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Abstract. The aim of this work is to study regularity of solutions of the initial
value problem for the Schrödinger equations with sub-quadratic potential. More
precisely, we determine the Hs wave front sets of solutions from the behavior
at infinity of the initial data by using the characterization of the Hs wave front
set via wave packet transform.

AMS 2010 Mathematics Subject Classification. 35Q41, 35A18, 35A22

Key words and phrases. Hs wave front set, Schrödinger equations, wave packet
transform.

§1. Introduction

In this paper, we study regularity of solutions of the initial value problem
for the following Schrödinger equations with time dependent sub-quadratic
potential,{

i∂tu(t, x) +
1
2∆u(t, x) = V (t, x)u(t, x), (t, x) ∈ R× Rn,

u(0, x) = u0(x), x ∈ Rn,
(1.1)

where i =
√
−1, u : R×Rn → C, ∂t = ∂

∂t , ∆ =
∑n

j=1
∂2

∂x2
j
and V (t, x) is a real

valued function.
A. Hassell and J. Wunsch [8] and S. Nakamura [17], [18] have studied the

characterization of the wave front sets of solutions to Schrödinger equations in
terms of initial data. In 2009, S. Nakamura [17] has determined the C∞ wave
front sets of solutions to Schrödinger equations with sub-linear potential. He
has shown that (x′, ξ′) /∈ WF (e−itH0u0) if and only if there exists a(x, ξ) ∈
C∞
0 (R2n) such that a(x′, ξ′) ̸= 0 and ∥a(x+ tDx, hDx)u0∥ = O(h∞) as h → 0,

where u0 ∈ L2(Rn) and H0 is the free Schrödinger operator; that is, the
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propagation of singularities for Schrödinger equations does not include effect
of potential in the case of sub-linear potential. In 2009, S. Nakamura [18]
has extended the result of [17] to sub-quadratic potential cases. In the case
of sub-quadratic potential, the singularities of the solutions to Schrödinger
equations propagate along the classical flow including effect of potential. In
2014, K. Horie and S. Nakamura [10] have treated the case that ρ < 3/2
by using Dollard type approximate solutions to the Hamilton-Jacobi equation
and have also introduced an example of linear growth potential. S. Ito and
one of the authors [13] have determined the C∞ wave front sets of solutions to
Schrödinger equations with time dependent sub-quadratic potential by using
wave packet transform. In this study, we shall determine the Hs wave front
sets of solutions to the Schrödinger equations (1.1) with time dependent sub-
quadratic potential. We assume the following on V (t, x).

Assumption A. V (t, x) is a real valued function in C∞(R × Rn) and there
exists a real constant ρ satisfying ρ < 2 such that for all multi-indices α

|∂α
xV (t, x)| ≤ Cα (1 + |x|)ρ−|α|

for some Cα > 0 and for all (t, x) ∈ R× Rn.

In order to state our results precisely, we prepare several notations and give
the definition of the Hs wave front set and wave packet transform which is
defined by A. Córdoba and C. Fefferman [1]. We denote f̂(ξ) = F [f ](ξ) =
(2π)−n/2

∫
Rn f(x)e

−ixξdx by Fourier transform of f and eit∆/2 by the evolution
operator of the free Schrödinger equation. For x = (x1, . . . , xn) ∈ Rn, we write
⟨x⟩ = (1 + |x|2)1/2 with |x|2 = x21 + x22 + · · · + x2n. For ξ0 ∈ Rn\{0}, a conic
neighborhood Γ of ξ0 is a subset in Rn such that ξ ∈ Γ and α > 0 imply
αξ ∈ Γ. Let x(τ ; t, x, ξ) and ξ(τ ; t, x, ξ) be the solutions to{

ẋ(τ) = ξ(τ), x(t) = x,

ξ̇(τ) = −∇xV (τ, x(τ)) , ξ(t) = ξ,
(1.2)

where ẋ(t) and ξ̇(t) stand for the derivatives of x(t) and ξ(t) respectively.

Definition 1.1 (Wave packet transform). Let φ ∈ S(Rn)\{0}. For f ∈
S ′(Rn), the wave packet transform Wφf(x, ξ) of f with basic wave packet φ is
defined as

Wφf(x, ξ) =

∫
Rn

φ(y − x)f(y)e−iyξdy, x, ξ ∈ Rn.

Remark 1.2. If f is in L2(Rn),

∥Wφf∥L2(R2n) = ∥φ∥L2(Rn) ∥f∥L2(Rn)
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(Proof of Remark 1.2). Since Wφf(x, ξ) = Fy→ξ

[
φ(y − x)f(y)

]
, Plancherel’s

theorem shows

∥Wφf∥L2(R2n) =
∥∥∥φ(y − x)f(y)

∥∥∥
L2(Rn

x×Rn
y )

= ∥φ∥L2(Rn) ∥f∥L2(Rn) .

Definition 1.3 (Hs wave front set of f). For f ∈ S ′(Rn), WFHs(f) a subset
in Rn × (Rn\{0}) is said to be Hs wave front set if the following condition
holds:
(x0, ξ0) /∈ WFHs(f) if and only if there exist a function χ ∈ C∞

0 (Rn) with

χ(x0) ̸= 0 and a conic neighborhood Γ of ξ0 in Rn\{0} such that ⟨ξ⟩s |χ̂f(ξ)| ∈
L2(Γ).

