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Abstract. Using a correspondence between the narrow ray class group modulo
m of a quadratic field and a certain set of equivalence classes of binary quadratic
forms proved by Furuta and Kubota, we find a quadratic form f and a pair of
integers (x1, y1) such that the norm of all integral ideals a in a ray class is
represented by f(mx+ x1,my + y1) with some integers (x, y).
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§1. Introduction

Let K be a quadratic field of discriminant dK , and m a positive integer. We
denote by ClK(m) the narrow ray class group modulo m. For C ∈ ClK(m),
the partial zeta function is defined by

ζ(s,C) =
∑
a∈C

N(a)−s

where a runs over the integral ideals in C. Using the method of Shintani and
Zagier, Yamamoto [12] showed that ζ(s,C) is a linear combination of the series
of the form ∑

x,y

f(mx+ x1,my + y1)
−s

where the sum is taken over Z if dK < 0 and over the positive integers if
dK > 0. Here f is a reduced binary quadratic form associated to C and the
pair (x1, y1) of integers satisfying 0 ≤ x1, y1 ≤ m is a congruence condition
associated with C ([12, Definition 2.1.1]). A method of computing of the
congruence condition was studied in [12, §2] and [9, §4] and used in [9, §7] and
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[8, §6]. The aim of this paper is to give a new interpretation of the congruence
condition based on the isomorphism between a certain ray class group and
the equivalence classes of quadratic forms by a certain congruence subgroup
of SL(2,Z) by Furuta [6] and Kubota [11]. In fact, we show that there exists a
correspondence between the congruence conditions and the cosets of SL(2,Z)
by the congruence subgroup via the isomorphism of Furuta and Kubota.

To state the correspondence precisely, we first define the following congru-
ence subgroups. We denote SL(2,Z) by Γ. For a positive integer m, let

Γ±1(m) =

{
γ ∈ Γ

∣∣∣∣ γ ≡
(
±1 ∗
0 ±1

)
(mod m)

}
.(1.1)

The group Γ±1(m) acts on the set F (dK) of the primitive binary quadratic
forms of discriminant dK by (fγ)(x, y) = f((x, y)γ⊤). We denote the set
of the orbits which contain a representative f satisfying gcd(m, f(1, 0)) = 1
by (F (dK)/Γ±1(m))′. Furuta and Kubota showed that there exists a group
isomorphism

Φm : Im/Pm({±1}) −→ (F (dK)/Γ±1(m))′(1.2)

where Im is the group of fractional ideals of K prime to m and Pm({±1}) is
the group of principal ideals (α) with α ≡ ±1 (mod ∗mOK), the multiplica-
tive congruence, and N(α) > 0. If m = 1, the class group Im/Pm({±1})
coincides with Cl+K , the narrow ideal class group of K (this coincides with the
ordinary ideal class group if K is imaginary). Hence, the isomorphism Φm is
a generalization of the well-known isomorphism

Φ1 : Cl
+
K −→ F (dK)/Γ.

Furthermore, Furuta and Kubota showed that the set (F (dK)/Γ±1(m))′ in
(1.2) forms an abelian group under a generalization of Gaussian composition.

We next define reduced forms of discriminant dK . Let f(x, y) = ax2 +
bxy + cy2 be a quadratic form in F (dK). When dK is negative, the form f is
reduced if

|b| ≤ a ≤ c, and b ≥ 0 if either |b| = a or a = c.(1.3)

When dK is positive, the form f is reduced if

a > 0, c > 0 and b > a+ c.(1.4)

Here we follow the definition in [13, §13]. Note that each orbit in F (dK)/Γ
contains a reduced form by [3, Theorem 2.8] and [13, §13, Theorem 1].

We are now ready to state our main theorem.
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Theorem 1.1. Let C be a ray class in ClK(m) and a an arbitrary integral
ideal lying in C. We denote by [a−1] the ideal class of a−1 in Im/Pm({±1}).
We take a reduced form f such that the narrow ideal class of a−1 maps to
fΓ by the isomorphism Φ1. Then, there exists γ ∈ Γ satisfying the following
properties:

• Φm([a−1]) = (fγ)Γ±1(m);

• N(a) = f(x, y) with the integers (x, y) satisfying the congruence condi-
tion (x, y) ≡ (1, 0)γ⊤ (mod m).

Remark 1.2. There is a natural surjection ClK(m) → Im/Pm({±1}). Its kernel
is generated by the ray class of (µ) in ClK(m) where µ is a totally positive
element satisfying µ ≡ −1 (mod ∗mOK), and its order is at most 2. The kernel
is trivial if and only if there is a totally positive unit u ≡ −1 (mod ∗mOK),
or K is imaginary.

We prove the above theorem in Section 3. In the following section, we
introduce the results of Furuta [6] and Kubota [11] in a more general setting.
In Section 4, we give some explicit examples of Theorem 1.1. In the final
section, we discuss quadratic forms with non-fundamental discriminant.

