = 1, u ̸≡ v (mod 2) and
u > v. Similarly, any positive integers a, b, c satisfying a2 + br = c2 and
gcd(a, b) = 1 can be parametrized as follows, according to Case (B1): b is even
or Case (B2): b is odd.

(1.2) (B1) a = |ur − 2r−2vr |, b = 2uv, c = ur + 2r−2vr,

where u, v are positive integers such that gcd(u, v) = 1 and u ≡ 1 (mod 2); or

(1.3) (B2) a =
ur − vr

2
, b = uv, c =

ur + vr

2
,

where u, v are positive integers such that gcd(u, v) = 1, uv ≡ 1 (mod 2)
and u > v. The purpose of this paper is to show that (1.1) has only a trivial
solution (x,m, n) = (a, r, 2) under some conditions for the following four cases:

(i) u = p, v = 1, r = 3 in (1.2),

(ii) u = 1, v = p, r = 3 in (1.2),

(iii) u = p, v = 1, r ≥ 1 in (1.3),

(iv) u = p, v = 3, r ≡ 1 (mod 2) in (1.3),

where p is an odd prime.

Theorem 1.1. Let p be a prime with p ≡ 3, 5 (mod 8). Then the equation

(1.4) x2 + (2p)m = (p3 + 2)n

has only one positive integer solution (x,m, n) = (p3 − 2, 3, 2).

Theorem 1.2. Let p be a prime with p ≡ 3, 5 (mod 8). Then the equation

(1.5) x2 + (2p)m = (2p3 + 1)n, m ≥ 2

has only one positive integer solution (x,m, n) = (2p3 − 1, 3, 2).

Theorem 1.3. Let p be a prime with p ≡ 3, 5 (mod 8), and let r be a positive
integer. Then the equation

(1.6) x2 + pm =

(
pr + 1

2

)n

has only one positive integer solution (x,m, n) = ((pr − 1)/2, r, 2).
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Theorem 1.4. Let p be a prime with p ≡ 7, 11, 17 (mod 24), and let r be odd.
Then the equation

(1.7) x2 + (3p)m =

(
pr + 3r

2

)n

has only one positive integer solution (x,m, n) = ((pr − 3r)/2, r, 2).

The organization of this paper is as follows. In Section 2, we quote the
theorem of Zsigmondy concerning primitive prime divisor and results on the
Lebesgue-Nagell equations x2+Dm = yn (D = 2, 6, 12, 20). In Sections 3 to 6,
we use elementary methods and Zsigmondy’s theorem to show Theorems 1.1 to
1.4, respectively. In Section 7, we describe whether the equation x2+ bm = cn

with a2 + b3 = c2 has two solutions or not.

§2. Preliminaries

The following is a direct consequence of an old version of the Primitive Divisor
Theorem due to Zsigmondy [Z]:

Lemma 2.1 (Zsigmondy [Z]). Let A and B be relatively prime integers with
A > B ≥ 1. Let {ak}k≥1 be the sequence defined as

ak = Ak +Bk.

If k > 1, then ak has a prime factor not dividing a1a2 · · · ak−1, whenever
(A,B, k) ̸= (2, 1, 3).

In the proof of Theorems 7.1, 7.2, we need the following lemma concerning
the Lebesgue-Nagell equations, which is immediate from Cohn [C], Le [Le3],
Luca [Lu], Luca-Togbe [LT].

Lemma 2.2. (1) All positive integer solutions of the equation

x2 + 2m = yn, gcd(x, y) = 1, n ≥ 3

are (x, y,m, n) = (5, 3, 1, 3), (7, 3, 5, 4), (11, 5, 2, 3).

(2) All positive integer solutions of the equation

x2 + 6m = yn, gcd(x, y) = 1, n ≥ 3

are (x, y,m, n) = (2681, 193, 4, 3), (39151, 1153, 5, 3).
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(3) The equation

x2 + 12m = yn, gcd(x, y) = 1, n ≥ 3

has no positive integer solutions (x, y,m, n).

(4) The equation

x2 + 20m = yn, gcd(x, y) = 1, n ≥ 3

has no positive integer solutions (x, y,m, n).