The following theorem is our main result.

Theorem 1.4. Let u be a solution of (1.1) in C(R;L2(Rn)) under Assumption
A. For s > 0, the following statements are equivalent.

(i) (x0, ξ0) /∈ WFHs [u(t)].

(ii) There exist a neighborhood K of x0 and a neighborhood U of ξ0 such that

(1.3)

∫ ∞

1
λ2s+n−1

∥∥∥W
φ
(−t)
λ

u0 (xλ(0), ξλ(0))
∥∥∥2
L2(K×U)

dλ < +∞

for all φ ∈ S(Rn)\{0}, where xλ(0) = x(0; t, x, λξ), ξλ(0) = ξ(0; t, x, λξ),

φ
(t)
λ (x) = eit∆/2φλ(x) with φλ(x) = λnb/2φ(λbx) and b = min

{
2−ρ
4 , 14

}
.

(iii) There exist φ ∈ S(Rn)\{0}, a neighborhood K of x0 and a neighborhood

U of ξ0 such that (1.3) holds, where φ
(t)
λ (x) is the same as in (ii).

Theorem 1.5. Let u be a solution of (1.1) in C(R;L2(Rn)) under Assumption
A with ρ < 1. For s > 0, the following statements are equivalent.

(i) (x0, ξ0) /∈ WFHs [u(t)].

(ii) There exist a neighborhood K of x0 and a neighborhood U of ξ0 such that

(1.4)

∫ ∞

1
λ2s+n−1

∥∥∥W
φ
(−t)
λ

u0 (x− λξt, λξ)
∥∥∥2
L2(K×U)

dλ < +∞

for all φ ∈ S(Rn)\{0}, where φ
(t)
λ (x) = eit∆/2φλ(x) with φλ(x) =

λnb/2φ(λbx) and b = min
{

1−ρ
2 , 14

}
.
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(iii) There exist φ ∈ S(Rn)\{0}, a neighborhood K of x0 and a neighborhood

U of ξ0 such that (1.4) holds, where φ
(t)
λ (x) is the same as in (ii).

Remark 1.6. If there exists a solution of (1.1) in C(R;Hr(Rn)) with r ∈ R,
Theorem 1.4 and Theorem 1.5 hold for s > r.

Remark 1.7. The assertion of Theorem 1.4 and of Theorem 1.5 is valid if
∂α
xV (t, x) is continuous in R× Rn for |α| ≤ l with

l > max

{
8s+ 4n+ 4ρ,

8s+ 4n+ 4

2− ρ
,
4s+ 2n+ 2

1− ρ

}
,

which is however far from the best possible.

In 1970, L. Hörmander has introduced the wave front set (see [9]). The wave
front set characterizes the singularities of generalized function f not only in
which point f is singular but also in which direction f is singular at the point.
He has shown that the wave front sets of the solutions to hyperbolic equation of
principal type propagate along the associate Hamilton flow. R. Lascar [15] has
treated firstly singularities of solutions microlocally for Schrödinger equations.
He has studied propagation of singularities for Schrödinger equations by using
quasi-homogeneous wave front set which he has introduced. C. Parenti and
F. Segala [21] and T. Sakurai [22] have treated the singularities of solutions
to Schrödinger equations in the same way. The singularities of the solutions
to Schrödinger equations immediately go to the infinity if the initial data
decays rapidly at infinity. W. Craig, T. Kappeler and W. Strauss [2] have
treated this type of smoothing property microlocally. This type of microlocal
smoothing property has been studied by several authors, including S. Doi [4],
[5], S. Nakamura [16], T. Ōkaji [19], [20] and L. Robbiano and C. Zuily [23].
As stated in the beginning of this section, A. Hassell and J. Wunsch [8] have
treated the problem in the framework of scattering metric and S. Nakamura
[18] has treated the problem in semi-classical way. S. Ito and one of the authors
[13] have treated the problem by way of wave packet transform.

The rest of the paper is organized as follows. In Section 2, we introduce
characterization of wave front set via wave packet transfrom. In Section 3, we
introduce transformed equation of (1.1) via wave packet transform according
to [11] and [13], which is used for the proof of Therem 1.4. In Section 4, we
prove Theorem 1.4. In Section 5, we prove Lemma 4.1, which is introduced in
Section 4. In Section 6, we prove Theorem 1.5.

§2. Characterization of wave front set

In this section, we introduce the characterization of the Hs wave front set via
wave packet transform due to K. Kato, M. Kobayashi and S. Ito [14], which
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plays an important role for the proof of Theorem 1.4 and Theorem 1.5.

Proposition 2.1 (K. Kato, M. Kobayashi and S. Ito [14] Theorem 1.2). Let
s ∈ R, 0 < b < 1, (x0, ξ0) ∈ Rn × (Rn\{0}), and u ∈ S ′(Rn). The following
statements are equivalent.

(i) (x0, ξ0) /∈ WFHs(u).

(ii) There exist a neighborhood K of x0 and a neighborhood U of ξ0 such that∫ ∞

1
λ2s+n−1 ∥Wφλ

u (x, λξ)∥2L2(K×U) dλ < +∞

for all φ ∈ S(Rn)\{0}, where φλ(x) = λnb/2φ(λbx).