Throughout this paper, we use the following notation.
Let K be a quadratic field of discriminant dK fixed once for all. We denote

by OK the ring of integers of K. For positive integers ℓ and m, let Oℓ be the
order of K of conductor ℓ and Im(Oℓ) the group of proper fractional Oℓ-ideals
prime to m. We simply write Im = Im(OK) if ℓ = 1. For a subgroup Hm of
(Z/mZ)× which contains −1 (mod m), we define the subgroup Pm(Oℓ,Hm)
of Im(Oℓ) by⟨

(α) ∈ Im(Oℓ)

∣∣∣∣ α ∈ Oℓ : totally positive,

α ≡ k (mod mOℓ) for some k ∈ Z with k ∈ Hm

⟩
where k is the residue class of k modulo m. We simply write Pm(Hm) =
Pm(OK ,Hm) if ℓ = 1. We denote by α′ the conjugate of α ∈ K. To deal with
real and imaginary cases simultaneously, we regard every element of imaginary
quadratic fields as totally positive. We denote by Γ the special linear group
SL(2,Z) and define a congruence subgroup Γ(Hm) of Γ by

Γ(Hm) =

{
γ ∈ Γ

∣∣∣∣ γ ≡
(
k ∗
0 k−1

)
(mod m) for some k ∈ Hm

}
.(1.5)

In particular, we denote Γ(Hm) by Γ0(m) (resp. Γ±1(m)) if we take Hm =
(Z/mZ)× (resp. {±1}). We denote by Cl+K(Oℓ) the narrow ideal class group of
Oℓ and we also call this group the narrow ring class group of conductor ℓ. Let
ClK(m) be the narrow ray class group modulo m and Cl+K the narrow class
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group of K. We denote by F (D) the set of primitive binary quadratic forms
of discriminant D, and we further impose a > 0 for all ax2+bxy+cy2 ∈ F (D)
if D is negative.

§2. Classification of quadratic forms by congruence subgroup

In this section, we study a generalization of the group isomorphism between the
ideal class group and the form class group due to Furuta [6] and Kubota [11].
Recently, similar results are obtained in [2], [5] and [7] for the case dK < 0. We
follow the presentation in Kubota [11, §8.2] to consider the both cases where
dK is negative and positive. However, there is an additional condition in the
description in [11], so we quote it with some modification (see Remark 2.2 for
the precise reason).

We use the notation of f = (a, b, c) to represent a quadratic form f(x, y) =
ax2 + bxy + cy2. We define a right action of Γ on F (dK) by

(fγ)(x, y) = f((x, y)γ⊤)(2.1)

for any f(x, y) ∈ F (dK) and γ ∈ Γ.
Let Hm be a subgroup of (Z/mZ)× which contains −1. We define the

generalized ideal class group by the quotient Im/Pm(Hm).

Definition 2.1 ([11, §8.2]). Let a = [α, β] be an arbitrary fractional ideal in
Im. The basis [α, β] is called a canonical basis for Hm if [α, β] satisfies the
following conditions:

(i)
1√
dK

(α′β − αβ′) > 0;

(ii) There exists an integer k such that α ≡ k (mod ∗mOK) and k ∈ Hm.

Note that the left hand side of (i) is always a non-zero rational number. If
the basis [α, β] satisfies (i), then we say that it is positively oriented according
to [3, Exercises 7.19]. Let a = [α1, β1] be a positively oriented basis and
a = [α2, β2] another basis. Then, [α2, β2] is positively oriented if and only if
their transition matrix is in Γ. When K is imaginary, a basis [α, β] is positively
oriented if and only if β/α lies in the upper half plane of C.
Remark 2.2. Definition 2.1 is slightly different from the definition in [11, §8.2],
in which there is an assumption “α is totally positive”. However, when we
choose a system of representatives of F (dK)/Γ(Hm) in Section 3, it sometimes
contains forms f = (a, b, c) with negative a, thus we drop the condition and
introduce ρf as (2.3) in the proof of Proposition 2.4 to define Ψm so that it
maps such a form to an ideal with canonical basis.
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Lemma 2.3 ([11, §8.2]). Let a be an arbitrary fractional ideal in Im. The
following assertions hold.

(i) There exists a canonical basis for Hm of a.

(ii) Let a = [α1, β1] be a canonical basis for Hm. Another basis a = [α2, β2]
is also a canonical basis for Hm if and only if [α2, β2] = [α1, β1]γ with
γ ∈ Γ(Hm) (see (1.5)).