§3. Proof of Theorem 1.1

Let (x,m, n) be a solution of (1.4). Suppose that our assumptions are all
satisfied.

Put c = p3 + 2. Since p ≡ 3, 5 (mod 8), we have

(
c

p

)
=

(
p3 + 2

p

)
=(

2

p

)
= −1, where

(∗
∗

)
is the Jacobi symbol. Hence (1.4) implies that n is

even, say n = 2N . From (1.4), we have

(2p)m = (cN + x)(cN − x).

Since gcd(cN + x, cN − x) = 2, we obtain the following two cases:

(3.1)

{
cN + x = 2pm

cN − x = 2m−1

or

(3.2)

{
cN + x = 2m−1pm

cN − x = 2.

First consider Case (3.1). Adding these two equations yields

(3.3) 2m−2 + pm = (p3 + 2)N .

If m ≤ 2, then it is clear that equation (3.3) has no solutions. If m = 3,
then equation (3.3) has only one solution N = 1 and so n = 2, x = p3 − 2.
Thus we may suppose that m ≥ 4.

From (3.3), we have

(
2

p

)m−2

=

(
2

p

)N

. Since

(
2

p

)
= −1, this implies

that m ≡ N (mod 2). The proof is divided into two cases:
(i) m and N are odd, (ii) m and N are even.
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Case (i) m and N are odd. Then taking equation (3.3) modulo 4 implies that
pm ≡ (p3 + 2)N (mod 4), so p ≡ p+ 2 (mod 4), which is impossible.
Case (ii) m and N are even. By the parametrization of primitive Pythagorean
triples, it follows that

2
m−2

2 = 2uv, p
m
2 = u2 − v2, (p3 + 2)

N
2 = u2 + v2,

where u, v are positive integers such that gcd(u, v) = 1, u ̸≡ v (mod 2) and
u > v. This shows that

u = 2
m−2

2
−1, v = 1, u+ v = p

m
2 , u− v = 1,

so u = 2 and m = 6, which do not satisfy u+ v = p
m
2 .

Next consider Case (3.2). Adding these two equations yields

(3.4) 2m−2pm + 1 = (p3 + 2)N .

Since

(
2

p

)
= −1, the equation (3.4) implies that N is even, say N = 2N1.

Then

2m−2pm = (p3 +2)2N1 − 1 = ((p3 +2)2 − 1)C1 = (p+1)(p2 − p+1)(p3 +3)C1

with C1 =
(p3 + 2)2N1 − 1

(p3 + 2)2 − 1
, which is impossible, since gcd(p2 − p+ 1, p) = 1

and p2 − p+ 1 > 1 is odd. This completes the proof of Theorem 1.1.

§4. Proof of Theorem 1.2

Let (x,m, n) be a solution of equation (1.5). Suppose that our assumptions
are all satisfied.

Put c = 2p3 + 1. Then taking equation (1.5) modulo 4 implies that 1 ≡ 3n

(mod 4), so n is even, say n = 2N . From (1.6), we have

(2p)m = (cN + x)(cN − x).

Since gcd(cN + x, cN − x) = 2, we obtain the following two cases:

(4.1)

{
cN + x = 2pm

cN − x = 2m−1

or

(4.2)

{
cN + x = 2m−1pm

cN − x = 2.
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First consider Case (4.1). Adding these two equations yields

(4.3) 2m−2 + pm = (2p3 + 1)N .

Since it follows from (4.3) that 1 =
(

2
p

)m−2
= (−1)m−2, we see that m is

even. This leads to(
2(m−2)/2

)2
+
(
pm/2

)2
≡ 0 (mod 2p3 + 1),

which is impossible, since 2p3 + 1 ≡ 3 (mod 4).

Next consider Case (4.2). Adding these two equations yields

(4.4) 2m−2pm + 1 = (2p3 + 1)N .

If m ≤ 2, then it is clear that (4.4) has no solutions. If m = 3, then (4.4)
has only one solution N = 1 and so n = 2, x = 2p3 − 1.