(iii) There exist φ ∈ S(Rn)\{0}, a neighborhood K of x0 and a neighborhood
U of ξ0 such that∫ ∞

1
λ2s+n−1 ∥Wφλ

u (x, λξ)∥2L2(K×U) dλ < +∞,

where φλ(x) = λnb/2φ(λbx).

Remark 2.2. For the C∞ wave front set, G. B. Folland has firstly given the
characterization in terms of wave packet transform with a positive symmetric
Schwartz’s function φ in [6]. T. Ōkaji [19] has given the characterization with
the assumption that φ satisfies

∫
Rn x

αφ(x)dx ̸= 0 for some multi-index α. In
[14], K. Kato, M. Kobayashi and S. Ito have removed any restriction on basic
wave packet.

Remark 2.3. For the Hs wave front set, P. Gérard [7] has shown the equiv-
alence between (i) and (iii) with φ(x) = e−x2

for b = 1
2 (Proof is also in J.

M. Delort [3]). In [19], T. Ōkaji has shown that (ii) implies (i) if φ satisfies∫
Rn φ(x)dx ̸= 0 for b = 1

2 . Conversely T. Ōkaji has shown that (i) with s = s0
implies (ii) with s = s0 − ε for all ε > 0 in addition to the condition of φ.
In [14], K. Kato, M. Kobayashi and S. Ito have shown Proposition 2.1 for
0 < b < 1 without any restriction on basic wave packet.

§3. Transformed equation via wave packet transform

In K. Kato and S. Ito [11] and [13], the initial value problem (1.1) is trans-
formed to

(
i∂t + iξ · ∇x − i∇xV (t, x) · ∇ξ − 1

2 |ξ|
2 − Ṽ (t, x)

)
Wφ(t)u(t, x, ξ)

= Rφ(t)u(t, x, ξ),

Wφ(0)u(0, x, ξ) = Wφu0(x, ξ),

(3.1)
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where Ṽ (t, x) = V (t, x)−∇xV (t, x) · x,

Rφ(t)u(t, x, ξ)

=2
∑
|α|=2

1

α!

∫
φ(t)(y − x)

×
(∫ 1

0
∂α
xV (t, x+ θ(y − x)) (1− θ)dθ

)
(y − x)αu(t, y)e−iyξdy

and φ(t)(x) = eit△/2φ with φ(x) ∈ S(Rn)\{0}. For reader’s convenience, we
briefly give a deduction of (3.1) from (1.1). The first term i∂tu(t, ·) and the
second term 1

2∆u(t, ·) of (1.1) are transformed to

Wφ(t) [i∂tu](t, x, ξ) +Wφ(t)

[
1

2
∆u

]
(t, x, ξ)

=i∂tWφ(t)u(t, x, ξ) +Wi∂tφ(t)u(t, x, ξ)

+
1

2

∫
∆y

{
φ(t)(y − x)e−iyξ

}
u(t, y)dy

=

(
i∂t + iξ · ∇x −

1

2
|ξ|2
)
Wφ(t)u(t, x, ξ) +W{i∂tφ(t)+ 1

2
∆φ(t)}u(t, x, ξ).

(3.2)

By Taylor’s expansion of V (t, y) = V (t, x+ (y − x)) with respect to y − x,
V (t, ·)u(t, ·) is transformed to

Wφ(t) [V u](t, x, ξ)

=

∫
φ(t)(y − x)

{
V (t, x) +∇xV (t, x) · (y − x)

+ 2
∑
|α|=2

(y − x)α

α!

∫ 1

0
∂xV (t, x+ θ(y − x)) (1− θ)dθ

}
× u(t, y)e−iyξdy

=Ṽ (t, x)Wφ(t)u(t, x, ξ) + i∇xV (t, x) · ∇ξWφ(t)u(t, x, ξ)

+Rφ(t)u(t, x, ξ).

(3.3)

Taking φ(t)(x) as the solution to the free Schrödinger equation{
i∂tφ(t, x) +

1
2∆φ(t, x) = 0,

φ(0, x) = φ(x) ∈ S(Rn)\{0},

we have (3.1) from (3.2) and (3.3).
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Solving (3.1) by the method of characteristics, we have the following integral
equation

Wφ(t)u(t, x, ξ)

= e−i
∫ t
0{ 1

2
|ξ(τ ;t,x,ξ)|2+Ṽ (τ,x(τ ;t,x,ξ))}dτWφu0 (x(0; t, x, ξ), ξ(0; t, x, ξ))

− i

∫ t

0
e−i

∫ t
τ{ 1

2
|ξ(τ1;t,x,ξ)|2+Ṽ (τ1,x(τ1;t,x,ξ))}dτ1

×Rφ(t)u (τ, x(τ ; t, x, ξ), ξ(τ ; t, x, ξ)) dτ,

(3.4)

where x(τ ; t, x, ξ) and ξ(τ ; t, x, ξ) are the solutions to (1.2).

§4. Proof of Theorem 1.4

In this section, we prove Theorem 1.4. Let t0 be a fixed positive number.