Proof. (i) It is enough to show that there exists a canonical basis [α, β] for
Hm with α ≡ 1 (mod ∗mOK). We first assume that a is an integral
ideal. Let [1, ω] be an integral basis of K which is positively oriented
and a = [a, b+ cω] the Hermite normal form of a with respect to [1, ω].
Note that the basis of a is also positively oriented, and a is prime to m.
We take c1, c2 ∈ Z satisfying c1a− c2m = 1 and set α = c1a+m(b+ cω),
β = c2a+a(b+ cω). Thus we obtain a canonical basis a = [α, β] for Hm.

We next consider the case where a is a fractional ideal. There is an
integer r ≡ 1 (mod m) such that ra is integral. If we take a canonical
basis ra = [α, β] forHm, then we can find a canonical basis a = [α/r, β/r]
for Hm.

(ii) Suppose that a = [α1, β1] = [α2, β2] are canonical bases for Hm. Since
both are positively oriented, the transition matrix γ lies in Γ. Writing

γ =

(
u1 u2
u3 u4

)
, we have α2 = u1α1 + u3β1. On the other hand, since

there is (k mod m) ∈ Hm satisfying α2 ≡ kα1 (mod ∗mOK), we have
(u1 − k)α1 + u3β1 ∈ ma. Hence we have u1 ≡ k, u3 ≡ 0 (mod m) and
this means γ ∈ Γ(Hm). The converse is trivial.

We denote by (F (dK)/Γ(Hm))′ the set of (a, b, c)Γ(Hm) with gcd(a,m) = 1.
Now we can define an isomorphism Φm from Im/Pm(Hm) to (F (dK)/Γ(Hm))′,

which is a generalization of (1.2).

Proposition 2.4 ([11, §8.2]). Let a be an arbitrary ideal lying in Im with a
canonical basis [α, β] for Hm. There is a bijection

Φm : Im/Pm(Hm) −→ (F (dK)/Γ(Hm))′

defined by

Φm : [a] 7−→ fΓ(Hm)

where f is the quadratic form corresponding to a defined by

f(x, y) =
N(αx+ βy)

N(a)
.(2.2)
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Proof. First, we prove that the map Φm is well defined. If we take another
canonical basis [α̃, β̃] for Hm, then there is γ ∈ Γ(Hm) which satisfies (α̃, β̃) =
(α, β)γ by Lemma 2.3. Hence we get the corresponding form fγ by (2.1) and
(2.2). Let b = (λ)a with (λ) ∈ Pm(Hm). Since λ is totally positive, we can
see that the basis [λα, λβ] is also canonical for Hm, and it corresponds to the
form f(x, y) by (2.2). Therefore the map Φm is well defined.

Next, we construct the inverse map of Φm. Let f = (a, b, c) ∈ F (dK) be an
arbitrary quadratic form with gcd(a,m) = 1 and let

τ =
b+

√
dK

2a
.

We define a map from the set of such quadratic forms to Im by sending f to
a = ρf [1, τ ] where

(2.3) ρf =


1 if dK < 0,
1 if dK > 0 and a > 0,
1 +m

√
dK if dK > 0 and a < 0.

Consider g = fγ = (A,B,C) with γ =

(
u1 u2
u3 u4

)
∈ Γ(Hm). We can write

A = aN(u1 + u3τ), B = 2au1u2 + b(u1u4 + u2u3) + 2cu3u4.

Note that A is congruent to au21 modulo m and prime to m. The map f 7→ a
defined above sends g = fγ to

b = ρg

[
1,

B +
√
dK

2A

]
.

Since we can write B +
√
dK = 2a(u2 + u4τ)(u1 + u3τ

′), we have

b = ρg

[
1,

B +
√
dK

2A

]
= ρg

[
1,

u2 + u4τ

u1 + u3τ

]
= ρgρ

−1
f (u1 + u3τ)

−1a

and (ρgρ
−1
f (u1 + u3τ)

−1) ∈ Pm(Hm). Therefore, the induced map Ψm is well

defined, and clearly we have Ψm = Φ−1
m .

Furuta [6] and Kubota [11] showed that (F (dK)/Γ(Hm))′ forms an abelian
group under a generalized Gaussian composition and the map Φm in Proposi-
tion 2.4 is a group isomorphism.

Remark 2.5. When we take Hm = (Z/mZ)×, the class group Im/Pm(Hm) is
isomorphic to the narrow ring class group of conductor m by [3, Proposition
7.22, Exercises 7.19–7.22].
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We can extend the result in Proposition 2.4 to a certain generalized ideal
class group of proper ideals in order Oℓ of K.

Corollary 2.6. Let Oℓ be the order of conductor ℓ of K. Then there is a
bijection from Im(Oℓ)/Pm(Oℓ,Hm) to (F (ℓ2dK)/Γ(Hm))′.

Proof. The proof of Proposition 2.4 is still valid if we replace OK by Oℓ.