If m ≥ 4, then taking (4.4) modulo 4 implies that 1 ≡ 3N (mod 4) and so
N is even, say N = 2N1. Then

2m−2pm = (2p3 + 1)2N1 − 1 = ((2p3 + 1)2 − 1)C2 = 4(p+ 1)(p2 − p+ 1)p3C2

with C2 =
(2p3 + 1)2N1 − 1

(2p3 + 1)2 − 1
, which is impossible, since gcd(p2− p+1, p) = 1

and p2 − p+ 1 > 1 is odd. This completes the proof of Theorem 1.2.

§5. Proof of Theorem 1.3

Let (x,m, n) be a solution of equation (1.6). Suppose that our assumptions
are all satisfied.

Put c =
pr + 1

2
. Then

(
c

p

)
= −1. Indeed,

(
c

p

)
=

(
4c

p

)
=

(
2

p

)(
pr + 1

p

)
=

(
2

p

)
= −1,

since p ≡ 3, 5 (mod 8). Hence (1.6) implies that n is even, say n = 2N . From
(1.6), we have

pm = (cN + x)(cN − x).

Since gcd(cN + x, cN − x) = 1, we obtain the following:{
cN + x = pm

cN − x = 1.
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Adding these two equations yields

(5.1) pm + 1 = 2cN .

From the definition of c, we have

pr + 1 = 2c.

If m > r, then it follows from Lemma 2.1 that (5.1) has no solutions. If
m = r, then (5.1) has only one solution N = 1 and so n = 2, x = (pr − 1)/2.
If m < r, then (5.1) has no solutions, since

pm + 1 < pr + 1 = 2c ≤ 2cN .

This completes the proof of Theorem 1.3.

§6. Proof of Theorem 1.4

Let (x,m, n) be a solution of (1.7). Suppose that our assumptions are all
satisfied.

Put c =
pr + 3r

2
. Since p ≡ 7, 11, 17 (mod 24), we see that

(
6

p

)
= −1.

Then

(
c

p

)
= −1. Indeed,

(
c

p

)
=

(
4c

p

)
=

(
2

p

)(
pr + 3r

p

)
=

(
2

p

)(
3

p

)r

=

(
6

p

)
= −1.

Hence (1.7) implies that n is even, say n = 2N . From (1.7), we have

(3p)m = (cN + x)(cN − x).

Since gcd(cN + x, cN − x) = 1, we obtain the following two cases:

(6.1)

{
cN + x = (3p)m

cN − x = 1

or

(6.2)

{
cN + x = pm

cN − x = 3m.

First consider Case (6.1). Adding these two equations yields

(6.3) (3p)m + 1 = 2cN .
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Taking (6.3) modulo 3 implies that 1 ≡ 2cN (mod 3), so N is odd. We want
to show that equation (6.3) has no solutions. The proof is divided into two
cases: Case (i) p ≡ 7, 17 (mod 24) and Case (ii) p ≡ 11 (mod 24).

Case (i). Then (6.3) leads to

1 =

(
2c

p

)
=

(
pr + 3r

p

)
=

(
3

p

)r

=

(
3

p

)
= −1,

which is impossible.

Case (ii). Then (6.3) leads to

1 =

(
2c

3

)
=

(
pr + 3r

3

)
=

( p

3

)r
=

( p

3

)
=

(
2

3

)
= −1,

which is impossible.

Next consider Case (6.2). Adding these two equations yields

(6.4) pm + 3m = 2cN .

From the definition of c, we have

pr + 3r = 2c.

If m > r, then it follows from Lemma 2.1 that (6.4) has no solutions. As
in Section 5, we easily see that if m ≤ r, then (6.4) has one the solution
(m,N) = (r, 1) and so n = 2, x = (pr − 3r)/2. This completes the proof of
Theorem 1.4.

§7. the equation x2 + bm = cn with two solutions

In Theorem 1.2, the equation (1.5) with m = 1, that is,

(7.1) x2 + 2p = (2p3 + 1)n

remains to be solved. In general, it is difficult to treat (7.1). For small values of
odd primes p, we can easily solve (7.1) by using the function IntegralPoints(E)

of an elliptic curve E in Magma [BoCa]. When p = 3, equation (7.1) can be
solved as follows:

Theorem 7.1. All positive integer solutions of the equation

(7.2) x2 + 6m = 55n

are (x,m, n) = (7, 1, 1), (53, 3, 2).
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Proof. By Theorem 1.2, it suffices to solve (7.2) with m = 1, that is,

x2 + 6 = 55n.