Since φ
(t−t0)
λ satisfies (i∂t +

1
2∆)φ = 0, we have

W
φ
(t−t0)
λ

u (t, x(t; t0, x, λξ), ξ(t; t0, x, λξ))

=e−i
∫ t
0{ 1

2
|ξ(τ ;t0,x,λξ)|2+Ṽ (τ,x(τ ;t0,x,λξ))}dτ

×W
φ
(−t0)
λ

u0 (x(0; t0, x, λξ), ξ(0; t0, x, λξ))

− i

∫ t

0
e−i

∫ t
τ{ 1

2
|ξ(τ1;t0,x,λξ)|2+Ṽ (τ1,x(τ1;t0,x,λξ))}dτ1

×R
φ
(τ−t0)
λ

u (τ, x(τ ; t0, x, λξ), ξ(τ ; t0, x, λξ)) dτ.

(4.1)

If we replace the initial condition in (3.1) with Wφλ
u(t0, ·) for t = t0, then the

integral equation (3.4) corresponds to

W
φ
(t−t0)
λ

u (t, x(t; t0, x, λξ), ξ(t; t0, x, λξ))

=e
−i

∫ t
t0
{ 1

2
|ξ(τ ;t0,x,λξ)|2+Ṽ (τ,x(τ ;t0,x,λξ))}dτWφλ

u(t0, x, λξ)

− i

∫ t

t0

e−i
∫ t
τ{ 1

2
|ξ(τ1;t0,x,λξ)|2+Ṽ (τ1,x(τ1;t0,x,λξ))}dτ1

×R
φ
(τ−t0)
λ

u (τ, x(τ ; t0, x, λξ), ξ(τ ; t0, x, λξ)) dτ.

(4.2)

In the following, we write xτ = x(τ ; t0, x, λξ), ξτ = ξ(τ ; t0, x, λξ), and tτ =
τ − t0 for brevity.

Now we prove Theorem 1.4. In Theorem 1.4, (ii) yields (iii) obviously. So
we show that (i) implies (ii) and that (iii) implies (i). We denote

P (r, φ) :∫ ∞

1
λ2r+n−1 sup

t∈[0,t0]

∥∥∥W
φ
(t−t0)
λ

u (t, x(t; t0, x, λξ), ξ(t; t0, x, λξ))
∥∥∥2
L2(K×U)

dλ < +∞.
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(Proof of Theorem 1.4). First we show that (i) implies (ii). Since Proposition
2.1(i) implies Proposition 2.1(ii), there exist a neighborhood K of x0 and a
neighborhood U of ξ0 satisfying

(4.3)

∫ ∞

1
λ2s+n−1 ∥Wφλ

u (t0, x, λξ)∥2L2(K×U) dλ < +∞

for all φ ∈ S(Rn)\{0}. By induction with respect to r, we show that P (r, φ)
holds for all φ ∈ S(Rn)\{0} and for r ≤ s.

As basis step of induction, we show P (−ε) for fixed ε > 0. Putting λξ = η,
we have ∥∥∥W

φ
(t−t0)
λ

u (t, x(t; t0, x, λξ), ξ(t; t0, x, λξ))
∥∥∥2
L2(K×U)

≤
∥∥∥W

φ
(t−t0)
λ

u (t, x(t; t0, x, λξ), ξ(t; t0, x, λξ))
∥∥∥2
L2(Rn

x×Rn
ξ )

=λ−n
∥∥∥W

φ
(t−t0)
λ

u (t, x(t; t0, x, η), ξ(t; t0, x, η))
∥∥∥2
L2(Rn

x×Rn
η )
.

(4.4)

By change of variables X = x(t; t0, x, η) and Ξ = ξ(t; t0, x, η), we have

λ−n
∥∥∥W

φ
(t−t0)
λ

u (t, x(t; t0, x, η), ξ(t; t0, x, η))
∥∥∥2
L2(Rn

x×Rn
η )

=λ−n

∫∫
R2n

∣∣∣W
φ
(t−t0)
λ

u (t,X,Ξ)
∣∣∣2 ∣∣∣∣∂ (X,Ξ)

∂(x, η)

∣∣∣∣−1

dXdΞ

=λ−n
∥∥∥W

φ
(t−t0)
λ

u (t,X,Ξ)
∥∥∥2
L2(R2n)

.

(4.5)

Here we use the fact that
∣∣∣∂(X,Ξ)
∂(x,η)

∣∣∣ = 1, which is well known (see, for example

Appendix A in K. Kato, M. Kobayashi and S. Ito [12] for the proof). As u(t, x)
is in C(R;L2(Rn)), Remark 1.2 and the conservation of L2 norm of solutions
to the free Schrödinger equation show

λ−n
∥∥∥W

φ
(t−t0)
λ

u (t,X,Ξ)
∥∥∥2
L2(R2n)

=λ−n
∥∥∥φ(t−t0)

λ

∥∥∥2
L2(Rn)

∥u(t)∥2L2(Rn)

=λ−n ∥φ∥2L2(Rn) ∥u0∥
2
L2(Rn) .