Remark 2.7. (i) If we take m = 1, then we get a well-known isomorphism
Cl+K(Oℓ) −→ F (ℓ2dK)/Γ. Combining this with Proposition 2.4 (see also
Remark 2.5), we have an isomorphism from F (ℓ2dK)/Γ to (F (dK)/Γ0(ℓ))

′.
We discuss this isomorphism in Section 5.

(ii) The group Im(Oℓ)/Pm(Oℓ,Hm) is isomorphic to the quotient group of
Iℓm by

⟨
(α) ∈ Iℓm

∣∣∣∣ α ∈ OK : totally positive,

α ≡ k (mod ℓmOK) for some k ∈ Z with k ∈ Hm

⟩(2.4)

where k is the residue class of k modulo m. If we set

Gℓm = ker((Z/ℓmZ)× → (Z/mZ)×/Hm),(2.5)

then the group defined in (2.4) coincides with Pℓm(Gℓm). The iso-
morphism from Im(Oℓ)/Pm(Oℓ,Hm) to Iℓm/Pℓm(Gℓm) is induced by
a 7→ aOK for a ∈ Im(Oℓ).

§3. The proof of the main theorem

In this section, we prove the main theorem.
First, we define the reduced ideal associated to a reduced form.

Definition 3.1. Let f = (a, b, c) be a reduced form of discriminant dK defined

in (1.3) and (1.4). and let τ = b+
√
dK

2a . We call the ideal [1, τ ] the reduced
ideal associated to f .

By [3, Theorem 2.8] and [13, §13, Theorem 1], each orbit in F (dK)/Γ
contains a reduced form. Furthermore, when dK is negative, the reduced
form is unique in each orbit. If dK is positive, then there are finitely many
reduced forms in each orbit. We fix one, say f , of the reduced forms for
each orbit fΓ. The proofs of [3, Theorem 2.8] and [13, §13, Theorem 1] give
us a simple algorithm to compute reduced form for each orbit fΓ. Once we
take the reduced forms {fi} as a system of representatives of F (dK)/Γ, we
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can take {fiγj} as a system of representatives of F (dK)/Γ(Hm) with coset
representatives {γj} of Γ/Γ(Hm). It follows easily from [4, §1.2] that

[Γ : Γ(Hm)] = m
ϕ(m)

|Hm|
∏
p|m

(
1 +

1

p

)
,

where ϕ is the Euler totient function.
After these preparations, we can now prove Theorem 1.1.

Proof of Theorem 1.1. We first recall the setting of the theorem. Let C be a
ray class in ClK(m) and a an arbitrary integral ideal lying in C. Let f = (a, b, c)
be a reduced form such that the narrow class of a−1 maps to fΓ by the

isomorphism Φ1. Let τ = b+
√
dK

2a and let b = [1, τ ] be the reduced ideal
associated to f . By the assumption on the form f , the narrow class of a−1

coincides with that of b. That is, there is a totally positive element z ∈ K×

satisfying ab = (z). Since a is integral, z is lying in b and written in the form
z = x+yτ with a pair of integers (x, y). Then the normN(a) is equal to f(x, y).
In this proof, we denote by [c] the ideal class of c in Im/Pm({±1}) for c ∈ Im.
We will show that there is a matrix γ ∈ Γ satisfying Φm([a−1]) = (fγ)Γ±1(m)
and (x, y) ≡ (1, 0)γ⊤ (mod m).

We take non-negative integers r, s such that f(r, s) is prime to m. Let

β = ar + s b−
√
dK

2 and b′ = βb. Note that β and βτ = cs + r b+
√
dK

2 are
integers of K, and b′ is an integral ideal. Since f is a reduced form, we
have N(β) = af(r, s) > 0. Hence b′ belongs to the narrow class of b. We

take an integral basis OK = [1, ω] with ω = b+
√
dK

2 . Let C be a matrix

satisfying (β, βτ) = (1, ω)C. We can see that C is given by

(
ar + bs cs
−s r

)
and N(b′) = |detC| = f(r, s) is prime to m. Therefore, b′ is prime to m. Let
g be a quadratic form satisfying Φm([a−1]) = gΓ±1(m). By the definition of
Φm, the form g is also in the image of the narrow class of a−1 under Φ1. Hence

we can take a matrix γ =

(
u1 u2
u3 u4

)
∈ Γ satisfying g = fγ. As in the proof of

Proposition 2.4, we have

Φ−1
m (g) = [ρg(u1 + u3τ)

−1b] = [ρg(u1β + u3βτ)
−1b′]

where ρg is defined in (2.3). We denote ρ−1
g (u1β + u3βτ) by ξ. Since [a−1] =

[(ξ−1)b′], there is α ∈ K× satisfying α ≡ ±1 (mod ∗mOK) and ab′ = (αξ).
Since ab′ = (zβ), we have αξ = ±zβ by replacing z by zε with some unit
ε ∈ O×

K of positive norm if necessary, where the sign ‘±’ in the right hand side
agrees with that of α modulo m. We have

(x− u1)β + (y − u3)βτ ≡ 0 (mod mOK).
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To complete the proof, we will show that β and βτ are linearly independent
over Z/mZ where β, βτ are the residue classes of β, βτ modulo mOK , respec-
tively. We have an isomorphism

OK/(m) ∼= 1 · Z/mZ⊕ ω · Z/mZ

as a Z/mZ-module. Since detC = f(r, s) is prime tom, we have (C mod m) ∈
GL(2,Z/mZ). It follows that β and βτ are linearly independent over Z/mZ.
Thus we obtain (x, y) ≡ (u1, u3) (mod m). This completes the proof.