Put n = 3N + r with r = 0, 1, 2. Then the above equation becomes

Y 2 = X3 − 6 · 552r

with X = 55r+N and Y = 55r · x. When r = 0, 1, 2, we obtain the following
three elliptic curves, which can be easily solved by Magma:

E0 : Y
2 = X3 − 6

with rankE0(Q) = 0 and there are no integer points on E0;

E1 : Y
2 = X3 − 6 · 552

with rankE1(Q) = 2 and all integer points on E1 are (X,Y ) = (55,±385),
(295,±5065);

E2 : Y
2 = X3 − 6 · 554

with rankE2(Q) = 0 and there are no integer points on E2. Consequently the
equation x2 + 6 = 55n has only one solution (x, n) = (7, 1).

Remark. We remark that (7.2) can also be solved by Lemma 2.2 (2).

Similarly, for odd primes p such that 3 < p < 100 and p ≡ 3, 5 (mod 8),
we can solve (7.1) by Magma. In all these cases, we see that (7.1) has no
solutions.

It is worth noting that (7.2) has two solutions. In other cases, it is natural
to ask if there are two solutions (x,m, n) to the equation

(7.3) x2 + bm = cn with a2 + b3 = c2 and gcd(a, b) = 1.

By Magma, in the range 2 ≤ a, b ≤ 1000 and 1 ≤ m,n ≤ 20, we verified that
(7.3) has two solutions in only five cases

(a, b, c) = (15, 4, 17), (53, 6, 55), (127, 8, 129), (431, 12, 433), (109, 20, 141).

It follows from Lemma 2.2 that (7.3) has exactly two solutions in all these
cases. In fact, the following theorem holds. (The case (a, b, c) = (53, 6, 55) has
been already treated in Theorem 7.1).

Theorem 7.2. (1) All positive integer solutions of the equation

x2 + 4m = 17n

are (x,m, n) = (1, 2, 1), (15, 3, 2).
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(2) All positive integer solutions of the equation

x2 + 8m = 129n

are (x,m, n) = (11, 1, 1), (127, 3, 2).

(3) All positive integer solutions of the equation

x2 + 12m = 433n

are (x,m, n) = (17, 2, 1), (431, 3, 2).

(4) All positive integer solutions of the equation

x2 + 20m = 141n

are (x,m, n) = (11, 1, 1), (109, 3, 2).

In view of all Theorems 1.1 to 7.2, we propose the following :

Conjecture 3. (1) Equation (7.3) has at most two positive integer solutions
(x,m, n).

(2) Another possible non-trivial solution is (x,m, n) = (x1, 1, 1) or (x2, 2, 1)
with x1, x2 some positive integer.

By elliminating the condition gcd(a, b) = 1 in (7.3), the equation x2 +
bm = cn has three or five solutions in some cases. For example, the following
equations have only the solutions below, respectively:

x2 + 6m = 15n, (x,m, n) = (3, 1, 1), (3, 3, 2), (207, 5, 4), (63, 6, 4),

x2 + 8m = 24n, (x,m, n) = (4, 1, 1), (8, 3, 2), (2816, 5, 5).
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[J] L. Jeśmanowicz, Some remarks on Pythagorean numbers (in Polish), Wiadom.
Mat. 1 (1955/1956), 196-202.

[Le1] M. Le, A Note on the diophantine Equation x2+by = cz, Acta Arith. 71 (1995),
253–257.

[Le2] M. Le, On Terai’s conjecture concerning Pythagorean numbers, Acta Arith. 100
(2001), 41–45.

[Le3] M. Le, On Cohn’s conjecture concerning the Diophantine equation x2+2m = yn,
Arch. Math. (Basel) 78 (2002), 26–35.

[Le4] M. Le, A Note on the Diophantine Equation x2 + by = cz, Czechoslovak Math.
J. 56 (2006), 1109–1116.

[Lu] F. Luca, On the equation x2 + 2a3b = yn, Int. J. Math. Math. Sci. 29 (2002),
239–244.
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