(4.6)

Since (4.4), (4.5) and (4.6) show∫ ∞

1
λ−2ε+n−1 sup

t∈[0,t0]

∥∥∥W
φ
(t−t0)
λ

u (t, x(t; t0, x, λξ), ξ(t; t0, x, λξ))
∥∥∥2
L2(K×U)

dλ

≤ ∥φ∥2L2(Rn) ∥u0∥
2
L2(Rn)

∫ ∞

1
λ−1−2εdλ

< +∞,

(4.7)
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we have P (−ε, φ) for all φ ∈ S(Rn)\{0}.
Assuming that P (r, φ) holds for all φ ∈ S(Rn)\{0} with r ∈ [−ε, s − 2b],

we show that P (r+ 2b, φ) for all φ ∈ S(Rn)\{0}. This assertion is showed by
the following lemma, which is proven in Section 5.

Lemma 4.1. Assume A and let b = min
{

2−ρ
4 , 14

}
. For r ∈ R, P (r, φ) for all

φ ∈ S(Rn)\{0} implies∫ ∞

1
λ2(r+2b)+n−1

∣∣∣∣∫ t0

0

∥∥∥R
φ
(tτ )
λ

u(τ, xτ , ξτ )
∥∥∥
L2(K×U)

dτ

∣∣∣∣2 dλ < +∞

for all φ ∈ S(Rn)\{0}.

The equation (4.2) shows

sup
t∈[0,t0]

∥∥∥W
φ
(t−t0)
λ

u (t, x(t; t0, x, λξ), ξ(t; t0, x, λξ))
∥∥∥2
L2(K×U)

≤2

(
∥Wφλ

u(t0, x, λξ)∥2L2(K×U) +

∫ t0

0

∥∥∥R
φ
(tτ )
λ

u(τ, xτ , ξτ )
∥∥∥2
L2(K×U)

dτ

)
.

(4.8)

Multiplying λ2(r+2b)+n−1 to the both sides of (4.8) and integrating the both
sides from 1 to infinity with respect to λ, we immediately have from (4.3) and
Lemma 4.1 that P (r + 2b, φ) holds for all φ ∈ S(Rn)\{0}.

Next, we show that (iii) implies (i). Let φ0 ∈ S(Rn)\{0}, a neighborhood
K of x0 and a neighborhood U of ξ0 satisfy

(4.9)

∫ ∞

1
λ2s+n−1

∥∥∥∥Wφ
(−t0)
0,λ

u0 (x(0; t0, x, λξ), ξ(0; t0, x, λξ))

∥∥∥∥2
L2(K×U)

dλ < +∞,

where φ
(t)
0,λ(x) = eit∆/2[(φ0)λ](x). It suffices to show that (iii) implies P (s, φ0).

Since P (−ε, φ) is valid for all φ ∈ S(Rn)\{0}, we show P (s, φ0) inductively.
The equation (4.1) shows

sup
t∈[0,t0]

∥∥∥∥Wφ
(t−t0)
0,λ

u (t, x(t; t0, x, λξ), ξ(t; t0, x, λξ))

∥∥∥∥2
L2(K×U)

≤ 2

(∥∥∥∥Wφ
(−t0)
0,λ

u0 (x(0; t0, x, λξ), ξ(0; t0, x, λξ))

∥∥∥∥2
L2(K×U)

+

∫ t0

0

∥∥∥R
φ
(tτ )
λ

u(τ, xτ , ξτ )
∥∥∥2
L2(K×U)

dτ

)
.

(4.10)

Hence Lemma 4.1 and (4.9) yield P (−ε + 2b, φ0), which and Proposition 2.1
yield (x0, ξ0) /∈ WFH(−ε+2b) (u(t0, ·)). From the argument for the proof that
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(i) implies (ii), we have P (−ε+ 2b, φ) for all φ ∈ S(Rn)\{0}. Hence we have
P (−ε+4b, φ0) from (4.9), (4.10) and Lemma 4.1. The same argument as above
yields that P (−ε+4b, φ) for all φ ∈ S(Rn)\{0}. Repeating this argument, we
have P (s, φ0), which and Proposition 2.1 yield (i).

§5. Proof of Lemma 4.1

In this section, we prove Lemma 4.1. For an integer L ≥ 2, Taylor’s expansion
of V (τ, y) shows that

R
φ
(tτ )
λ

u(τ, xτ , ξτ )

=
∑

2≤|α|≤L−1

∂α
xV (τ, xτ )

α!

∫
(y − xτ )

α φ
(tτ )
λ (y − xτ )u(τ, y)e

−iyξτdy

+ L
∑
|α|=L

1

α!

∫
(y − xτ )

α φ
(tτ )
λ (y − xτ )

×
(∫ 1

0
∂α
xV (τ, xτ + θ(y − xτ )) (1− θ)L−1dθ

)
u(τ, y)e−iyξτdy.

(5.1)

We denote the first term of the right hand side of (5.1) by R1,L(τ, xτ , ξτ ) and
the second term of the right hand side of (5.1) by R2,L(τ, xτ , ξτ ). For the
proof, we prepare the following lemma.

Lemma 5.1. Under Assumption A, there exists a positive constant λ0 such
that for all integers N there exist an integer L and a positive constant CN

satisfying
|R2,L(τ, xτ , ξτ )| ≤ CNλ−N

for all λ ≥ λ0, 0 ≤ |tτ | ≤ t0, x ∈ K, ξ ∈ U .