§4. Examples

In this section, we give explicit examples of Theorem 1.1.

4.1. Imaginary case

Let K = Q(
√
−5) and m = 2. We have dK = −20, and the class number of K

is 2. The ray class group ClK(2) is generated by the class of c = [3, 1 +
√
−5]

and isomorphic to C4. The Galois group of the ray class field modulo 2 of K
over Q is isomorphic to D4. This example is also considered in [5]; however, we
focus on the congruence conditions implied by the isomorphic correspondence.

The reduced forms of discriminant −20 are

f1(x, y) = x2 + 5y2, f2(x, y) = 2x2 + 2xy + 3y2,

and the associated ideals are b1 = [1,
√
−5], b2 = [1, 1+

√
−5

2 ]. Coset represen-
tatives of Γ/Γ±1(2) are

γ1 =

(
1 0
0 1

)
, γ2 =

(
1 −1
1 0

)
, γ3 =

(
0 −1
1 −1

)
.

Thus, excluding the forms with the first coefficient divisible by 2, we can take
{f1γ1, f1γ3, f2γ2, f2γ3} as a system of representatives for (F (−20)/Γ±1(2))

′.
Explicitly, we obtain

(f1γ1)(x, y) = x2 + 5y2, (f1γ3)(x, y) = 5x2 − 10xy + 6y2,

(f2γ2)(x, y) = 7x2 − 6xy + 2y2, (f2γ3)(x, y) = 3x2 − 8xy + 7y2.

By the isomorphism Φ−1
2 , we have the correspondence

Φ−1
2 ((f1γ1)Γ±1(2)) = [OK ], Φ−1

2 ((f1γ3)Γ±1(2)) = [c2] = [c2]−1,

Φ−1
2 ((f2γ2)Γ±1(2)) = [c] = [c3]−1, Φ−1

2 ((f2γ3)Γ±1(2)) = [c3] = [c]−1.
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For an integral ideal a, there exist integers x, y such that

a ∈ [OK ] =⇒ N(a) = f1(2x+ 1, 2y),
a ∈ [c] =⇒ N(a) = f2(2x, 2y + 1),
a ∈ [c2] =⇒ N(a) = f1(2x, 2y + 1),
a ∈ [c3] =⇒ N(a) = f2(2x+ 1, 2y + 1).

4.2. Real case

Let K = Q(
√
17) and m = 4. The discriminant of K is 17, and the narrow

class number of K is 1. The Galois group of the narrow ray class field modulo
4 of K over Q is isomorphic to D4. The ray class group ClK(4) is isomorphic
to C2 × C2. It is generated by C1 and C2 defined by

C1 = [(µ1)], µ1 < 0, µ′
1 > 0, µ1 ≡ 1 (mod ∗mOK),

C2 = [(µ2)], µ2 > 0, µ′
2 < 0, µ2 ≡ 1 (mod ∗mOK).

The kernel of the natural surjection

π : ClK(4) −→ I4/P4({±1})

is of order 2 and generated by the class C1C2 by Remark 1.2. We set A1 =
π([OK ]) and A2 = π(C1).

The reduced forms corresponding to the narrow class of OK are

f1 = (1, 5, 2), f2 = (2, 7, 4), f3 = (4, 9, 4),

f4 = (4, 7, 2), f5 = (2, 5, 1).

Note that these forms belong to the same orbit f1Γ. We take f = f1. Coset
representatives of Γ/Γ±1(4) are(

1 0
0 1

)
,

(
1 −1
1 0

)
,

(
0 −1
1 −1

)
,

(
1 0
−1 1

)
,

(
2 −1
1 0

)
,

(
1 −1
2 −1

)
.

We call them γ1, . . . , γ6 ∈ Γ. Excluding the forms fγj with the first coefficient
divisible by 2, we can take a set of two forms

(fγ1)(x, y) = x2 + 5xy + 2y2, (fγ6)(x, y) = 19x2 − 25xy + 8y2

as a system of representatives for (F (17)/Γ±1(4))
′. By the isomorphism Φ−1

4 ,
the class of the form fγ1 maps to A1, and the class of fγ6 maps to A2. Thus,
for an integral ideal a, there exist integers x, y such that

a ∈ [OK ] or C1C2 =⇒ N(a) = f(4x+ 1, 4y),
a ∈ C1 or C2 =⇒ N(a) = f(4x+ 1, 4y + 2).
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§5. Congruence conditions for the ring class group

Let m be a positive integer and D = m2dK . Recall that F (D) is the set of
primitive quadratic forms of discriminant D. The narrow ring class group
Cl+K(Om) is isomorphic to Im/Pm(Hm) with Hm = (Z/mZ)× (see [3, Propo-
sition 7.22]) and, by class field theory, the group corresponds to the ring class
field of the order Om. It is well known that there is an isomorphism be-
tween Cl+K(Om) and F (D)/Γ (see [3, Theorem 7.7 and Exsecise 7.21]). On
the other hand, we proved that there is an isomorphism Φm from Cl+K(Om)
to (F (dK)/Γ0(m))′ (the case Hm = (Z/mZ)× in Proposition 2.4; see also
Remark 2.5). Therefore it is natural to ask whether there is a natural corre-
spondence between the two form class groups F (D)/Γ and (F (dK)/Γ0(m))′.
In this section, we give such a natural correspondence between them.

In the rest of this section, we assume Hm = (Z/mZ)×. A rational matrix
M ∈ GL(2,Q) acts on a rational binary quadratic form Q by (QM)(x, y) =
Q((x, y)M⊤).

Theorem 5.1. Let D = m2dK and let Q = (a, b, c) ∈ F (D) be a quadratic
form satisfying gcd(a,m) = 1. Let M be a matrix with determinant m defined
by

M =


(
1 r(b−m)/2
0 m

)
if dK ≡ 1 (mod 4),(

1 rb/2
0 m

)
if dK ≡ 0 (mod 4)

(5.1)

where r is an integer satisfying ar ≡ 1 (mod m). Then the rational quadratic
form (QM−1)(x, y) is an integral form of discriminant dK . Furthermore, this
correspondence Q(x, y) 7→ (QM−1)(x, y) induces a group isomorphism between
F (D)/Γ to (F (dK)/Γ0(m))′.

Proof. We define an isomorphism from F (D)/Γ to (F (dK)/Γ0(m))′ so that
the following diagram is commutative:

F (D)/Γ //

Ψ
��

(F (dK)/Γ0(m))′

Cl+K(Om) κ
// Im/Pm(Hm).

Φm

OO
(5.2)

In the diagram, Ψ is the isomorphism obtained from Corollary 2.6 (see also Re-
mark 2.7 (i)). By [3, Proposition 7.22], we can take a system of representatives
{ai} of Cl+K(Om) such that ai are prime to m and the map ai 7→ aiOK induces
the isomorphism κ from Cl+K(Om) to Im/Pm(Hm). The isomorphism Φm is
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defined in Proposition 2.4. The isomorphism from F (D)/Γ to (F (dK)/Γ0(m))′

is, therefore, defined by Φm ◦ κ ◦Ψ.
We shall show that the above-defined map coincides with the isomorphism

defined in the statement of the theorem. Let Q = (a, b, c) ∈ F (D) satisfying
gcd(a,m) = 1 and let τ = (b +

√
D)/2a. Then the fractional Om-ideal a =

ρQ[1, τ ] is prime to m. The map κ sends the class of a to the class of aOK =
ρQ[1, τ̃ ] where

τ̃ =


1 + s(b−m) +

√
dK

2a
if dK ≡ 1 (mod 4),

sb+
√
dK

2a
if dK ≡ 0 (mod 4)

(5.3)

with an integer s satisfying ms = 1−ar, where r is an integer satisfying ar ≡ 1
(mod m) as in the statement of the theorem. Since [1, τ ]⊗ZQ ∼= [1, τ̃ ]⊗ZQ ∼=
K, there is a transition matrix M in GL(2,Q) satisfying [1, τ ] = [1, τ̃ ]M :

M =


(
1 r(b−m)/2
0 m

)
if dK ≡ 1 (mod 4),(

1 rb/2
0 m

)
if dK ≡ 0 (mod 4).

(5.4)

Since N(a) = N(aOK), we have

N(ρQx+ ρQτ̃ y)

N(aOK)
=

N(ρQX + ρQτY )

N(a)

= sgn(N(ρQ)) sgn(a)Q(X,Y ) = Q(X,Y ) = (QM−1)(x, y)

with a change of variable (X,Y ) = (x, y)(M−1)⊤. This completes the proof.

Remark 5.2. (i) For the case dK < 0, a similar result is obtained in [2,
Corollary 2.9 (2)]. By contrast, we obtain the result for general dK .
Besides, we also obtain the matrix M in (5.1), which is related to the
congruence condition given in Theorem 1.1 (see Corollary 5.3 and also
Example 5.4).