(Proof of Lemma 5.1). To prove Lemma 5.1, it suffices to show that there
exists a positive constant λ0 such that for all integers N there exist an integer
L and a positive constant CN satisfying

|Iα(τ, xτ , ξτ , λ)| ≤ CNλ−N

for λ ≥ λ0 and |α| = L, where

(5.2) Iα(τ, xτ , ξτ , λ) =

∫
φ
(tτ )
λ (y − xτ ) Vα(τ, xτ , y)(y − xτ )

αu(τ, y)e−iyξτdy

and

(5.3) Vα(τ, xτ , y) =

∫ 1

0
∂α
xV (τ, xτ + θ(y − xτ )) (1− θ)L−1dθ.
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We may assume that K and U are bounded sets and that inf {|ξ| | ξ ∈ U} > 0.
We fix α with |α| = L. We show |Iα(τ, xτ , ξτ , λ)| ≤ CNλ−N in two cases that
0 ≤ |tτ | ≤ λ−2b and λ−2b ≤ |tτ | ≤ t0.

In the case that 0 ≤ |tτ | ≤ λ−2b, the fact that xeit∆/2 = eit∆/2(x − it∂x)
shows

(y − xτ )
αφ

(tτ )
λ (y − xτ )

=(y − xτ )
αeitτ∆/2 [φλ(y − xτ )]

=eitτ∆/2 [(y − xτ − itτ∂y)
αφλ] (y − xτ )

=
∑

β+γ=α
β′≤β,γ′≤γ

Cβ,β′,γ,γ′ t|β|τ λb(|β|−|γ|)φ
(tτ )
β′,γ′,λ(y − xτ ),

(5.4)

where φβ,γ(x) = xγ∂β
xφ(x) and φ

(t)
β,γ,λ(x) = eit∆/2

[
(φβ,γ)λ

]
(x). The equality

(5.4), Schwarz’s inequality, the conservation of L2 norm of solutions to the
free Schrödinger equation and of (1.1) show

|Iα(τ, xτ , ξτ , λ)|

≤C
∑

β+γ=α
β′≤β,γ′≤γ

|tτ ||β|λb(|β|−|γ|)
∫ ∣∣∣∣φ(tτ )

β′,γ′,λ(y − xτ ) Vα(τ, xτ , y)u(τ, y)

∣∣∣∣ dy
≤Cλ−bL

∑
β+γ=α

β′≤β,γ′≤γ

∫ ∣∣∣∣φ(tτ )
β′,γ′,λ(y − xτ )u(τ, y)

∣∣∣∣ dy
≤C

∑
β+γ=α

β′≤β,γ′≤γ

∥∥φβ′,γ′
∥∥
L2 ∥u0∥L2λ−bL.

(5.5)

In the case that λ−2b ≤ |tτ | ≤ t0, we divide (5.2) into two terms

|Iα(τ, xτ , ξτ , λ)|

≤
∫
|y−xτ |≤λ1−δ|tτ |

∣∣∣∣φ(tτ )
λ (y − xτ ) Vα(τ, xτ , y)(y − xτ )

αu(τ, y)

∣∣∣∣ dy
+ C

∫
|y−xτ |≥λ1−δ|tτ |

∣∣∣∣φ(tτ )
λ (y − xτ )(y − xτ )

αu(τ, y)

∣∣∣∣ dy
(5.6)

with 0 < δ < b. Under the case that λ−2b ≤ |tτ | ≤ t0, there exists a positive
constant λ0 such that

(5.7) |xτ | ≥
dU
2
|tτ |λ
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for all λ ≥ λ0, x ∈ K and ξ ∈ U , where dU = inf{|ξ| | ξ ∈ U} (see Appendix
A in K. Kato and S. Ito [13] for the proof of (5.7)). On |y − xτ | ≤ λ1−δ|tτ |,
the inequality (5.7) and Assumption A yield

|Vα(τ, xτ , y)(y − xτ )
α| ≤C (1 + |xτ + θ(y − xτ )|)ρ−L |y − xτ |L

≤C (1 + |xτ | − |y − xτ |)ρ−L
(
λ1−δ|tτ |

)L
≤C

(
1 +

dV
2
|tτ |λ− λ1−δ|tτ |

)ρ−L

(λ|tτ |)Lλ−δL

≤C(λ|tτ |)ρλ−δL.

Hence Schwarz’s inequality, the conservation of L2 norm of solutions to the
free Schrödinger equation and of (1.1) show that

|(The first term of the right hand side of (5.6))|

≤C(λ|tτ |)ρλ−δL

∫
Rn

∣∣∣∣φ(tτ )
λ (y − xτ )u(τ, y)

∣∣∣∣ dy
≤C∥φ∥L2∥u0∥L2λρ−δL.

(5.8)

Since xeit∆/2 = eit∆/2(x− it∇x), we have for any integer M

(1 + |x|2)Mφ
(t)
λ (x) = eit∆/2

[
(1 + |x− it∇x|2)Mφλ(x)

]
= eit∆/2

 ∑
|β+γ|≤2M

Cβ,γ(λ
bt)|β|λ−b|γ|(φβ,γ)λ


=

∑
|β+γ|≤2M

Cβ,γ(λ
bt)|β|λ−b|γ|φ

(t)
β,γ,λ(x).