(ii) Let b be an integral ideal in Im. The inverse of κ is induced by b 7→
b ∩ Om, and we have N(b) = N(b ∩ Om). The imaginary quadratic
case follows from [3, Proposition 7.20] and the real case can be proved
similarly.

(iii) The inverse of F (D)/Γ → (F (dK)/Γ0(m))′ is simpler to describe. In
fact, for a quadratic form f = (a, b, c) ∈ F (dK) with gcd(a,m) = 1, the
map sending f(x, y) to f(x,my) induces the inverse map.
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We obtain the following corollary analogous to Theorem 1.1.

Corollary 5.3. Let C ∈ Im/Pm(Hm) and a an integral ideal lying in C. Let
Q = (a, b, c) ∈ F (m2dK) be a quadratic form with gcd(a,m) = 1 satisfy-
ing C−1 = κ(Ψ(QΓ)), where Ψ and κ are the maps defined in the proof of
Theorem 5.1. If M is the matrix determined from Q by (5.1) and g(x, y) =
(QM−1)(x, y) ∈ F (dK), then N(a) is represented by Q(X,Y ) with some in-
tegers X,Y and is represented also by g(x, y) with some integers with the
congruence conditions x ̸≡ 0, y ≡ 0 (mod m).

Proof. Since N(a) = N(a ∩ Om), it is obvious that N(a) is represented by
Q(X,Y ). By the definition of g, we can write N(a) = g(x, y) with (x, y) =
(X,Y )M⊤. Thus we have y ≡ 0 (mod m). Since N(a) is prime to m, the
integer x must be prime to m.

The following example illustrates the correspondence in Theorem 5.1 and
the representation of the norm of ideals by two quadratic forms of different
discriminants in Corollary 5.3.

Example 5.4. Let K = Q(
√
−5) and m = 2. Let O2 = [1, 2

√
−5] be the order

of conductor 2 in K. We have dK = −20 and m2dK = −80. Note that the
ring class group Cl+K(O2) is isomorphic to the ray class group ClK(2) ∼= C4

generated by the class of c = [3, 1 +
√
−5] (see Section 4.1). Thus Cl+K(O2) is

generated by the class of c̃ = c ∩ O2 = [3,−1 + 2
√
−5].

Corollary 5.3 claims that the norm of an ideal in each class of ClK(2) is
represented in two ways by forms in F (−80) and F (−20). We start with the
reduced forms of F (−80):

Q1(x, y) = x2 + 20y2, Q2(x, y) = 4x2 + 5y2,

Q3(x, y) = 3x2 + 2xy + 7y2, Q4(x, y) = 3x2 − 2xy + 7y2.

If we replace Q2 by

(
Q2 ·

(
0 −1
1 0

))
(x, y) = 5x2 + 4y2, then the condition

gcd(2, Qi(1, 0)) = 1 is satisfied for all i = 1, . . . , 4. The isomorphism Ψ from
F (−80)/Γ to Cl+K(O2) gives the correspondence

Ψ(Q1Γ) = [O2], Ψ(Q2Γ) = [̃c2], Ψ(Q3Γ) = [̃c3], Ψ(Q4Γ) = [̃c].

To obtain the corresponding forms in F (−20), we compute the matrix Mi

defined in (5.1):

M1 = M2 =

(
1 0
0 2

)
, M3 =

(
1 1
0 2

)
, M4 =

(
1 −1
0 2

)
,
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and the forms gi = QiM
−1
i are

g1(x, y) = x2 + 5y2, g2(x, y) = 5x2 + y2,

g3(x, y) = 3x2 − 2xy + 2y2, g4(x, y) = 3x2 + 2xy + 2y2.

Corollary 5.3 implies that, for an integral ideal a ∈ I2, there exist integers
X,Y, x, y such that

a ∈ [OK ] =⇒ N(a) = Q1(X,Y ) = g1(2x+ 1, 2y),
a ∈ [c] = [c3]−1 =⇒ N(a) = Q3(X,Y ) = g3(2x+ 1, 2y),
a ∈ [c2] = [c2]−1 =⇒ N(a) = Q2(X,Y ) = g2(2x+ 1, 2y),
a ∈ [c3] = [c]−1 =⇒ N(a) = Q4(X,Y ) = g4(2x+ 1, 2y).

(5.5)

The set of the forms gi is a system of representatives of (F (−20)/Γ0(2))
′

by Theorem 5.1. For each representative gi, there exist a reduced form f in
F (−20) and a matrix γ which is a representative of Γ/Γ0(2) satisfying gi = fγ.
The reduced forms of F (−20) are given in Section 4.1:

f1(x, y) = x2 + 5y2, f2(x, y) = 2x2 + 2xy + 3y2.

We can take matrices γ1, . . . , γ4 ∈ Γ satisfying

g1 = f1γ1, g2 = f1γ2, g3 = f2γ3, g4 = f2γ4.(5.6)

Explicitly, we obtain

γ1 =

(
1 0
0 1

)
, γ2 = γ3 =

(
0 −1
1 0

)
, γ4 =

(
0 −1
1 1

)
.

Combining (5.5) and (5.6), we recover the result in the example in Section 4.1.

a ∈ [OK ] =⇒ N(a) = f1(2x+ 1, 2y),
a ∈ [c] =⇒ N(a) = f2(2x, 2y + 1),
a ∈ [c2] =⇒ N(a) = f1(2x, 2y + 1),
a ∈ [c3] =⇒ N(a) = f2(2x, 2y + 1)

with some integers x, y. Here the condition of the case a ∈ [c3] looks different
from that of Section 4.1. Since f2 is an ambiguous form and thus there is a

stabilizer in GL(2,Z): f2 ·
(
1 1
0 −1

)
= f2, we obtain the same condition

a ∈ [c3] =⇒ N(a) = f2(2x+ 1, 2y + 1).
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As an application of Theorem 5.1, we give another explanation of a result
by Cho [1, Theorem 1]. Let K be an imaginary quadratic field of discriminant
dK . Let m and ℓ be positive integers and

Hℓm = ker((Z/ℓmZ)× → (Z/mZ)×/{±1}),

the special case of (2.5). Since Pℓm({±1}) ≤ Pℓm(Hℓm) ≤ Iℓm, there exists
a class field Km,Oℓ

of K satisfying Gal(Km,Oℓ
/K) ∼= Iℓm/Pℓm(Hℓm). We call

Km,Oℓ
the extended ring class field of level m according to [3, §15]. The class

field Km,Oℓ
is studied in [1] and [10]. Note that K1,Oℓ

is the ring class field
of the order Oℓ, and Km,OK

is the ray class field modulo m of K. Let ℓ, n be
positive integers satisfying −4n = ℓ2dK . Cho [1] proved that a prime number p
not dividing 2mn splits completely in Km,Oℓ

/Q if and only if p = x2+ny2 with
(x, y) ≡ (1, 0) (mod m). In the following proposition, we give a representation
of p by another quadratic form of discriminant dK with congruence conditions.

Proposition 5.5. Let n be a positive integer and K = Q(
√
−n). Let ℓ be a

positive integer satisfying −4n = ℓ2dK and Oℓ the order of K of conductor ℓ.
Let m be a positive integer and Km,Oℓ

the extended ring class field of level m.
If p is a prime number not dividing 2mn, then

p splits completely in Km,Oℓ

⇐⇒ p = x2 + ny2 with some integers x, y satisfying (x, y) ≡ (1, 0) (mod m)

⇐⇒


p = x2 + xy +

1− dK
4

y2 if dK ≡ 1 (mod 4)

p = x2 − dK
4
y2 if dK ≡ 0 (mod 4)

with the congruence conditions x ≡ 1 (mod m) and y ≡ 0 (mod ℓm).

Proof. The first equivalence is proved in [1, Theorem 1]. We show the second
one. Let Q(x, y) = x2+ny2, the principal form of F (−4n). If M is the matrix
determined from Q by (5.1), then Q̃ = QM−1 ∈ F (dK) holds by Theorem 5.1.
We can compute

M =


(
1 −ℓ/2
0 ℓ

)
if dK ≡ 1 (mod 4)(

1 0
0 ℓ

)
if dK ≡ 0 (mod 4)

and

Q̃(x, y) =


x2 + xy +

1− dK
4

y2 if dK ≡ 1 (mod 4),

x2 − dK
4
y2 if dK ≡ 0 (mod 4).
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Suppose that a prime p is represented by Q(x, y) with the congruence con-
dition (x, y) ≡ (1, 0) (mod m). Since we can write Q = Q̃M , we have

p = Q(x, y) =

 Q̃

(
x− ℓ

2
y, ℓy

)
if dK ≡ 1 (mod 4),

Q̃(x, ℓy) if dK ≡ 0 (mod 4).

If we set (X,Y ) = (x, y)M⊤, then we obtain X ≡ 1 (mod m) and Y ≡ 0
(mod ℓm) in either case dK ≡ 1 or 0 modulo 4. By reversing the argument,
we can prove the converse.

There is an isomorphism between (F (ℓ2dK)/Γ±1(m))′ and (F (dK)/Γ(Hℓm))′

behind Proposition 5.5. This isomorphism is obtained as an extension of The-
orem 5.1:

(F (ℓ2dK)/Γ±1(m))′ //

Ψ
��

(F (dK)/Γ(Hℓm))′

Im(Oℓ)/Pm(Oℓ, {±1}) κ
// Iℓm/Pℓm(Hℓm).

Φℓm

OO

For the definitions of Ψ and κ in the diagram, see Corollary 2.6 and Remark
2.7 (ii).
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