(5.9)

Hence we have

|(The second term of the right hand side of (5.6))|

=C

∫
|y−xτ |≥λ1−δ|tτ |

(
1 + |y − xτ |2

)−M (
1 + |y − xτ |2

)M
×
∣∣∣∣φ(tτ )

λ (y − xτ )(y − xτ )
αu(τ, y)

∣∣∣∣ dy
≤C

∫
|y−xτ |≥λ1−δ|tτ |

(
1 + (λ1−δ|tτ |)2

)−M ∑
L≤|β+γ|≤2M+L

(λb|tτ |)|β|λ−b|γ|

×
∣∣∣∣φ(tτ )

β,γ,λ(y − xτ )u(τ, y)

∣∣∣∣ dy(5.10)
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≤C
∑

L≤|β+γ|≤2M+L

∫
Rn

(
1 + λ2(1−δ−2b)

)−M
λb(2M+L)

×
∣∣∣∣φ(tτ )

β,γ,λ(y − xτ )u(τ, y)

∣∣∣∣ dy
≤C

∑
L≤|β+γ|≤2M+L

λ−2M(1−δ−3b)λbL∥φβ,γ∥L2∥u0∥L2 .

Since 1− δ− 3b > 1− 4b ≥ 0, we have Lemma 5.1 from (5.5), (5.8) and (5.10)
if we take L and M sufficiently large.

(Proof of Lemma 4.1). By Lemma 5.1, we have

(5.11)

∫ ∞

1
λ2(r+2b)+n−1

∣∣∣∣∫ t0

0
∥R2,L(τ, xτ , ξτ )∥L2(K×U)

∣∣∣∣2 dλ < +∞

for bounded set U with inf {|ξ| | ξ ∈ U} > 0 if we take L sufficiently large.
Hence we only have to show that∫ ∞

1
λ2(r+2b)+n−1

∣∣∣∣∫ t0

0
∥R1,L(τ, xτ , ξτ )∥L2(K×U) dτ

∣∣∣∣2 dλ < +∞.

By (5.4) and the Assumption A, we have

|R1,L(τ, xτ , ξτ )|

≤C
∑

2≤|α|≤L−1

∑
β+γ=α

β′≤β,γ′≤γ

|∂α
xV (τ, xτ )||tτ ||β|λb(|β|−|γ|)

∣∣∣∣Wφ
(tτ )

β′,γ′,λ
u(τ, xτ , ξτ )

∣∣∣∣
≤C

∑
2≤|α|≤L−1

∑
β+γ=α

β′≤β,γ′≤γ

(1 + |xτ |)ρ−|α||tτ ||β|λb(|β|−|γ|)
∣∣∣∣Wφ

(tτ )

β′,γ′,λ
u(τ, xτ , ξτ )

∣∣∣∣ .
In the case that 0 ≤ |tτ | ≤ λ−2b,

|R1,L(τ, xτ , ξτ )| ≤C
∑

2≤|α|≤L−1

∑
β+γ=α

β′≤β,γ′≤γ

λ−2b|β|λb(|β|−|γ|)
∣∣∣∣Wφ

(tτ )

β′,γ′,λ
u(τ, xτ , ξτ )

∣∣∣∣
≤C

∑
2≤|α|≤L−1

∑
β+γ=α

β′≤β,γ′≤γ

λ−2b

∣∣∣∣Wφ
(tτ )

β′,γ′,λ
u(τ, xτ , ξτ )

∣∣∣∣ .
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The inequality (5.7) yields

|R1,L(τ, xτ , ξτ )|

≤C
∑

2≤|α|≤L−1

∑
β+γ=α

β′≤β,γ′≤γ

(
1 +

dU
2
|tτ |λ

)ρ−|α|
(|tτ |λb + λ−b)|α|

∣∣∣∣Wφ
(tτ )

β′,γ′,λ
u(τ, xτ , ξτ )

∣∣∣∣
≤C

∑
2≤|α|≤L−1

∑
β+γ=α

β′≤β,γ′≤γ

|t0|ρλρ−(1−b)2

∣∣∣∣Wφ
(tτ )

β′,γ′,λ
u(τ, xτ , ξτ )

∣∣∣∣
for all λ ≥ λ0, λ

−2b ≤ |tτ | ≤ t0, x ∈ K and ξ ∈ U , where dU = inf{|ξ| | ξ ∈ U}.
Since b = min

{
2−ρ
4 , 14

}
, we have

(5.12) |R1,L(τ, xτ , ξτ )| ≤ C
∑

2≤|α|≤L−1

∑
β+γ=α

β′≤β,γ′≤γ

λ−2b

∣∣∣∣Wφ
(tτ )

β′,γ′,λ
u(τ, xτ , ξτ )

∣∣∣∣
for all λ ≥ λ0, 0 ≤ |tτ | ≤ t0, x ∈ K and ξ ∈ U . The inequality (5.12) and the
assumption that P (r, φ) holds for all φ ∈ S(Rn)\{0} with r ∈ R show that∫ ∞

λ0

λ2(r+2b)+n−1

∣∣∣∣∫ t0

0
∥R1,L∥L2(K×U)dτ

∣∣∣∣2 dλ
≤C

∑
2≤|α|≤L−1

∑
β+γ=α

β′≤β,γ′≤γ∫ ∞

1
λ2r+n+4b−1

∣∣∣∣∣λ−2b

∫ t0

0

∥∥∥∥Wφ
(tτ )

β′,γ′,λ
u(τ, xτ , ξτ )

∥∥∥∥
L2(K×U)

dτ

∣∣∣∣∣
2

dλ

≤C
∑

2≤|α|≤L−1

∑
β+γ=α

β′≤β,γ′≤γ∫ ∞

1
λ2r+n−1 sup

τ∈[0,t0]

∥∥∥∥Wφ
(tτ )

β′,γ′,λ
u(τ, xτ , ξτ )

∥∥∥∥2
L2(K×U)

dλ

<+∞.

(5.13)

By (5.11) and (5.13), we have

(5.14)

∫ ∞

1
λ2(r+2b)+n−1

∣∣∣∣∫ t0

0

∥∥∥R
φ
(tτ )
λ

u(τ, xτ , ξτ )
∥∥∥
L2(K×U)

dτ

∣∣∣∣2 dλ < +∞.
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§6. Proof of Theorem 1.5

In this section, we prove Theorem 1.5.

(Proof of Theorem 1.5). Since

Wφ(t) [V u] (t, x, ξ)

=

∫
φ(t)(y − x)

×

V (t, x) +
∑
|α|=1

(y − x)α
∫ 1

0
∂α
xV (t, x+ θ(y − x)) dθ


× u(t, y)e−iyξdy

= V (t, x)Wφ(t)u(t, x, ξ) + R̃φ(t)u(t, x, ξ),

(6.1)

where

R̃φ(t)u(t, x, ξ) =
∑
|α|=1

∫
φ(t)(y − x)(y − x)α

(∫ 1

0
∂α
xV (t, x+ θ(y − x)) dθ

)
× u(t, y)e−iyξdy,

the initial value problem (1.1) is transformed to{(
i∂t + iξ · ∇x − 1

2 |ξ|
2 − V (t, x)

)
Wφ(t)u(t, x, ξ) = R̃φ(t)u(t, x, ξ),

Wφ(0)u(0, x, ξ) = Wφu0(x, ξ),
(6.2)

where φ(t)(x) = eit∆/2φ(x) for all φ ∈ S(Rn)\{0}. By the same calculations
as in Section 3, we have

W
φ
(t−t0)
λ

u (t, x+ λξ(t− t0), λξ)

= e−i
∫ t
0{ 1

2
λ2|ξ|2+V (τ,x+tτλξ)}dτW

φ
(−t0)
λ

u0 (x− λξt0, λξ)

− i

∫ t

0
e−i

∫ t
τ{ 1

2
λ2|ξ|2+V (τ1,x+(τ1−t0)λξ)}dτ1R̃

φ
(τ−t0)
λ

u (τ, x+ λξtτ , λξ) dτ,

where tτ = τ − t0, x+ λξ(t− t0) and λξ are the solutions to{
ẋ(τ) = ξ(τ), x(t0) = x,

ξ̇(τ) = 0, ξ(t0) = λξ,
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for λ ≥ 1. For an integer L ≥ 1, Taylor’s expansion of V (τ, y) shows that

R̃
φ
(tτ )
λ

u(τ, x+ λξtτ , λξ)

=
∑

1≤|α|≤L−1

∂α
xV (τ, x+ λξtτ )

α!

∫
(y − x− λξtτ )

α

× φ
(tτ )
λ (y − x− λξtτ )u(τ, y)e

−iyλξdy

+ L
∑
|α|=L

1

α!

∫
(y − x− λξtτ )

α φ
(tτ )
λ (y − x− λξtτ )

×
(∫ 1

0
∂α
xV (τ, x+ λξtτ + θ(y − x− λξtτ )) (1− θ)L−1dθ

)
× u(τ, y)e−iyλξdy.

(6.3)

We denote the first term of the right hand side of (6.3) by R̃1,L(τ, x+λξtτ , λξ)
and the second term of the right hand side of (6.3) by R̃2,L(τ, x+λξtτ , λξ). The
same argument as in the proof of Lemma 4.1 shows the assertion of Lemma
5.1 is valid for R̃u. That is, P (r, φ) for all φ ∈ S(Rn)\{0} implies

(6.4)

∫ ∞

1
λ2(r+b)+n−1

∣∣∣∣∫ t0

0

∥∥∥R̃
φ
(tτ )
λ

u(τ, x+ λξtτ , λξ)
∥∥∥
L2(K×U)

dτ

∣∣∣∣2 dλ < +∞.

In fact, the same argument shows∫ ∞

1
λ2(r+b)+n−1

∣∣∣∣∫ t0

0

∥∥∥R̃1,Lu(τ, x+ λξtτ , λξ)
∥∥∥
L2(K×U)

dτ

∣∣∣∣2 dλ < +∞,

since ρ < 1. Exactly the same proof as for R2,L is valid for R̃2,L. By using
(6.4), we can show Theorem 1.5 in the same procedure as in Section 4.
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